Extremal embedded graphs

Qi Yan, Xian'an Jin

School of Mathematical Sciences, Xiamen University Email: qiyanmath@163.com

August 26, 2019

Given a connected plane graph G, its medial graph G_m has

Given a connected plane graph G, its medial graph G_m has

► a vertex for each edge of *G*

Medial graphs

Given a connected plane graph G, its medial graph G_m has

- ► a vertex for each edge of *G*
- ▶ an edge between two vertices for each face of *G* in which their corresponding edges occur consecutively.

Given a connected plane graph G, its medial graph G_m has

- ► a vertex for each edge of *G*
- ▶ an edge between two vertices for each face of *G* in which their corresponding edges occur consecutively.

Figure: A plane graph (in blue) and its medial graph (in red).

► The definition of medial graph also extends without modification to graph embeddings on surfaces of higher genus.

- ► The definition of medial graph also extends without modification to graph embeddings on surfaces of higher genus.
- ► The medial graph of a disconnected graph is the disjoint union of the medial graphs of each connected component.

- ► The definition of medial graph also extends without modification to graph embeddings on surfaces of higher genus.
- ► The medial graph of a disconnected graph is the disjoint union of the medial graphs of each connected component.
- ► The medial graph of any embedded graph is a 4-regular embedded graph.

► A straight-ahead walk in a 4-regular embedded graph always passes from an
edge to the opposite edge in the rotation at the same vertex.

- ► A straight-ahead walk in a 4-regular embedded graph always passes from an edge to the opposite edge in the rotation at the same vertex.
- ► The straight-ahead closed walks of a 4-regular embedded graph partition the edges.

- ► A straight-ahead walk in a 4-regular embedded graph always passes from an edge to the opposite edge in the rotation at the same vertex.
- ► The straight-ahead closed walks of a 4-regular embedded graph partition the edges.
- ▶ Let $\mu(G)$ be the number of components of a straight-ahead closed walk decomposition of G_m .

Figure: A plane graph ${\it G}$ and its medial graph with $\mu({\it G})=4$.

Graph parameters

Graph parameters

v(G) = # vertices

Graph parameters

```
v(G) = \# vertices e(G) = \# edges
```

Graph parameters

```
v(G) = \# vertices

e(G) = \# edges

k(G) = \# components
```

Graph parameters

```
v(G) = \# vertices

e(G) = \# edges

k(G) = \# components
```

Graph parameters

```
v(G) = \# vertices

e(G) = \# edges

k(G) = \# components
```

$$f(G) = \#$$
 faces

Graph parameters

```
v(G) = \# vertices

e(G) = \# edges

k(G) = \# components
```

```
f(G) = \# faces g(G) = genus
```

Graph parameters

```
v(G) = \# vertices

e(G) = \# edges

k(G) = \# components
```

$$f(G) = \#$$
 faces $g(G) = \text{genus}$

$$\gamma(G) = \text{Euler genus} = \left\{ \begin{array}{ll} 2g(G), & \text{if } G \text{ is orientable,} \\ g(G), & \text{if } G \text{ is non-orientable.} \end{array} \right.$$

EXTREMAL PLANE GRAPHS

¹X. Jin, F. Dong and E. G. Tay, On graphs determining links with maximal number of components via medial construction, *Discrete Appl. Math.* **157** (2009), 3099–3110.

²S. Huggett and I. Tawfik, Embedded graphs whose links have the largest possible number of components, *Ars Math. Contemp.***8** (2015), 319–335.

Extremal plane graphs

Theorem (Jin, Dong and Tay, 2009^[1])

Let *G* be a connected plane graph. Then $1 \le \mu(G) \le f(G)$.

¹X. Jin, F. Dong and E. G. Tay, On graphs determining links with maximal number of components via medial construction, *Discrete Appl. Math.* **157** (2009), 3099–3110.

²S. Huggett and I. Tawfik, Embedded graphs whose links have the largest possible number of components, *Ars Math. Contemp.***8** (2015), 319–335.

Extremal plane graphs

Theorem (Jin, Dong and Tay, 2009^[1])

Let *G* be a connected plane graph. Then $1 \le \mu(G) \le f(G)$.

Definition^[1]. A connected plane graph *G* is called extremal if

$$\mu(G) = f(G).$$

¹X. Jin, F. Dong and E. G. Tay, On graphs determining links with maximal number of components via medial construction, *Discrete Appl. Math.* **157** (2009), 3099–3110.

²S. Huggett and I. Tawfik, Embedded graphs whose links have the largest possible number of components, *Ars Math. Contemp.***8** (2015), 319–335.

