Sampling Graphs with Given Degrees

James Zhao University of Southern California

11 August 2014

- ► The mean Erdős Number is 4.7. [Erdős Number Project]
- Is this surprising? Does it provide any insight into mathematicians' publishing habits, or is it purely a graph-theoretic phenomenon?
- We can answer this question statistically by comparing to simulated mean Erdős Numbers. This requires generating labelled graphs with given degree sequence.
- Many other similar problems in statistics (eg. Darwin's finches, degrees of separation, network motifs).

- ► The mean Erdős Number is 4.7. [Erdős Number Project]
- Is this surprising? Does it provide any insight into mathematicians' publishing habits, or is it purely a graph-theoretic phenomenon?
- We can answer this question statistically by comparing to simulated mean Erdős Numbers. This requires generating labelled graphs with given degree sequence.
- Many other similar problems in statistics (eg. Darwin's finches, degrees of separation, network motifs).

- ► The mean Erdős Number is 4.7. [Erdős Number Project]
- Is this surprising? Does it provide any insight into mathematicians' publishing habits, or is it purely a graph-theoretic phenomenon?
- We can answer this question statistically by comparing to simulated mean Erdős Numbers. This requires generating labelled graphs with given degree sequence.
- Many other similar problems in statistics (eg. Darwin's finches, degrees of separation, network motifs).

- ► The mean Erdős Number is 4.7. [Erdős Number Project]
- Is this surprising? Does it provide any insight into mathematicians' publishing habits, or is it purely a graph-theoretic phenomenon?
- We can answer this question statistically by comparing to simulated mean Erdős Numbers. This requires generating labelled graphs with given degree sequence.
- Many other similar problems in statistics (eg. Darwin's finches, degrees of separation, network motifs).

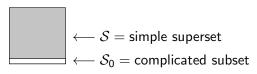
- ► Many useful applications for sampling from families of graphs, and from families of combinatorial structures in general.
- ► Easy for simple families, such as subsets of a given set, lattice points in a box, graphs with a given vertex set.
- Harder for more complicated families, such as subsets with a given size, lattice points with a given magnitude, graphs with a given degree sequence.
- Complicated families are often subsets of simple families derived by imposing additional constraints.
- ▶ A sampling algorithm for the simple superset can be used to produce one for the complicated subset.

- ► Many useful applications for sampling from families of graphs, and from families of combinatorial structures in general.
- ► Easy for simple families, such as subsets of a given set, lattice points in a box, graphs with a given vertex set.
- Harder for more complicated families, such as subsets with a given size, lattice points with a given magnitude, graphs with a given degree sequence.
- Complicated families are often subsets of simple families derived by imposing additional constraints.
- ▶ A sampling algorithm for the simple superset can be used to produce one for the complicated subset.

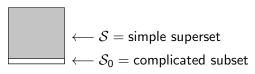
- ► Many useful applications for sampling from families of graphs, and from families of combinatorial structures in general.
- ► Easy for simple families, such as subsets of a given set, lattice points in a box, graphs with a given vertex set.
- Harder for more complicated families, such as subsets with a given size, lattice points with a given magnitude, graphs with a given degree sequence.
- Complicated families are often subsets of simple families derived by imposing additional constraints.
- A sampling algorithm for the simple superset can be used to produce one for the complicated subset.

- ► Many useful applications for sampling from families of graphs, and from families of combinatorial structures in general.
- ► Easy for simple families, such as subsets of a given set, lattice points in a box, graphs with a given vertex set.
- Harder for more complicated families, such as subsets with a given size, lattice points with a given magnitude, graphs with a given degree sequence.
- Complicated families are often subsets of simple families derived by imposing additional constraints.
- ▶ A sampling algorithm for the simple superset can be used to produce one for the complicated subset.

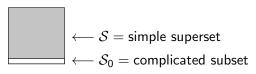
- Many useful applications for sampling from families of graphs, and from families of combinatorial structures in general.
- ► Easy for simple families, such as subsets of a given set, lattice points in a box, graphs with a given vertex set.
- Harder for more complicated families, such as subsets with a given size, lattice points with a given magnitude, graphs with a given degree sequence.
- Complicated families are often subsets of simple families derived by imposing additional constraints.
- ▶ A sampling algorithm for the simple superset can be used to produce one for the complicated subset.



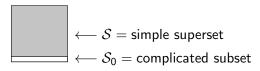
- ▶ This works very well if S_0 is not too small compared to S. For example, $GL_n(\mathbb{F}_q)$, the invertible matrices over a finite field.
- However, most of the time, this takes too long.
- ▶ Idea: instead of rejecting "bad" samples, we can try to modify them into "good" samples.



- ▶ This works very well if S_0 is not too small compared to S. For example, $GL_n(\mathbb{F}_q)$, the invertible matrices over a finite field.
- However, most of the time, this takes too long
- Idea: instead of rejecting "bad" samples, we can try to modify them into "good" samples.



