Sampling Graphs with Given Degrees

James Zhao
University of Southern California

11 August 2014

Fun Fact

» The mean Erdés Number is 4.7. [Erdés Number Project]

Fun Fact

» The mean Erdés Number is 4.7. [Erdés Number Project]

> Is this surprising? Does it provide any insight into
mathematicians’ publishing habits, or is it purely a
graph-theoretic phenomenon?

Fun Fact

» The mean Erdés Number is 4.7. [Erdés Number Project]

> Is this surprising? Does it provide any insight into
mathematicians’ publishing habits, or is it purely a
graph-theoretic phenomenon?

» We can answer this question statistically by comparing to
simulated mean Erdés Numbers. This requires generating
labelled graphs with given degree sequence.

Fun Fact

» The mean Erdés Number is 4.7. [Erdés Number Project]

> Is this surprising? Does it provide any insight into
mathematicians’ publishing habits, or is it purely a
graph-theoretic phenomenon?

» We can answer this question statistically by comparing to
simulated mean Erdés Numbers. This requires generating
labelled graphs with given degree sequence.

» Many other similar problems in statistics (eg. Darwin's
finches, degrees of separation, network motifs).

Combinatorial Sampling

» Many useful applications for sampling from families of graphs,
and from families of combinatorial structures in general.

Combinatorial Sampling

» Many useful applications for sampling from families of graphs,
and from families of combinatorial structures in general.

» Easy for simple families, such as subsets of a given set, lattice
points in a box, graphs with a given vertex set.

Combinatorial Sampling

» Many useful applications for sampling from families of graphs,
and from families of combinatorial structures in general.

» Easy for simple families, such as subsets of a given set, lattice
points in a box, graphs with a given vertex set.

» Harder for more complicated families, such as subsets with a
given size, lattice points with a given magnitude, graphs with
a given degree sequence.

Combinatorial Sampling

» Many useful applications for sampling from families of graphs,
and from families of combinatorial structures in general.

» Easy for simple families, such as subsets of a given set, lattice
points in a box, graphs with a given vertex set.

» Harder for more complicated families, such as subsets with a
given size, lattice points with a given magnitude, graphs with
a given degree sequence.

» Complicated families are often subsets of simple families
derived by imposing additional constraints.

Combinatorial Sampling

>

Many useful applications for sampling from families of graphs,
and from families of combinatorial structures in general.

Easy for simple families, such as subsets of a given set, lattice
points in a box, graphs with a given vertex set.

Harder for more complicated families, such as subsets with a
given size, lattice points with a given magnitude, graphs with
a given degree sequence.

Complicated families are often subsets of simple families
derived by imposing additional constraints.

A sampling algorithm for the simple superset can be used to
produce one for the complicated subset.

Expanding to a Superset

» Suppose Sp C S. We can sample from Sy by sampling from S
and rejecting until we observe a member of Sp.

+— S = simple superset

+— Sp = complicated subset

Expanding to a Superset

» Suppose Sp C S. We can sample from Sy by sampling from S
and rejecting until we observe a member of Sp.

+— S = simple superset

+— Sp = complicated subset

> This works very well if Sg is not too small compared to S. For
example, GL,(Fq), the invertible matrices over a finite field.

Expanding to a Superset

» Suppose Sp C S. We can sample from Sy by sampling from S
and rejecting until we observe a member of Sp.

+— S = simple superset

+— Sp = complicated subset

> This works very well if Sg is not too small compared to S. For
example, GL,(Fq), the invertible matrices over a finite field.

» However, most of the time, this takes too long.

Expanding to a Superset

» Suppose Sp C S. We can sample from Sy by sampling from S
and rejecting until we observe a member of Sp.

+— S = simple superset

+— Sp = complicated subset

> This works very well if Sg is not too small compared to S. For
example, GL,(Fq), the invertible matrices over a finite field.

» However, most of the time, this takes too long.

> ldea: instead of rejecting “bad” samples, we can try to modify
them into “good” samples.

Expand and Contract

> We will need 3 ingredients:

1. A sampling algorithm for S.

Expand and Contract

> We will need 3 ingredients:
1. A sampling algorithm for S.
2. A Markov chain Q on S.

