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Fun Fact

I The mean Erdős Number is 4.7. [Erdős Number Project]

I Is this surprising? Does it provide any insight into
mathematicians’ publishing habits, or is it purely a
graph-theoretic phenomenon?

I We can answer this question statistically by comparing to
simulated mean Erdős Numbers. This requires generating
labelled graphs with given degree sequence.

I Many other similar problems in statistics (eg. Darwin’s
finches, degrees of separation, network motifs).
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Combinatorial Sampling

I Many useful applications for sampling from families of graphs,
and from families of combinatorial structures in general.

I Easy for simple families, such as subsets of a given set, lattice
points in a box, graphs with a given vertex set.

I Harder for more complicated families, such as subsets with a
given size, lattice points with a given magnitude, graphs with
a given degree sequence.

I Complicated families are often subsets of simple families
derived by imposing additional constraints.

I A sampling algorithm for the simple superset can be used to
produce one for the complicated subset.
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Expanding to a Superset

I Suppose S0 ⊂ S. We can sample from S0 by sampling from S
and rejecting until we observe a member of S0.

←− S = simple superset

←− S0 = complicated subset

I This works very well if S0 is not too small compared to S. For
example, GLn(Fq), the invertible matrices over a finite field.

I However, most of the time, this takes too long.

I Idea: instead of rejecting “bad” samples, we can try to modify
them into “good” samples.
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Expand and Contract

I We will need 3 ingredients:

1. A sampling algorithm for S.

2. A Markov chain Q on S.

3. A graded partition S = S0 t S1 t · · · t Sk . This defines a
notion of “badness”: any x ∈ Si has badness i .

I The algorithm:

1. Start at a random sample of S.

2. Run the chain Q, rejecting moves that increase the badness.

3. Stop when an element of S0 is reached.
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Expand and Contract

I In the ideal scenario, uniformity is gained through expansion
and preserved through contraction.

I If uniformity is not preserved exactly, reverse coupling
arguments can show asymptotic uniformity.

I In this talk:

1. A few motivating examples for Expand and Contract.

2. Existing algorithms for graphs with given degrees.

3. Expand and Contract for graphs with given degrees.
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Example 1: Subsets of a Given Size

I Let S0 be the subsets of {1, . . . , n} which have cardinality k.
Assuming k = Θ(n), best existing algorithms take O(n) steps.

[Knuth 1969, Pak 1998]

I Expand and Contract:

1. Include each element of {1, . . . , n} independently w.p. k
n ;

2. Pick an element of {1, . . . , n} randomly and include/exclude it
at random, rejecting if the cardinality moves further from k;

3. Repeat until the cardinality is exactly k .

I At each step, Θ(1) probability of cardinality getting closer to
k, so Step 2 is repeated O(

√
n) times. Runtime is O(n).

I Initial state is uniform on subsets of each given size, and each
move preserves this uniformity, so output is also uniform.
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Example 2: General Linear Group

I Let S0 = GLn(Fq), the invertible n × n matrices over Fq.
Best existing algorithms run in time O(n3). [Pak 1998]

I Expand and Contract:

1. Pick each entry independently and uniformly at random;

2. Pick a linearly dependent column and replace each entry
independently and uniformly at random;

3. Repeat until the matrix has full rank.

I Each move takes O(n3) steps and has Θ(1) probability of
increasing rank, so runtime is O(n3).

I Initial state is uniform on matrices with same RREF.
Each move preserves this, hence output is uniform.
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Example 3: Lattice Points on a Sphere

I Let S0 be the set of points (a1, . . . , an) ∈ Nn with sum of
squares a21 + · · ·+ a2n = E = Θ(n). Quantum mechanical
system with a given energy E . [Chatterjee-Diaconis 2013]

I Expand and Contract:

1. Pick entries independently with P(ai = k) = 1
Z e

−ck2

,
where c is chosen so that E[a2i ] = E/n;

2. Randomly change an entry by ±1, rejecting if either the sum
of squares moves further from E or if the entry becomes 0;

3. Repeat until the sum of squares is exactly E .

I Similarly to subsets example, runtime is O(n).

I Initial state is uniform on each hypersphere. Unfortunately,
each move increases TV distance by O(n−1/2), and there are
O(
√
n) moves, so we can only get a TV bound of O(1).
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Example 4: Magic Squares

I Let S0 be the n × n matrices with entries a permutation of
1, . . . , n2 whose row/column/diagonal sums are 1

2n(n2 + 1).