- ▶ This works very well if S_0 is not too small compared to S. For example, $GL_n(\mathbb{F}_q)$, the invertible matrices over a finite field.
- However, most of the time, this takes too long.
- Idea: instead of rejecting "bad" samples, we can try to modify them into "good" samples.



- ▶ This works very well if S_0 is not too small compared to S. For example, $GL_n(\mathbb{F}_q)$, the invertible matrices over a finite field.
- However, most of the time, this takes too long.
- ▶ Idea: instead of rejecting "bad" samples, we can try to modify them into "good" samples.

- ▶ We will need 3 ingredients:
 - 1. A sampling algorithm for S.
 - 2. A Markov chain Q on S.
 - 3. A graded partition $S = S_0 \sqcup S_1 \sqcup \cdots \sqcup S_k$. This defines a notion of "badness": any $x \in S_i$ has badness i.

The algorithm:

- 1. Start at a random sample of ${\cal S}$
- 2. Run the chain Q, rejecting moves that increase the badness
- 3. Stop when an element of S_0 is reached

- We will need 3 ingredients:
 - 1. A sampling algorithm for S.
 - 2. A Markov chain Q on S.
 - 3. A graded partition $S = S_0 \sqcup S_1 \sqcup \cdots \sqcup S_k$. This defines a notion of "badness": any $x \in S_i$ has badness i.
- ► The algorithm:
 - $1.\,$ Start at a random sample of ${\cal S}$
 - 2. Run the chain Q, rejecting moves that increase the badness
 - 3. Stop when an element of S_0 is reached

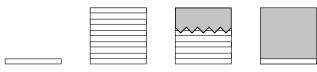
- We will need 3 ingredients:
 - 1. A sampling algorithm for S.
 - 2. A Markov chain Q on S.
 - 3. A graded partition $S = S_0 \sqcup S_1 \sqcup \cdots \sqcup S_k$. This defines a notion of "badness": any $x \in S_i$ has badness i.
- ► The algorithm:
 - 1. Start at a random sample of \mathcal{S} .
 - 2. Run the chain $oldsymbol{Q}_i$ rejecting moves that increase the badness
 - 3. Stop when an element of S_0 is reached

- We will need 3 ingredients:
 - 1. A sampling algorithm for S.
 - 2. A Markov chain Q on S.
 - 3. A graded partition $S = S_0 \sqcup S_1 \sqcup \cdots \sqcup S_k$. This defines a notion of "badness": any $x \in S_i$ has badness i.
- ► The algorithm:
 - 1. Start at a random sample of S.
 - 2. Run the chain Q, rejecting moves that increase the badness.
 - 3. Stop when an element of S_0 is reached.

- We will need 3 ingredients:
 - 1. A sampling algorithm for S.
 - 2. A Markov chain Q on S.
 - 3. A graded partition $S = S_0 \sqcup S_1 \sqcup \cdots \sqcup S_k$. This defines a notion of "badness": any $x \in S_i$ has badness i.
- ► The algorithm:
 - 1. Start at a random sample of S.
 - 2. Run the chain Q, rejecting moves that increase the badness.
 - 3. Stop when an element of S_0 is reached.

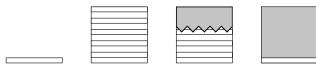
- We will need 3 ingredients:
 - 1. A sampling algorithm for S.
 - 2. A Markov chain Q on S.
 - 3. A graded partition $S = S_0 \sqcup S_1 \sqcup \cdots \sqcup S_k$. This defines a notion of "badness": any $x \in S_i$ has badness i.
- The algorithm:
 - 1. Start at a random sample of S.
 - 2. Run the chain Q, rejecting moves that increase the badness.
 - 3. Stop when an element of S_0 is reached.

In the ideal scenario, uniformity is gained through expansion and preserved through contraction.



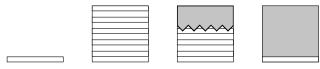
- If uniformity is not preserved exactly, reverse coupling arguments can show asymptotic uniformity.
- In this talk:
 - 1. A few motivating examples for Expand and Contract.
 - 2. Existing algorithms for graphs with given degrees.
 - 3. Expand and Contract for graphs with given degrees.

In the ideal scenario, uniformity is gained through expansion and preserved through contraction.



- If uniformity is not preserved exactly, reverse coupling arguments can show asymptotic uniformity.
- In this talk:
 - 1. A few motivating examples for Expand and Contract.
 - 2. Existing algorithms for graphs with given degrees.
 - Expand and Contract for graphs with given degrees.

In the ideal scenario, uniformity is gained through expansion and preserved through contraction.



- If uniformity is not preserved exactly, reverse coupling arguments can show asymptotic uniformity.
- In this talk:
 - 1. A few motivating examples for Expand and Contract.
 - 2. Existing algorithms for graphs with given degrees.
 - 3. Expand and Contract for graphs with given degrees.