Expand and Contract

> We will need 3 ingredients:
1. A sampling algorithm for S.
2. A Markov chain Q on S.

3. A graded partition S = So LISy U - - - U Sk. This defines a
notion of “badness’: any x € S; has badness /.

Expand and Contract

> We will need 3 ingredients:
1. A sampling algorithm for S.
2. A Markov chain Q on S.

3. A graded partition S = So LISy U - - - U Sk. This defines a
notion of “badness’: any x € S; has badness /.

» The algorithm:

1. Start at a random sample of S.

Expand and Contract

> We will need 3 ingredients:
1. A sampling algorithm for S.
2. A Markov chain Q on S.

3. A graded partition S = So LISy U - - - U Sk. This defines a
notion of “badness’: any x € S; has badness /.

» The algorithm:
1. Start at a random sample of S.

2. Run the chain Q, rejecting moves that increase the badness.

Expand and Contract

> We will need 3 ingredients:
1. A sampling algorithm for S.
2. A Markov chain Q on S.

3. A graded partition S = So LISy U - - - U Sk. This defines a
notion of “badness’: any x € S; has badness /.

» The algorithm:
1. Start at a random sample of S.
2. Run the chain Q, rejecting moves that increase the badness.

3. Stop when an element of Sy is reached.

Expand and Contract

> In the ideal scenario, uniformity is gained through expansion
and preserved through contraction.

NAAAAA

Expand and Contract

> In the ideal scenario, uniformity is gained through expansion
and preserved through contraction.

NAAAAA

[1

» If uniformity is not preserved exactly, reverse coupling
arguments can show asymptotic uniformity.

Expand and Contract

> In the ideal scenario, uniformity is gained through expansion
and preserved through contraction.

[1

» If uniformity is not preserved exactly, reverse coupling
arguments can show asymptotic uniformity.

» In this talk:

1. A few motivating examples for Expand and Contract.
2. Existing algorithms for graphs with given degrees.
3. Expand and Contract for graphs with given degrees.

Example 1: Subsets of a Given Size

> Let Sp be the subsets of {1,...,n} which have cardinality k.
Assuming k = ©(n), best existing algorithms take O(n) steps.
[Knuth 1969, Pak 1998]

Example 1: Subsets of a Given Size

> Let Sy be the subsets of {1,...,n} which have cardinality k.
Assuming k = ©(n), best existing algorithms take O(n) steps.
[Knuth 1969, Pak 1998]

» Expand and Contract:

1. Include each element of {1,..., n} independently w.p. %;

2. Pick an element of {1,...,n} randomly and include/exclude it
at random, rejecting if the cardinality moves further from k;

3. Repeat until the cardinality is exactly k.

Example 1: Subsets of a Given Size

> Let Sy be the subsets of {1,...,n} which have cardinality k.
Assuming k = ©(n), best existing algorithms take O(n) steps.
[Knuth 1969, Pak 1998]
» Expand and Contract:

1. Include each element of {1,..., n} independently w.p. %;

2. Pick an element of {1,...,n} randomly and include/exclude it
at random, rejecting if the cardinality moves further from k;

3. Repeat until the cardinality is exactly k.

> At each step, ©(1) probability of cardinality getting closer to
k, so Step 2 is repeated O(1/n) times. Runtime is O(n).

Example 1: Subsets of a Given Size

> Let Sy be the subsets of {1,...,n} which have cardinality k.
Assuming k = ©(n), best existing algorithms take O(n) steps.
[Knuth 1969, Pak 1998]
» Expand and Contract:

1. Include each element of {1,..., n} independently w.p. %;

2. Pick an element of {1,...,n} randomly and include/exclude it
at random, rejecting if the cardinality moves further from k;

3. Repeat until the cardinality is exactly k.

> At each step, ©(1) probability of cardinality getting closer to
k, so Step 2 is repeated O(1/n) times. Runtime is O(n).

> Initial state is uniform on subsets of each given size, and each
move preserves this uniformity, so output is also uniform.