I Define badness of a n × n matrix as the L1 distance of the
row/column/diagonal sums from 1

2n(n2 + 1).

I Expand and Contract:

1. Pick entries via a random permutation of {1, . . . , n2};
2. Randomly swap 2 entries, rejecting moves that increase

badness by i w.p. 1− e−βi for some 0 < β <∞;

3. Repeat until a magic square is obtained.

I Difficult to say anything about either runtime or uniformity.
Can generate up to 50× 50 magic squares.
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Graphs With Given Degrees

I Let (d1, . . . , dn) be a degree sequence, and let S0 be the
graphs with vertex set {1, . . . , n} where vertex i has degree di .

I Let S ⊃ S0 be the set of multigraphs with the given degree
sequence (d1, . . . , dn). Sample from S by considering each
vertex as a set of half-edges, and picking a perfect matching
of half-edges. [Bender-Canfield 1978, Bollobás 1980]

I For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.
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Matching-Based Sampling Methods

n = # vertices m = # edges d = max degree

I If we discard non-simple graphs, the result is uniform among
simple graphs. Works well when d = O(1). [Wormald 1984]

I Can adjust the multigraph to obtain a simple graph when
d = o(m1/4). But this is slow. [McKay-Wormald 1990]

I Can reject moves that create bad edges up to degree
d = O(n1/11). [Steger-Wormald 1999]

I Smarter rejection works up to degree d = O(m1/4−ε).
[Bayati-Kim-Saberi 2010]
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I Can reject moves that create bad edges up to degree
d = O(n1/11). [Steger-Wormald 1999]

I Smarter rejection works up to degree d = O(m1/4−ε).
[Bayati-Kim-Saberi 2010]



Markov Chain Monte Carlo

n = # vertices m = # edges d = max degree

I Start with a graph, and run a Markov chain until it mixes.

I Easiest move is a 2-swap.

I Polynomial runtime for d ≤
√
n/2. [Jerrum-Sinclair 1990]

I Polynomial runtime for all inputs with a warm start.
[Bezáková-Bhatnagar-Vigoda 2006]

I However, best runtime bound is O(n4m3d), and the warm
start is a complicated process involving bootstrapping weights.
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[Bezáková-Bhatnagar-Vigoda 2006]

I However, best runtime bound is O(n4m3d), and the warm
start is a complicated process involving bootstrapping weights.



Markov Chain Monte Carlo

n = # vertices m = # edges d = max degree

I Start with a graph, and run a Markov chain until it mixes.

I Easiest move is a 2-swap.

I Polynomial runtime for d ≤
√
n/2. [Jerrum-Sinclair 1990]

I Polynomial runtime for all inputs with a warm start.
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Sequential Importance Sampling

I Instead of trying to generate uniformly, if we can determine
the amount of non-uniformity, then we can make unbiased
estimates of any statistic.

[Chen-Diaconis-Holmes-Liu 2005, Blitzstein-Diaconis 2010]

I However, unbiased estimates can still behave badly if it the
measure is too far from uniform.

I All non-MCMC algorithms behave exponentially badly for the
double-star degree sequence (d , d , 1, 1, . . . , 1).

[Bezáková-Sinclair-Štefankovič-Vigoda 2011]
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Comparison of Algorithms

Algorithm Runtime Sparseness

Perfect Matching O(me(d
2−1)/4) All

Bezáková-Bhatnagar-Vigoda O(n4m3d) All

Blitzstein-Diaconis O(n2m) SIS

Chen-Diaconis-Holmes-Liu O(n3) SIS

McKay-Wormald O(m2d2) d = o(m1/4)

Bayati-Kim-Saberi O(md) d = o(m1/4)

Expand and Contract O(m) d = o(m1/4)

Table of runtime against sparseness constraint required for
provable asymptotic uniformity.



Expand and Contract

The algorithm:

1. Generate a random multigraph by perfect matching method.

2. Perform a 3-swap on 1 bad edge and 2 good edges,
rejecting moves that create any new bad edges.

3. Stop when there are no more bad edges.
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Runtime

I Theorem: Assuming d = O(m1/3), runtime is O(m).