- Let S_0 be the subsets of $\{1, \ldots, n\}$ which have cardinality k. Assuming $k = \Theta(n)$, best existing algorithms take O(n) steps. [Knuth 1969, Pak 1998]
- Expand and Contract:
 - 1. Include each element of $\{1, \ldots, n\}$ independently w.p. $\frac{k}{n}$;
 - 2. Pick an element of $\{1, ..., n\}$ randomly and include/exclude it at random, rejecting if the cardinality moves further from k;
 - 3. Repeat until the cardinality is exactly k.
- ▶ At each step, $\Theta(1)$ probability of cardinality getting closer to k, so Step 2 is repeated $O(\sqrt{n})$ times. Runtime is O(n).
- ▶ Initial state is uniform on subsets of each given size, and each move preserves this uniformity, so output is also uniform.

- Let S_0 be the subsets of $\{1, \ldots, n\}$ which have cardinality k. Assuming $k = \Theta(n)$, best existing algorithms take O(n) steps. [Knuth 1969, Pak 1998]
- Expand and Contract:
 - 1. Include each element of $\{1,\ldots,n\}$ independently w.p. $\frac{k}{n}$;
 - 2. Pick an element of $\{1, \ldots, n\}$ randomly and include/exclude it at random, rejecting if the cardinality moves further from k;
 - 3. Repeat until the cardinality is exactly k.
- At each step, $\Theta(1)$ probability of cardinality getting closer to k, so Step 2 is repeated $O(\sqrt{n})$ times. Runtime is O(n).
- ▶ Initial state is uniform on subsets of each given size, and each move preserves this uniformity, so output is also uniform.

- Let S_0 be the subsets of $\{1, \ldots, n\}$ which have cardinality k. Assuming $k = \Theta(n)$, best existing algorithms take O(n) steps. [Knuth 1969, Pak 1998]
- Expand and Contract:
 - 1. Include each element of $\{1,\ldots,n\}$ independently w.p. $\frac{k}{n}$;
 - 2. Pick an element of $\{1, \ldots, n\}$ randomly and include/exclude it at random, rejecting if the cardinality moves further from k;
 - 3. Repeat until the cardinality is exactly k.
- ▶ At each step, $\Theta(1)$ probability of cardinality getting closer to k, so Step 2 is repeated $O(\sqrt{n})$ times. Runtime is O(n).
- ▶ Initial state is uniform on subsets of each given size, and each move preserves this uniformity, so output is also uniform.

- Let S_0 be the subsets of $\{1, \ldots, n\}$ which have cardinality k. Assuming $k = \Theta(n)$, best existing algorithms take O(n) steps. [Knuth 1969, Pak 1998]
- Expand and Contract:
 - 1. Include each element of $\{1,\ldots,n\}$ independently w.p. $\frac{k}{n}$;
 - 2. Pick an element of $\{1, \ldots, n\}$ randomly and include/exclude it at random, rejecting if the cardinality moves further from k;
 - 3. Repeat until the cardinality is exactly k.
- ▶ At each step, $\Theta(1)$ probability of cardinality getting closer to k, so Step 2 is repeated $O(\sqrt{n})$ times. Runtime is O(n).
- ▶ Initial state is uniform on subsets of each given size, and each move preserves this uniformity, so output is also uniform.

- Let $S_0 = GL_n(\mathbb{F}_q)$, the invertible $n \times n$ matrices over \mathbb{F}_q . Best existing algorithms run in time $O(n^3)$. [Pak 1998]
- Expand and Contract:
 - 1. Pick each entry independently and uniformly at random;
 - 2. Pick a linearly dependent column and replace each entry independently and uniformly at random;
 - 3. Repeat until the matrix has full rank.
- ▶ Each move takes $O(n^3)$ steps and has $\Theta(1)$ probability of increasing rank, so runtime is $O(n^3)$.
- Initial state is uniform on matrices with same RREF. Each move preserves this, hence output is uniform.

- Let $S_0 = GL_n(\mathbb{F}_q)$, the invertible $n \times n$ matrices over \mathbb{F}_q . Best existing algorithms run in time $O(n^3)$. [Pak 1998]
- Expand and Contract:
 - 1. Pick each entry independently and uniformly at random;
 - Pick a linearly dependent column and replace each entry independently and uniformly at random;
 - 3. Repeat until the matrix has full rank.
- ▶ Each move takes $O(n^3)$ steps and has $\Theta(1)$ probability of increasing rank, so runtime is $O(n^3)$.
- ▶ Initial state is uniform on matrices with same RREF Each move preserves this, hence output is uniform.