Example 2: General Linear Group

> Let So = GLn(Fg), the invertible n x n matrices over F.
Best existing algorithms run in time O(n3). [Pak 1998]

Example 2: General Linear Group

> Let So = GLn(Fg), the invertible n x n matrices over F.
Best existing algorithms run in time O(n3). [Pak 1998]

» Expand and Contract:

1. Pick each entry independently and uniformly at random;

2. Pick a linearly dependent column and replace each entry
independently and uniformly at random;

3. Repeat until the matrix has full rank.

Example 2: General Linear Group

> Let So = GLn(Fg), the invertible n x n matrices over F.
Best existing algorithms run in time O(n3). [Pak 1998]

» Expand and Contract:

1. Pick each entry independently and uniformly at random;

2. Pick a linearly dependent column and replace each entry
independently and uniformly at random;

3. Repeat until the matrix has full rank.

» Each move takes O(n®) steps and has ©(1) probability of
increasing rank, so runtime is O(n®).

Example 2: General Linear Group

>

>

Let So = GL,(FFg), the invertible n x n matrices over Fy.
Best existing algorithms run in time O(n3). [Pak 1998]
Expand and Contract:

1. Pick each entry independently and uniformly at random;

2. Pick a linearly dependent column and replace each entry
independently and uniformly at random;

3. Repeat until the matrix has full rank.

Each move takes O(n?) steps and has ©(1) probability of
increasing rank, so runtime is O(n®).

Initial state is uniform on matrices with same RREF.
Each move preserves this, hence output is uniform.

Example 3: Lattice Points on a Sphere

> Let Sp be the set of points (a1, ...,a,) € N” with sum of
squares a2 + - -- + a2 = E = ©(n). Quantum mechanical
system with a given energy E. [Chatterjee-Diaconis 2013]

Example 3: Lattice Points on a Sphere

> Let Sp be the set of points (a1, ...,a,) € N” with sum of
squares a2 + - -- + a2 = E = ©(n). Quantum mechanical
system with a given energy E. [Chatterjee-Diaconis 2013]

» Expand and Contract:

1. Pick entries independently with P(a; = k) = Le~ ",

where ¢ is chosen so that E[a?] = E/n;

2. Randomly change an entry by +1, rejecting if either the sum
of squares moves further from E or if the entry becomes 0;

3. Repeat until the sum of squares is exactly E.

Example 3: Lattice Points on a Sphere

> Let Sp be the set of points (a1, ...,a,) € N” with sum of
squares a2 + - -- + a2 = E = ©(n). Quantum mechanical
system with a given energy E. [Chatterjee-Diaconis 2013]

» Expand and Contract:

1. Pick entries independently with P(a; = k) = Le~ ",
where ¢ is chosen so that E[a?] = E/n;

2. Randomly change an entry by +1, rejecting if either the sum
of squares moves further from E or if the entry becomes 0;

3. Repeat until the sum of squares is exactly E.

» Similarly to subsets example, runtime is O(n).

Example 3: Lattice Points on a Sphere

> Let Sp be the set of points (a1, ...,a,) € N” with sum of
squares a2 + - -- + a2 = E = ©(n). Quantum mechanical
system with a given energy E. [Chatterjee-Diaconis 2013]

» Expand and Contract:

1. Pick entries independently with P(a; = k) = Le~ ",
where ¢ is chosen so that E[a?] = E/n;

2. Randomly change an entry by +1, rejecting if either the sum
of squares moves further from E or if the entry becomes 0;

3. Repeat until the sum of squares is exactly E.

» Similarly to subsets example, runtime is O(n).

> Initial state is uniform on each hypersphere. Unfortunately,
each move increases TV distance by O(n~1/2), and there are
O(+/n) moves, so we can only get a TV bound of O(1).

Example 4: Magic Squares

> Let Sp be the n x n matrices with entries a permutation of
1,...,n* whose row/column/diagonal sums are £n(n*+ 1).

Example 4: Magic Squares

> Let Sp be the n x n matrices with entries a permutation of
1,...,n* whose row/column/diagonal sums are £n(n*+ 1).

» Define badness of a n x n matrix as the L! distance of the
row/column/diagonal sums from 1n(n? + 1).

Example 4: Magic Squares

> Let Sp be the n x n matrices with entries a permutation of

1,..

2 : 1,2
., n* whose row/column/diagonal sums are 5n(n 4 1).

» Define badness of a n x n matrix as the L! distance of the
row/column/diagonal sums from 1n(n? + 1).

» Expand and Contract:

1.
2.