I Proof: Let (a, b) be the bad edge chosen. Want to count
number of good edges (a′, b′) and (a′′, b′′) so that a 3-swap
does not create any new bad edges.

a b

b′′ a′

a′′ b′
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Runtime

I There are O(d2) edges in the ball B(b, 2) of radius 2 at b.
P[(b, a′) is bad] ≤ P[(a′, b′) ∈ B(b, 2)] = O(d2)/m = o(1).

a b

b′′ a′

a′′ b′

I Similarly, (b′, a′′) and (b′′, a) are also good with high
probability. Hence, almost every move removes a bad edge.

I Lemma: There are O(d2) bad edges.
This implies runtime is O(m + d3).



Runtime

I There are O(d2) edges in the ball B(b, 2) of radius 2 at b.
P[(b, a′) is bad] ≤ P[(a′, b′) ∈ B(b, 2)] = O(d2)/m = o(1).

a b

b′′ a′

a′′ b′

I Similarly, (b′, a′′) and (b′′, a) are also good with high
probability. Hence, almost every move removes a bad edge.

I Lemma: There are O(d2) bad edges.
This implies runtime is O(m + d3).



Runtime

I There are O(d2) edges in the ball B(b, 2) of radius 2 at b.
P[(b, a′) is bad] ≤ P[(a′, b′) ∈ B(b, 2)] = O(d2)/m = o(1).

a b

b′′ a′

a′′ b′

I Similarly, (b′, a′′) and (b′′, a) are also good with high
probability. Hence, almost every move removes a bad edge.

I Lemma: There are O(d2) bad edges.
This implies runtime is O(m + d3).



Uniformity

I Theorem: If the maximum degree is d = o(m1/4), then the
output is asymptotically uniform in total variation.

I Proof : Define a bad edge set B = {(ai , bi , ni )} to be the set
of multigraphs with prescribed multiplicities ni at vertex pairs
(ai , bi ), and no bad edges anywhere else.

For example, B = {(1, 1, 1), (1, 2, 2)} is the set of multigraphs
with a loop at vertex 1, a double edge between vertices 1 and
2, and no other bad edges.

I Let B0,B1,B2, . . . be a sequence of bad edge sets.



Uniformity

I Theorem: If the maximum degree is d = o(m1/4), then the
output is asymptotically uniform in total variation.

I Proof : Define a bad edge set B = {(ai , bi , ni )} to be the set
of multigraphs with prescribed multiplicities ni at vertex pairs
(ai , bi ), and no bad edges anywhere else.

For example, B = {(1, 1, 1), (1, 2, 2)} is the set of multigraphs
with a loop at vertex 1, a double edge between vertices 1 and
2, and no other bad edges.

I Let B0,B1,B2, . . . be a sequence of bad edge sets.



Uniformity

I Theorem: If the maximum degree is d = o(m1/4), then the
output is asymptotically uniform in total variation.

I Proof : Define a bad edge set B = {(ai , bi , ni )} to be the set
of multigraphs with prescribed multiplicities ni at vertex pairs
(ai , bi ), and no bad edges anywhere else.

For example, B = {(1, 1, 1), (1, 2, 2)} is the set of multigraphs
with a loop at vertex 1, a double edge between vertices 1 and
2, and no other bad edges.

I Let B0,B1,B2, . . . be a sequence of bad edge sets.



Uniformity

I Let X0,X1,X2, . . . be the states of the chain, and let

L
(
Xt | X0 ∈ B0, . . . ,Xt ∈ Bt

)
= utUBt + (1− ut)Et ,

where ut is the largest number so that Et is a signed measure
of absolute mass 1. Think of ut as the uniformity at time t
given a particular sample path of bad edge sets.

I Lemma: Every graph with the same bad edge set has the
same initial probability. Thus, u0 = 1.

I Want to show u∞ = lim
t→∞

ut = 1− o(1).

I If Bt+1 = Bt , then ut+1 ≥ ut , since the transition probabilities
within Bt are symmetric, so the uniform part stays uniform.
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Uniformity

I Suppose the transition from Bt to Bt+1 removes a loop (a, a).

a a

Bt Bt+1

I Each multigraph in Bt is connected to (2m − O(d2))2

multigraphs in Bt+1.

I Each multigraph in Bt+1 is connected to
(ea
2

)
(2m − O(d2))

multigraphs in Bt , where ea is the number of non-loop edges
out of a. Note that ea depends only on Bt+1 and a, and not
on the multigraph that is chosen.
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Uniformity

I Variation in connectivity between Bt and Bt+1 is a factor of
1 + O(d2/m) = 1 + o(m−1/2).