- Let $S_0 = GL_n(\mathbb{F}_q)$, the invertible $n \times n$ matrices over \mathbb{F}_q . Best existing algorithms run in time $O(n^3)$. [Pak 1998]
- Expand and Contract:
 - 1. Pick each entry independently and uniformly at random;
 - 2. Pick a linearly dependent column and replace each entry independently and uniformly at random;
 - 3. Repeat until the matrix has full rank.
- ▶ Each move takes $O(n^3)$ steps and has $\Theta(1)$ probability of increasing rank, so runtime is $O(n^3)$.
- ▶ Initial state is uniform on matrices with same RREF Each move preserves this, hence output is uniform.

- Let $S_0 = GL_n(\mathbb{F}_q)$, the invertible $n \times n$ matrices over \mathbb{F}_q . Best existing algorithms run in time $O(n^3)$. [Pak 1998]
- Expand and Contract:
 - 1. Pick each entry independently and uniformly at random;
 - 2. Pick a linearly dependent column and replace each entry independently and uniformly at random;
 - 3. Repeat until the matrix has full rank.
- ▶ Each move takes $O(n^3)$ steps and has $\Theta(1)$ probability of increasing rank, so runtime is $O(n^3)$.
- ▶ Initial state is uniform on matrices with same RREF. Each move preserves this, hence output is uniform.

- Let S_0 be the set of points $(a_1, \ldots, a_n) \in \mathbb{N}^n$ with sum of squares $a_1^2 + \cdots + a_n^2 = E = \Theta(n)$. Quantum mechanical system with a given energy E. [Chatterjee-Diaconis 2013]
- Expand and Contract:
 - 1. Pick entries independently with $\mathbb{P}(a_i = k) = \frac{1}{Z}e^{-ck^2}$, where c is chosen so that $\mathbb{E}[a_i^2] = E/n$;
 - 2. Randomly change an entry by ± 1 , rejecting if either the sum of squares moves further from E or if the entry becomes 0;
 - 3. Repeat until the sum of squares is exactly E.
- ▶ Similarly to subsets example, runtime is O(n).
- ▶ Initial state is uniform on each hypersphere. Unfortunately, each move increases TV distance by $O(n^{-1/2})$, and there are $O(\sqrt{n})$ moves, so we can only get a TV bound of O(1).

- Let S_0 be the set of points $(a_1, \ldots, a_n) \in \mathbb{N}^n$ with sum of squares $a_1^2 + \cdots + a_n^2 = E = \Theta(n)$. Quantum mechanical system with a given energy E. [Chatterjee-Diaconis 2013]
- Expand and Contract:
 - 1. Pick entries independently with $\mathbb{P}(a_i = k) = \frac{1}{Z}e^{-ck^2}$, where c is chosen so that $\mathbb{E}[a_i^2] = E/n$;
 - 2. Randomly change an entry by ± 1 , rejecting if either the sum of squares moves further from E or if the entry becomes 0;
 - 3. Repeat until the sum of squares is exactly E.
- ▶ Similarly to subsets example, runtime is O(n).
- ▶ Initial state is uniform on each hypersphere. Unfortunately, each move increases TV distance by $O(n^{-1/2})$, and there are $O(\sqrt{n})$ moves, so we can only get a TV bound of O(1).

- Let S_0 be the set of points $(a_1, \ldots, a_n) \in \mathbb{N}^n$ with sum of squares $a_1^2 + \cdots + a_n^2 = E = \Theta(n)$. Quantum mechanical system with a given energy E. [Chatterjee-Diaconis 2013]
- Expand and Contract:
 - 1. Pick entries independently with $\mathbb{P}(a_i = k) = \frac{1}{Z}e^{-ck^2}$, where c is chosen so that $\mathbb{E}[a_i^2] = E/n$;
 - 2. Randomly change an entry by ± 1 , rejecting if either the sum of squares moves further from E or if the entry becomes 0;
 - 3. Repeat until the sum of squares is exactly E.
- ▶ Similarly to subsets example, runtime is O(n).
- ▶ Initial state is uniform on each hypersphere. Unfortunately, each move increases TV distance by $O(n^{-1/2})$, and there are $O(\sqrt{n})$ moves, so we can only get a TV bound of O(1).

- Let S_0 be the set of points $(a_1, \ldots, a_n) \in \mathbb{N}^n$ with sum of squares $a_1^2 + \cdots + a_n^2 = E = \Theta(n)$. Quantum mechanical system with a given energy E. [Chatterjee-Diaconis 2013]
- Expand and Contract:
 - 1. Pick entries independently with $\mathbb{P}(a_i = k) = \frac{1}{Z}e^{-ck^2}$, where c is chosen so that $\mathbb{E}[a_i^2] = E/n$;
 - 2. Randomly change an entry by ± 1 , rejecting if either the sum of squares moves further from E or if the entry becomes 0;
 - 3. Repeat until the sum of squares is exactly E.
- ▶ Similarly to subsets example, runtime is O(n).
- Initial state is uniform on each hypersphere. Unfortunately, each move increases TV distance by $O(n^{-1/2})$, and there are $O(\sqrt{n})$ moves, so we can only get a TV bound of O(1).