Pick entries via a random permutation of {1,..., n?};

Randomly swap 2 entries, rejecting moves that increase
badness by i w.p. 1 — e=#' for some 0 < 3 < oo;

Repeat until a magic square is obtained.

Example 4: Magic Squares

>

Let Sg be the n x n matrices with entries a permutation of
1,...,n* whose row/column/diagonal sums are £n(n*+ 1).

Define badness of a n x n matrix as the L! distance of the
row/column/diagonal sums from 1n(n? + 1).

Expand and Contract:

1. Pick entries via a random permutation of {1,...,n?};

2. Randomly swap 2 entries, rejecting moves that increase
badness by i w.p. 1 — e=#' for some 0 < 3 < oo;

3. Repeat until a magic square is obtained.

Difficult to say anything about either runtime or uniformity.
Can generate up to 50 x 50 magic squares.

Graphs With Given Degrees

> Let (di,...,ds) be a degree sequence, and let Sy be the
graphs with vertex set {1, ..., n} where vertex i has degree d;.

Graphs With Given Degrees

> Let (di,...,ds) be a degree sequence, and let Sy be the
graphs with vertex set {1, ..., n} where vertex i has degree d;.

> Let § D Sp be the set of multigraphs with the given degree
sequence (di, ..., d,). Sample from S by considering each
vertex as a set of half-edges, and picking a perfect matching
of half-edges. [Bender-Canfield 1978, Bollobas 1980]

Graphs With Given Degrees

> Let (di,...,ds) be a degree sequence, and let Sy be the
graphs with vertex set {1, ..., n} where vertex i has degree d;.

> Let § D Sp be the set of multigraphs with the given degree

sequence (di, ..., d,). Sample from S by considering each
vertex as a set of half-edges, and picking a perfect matching
of half-edges. [Bender-Canfield 1978, Bollobas 1980]

» For example, degree sequence 1,1,1,2,2,2,3,3, 3.

Graphs With Given Degrees

> Let (di,...,ds) be a degree sequence, and let Sy be the
graphs with vertex set {1, ..., n} where vertex i has degree d;.

> Let § D Sp be the set of multigraphs with the given degree

sequence (di, ..., d,). Sample from S by considering each
vertex as a set of half-edges, and picking a perfect matching
of half-edges. [Bender-Canfield 1978, Bollobas 1980]

» For example, degree sequence 1,1,1,2,2,2,3,3, 3.

® \ o e e o e [] []

Graphs With Given Degrees

> Let (di,...,ds) be a degree sequence, and let Sy be the
graphs with vertex set {1, ..., n} where vertex i has degree d;.

> Let § D Sp be the set of multigraphs with the given degree

sequence (di, ..., d,). Sample from S by considering each
vertex as a set of half-edges, and picking a perfect matching
of half-edges. [Bender-Canfield 1978, Bollobas 1980]

» For example, degree sequence 1,1,1,2,2,2,3,3, 3.

ool o 0o o o o
o\ooo/oooo

Graphs With Given Degrees

> Let (di,...,ds) be a degree sequence, and let Sy be the
graphs with vertex set {1, ..., n} where vertex i has degree d;.

> Let § D Sp be the set of multigraphs with the given degree

sequence (di, ..., d,). Sample from S by considering each
vertex as a set of half-edges, and picking a perfect matching
of half-edges. [Bender-Canfield 1978, Bollobas 1980]

» For example, degree sequence 1,1,1,2,2,2,3,3, 3.

ool o o o o o
o\ooo/oooo

Graphs With Given Degrees

> Let (di,...,ds) be a degree sequence, and let Sy be the
graphs with vertex set {1, ..., n} where vertex i has degree d;.

> Let § D Sp be the set of multigraphs with the given degree

sequence (di, ..., d,). Sample from S by considering each
vertex as a set of half-edges, and picking a perfect matching
of half-edges. [Bender-Canfield 1978, Bollobas 1980]

» For example, degree sequence 1,1,1,2,2,2,3,3, 3.

——o o ¢ o
/\ o/oooo

Graphs With Given Degrees

> Let (di,...,ds) be a degree sequence, and let Sy be the
graphs with vertex set {1, ..., n} where vertex i has degree d;.

