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Medial graphs

Given a connected plane graph G, its medial graph Gm has

I a vertex for each edge of G
I an edge between two vertices for each face of G in which their corresponding

edges occur consecutively.

Figure: A plane graph (in blue) and its medial graph (in red).
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Medial graphs

I The definition of medial graph also extends without modification to graph
embeddings on surfaces of higher genus.

I The medial graph of a disconnected graph is the disjoint union of the medial
graphs of each connected component.

I The medial graph of any embedded graph is a 4-regular embedded graph.
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I A straight-ahead walk in a 4-regular embedded graph always passes from an
edge to the opposite edge in the rotation at the same vertex.

I The straight-ahead closed walks of a 4-regular embedded graph partition the
edges.

I Let µ(G) be the number of components of a straight-ahead closed walk
decomposition of Gm.

Figure: A plane graph G and its medial graph with µ(G) = 4.
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Parameters

Graph parameters

v(G) = # vertices
e(G) = # edges
k(G) = # components

Topological parameters

f (G) = # faces
g(G) = genus

γ(G) = Euler genus =

{
2g(G), if G is orientable,
g(G), if G is non-orientable.
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Extremal plane graphs

Theorem (Jin, Dong and Tay, 2009[1])

Let G be a connected plane graph. Then 1 ≤ µ(G) ≤ f (G).

Definition[1]. A connected plane graph G is called extremal if

µ(G) = f (G).

Theorem (Huggett and Tawfik, 2015[2])

Let G be a connected plane graph. If G is extremal then G is bipartite and each face
of G is even.

1X. Jin, F. Dong and E. G. Tay, On graphs determining links with maximal number of
components via medial construction, Discrete Appl. Math. 157 (2009), 3099–3110.

2S. Huggett and I. Tawfik, Embedded graphs whose links have the largest possible number of
components, Ars Math. Contemp.8 (2015), 319–335.
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G is cellularly embedded if it is
drawn on a surface Σ such that

I edges don’t cross,
I faces are discs.

Theorem (Huggett and Tawfik, 2015)
Let G be a graph cellularly embedded on an orientable surface of genus g. Then

1 ≤ µ(G) ≤ f (G) + 2g.
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Extremal graphs on orientable surfaces of genus g
Definition[2]. If G is a graph cellularly embedded on an orientable surface of genus
g then G is called extremal if
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Ribbon graphs
A ”topological graph” with

I discs for vertices,
I ribbons for edges.

Figure: Examples of ribbon graphs.
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Formally, a ribbon graph[3] G = (V(G),E(G)) is a surface with boundary
represented as the union of two sets of discs, a set V(G) of vertices, and a set E(G)
of edges such that

I The vertices and edges intersect in disjoint line segments.

I Each such line segment lies on the boundary of precisely one vertex and
precisely one edge.

I Every edge contains exactly two such line segments.

3B. Bollobás, O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323(1) (2002) 81-96.
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I Ribbon graphs and cellularly embedded graphs are equivalent.

I Since cellularly embedded graphs and ribbon graphs are equivalent, we can
move freely between these representations, choosing whichever is most
convenient at the time for our purposes.
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Petrials, G×

G× is simply the result of giving a half-twist to all of the edges as shown below.

Lemma

Let G be a ribbon graph. Then µ(G) = f (G×).
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Upper bound

Lemma

Let G + e be the ribbon graph obtained from a ribbon graph G by adding a new
edge e connecting two vertices of G. Then

µ(G)− 1 ≤ µ(G + e) ≤ µ(G) + 1.

Theorem

Let G be a ribbon graph. Then

k(G) ≤ µ(G) ≤ f (G) + γ(G).
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Extremal graphs

Definition. A ribbon graph G is called extremal if

µ(G) = f (G) + γ(G).

Lemma

Let G be a ribbon graph. Then

µ(G) = f (G) + γ(G)− γ(G×).

Theorem

A ribbon graph G is extremal if and only if γ(G×) = 0, i.e. G× is plane.
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Minor

H is a minor of G if it is obtained by
I edge (vertex) deletion
I edge contraction

Ribbon graph minors[4]

To contract e = (u, v):
I attach a disc to each ∂-cpt. of v ∪ e ∪ u
I remove interior of v ∪ e ∪ u

4I. Moffatt, Excluded minors and the ribbon graphs of knots, J. Graph Theory 81(4) (2015),
329–341.
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Lemma

Let G be a ribbon graph and e be a bridge of G. Then µ(G) = µ(G/e).

Figure: The medial graphs of G and G/e.



Lemma

Let G be a ribbon graph and e1, e2 ∈ E(G).

1. If the 2-cycle given by {e1, e2} is orientable as in Case 1, then
µ(G) = µ(G− e1 − e2).

2. If the 2-cycle given by {e1, e2} is non-orientable as in Case 2, then
µ(G) = µ(G/e1/e2).

3. If e1 and e2 are not parallel edges as in Case 3, then
µ(G) = µ(G/e1/e2).
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Theorem

Let G be a ribbon graph.

1. If G is extremal and e is not a bridge of G then G− e is extremal.
2. If e is a bridge of G, then G/e is extremal if and only if G is extremal.
3. Let v be a vertex of degree 2 with exactly one adjacent vertex. Then G− v is

extremal if and only if G is extremal.
4. Let v be a vertex of degree 2 with two different adjacent vertices x and y. Then

G/{v, x}/{v, y} is extremal if and only if G is extremal.
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Extremal minor

Admissible deletion:

I e is not a bridge of G.
I v is an isolated vertex of G.

Admissible contraction:

I e is a bridge of G.
I v is a vertex of degree 2 with two different

adjacent vertices u,w and G/v = G/{v,u}/{v,w}.
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Let G be a ribbon graph. We say that a ribbon graph H is an extremal minor of G, if
there is a sequence of ribbon graphs

G = G0,G1, · · · ,Gt = H

where for each i, Gi+1 is obtained from Gi by either an admissible deletion or an
admissible contraction.



Theorem

Let G be a ribbon graph. Then G is extremal⇔ it contains no extremal minor
equivalent to B1,B2, I3, I2,T1 or T2.



Two conjectures and their generalizations

Conjecture (Huggett and Tawfik, 2015)
If G is an extremal graph cellularly embedded on a torus then each face of G is
even.

Theorem
If G is an extremal ribbon graph, then each face of G is even.
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Thank you for your attention!