Example 4: Magic Squares

- ▶ Let S_0 be the $n \times n$ matrices with entries a permutation of $1, \dots, n^2$ whose row/column/diagonal sums are $\frac{1}{2}n(n^2 + 1)$.
- ▶ Define **badness** of a $n \times n$ matrix as the L^1 distance of the row/column/diagonal sums from $\frac{1}{2}n(n^2+1)$.
- Expand and Contract:
 - 1. Pick entries via a random permutation of $\{1, \ldots, n^2\}$;
 - 2. Randomly swap 2 entries, rejecting moves that increase badness by i w.p. $1 e^{-\beta i}$ for some $0 < \beta < \infty$;
 - 3. Repeat until a magic square is obtained.
- ▶ Difficult to say anything about either runtime or uniformity. Can generate up to 50 × 50 magic squares.

Example 4: Magic Squares

- ▶ Let S_0 be the $n \times n$ matrices with entries a permutation of $1, \dots, n^2$ whose row/column/diagonal sums are $\frac{1}{2}n(n^2 + 1)$.
- ▶ Define **badness** of a $n \times n$ matrix as the L^1 distance of the row/column/diagonal sums from $\frac{1}{2}n(n^2+1)$.
- Expand and Contract:
 - 1. Pick entries via a random permutation of $\{1, \ldots, n^2\}$;
 - 2. Randomly swap 2 entries, rejecting moves that increase badness by i w.p. $1 e^{-\beta i}$ for some $0 < \beta < \infty$;
 - 3. Repeat until a magic square is obtained.
- ▶ Difficult to say anything about either runtime or uniformity. Can generate up to 50 × 50 magic squares.

Example 4: Magic Squares

- ▶ Let S_0 be the $n \times n$ matrices with entries a permutation of $1, \dots, n^2$ whose row/column/diagonal sums are $\frac{1}{2}n(n^2 + 1)$.
- ▶ Define **badness** of a $n \times n$ matrix as the L^1 distance of the row/column/diagonal sums from $\frac{1}{2}n(n^2+1)$.
- Expand and Contract:
 - 1. Pick entries via a random permutation of $\{1, \ldots, n^2\}$;
 - 2. Randomly swap 2 entries, rejecting moves that increase badness by i w.p. $1 e^{-\beta i}$ for some $0 < \beta < \infty$;
 - 3. Repeat until a magic square is obtained.
- Difficult to say anything about either runtime or uniformity. Can generate up to 50 × 50 magic squares.

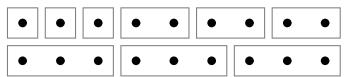
Example 4: Magic Squares

- Let S_0 be the $n \times n$ matrices with entries a permutation of $1, \dots, n^2$ whose row/column/diagonal sums are $\frac{1}{2}n(n^2+1)$.
- ▶ Define **badness** of a $n \times n$ matrix as the L^1 distance of the row/column/diagonal sums from $\frac{1}{2}n(n^2+1)$.
- Expand and Contract:
 - 1. Pick entries via a random permutation of $\{1, \ldots, n^2\}$;
 - 2. Randomly swap 2 entries, rejecting moves that increase badness by i w.p. $1 e^{-\beta i}$ for some $0 < \beta < \infty$;
 - 3. Repeat until a magic square is obtained.
- ▶ Difficult to say anything about either runtime or uniformity. Can generate up to 50×50 magic squares.

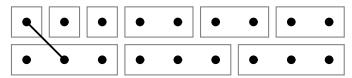
- ▶ Let $(d_1, ..., d_n)$ be a degree sequence, and let S_0 be the graphs with vertex set $\{1, ..., n\}$ where vertex i has degree d_i .
- Let $S \supset S_0$ be the set of multigraphs with the given degree sequence (d_1, \ldots, d_n) . Sample from S by considering each vertex as a set of half-edges, and picking a perfect matching of half-edges. [Bender-Canfield 1978, Bollobás 1980]
- For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.

- ▶ Let $(d_1, ..., d_n)$ be a degree sequence, and let S_0 be the graphs with vertex set $\{1, ..., n\}$ where vertex i has degree d_i .
- Let $S \supset S_0$ be the set of multigraphs with the given degree sequence (d_1, \ldots, d_n) . Sample from S by considering each vertex as a set of half-edges, and picking a perfect matching of half-edges. [Bender-Canfield 1978, Bollobás 1980]
- For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.

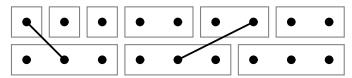
- ▶ Let $(d_1, ..., d_n)$ be a degree sequence, and let S_0 be the graphs with vertex set $\{1, ..., n\}$ where vertex i has degree d_i .
- Let $S \supset S_0$ be the set of multigraphs with the given degree sequence (d_1, \ldots, d_n) . Sample from S by considering each vertex as a set of half-edges, and picking a perfect matching of half-edges. [Bender-Canfield 1978, Bollobás 1980]
- ► For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.