> Let § D Sp be the set of multigraphs with the given degree

sequence (di, ..., d,). Sample from S by considering each
vertex as a set of half-edges, and picking a perfect matching
of half-edges. [Bender-Canfield 1978, Bollobas 1980]

» For example, degree sequence 1,1,1,2,2,2,3,3, 3.

N/

Matching-Based Sampling Methods

‘ n = # vertices m = # edges d = max degree

Matching-Based Sampling Methods

’ n = # vertices m = # edges d = max degree ‘

» If we discard non-simple graphs, the result is uniform among
simple graphs. Works well when d = O(1). [Wormald 1984]

Matching-Based Sampling Methods

’ n = # vertices m = # edges d = max degree ‘

» If we discard non-simple graphs, the result is uniform among
simple graphs. Works well when d = O(1). [Wormald 1984]

» Can adjust the multigraph to obtain a simple graph when
d = o(m'/*). But this is slow. [McKay-Wormald 1990]

Matching-Based Sampling Methods

’ n = # vertices m = # edges d = max degree ‘

» If we discard non-simple graphs, the result is uniform among
simple graphs. Works well when d = O(1). [Wormald 1984]

» Can adjust the multigraph to obtain a simple graph when
d = o(m'/*). But this is slow. [McKay-Wormald 1990]

» Can reject moves that create bad edges up to degree
d = O(n'/11). [Steger-Wormald 1999]

Matching-Based Sampling Methods

’ n = # vertices m = # edges d = max degree ‘

v

If we discard non-simple graphs, the result is uniform among
simple graphs. Works well when d = O(1). [Wormald 1984]

v

Can adjust the multigraph to obtain a simple graph when
d = o(m'/*). But this is slow. [McKay-Wormald 1990]

» Can reject moves that create bad edges up to degree
d = O(n'/11). [Steger-Wormald 1999]

v

Smarter rejection works up to degree d = O(m'/4~¢).
[Bayati-Kim-Saberi 2010]

Markov Chain Monte Carlo

’ n = # vertices m = # edges d = max degree ‘

» Start with a graph, and run a Markov chain until it mixes.

1002

Markov Chain Monte Carlo

’ n = # vertices m = # edges d = max degree ‘

» Start with a graph, and run a Markov chain until it mixes.

» Easiest move is a 2-swap. @ - @

Markov Chain Monte Carlo

’ n = # vertices m = # edges d = max degree ‘

» Start with a graph, and run a Markov chain until it mixes.

» Easiest move is a 2-swap. @ - @

» Polynomial runtime for d < \/n/2. [Jerrum-Sinclair 1990]

Markov Chain Monte Carlo

’ n = # vertices m = # edges d = max degree ‘

v

Start with a graph, and run a Markov chain until it mixes.

Easiest move is a 2-swap. @ - @

Polynomial runtime for d < \/n/2. [Jerrum-Sinclair 1990]

v

v

v

Polynomial runtime for all inputs with a warm start.
[Bezdkova-Bhatnagar-Vigoda 2006]

Markov Chain Monte Carlo

’ n = # vertices m = # edges d = max degree ‘

v

Start with a graph, and run a Markov chain until it mixes.

Easiest move is a 2-swap. @ - @

Polynomial runtime for d < \/n/2. [Jerrum-Sinclair 1990]

v

v

v

Polynomial runtime for all inputs with a warm start.
[Bezdkova-Bhatnagar-Vigoda 2006]

v

However, best runtime bound is O(n*m3d), and the warm
start is a complicated process involving bootstrapping weights.

Sequential Importance Sampling

> Instead of trying to generate uniformly, if we can determine
the amount of non-uniformity, then we can make unbiased
estimates of any statistic.
[Chen-Diaconis-Holmes-Liu 2005, Blitzstein-Diaconis 2010]

Sequential Importance Sampling

> Instead of trying to generate uniformly, if we can determine
the amount of non-uniformity, then we can make unbiased
estimates of any statistic.
[Chen-Diaconis-Holmes-Liu 2005, Blitzstein-Diaconis 2010]

» However, unbiased estimates can still behave badly if it the
measure is too far from uniform.

Sequential Importance Sampling

> Instead of trying to generate uniformly, if we can determine
the amount of non-uniformity, then we can make unbiased
estimates of any statistic.
[Chen-Diaconis-Holmes-Liu 2005, Blitzstein-Diaconis 2010]

» However, unbiased estimates can still behave badly if it the
measure is too far from uniform.