Extremal plane graphs

Theorem (Jin, Dong and Tay, 2009^[1])

Let *G* be a connected plane graph. Then $1 \le \mu(G) \le f(G)$.

Definition^[1]. A connected plane graph *G* is called extremal if

$$\mu(G) = f(G).$$

Theorem (Huggett and Tawfik, 2015^[2])

Let *G* be a connected plane graph. If *G* is extremal then *G* is bipartite and each face of *G* is even.

¹X. Jin, F. Dong and E. G. Tay, On graphs determining links with maximal number of components via medial construction, *Discrete Appl. Math.* **157** (2009), 3099–3110.

²S. Huggett and I. Tawfik, Embedded graphs whose links have the largest possible number of components, *Ars Math. Contemp.***8** (2015), 319–335.

G is cellularly embedded if it is drawn on a surface Σ such that

- ► edges don't cross,
- ► faces are discs.

G is cellularly embedded if it is drawn on a surface Σ such that

- ► edges don't cross,
- ► faces are discs.

Theorem (Huggett and Tawfik, 2015)

Let *G* be a graph cellularly embedded on an orientable surface of genus *g*. Then

$$1 \le \mu(G) \le f(G) + 2g.$$

Definition^[2]. If G is a graph cellularly embedded on an orientable surface of genus g then G is called extremal if

$$\mu(G) = f(G) + 2g.$$

Definition^[2]. If G is a graph cellularly embedded on an orientable surface of genus g then G is called extremal if

$$\mu(G) = f(G) + 2g.$$

Theorem (Huggett and Tawfik, 2015)

Let *G* be a connected plane graph. If *G* is extremal then *G* is bipartite and each face of *G* is even.

Definition^[2]. If G is a graph cellularly embedded on an orientable surface of genus g then G is called extremal if

$$\mu(G) = f(G) + 2g.$$

Theorem (Huggett and Tawfik, 2015)

Let *G* be a connected plane graph. If *G* is extremal then *G* is bipartite and each face of *G* is even.

Conjecture (Huggett and Tawfik, 2015)

If *G* is an extremal graph cellularly embedded on a torus then each face of *G* is even.

Definition^[2]. If G is a graph cellularly embedded on an orientable surface of genus g then G is called extremal if

$$\mu(G) = f(G) + 2g.$$

Theorem (Huggett and Tawfik, 2015)

Let *G* be a connected plane graph. If *G* is extremal then *G* is bipartite and each face of *G* is even.

Conjecture (Huggett and Tawfik, 2015)

If *G* is an extremal graph cellularly embedded on a torus then each face of *G* is even.

Conjecture (Huggett and Tawfik, 2015)

If G is an extremal graph cellularly embedded on a torus then G is bipartite.

RIBBON GRAPHS

A "topological graph" with

- discs for vertices,
- ► ribbons for edges.

RIBBON GRAPHS

A "topological graph" with

- ► discs for vertices,
- ► ribbons for edges.

Figure: Examples of ribbon graphs.

Formally, a ribbon graph^[3] G = (V(G), E(G)) is a surface with boundary represented as the union of two sets of discs, a set V(G) of vertices, and a set E(G) of edges such that

³B. Bollobás, O. Riordan, A polynomial of graphs on surfaces, **Math. Ann.** 323(1) (2002) 81-96.

Formally, a ribbon graph^[3] G = (V(G), E(G)) is a surface with boundary represented as the union of two sets of discs, a set V(G) of vertices, and a set E(G) of edges such that

► The vertices and edges intersect in disjoint line segments.

³B. Bollobás, O. Riordan, A polynomial of graphs on surfaces, **Math. Ann.** 323(1) (2002) 81-96.

Formally, a ribbon graph^[3] G = (V(G), E(G)) is a surface with boundary represented as the union of two sets of discs, a set V(G) of vertices, and a set E(G) of edges such that

- ▶ The vertices and edges intersect in disjoint line segments.
- ► Each such line segment lies on the boundary of precisely one vertex and precisely one edge.

³B. Bollobás, O. Riordan, A polynomial of graphs on surfaces, **Math. Ann.** 323(1) (2002) 81-96.

Formally, a ribbon graph^[3] G = (V(G), E(G)) is a surface with boundary represented as the union of two sets of discs, a set V(G) of vertices, and a set E(G) of edges such that

- ► The vertices and edges intersect in disjoint line segments.
- ► Each such line segment lies on the boundary of precisely one vertex and precisely one edge.
- ► Every edge contains exactly two such line segments.

³B. Bollobás, O. Riordan, A polynomial of graphs on surfaces, **Math. Ann.** 323(1) (2002) 81-96.

► Ribbon graphs and cellularly embedded graphs are equivalent.