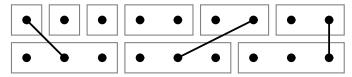
- ▶ Let $(d_1, ..., d_n)$ be a degree sequence, and let S_0 be the graphs with vertex set $\{1, ..., n\}$ where vertex i has degree d_i .
- Let $S \supset S_0$ be the set of multigraphs with the given degree sequence (d_1, \ldots, d_n) . Sample from S by considering each vertex as a set of half-edges, and picking a perfect matching of half-edges. [Bender-Canfield 1978, Bollobás 1980]
- ► For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.



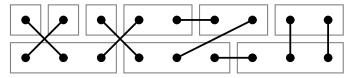
- ▶ Let $(d_1, ..., d_n)$ be a degree sequence, and let S_0 be the graphs with vertex set $\{1, ..., n\}$ where vertex i has degree d_i .
- Let $S \supset S_0$ be the set of multigraphs with the given degree sequence (d_1, \ldots, d_n) . Sample from S by considering each vertex as a set of half-edges, and picking a perfect matching of half-edges. [Bender-Canfield 1978, Bollobás 1980]
- ► For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.



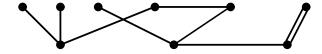
- ▶ Let $(d_1, ..., d_n)$ be a degree sequence, and let S_0 be the graphs with vertex set $\{1, ..., n\}$ where vertex i has degree d_i .
- Let $S \supset S_0$ be the set of multigraphs with the given degree sequence (d_1, \ldots, d_n) . Sample from S by considering each vertex as a set of half-edges, and picking a perfect matching of half-edges. [Bender-Canfield 1978, Bollobás 1980]
- For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.



- ▶ Let $(d_1, ..., d_n)$ be a degree sequence, and let S_0 be the graphs with vertex set $\{1, ..., n\}$ where vertex i has degree d_i .
- Let $S \supset S_0$ be the set of multigraphs with the given degree sequence (d_1, \ldots, d_n) . Sample from S by considering each vertex as a set of half-edges, and picking a perfect matching of half-edges. [Bender-Canfield 1978, Bollobás 1980]
- For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.



- ▶ Let $(d_1, ..., d_n)$ be a degree sequence, and let S_0 be the graphs with vertex set $\{1, ..., n\}$ where vertex i has degree d_i .
- Let $S \supset S_0$ be the set of multigraphs with the given degree sequence (d_1, \ldots, d_n) . Sample from S by considering each vertex as a set of half-edges, and picking a perfect matching of half-edges. [Bender-Canfield 1978, Bollobás 1980]
- ► For example, degree sequence 1, 1, 1, 2, 2, 2, 3, 3, 3.



$$n=\#$$
 vertices $m=\#$ edges $d=\max$ degree

- If we discard non-simple graphs, the result is uniform among simple graphs. Works well when d = O(1). [Wormald 1984]
- Can adjust the multigraph to obtain a simple graph when $d = o(m^{1/4})$. But this is slow. [McKay-Wormald 1990]
- Can reject moves that create bad edges up to degree $d = O(n^{1/11})$. [Steger-Wormald 1999]
- Smarter rejection works up to degree $d=O(m^{1/4-\epsilon})$. [Bayati-Kim-Saberi 2010]

$$n=\#$$
 vertices $m=\#$ edges $d=\max$ degree

- ▶ If we discard non-simple graphs, the result is uniform among simple graphs. Works well when d = O(1). [Wormald 1984]
- Can adjust the multigraph to obtain a simple graph when $d = o(m^{1/4})$. But this is slow. [McKay-Wormald 1990]
- Can reject moves that create bad edges up to degree $d = O(n^{1/11})$. [Steger-Wormald 1999]
- Smarter rejection works up to degree $d=O(m^{1/4-\epsilon})$. [Bayati-Kim-Saberi 2010]

$$n = \#$$
 vertices $m = \#$ edges $d = \max$ degree

- ▶ If we discard non-simple graphs, the result is uniform among simple graphs. Works well when d = O(1). [Wormald 1984]
- ► Can adjust the multigraph to obtain a simple graph when $d = o(m^{1/4})$. But this is slow. [McKay-Wormald 1990]
- Can reject moves that create bad edges up to degree $d = O(n^{1/11})$. [Steger-Wormald 1999]
- Smarter rejection works up to degree $d=O(m^{1/4-\epsilon})$. [Bayati-Kim-Saberi 2010]

$$n=\#$$
 vertices $m=\#$ edges $d=\max$ degree

- If we discard non-simple graphs, the result is uniform among simple graphs. Works well when d = O(1). [Wormald 1984]
- ► Can adjust the multigraph to obtain a simple graph when $d = o(m^{1/4})$. But this is slow. [McKay-Wormald 1990]
- ► Can reject moves that create bad edges up to degree $d = O(n^{1/11})$. [Steger-Wormald 1999]
- Smarter rejection works up to degree $d=O(m^{1/4-\epsilon})$. [Bayati-Kim-Saberi 2010]