> All non-MCMC algorithms behave exponentially badly for the
double-star degree sequence (d,d,1,1,...,1).

*——e

[Bezakova-Sinclair-Stefankovi¢-Vigoda 2011]

Comparison of Algorithms

Algorithm Runtime Sparseness
Perfect Matching O(me(@*=D/4) | All
Bezakovi-Bhatnagar-Vigoda | O(n*m3d) All
Blitzstein-Diaconis O(n’m) SIS
Chen-Diaconis-Holmes-Liu o(n®) SIS
McKay-Wormald O(m?d?) d = o(m'/*)
Bayati-Kim-Saberi O(md) d = o(m'/*)
Expand and Contract O(m) d = o(m'/%)

Table of runtime against sparseness constraint required for
provable asymptotic uniformity.

Expand and Contract

The algorithm:

Expand and Contract
The algorithm:

1. Generate a random multigraph by perfect matching method.

XXl

Expand and Contract
The algorithm:

1. Generate a random multigraph by perfect matching method.

PP 3=t
N e elle ¢ o

2. Perform a 3-swap on 1 bad edge and 2 good edges,
rejecting moves that create any new bad edges.

-

Expand and Contract
The algorithm:

1. Generate a random multigraph by perfect matching method.

XXl

2. Perform a 3-swap on 1 bad edge and 2 good edges,
rejecting moves that create any new bad edges.

-7

3. Stop when there are no more bad edges.

Runtime

» Theorem: Assuming d = O(m*/3), runtime is O(m).

Runtime

» Theorem: Assuming d = O(m*/3), runtime is O(m).

» Proof: Let (a, b) be the bad edge chosen. Want to count
number of good edges (&', b’) and (a”, b”) so that a 3-swap
does not create any new bad edges.

b/l a/

i ¢ /
a’ b

Runtime

» There are O(d?) edges in the ball B(b,2) of radius 2 at b.
P[(b, d') is bad] < P[(a', b') € B(b,2)] = O(d?)/m = o(1).
3.—.1?

..'b/

Runtime

» There are O(d?) edges in the ball B(b,2) of radius 2 at b.
P[(b, d') is bad] < P[(a', b') € B(b,2)] = O(d?)/m = o(1).
I @—=a@>b

b// \ /a/
» Similarly, (b',a") and (b”, a) are also good with high
probability. Hence, almost every move removes a bad edge.

Runtime

» There are O(d?) edges in the ball B(b,2) of radius 2 at b.
P[(b, d') is bad] < P[(a', b') € B(b,2)] = O(d?)/m = o(1).
I @—=a@>b

b// \ /a/

» Similarly, (b',a") and (b”, a) are also good with high
probability. Hence, almost every move removes a bad edge.

» Lemma: There are O(d?) bad edges.
This implies runtime is O(m + d°). O

Uniformity

» Theorem: If the maximum degree is d = o(m'/4), then the
output is asymptotically uniform in total variation.

Uniformity

» Theorem: If the maximum degree is d = o(m'/4), then the
output is asymptotically uniform in total variation.

» Proof: Define a bad edge set B = {(a;, b;, n;)} to be the set
of multigraphs with prescribed multiplicities n; at vertex pairs
(aj, bi), and no bad edges anywhere else.

For example, B = {(1,1,1),(1,2,2)} is the set of multigraphs
with a loop at vertex 1, a double edge between vertices 1 and
2, and no other bad edges.

Uniformity

» Theorem: If the maximum degree is d = o(m'/4), then the
output is asymptotically uniform in total variation.

» Proof: Define a bad edge set B = {(a;, b;, n;)} to be the set
of multigraphs with prescribed multiplicities n; at vertex pairs
(aj, bi), and no bad edges anywhere else.

For example, B = {(1,1,1),(1,2,2)} is the set of multigraphs

with a loop at vertex 1, a double edge between vertices 1 and
2, and no other bad edges.

> Let By, B1, By, ... be a sequence of bad edge sets.