Bt Bt+1

I Starting with uniform in Bt , variation in probability of each
connection is 1 + o(m−1/2). Number of connections entering
each point in Bt+1 also varies by 1 + o(m−1/2).

Hence, ut+1 = (1− o(m−1/2))ut .
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Uniformity

I Similar result if Bt+1 reduces multiplicity of an edge by 1.

I When Bt+1 removes a double edge (a, b, 2), a single edge
(a, b, 1) remains; need to count this as a bad edge.

I When this remaining edge is removed, discard the triple
(a, b, 0) so that multiplicity between a and b is no longer
prescribed. The proportion of graphs that contain this edge
is O(dadb/m), so again ut+1 = (1− o(m−1/2))ut .

I Since there are O(d2) = o(m1/2) bad edges,

u∞ = (1− o(m−1/2))o(m
1/2) = 1− o(1).
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Uniformity

I With explicit constants, the TV distance to uniformity is

d2d̄2

4m
, where d̄ =

1

2m

∑
i

di (di − 1).

I Examples with power law distribution:

Vertices Max Degree Exponent TV Bound

106 100 2.5 0.125

103 12 2.5 0.141
109 959 2.5 0.125

106 100 2.0 0.526
106 100 3.0 0.017

106 200 2.5 0.500
106 50 2.5 0.014
106 20 2.5 0.001
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Multi-Star Graphs

I Multi-star degree sequences are (1, 1, . . . , 1, d1, . . . , dk).
Counterexample to all existing non-MCMC algorithms.

I Definition: Probability ratio metric for measures on a finite
set S is d(µ, ν) = max

x∈S

∣∣ logµ(x)− log ν(x)
∣∣.

I Theorem: Taking a sample O(logm) steps after a simple
graph is reached yields an asymptotically uniform graph.

I Runtime is again O(m).



Multi-Star Graphs

I Multi-star degree sequences are (1, 1, . . . , 1, d1, . . . , dk).
Counterexample to all existing non-MCMC algorithms.

I Definition: Probability ratio metric for measures on a finite
set S is d(µ, ν) = max

x∈S

∣∣ logµ(x)− log ν(x)
∣∣.

I Theorem: Taking a sample O(logm) steps after a simple
graph is reached yields an asymptotically uniform graph.

I Runtime is again O(m).



Multi-Star Graphs

I Multi-star degree sequences are (1, 1, . . . , 1, d1, . . . , dk).
Counterexample to all existing non-MCMC algorithms.

I Definition: Probability ratio metric for measures on a finite
set S is d(µ, ν) = max

x∈S

∣∣ logµ(x)− log ν(x)
∣∣.

I Theorem: Taking a sample O(logm) steps after a simple
graph is reached yields an asymptotically uniform graph.

I Runtime is again O(m).



Multi-Star Graphs

I Multi-star degree sequences are (1, 1, . . . , 1, d1, . . . , dk).
Counterexample to all existing non-MCMC algorithms.

I Definition: Probability ratio metric for measures on a finite
set S is d(µ, ν) = max

x∈S

∣∣ logµ(x)− log ν(x)
∣∣.

I Theorem: Taking a sample O(logm) steps after a simple
graph is reached yields an asymptotically uniform graph.

I Runtime is again O(m).



Erdős Numbers

I Some properties of the collaboration graph: n = 253,339;
m = 496,489; d = 502; and d̄ = 38.

I One large connected component containing Erdős. Mean
distance to Erdős within this component is 4.7.

I Generating a graph with the same degrees takes 0.2 seconds,
compared to 0.9 seconds to compute mean Erdős number.

I For 10,000 samples, sample mean was 4.119 with standard
deviation 0.025. Thus, the real-world mean Erdős number is
22 standard deviations above the simulated mean.
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Conclusion

I For graphs with given degree sequence, we obtained best
possible runtime under a typical sparseness constraint.

I The fact that it works well for multi-star suggests sparseness
constraint may not be essential. Can we weaken it?

I Possible place for improvement: current proof does not require
choosing the bad edges randomly, only the good edges.

I The strategy applies to many other combinatorial structures.
However, our other examples are either trivial or intractable.
Can we apply it to anything else in an interesting way?
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