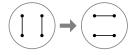
```
n = \# vertices m = \# edges d = \max degree
```

- If we discard non-simple graphs, the result is uniform among simple graphs. Works well when d = O(1). [Wormald 1984]
- ► Can adjust the multigraph to obtain a simple graph when $d = o(m^{1/4})$. But this is slow. [McKay-Wormald 1990]
- ► Can reject moves that create bad edges up to degree $d = O(n^{1/11})$. [Steger-Wormald 1999]
- Smarter rejection works up to degree $d = O(m^{1/4-\epsilon})$.

 [Bayati-Kim-Saberi 2010]

$$n=\#$$
 vertices $m=\#$ edges $d=\max$ degree

- ▶ Start with a graph, and run a Markov chain until it mixes.
- Easiest move is a **2-swap**.

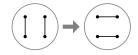


- ▶ Polynomial runtime for $d \le \sqrt{n/2}$. [Jerrum-Sinclair 1990
- ► Polynomial runtime for all inputs with a warm start.

 [Bezáková-Bhatnagar-Vigoda 2006]
- ► However, best runtime bound is $O(n^4m^3d)$, and the warm start is a complicated process involving bootstrapping weights.

$$n = \#$$
 vertices $m = \#$ edges $d = \max$ degree

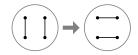
- Start with a graph, and run a Markov chain until it mixes.
- Easiest move is a **2-swap**.



- ▶ Polynomial runtime for $d \le \sqrt{n/2}$. [Jerrum-Sinclair 1990
- Polynomial runtime for all inputs with a warm start.
 [Bezáková-Bhatnagar-Vigoda 2006]
- ▶ However, best runtime bound is $O(n^4m^3d)$, and the warm start is a complicated process involving bootstrapping weights.

$$n = \#$$
 vertices $m = \#$ edges $d = \max$ degree

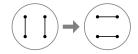
- Start with a graph, and run a Markov chain until it mixes.
- Easiest move is a **2-swap**.



- ▶ Polynomial runtime for $d \le \sqrt{n/2}$.
- [Jerrum-Sinclair 1990]
- Polynomial runtime for all inputs with a warm start.
 [Bezáková-Bhatnagar-Vigoda 2006]
- ▶ However, best runtime bound is $O(n^4m^3d)$, and the warm start is a complicated process involving bootstrapping weights

$$n = \#$$
 vertices $m = \#$ edges $d = \max$ degree

- ▶ Start with a graph, and run a Markov chain until it mixes.
- Easiest move is a **2-swap**.

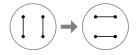


- ▶ Polynomial runtime for $d \le \sqrt{n/2}$. [Jerrum-Sinclair 1990]
- ► Polynomial runtime for all inputs with a warm start.

 [Bezáková-Bhatnagar-Vigoda 2006]
- ▶ However, best runtime bound is $O(n^4m^3d)$, and the warm start is a complicated process involving bootstrapping weights

$$n = \#$$
 vertices $m = \#$ edges $d = \max$ degree

- Start with a graph, and run a Markov chain until it mixes.
- ► Easiest move is a **2-swap**.



- ▶ Polynomial runtime for $d \le \sqrt{n/2}$. [Jerrum-Sinclair 1990]
- ▶ Polynomial runtime for all inputs with a warm start. [Bezáková-Bhatnagar-Vigoda 2006]
- ► However, best runtime bound is $O(n^4m^3d)$, and the warm start is a complicated process involving bootstrapping weights.

Sequential Importance Sampling

Instead of trying to generate uniformly, if we can determine the amount of non-uniformity, then we can make unbiased estimates of any statistic.

[Chen-Diaconis-Holmes-Liu 2005, Blitzstein-Diaconis 2010]

- However, unbiased estimates can still behave badly if it the measure is too far from uniform.
- ► All non-MCMC algorithms behave exponentially badly for the double-star degree sequence (d, d, 1, 1, ..., 1).

Sequential Importance Sampling

Instead of trying to generate uniformly, if we can determine the amount of non-uniformity, then we can make unbiased estimates of any statistic.

[Chen-Diaconis-Holmes-Liu 2005, Blitzstein-Diaconis 2010]

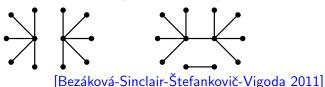
- ► However, unbiased estimates can still behave badly if it the measure is too far from uniform.
- ► All non-MCMC algorithms behave exponentially badly for the double-star degree sequence (d, d, 1, 1, ..., 1).

Sequential Importance Sampling

Instead of trying to generate uniformly, if we can determine the amount of non-uniformity, then we can make unbiased estimates of any statistic.