Uniformity
> Let Xy, X1, Xo, ... be the states of the chain, and let
‘C(Xt | XO € 807 s 7X1.' € Bt) = UtUBt + (1 - ut)Et>

where u; is the largest number so that E; is a signed measure
of absolute mass 1. Think of u; as the uniformity at time t
given a particular sample path of bad edge sets.

Uniformity
> Let Xy, X1, Xo, ... be the states of the chain, and let
‘C(Xt | XO € 807 s 7X1.' € Bt) = UtUBt + (1 - ut)Et>

where u; is the largest number so that E; is a signed measure
of absolute mass 1. Think of u; as the uniformity at time t
given a particular sample path of bad edge sets.

» Lemma: Every graph with the same bad edge set has the
same initial probability. Thus, vy = 1.

Uniformity
> Let Xy, X1, Xo, ... be the states of the chain, and let
‘C(Xt | XO € 807 s 7X1.' € Bt) = UtUBt + (1 - ut)Et>

where u; is the largest number so that E; is a signed measure
of absolute mass 1. Think of u; as the uniformity at time t
given a particular sample path of bad edge sets.

» Lemma: Every graph with the same bad edge set has the
same initial probability. Thus, vy = 1.

» Want to show us = lim vy =1 — o(1).
t—00

Uniformity
> Let Xy, X1, Xo, ... be the states of the chain, and let
‘C(Xt | XO € 807 s 7X1.' € Bt) = UtUBt + (1 - ut)Et>

where u; is the largest number so that E; is a signed measure
of absolute mass 1. Think of u; as the uniformity at time t
given a particular sample path of bad edge sets.

» Lemma: Every graph with the same bad edge set has the
same initial probability. Thus, vy = 1.

» Want to show us = lim vy =1 — o(1).
t—00

> If Biy1 = By, then up1 > uy, since the transition probabilities
within B; are symmetric, so the uniform part stays uniform.

Uniformity

» Suppose the transition from B; to B;11 removes a loop (a, a).

\/"'-_.:'

Bii1

Uniformity

» Suppose the transition from B; to B;11 removes a loop (a, a).

\/"'-_.:'

Bt+1

» Each multigraph in B; is connected to (2m — O(d?))?
multigraphs in Byy1.

Uniformity

» Suppose the transition from B; to B;11 removes a loop (a, a).

\/"'-_.:'

Bii1

» Each multigraph in B; is connected to (2m — O(d?))?
multigraphs in Byy1.

» Each multigraph in B, is connected to (§)(2m — O(d?))
multigraphs in B;, where e, is the number of non-loop edges
out of a. Note that e, depends only on B:;1 and a, and not
on the multigraph that is chosen.

Uniformity

» Variation in connectivity between B; and By is a factor of
14 0(d?/m) =1+ o(m~Y/?).

Bt Bt+1

Uniformity

» Variation in connectivity between B; and By is a factor of
14 0(d?/m) =1+ o(m~Y/?).

B: Bti1

» Starting with uniform in B;, variation in probability of each
connection is 1 4+ o(m~/2). Number of connections entering
each point in B;,1 also varies by 1 + o(m~1/2).

Hence, urr1 = (1 — o(m~Y/2))u,.

Uniformity

» Similar result if Byy1 reduces multiplicity of an edge by 1.

Uniformity

» Similar result if Byy1 reduces multiplicity of an edge by 1.

» When B;1 removes a double edge (a, b, 2), a single edge
(a, b,1) remains; need to count this as a bad edge.

Uniformity

» Similar result if Byy1 reduces multiplicity of an edge by 1.

» When B;1 removes a double edge (a, b, 2), a single edge
(a, b,1) remains; need to count this as a bad edge.

» When this remaining edge is removed, discard the triple
(a, b,0) so that multiplicity between a and b is no longer
prescribed. The proportion of graphs that contain this edge
is O(d,dp/m), so again v = (1 — o(m=/2))u;.

Uniformity

» Similar result if Byy1 reduces multiplicity of an edge by 1.

» When B;1 removes a double edge (a, b, 2), a single edge
(a, b,1) remains; need to count this as a bad edge.

» When this remaining edge is removed, discard the triple
(a, b,0) so that multiplicity between a and b is no longer
prescribed. The proportion of graphs that contain this edge
is O(d,dp/m), so again v = (1 — o(m=/2))u;.