▶ Ribbon graphs and cellularly embedded graphs are equivalent.

▶ Ribbon graphs and cellularly embedded graphs are equivalent.

► Since cellularly embedded graphs and ribbon graphs are equivalent, we can move freely between these representations, choosing whichever is most convenient at the time for our purposes.

MEDIAL GRAPHS

We can form the medial graph of a ribbon graph inside the ribbon graph.

MEDIAL GRAPHS

We can form the medial graph of a ribbon graph inside the ribbon graph.

MEDIAL GRAPHS

We can form the medial graph of a ribbon graph inside the ribbon graph.

Example

Petrials, G^{\times}

 G^{\times} is simply the result of giving a half-twist to all of the edges as shown below.

Petrials, G^{\times}

 G^{\times} is simply the result of giving a half-twist to all of the edges as shown below.

Lemma

Let *G* be a ribbon graph. Then $\mu(G) = f(G^{\times})$.

Upper bound

Lemma

Let G + e be the ribbon graph obtained from a ribbon graph G by adding a new edge e connecting two vertices of G. Then

$$\mu(G) - 1 \le \mu(G + e) \le \mu(G) + 1.$$

Upper bound

Lemma

Let G + e be the ribbon graph obtained from a ribbon graph G by adding a new edge e connecting two vertices of G. Then

$$\mu(G) - 1 \le \mu(G + e) \le \mu(G) + 1.$$

Theorem

Let *G* be a ribbon graph. Then

$$k(G) \le \mu(G) \le f(G) + \gamma(G).$$

EXTREMAL GRAPHS

Definition. A ribbon graph *G* is called extremal if

$$\mu(G) = f(G) + \gamma(G).$$

Extremal graphs

Definition. A ribbon graph *G* is called extremal if

$$\mu(G) = f(G) + \gamma(G).$$

Lemma

Let *G* be a ribbon graph. Then

$$\mu(G) = f(G) + \gamma(G) - \gamma(G^{\times}).$$

Extremal graphs

Definition. A ribbon graph *G* is called extremal if

$$\mu(G) = f(G) + \gamma(G).$$

Lemma

Let *G* be a ribbon graph. Then

$$\mu(G) = f(G) + \gamma(G) - \gamma(G^{\times}).$$

Theorem

A ribbon graph G is extremal if and only if $\gamma(G^{\times})=0$, i.e. G^{\times} is plane.

H is a minor of G if it is obtained by

- ► edge (vertex) deletion
- ► edge contraction

⁴I. Moffatt, Excluded minors and the ribbon graphs of knots, *J. Graph Theory* **81(4)** (2015), 329–341.

H is a minor of *G* if it is obtained by

- ► edge (vertex) deletion
- edge contraction

edge deletion

vertex deletio

edge contracti

Ribbon graph minors^[4]

⁴I. Moffatt, Excluded minors and the ribbon graphs of knots, *J. Graph Theory* **81(4)** (2015), 329–341.

H is a minor of *G* if it is obtained by

- ► edge (vertex) deletion
- edge contraction

Ribbon graph minors^[4]

To contract e = (u, v):

- ▶ attach a disc to each ∂ -cpt. of $v \cup e \cup u$
- ▶ remove interior of $v \cup e \cup u$

⁴I. Moffatt, Excluded minors and the ribbon graphs of knots, *J. Graph Theory* **81(4)** (2015), 329–341.

H is a minor of *G* if it is obtained by

- ► edge (vertex) deletion
- edge contraction

Ribbon graph minors^[4]

To contract e = (u, v):

- ▶ attach a disc to each ∂ -cpt. of $v \cup e \cup u$
- ▶ remove interior of $v \cup e \cup u$

		non-loop	nonorientable loop	orientable loop
	G	*		
l	G-e	* *	**	***
	G/e	**	***	* 4

⁴I. Moffatt, Excluded minors and the ribbon graphs of knots, *J. Graph Theory* **81(4)** (2015), 329–341.

Let *G* be a ribbon graph and *e* be a bridge of *G*. Then $\mu(G) = \mu(G/e)$.

Figure: The medial graphs of G and G/e.

Let *G* be a ribbon graph and $e_1, e_2 \in E(G)$.

Let *G* be a ribbon graph and $e_1, e_2 \in E(G)$.

1. If the 2-cycle given by $\{e_1, e_2\}$ is orientable as in Case 1, then $\mu(G) = \mu(G - e_1 - e_2)$.

Let *G* be a ribbon graph and $e_1, e_2 \in E(G)$.