> Since there are O(d?) = o(m'/?) bad edges,
oo = (1 — o(m™1/2))2(m") = 1 _ o(1). O

Uniformity
» With explicit constants, the TV distance to uniformity is

d?d?
dm

- 1
, where d = Y Z di(d; — 1).

Uniformity
» With explicit constants, the TV distance to uniformity is

d?d?

- 1
, where d = Y Z di(d; — 1).

» Examples with power law distribution:

Vertices | Max Degree | Exponent | TV Bound
100 100 25 0.125
103 12 2.5 0.141
10° 959 2.5 0.125
100 100 2.0 0.526
100 100 3.0 0.017
100 200 2.5 0.500
106 50 2.5 0.014
100 20 2.5 0.001

Multi-Star Graphs

» Multi-star degree sequences are (1,1,...,1,dy,...,dx).
Counterexample to all existing non-MCMC algorithms.

Multi-Star Graphs

» Multi-star degree sequences are (1,1,...,1,dy,...,dx).
Counterexample to all existing non-MCMC algorithms.

Ak 20

» Definition: Probability ratio metric for measures on a finite
set Sis d(u,v) = max | log p(x) — log v(x)|.
NS

Multi-Star Graphs

» Multi-star degree sequences are (1,1,...,1,dy,...,dx).
Counterexample to all existing non-MCMC algorithms.

Ak 20

» Definition: Probability ratio metric for measures on a finite
set Sis d(u,v) = max | log p(x) — log v(x)|.
NS

» Theorem: Taking a sample O(log m) steps after a simple
graph is reached yields an asymptotically uniform graph.

Multi-Star Graphs

» Multi-star degree sequences are (1,1,...,1,dy,...,dx).
Counterexample to all existing non-MCMC algorithms.

Ak 20

» Definition: Probability ratio metric for measures on a finite
set Sis d(u,v) = max | log p(x) — log v(x)|.
NS

» Theorem: Taking a sample O(log m) steps after a simple
graph is reached yields an asymptotically uniform graph.

» Runtime is again O(m).

Erdos Numbers

» Some properties of the collaboration graph: n = 253,339;
m = 496,489; d = 502; and d = 38.

Erdos Numbers

» Some properties of the collaboration graph: n = 253,339;
m = 496,489; d = 502; and d = 38.

» One large connected component containing Erd6s. Mean
distance to Erdds within this component is 4.7.

Erdos Numbers

» Some properties of the collaboration graph: n = 253,339;
m = 496,489; d = 502; and d = 38.

» One large connected component containing Erd6s. Mean
distance to Erdds within this component is 4.7.

> Generating a graph with the same degrees takes 0.2 seconds,
compared to 0.9 seconds to compute mean Erd6s number.

Erdos Numbers

» Some properties of the collaboration graph: n = 253,339;
m = 496,489; d = 502; and d = 38.

» One large connected component containing Erd6s. Mean
distance to Erdds within this component is 4.7.

> Generating a graph with the same degrees takes 0.2 seconds,
compared to 0.9 seconds to compute mean Erd6s number.

» For 10,000 samples, sample mean was 4.119 with standard
deviation 0.025. Thus, the real-world mean Erdés number is
22 standard deviations above the simulated mean.

Conclusion

» For graphs with given degree sequence, we obtained best
possible runtime under a typical sparseness constraint.

Conclusion

» For graphs with given degree sequence, we obtained best
possible runtime under a typical sparseness constraint.

» The fact that it works well for multi-star suggests sparseness
constraint may not be essential. Can we weaken it?

Conclusion

» For graphs with given degree sequence, we obtained best
possible runtime under a typical sparseness constraint.

» The fact that it works well for multi-star suggests sparseness
constraint may not be essential. Can we weaken it?

» Possible place for improvement: current proof does not require
choosing the bad edges randomly, only the good edges.

Conclusion

» For graphs with given degree sequence, we obtained best
possible runtime under a typical sparseness constraint.

» The fact that it works well for multi-star suggests sparseness
constraint may not be essential. Can we weaken it?

» Possible place for improvement: current proof does not require
choosing the bad edges randomly, only the good edges.

> The strategy applies to many other combinatorial structures.
However, our other examples are either trivial or intractable.
Can we apply it to anything else in an interesting way?