- 1. If the 2-cycle given by $\{e_1,e_2\}$ is orientable as in Case 1, then $\mu(G)=\mu(G-e_1-e_2)$.
- 2. If the 2-cycle given by $\{e_1, e_2\}$ is non-orientable as in Case 2, then $\mu(G) = \mu(G/e_1/e_2)$.

Let *G* be a ribbon graph and $e_1, e_2 \in E(G)$.

- 1. If the 2-cycle given by $\{e_1, e_2\}$ is orientable as in Case 1, then $\mu(G) = \mu(G e_1 e_2)$.
- 2. If the 2-cycle given by $\{e_1, e_2\}$ is non-orientable as in Case 2, then $\mu(G) = \mu(G/e_1/e_2)$.
- 3. If e_1 and e_2 are not parallel edges as in Case 3, then $\mu(G) = \mu(G/e_1/e_2)$.

Let *G* be a ribbon graph.

Let *G* be a ribbon graph.

1. If *G* is extremal and *e* is not a bridge of *G* then G - e is extremal.

Let *G* be a ribbon graph.

- 1. If *G* is extremal and *e* is not a bridge of *G* then G e is extremal.
- 2. If e is a bridge of G, then G/e is extremal if and only if G is extremal.

Let *G* be a ribbon graph.

- 1. If *G* is extremal and *e* is not a bridge of *G* then G e is extremal.
- 2. If e is a bridge of G, then G/e is extremal if and only if G is extremal.
- 3. Let v be a vertex of degree 2 with exactly one adjacent vertex. Then G v is extremal if and only if G is extremal.

 e_2

Let *G* be a ribbon graph.

- 1. If *G* is extremal and *e* is not a bridge of *G* then G e is extremal.
- 2. If e is a bridge of G, then G/e is extremal if and only if G is extremal.
- 3. Let v be a vertex of degree 2 with exactly one adjacent vertex. Then G v is extremal if and only if G is extremal.
- 4. Let v be a vertex of degree 2 with two different adjacent vertices x and y. Then $G/\{v,x\}/\{v,y\}$ is extremal if and only if G is extremal.

Admissible deletion:

Admissible deletion:

ightharpoonup e is not a bridge of G.

Admissible deletion:

- ightharpoonup e is not a bridge of G.
- \triangleright *v* is an isolated vertex of *G*.

Admissible deletion:

- ightharpoonup e is not a bridge of G.
- \triangleright *v* is an isolated vertex of *G*.

Admissible contraction:

ightharpoonup e is a bridge of G.

Admissible deletion:

- ightharpoonup e is not a bridge of G.
- \triangleright *v* is an isolated vertex of *G*.

- ightharpoonup e is a bridge of G.
- ▶ v is a vertex of degree 2 with two different adjacent vertices u, w and $G/v = G/\{v, u\}/\{v, w\}$.

Let G be a ribbon graph. We say that a ribbon graph H is an extremal minor of G, if there is a sequence of ribbon graphs

$$G = G_0, G_1, \cdots, G_t = H$$

where for each i, G_{i+1} is obtained from G_i by either an admissible deletion or an admissible contraction.

Let *G* be a ribbon graph. Then *G* is extremal \Leftrightarrow it contains no extremal minor equivalent to $B_1, B_{\overline{2}}, I_3, I_{\overline{2}}, T_1$ or $T_{\overline{2}}$.

Conjecture (Huggett and Tawfik, 2015)

If *G* is an extremal graph cellularly embedded on a torus then each face of *G* is even.

Conjecture (Huggett and Tawfik, 2015)

If *G* is an extremal graph cellularly embedded on a torus then each face of *G* is even.

Theorem

If *G* is an extremal ribbon graph, then each face of *G* is even.

Conjecture (Huggett and Tawfik, 2015)

If *G* is an extremal graph cellularly embedded on a torus then *G* is bipartite.

Conjecture (Huggett and Tawfik, 2015)

If *G* is an extremal graph cellularly embedded on a torus then *G* is bipartite.

Theorem

If *G* is an orientable extremal ribbon graph, then *G* is bipartite.

Conjecture (Huggett and Tawfik, 2015)

If *G* is an extremal graph cellularly embedded on a torus then *G* is bipartite.

Theorem

If *G* is an orientable extremal ribbon graph, then *G* is bipartite.

This theorem is not true for non-orientable extremal ribbon graphs. For example, the non-orientable loop.

Conjecture (Huggett and Tawfik, 2015)

If *G* is an extremal graph cellularly embedded on a torus then *G* is bipartite.

Theorem

If *G* is an orientable extremal ribbon graph, then *G* is bipartite.

This theorem is not true for non-orientable extremal ribbon graphs. For example, the non-orientable loop.

Thank you for your attention!