[Chen-Diaconis-Holmes-Liu 2005, Blitzstein-Diaconis 2010]

- ► However, unbiased estimates can still behave badly if it the measure is too far from uniform.
- ▶ All non-MCMC algorithms behave exponentially badly for the double-star degree sequence (d, d, 1, 1, ..., 1).



Comparison of Algorithms

Algorithm	Runtime	Sparseness
Perfect Matching	$O(me^{(d^2-1)/4})$	All
Bezáková-Bhatnagar-Vigoda	$O(n^4m^3d)$	All
Blitzstein-Diaconis	$O(n^2m)$	SIS
Chen-Diaconis-Holmes-Liu	$O(n^3)$	SIS
McKay-Wormald	$O(m^2d^2)$	$d=o(m^{1/4})$
Bayati-Kim-Saberi	O(md)	$d=o(m^{1/4})$
Expand and Contract	O(m)	$d=o(m^{1/4})$

Table of runtime against sparseness constraint required for provable asymptotic uniformity.

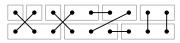
The algorithm:

1. Generate a random multigraph by perfect matching method.

2. Perform a **3-swap** on 1 **bad edge** and 2 **good edges** rejecting moves that create any new bad edges.

The algorithm:

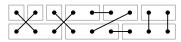
1. Generate a random multigraph by perfect matching method.



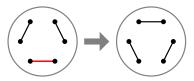
Perform a 3-swap on 1 bad edge and 2 good edges, rejecting moves that create any new bad edges.

The algorithm:

1. Generate a random multigraph by perfect matching method.

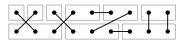


2. Perform a **3-swap** on 1 **bad edge** and 2 **good edges**, rejecting moves that create any new bad edges.

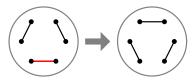


The algorithm:

1. Generate a random multigraph by perfect matching method.

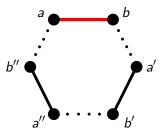


2. Perform a **3-swap** on 1 **bad edge** and 2 **good edges**, rejecting moves that create any new bad edges.

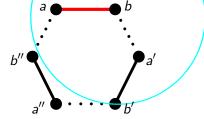


- ▶ **Theorem**: Assuming $d = O(m^{1/3})$, runtime is O(m).
- ▶ Proof: Let (a, b) be the bad edge chosen. Want to count number of good edges (a', b') and (a'', b'') so that a 3-swap does not create any new bad edges.

- ▶ **Theorem**: Assuming $d = O(m^{1/3})$, runtime is O(m).
- ▶ *Proof:* Let (a, b) be the bad edge chosen. Want to count number of good edges (a', b') and (a'', b'') so that a 3-swap does not create any new bad edges.

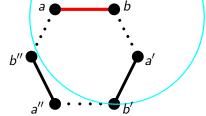


► There are $O(d^2)$ edges in the ball B(b,2) of radius 2 at b. $\mathbb{P}[(b,a') \text{ is bad}] \leq \mathbb{P}[(a',b') \in B(b,2)] = O(d^2)/m = o(1)$.



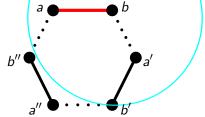
- ▶ Similarly, (b', a'') and (b'', a) are also good with high probability. Hence, almost every move removes a bad edge.
- ▶ **Lemma:** There are $O(d^2)$ bad edges. This implies runtime is $O(m + d^3)$.

► There are $O(d^2)$ edges in the ball B(b,2) of radius 2 at b. $\mathbb{P}[(b,a') \text{ is bad}] \leq \mathbb{P}[(a',b') \in B(b,2)] = O(d^2)/m = o(1)$.



- ▶ Similarly, (b', a'') and (b'', a) are also good with high probability. Hence, almost every move removes a bad edge.
- ▶ **Lemma:** There are $O(d^2)$ bad edges. This implies runtime is $O(m + d^3)$.

► There are $O(d^2)$ edges in the ball B(b,2) of radius 2 at b. $\mathbb{P}[(b,a') \text{ is bad}] \leq \mathbb{P}[(a',b') \in B(b,2)] = O(d^2)/m = o(1)$.



- ▶ Similarly, (b', a'') and (b'', a) are also good with high probability. Hence, almost every move removes a bad edge.
- ▶ **Lemma:** There are $O(d^2)$ bad edges. This implies runtime is $O(m + d^3)$.

Uniformity

- ▶ **Theorem**: If the maximum degree is $d = o(m^{1/4})$, then the output is asymptotically uniform in total variation.
- ▶ *Proof*: Define a **bad edge set** $B = \{(a_i, b_i, n_i)\}$ to be the set of multigraphs with prescribed multiplicities n_i at vertex pairs (a_i, b_i) , and no bad edges anywhere else.

For example, $B = \{(1, 1, 1), (1, 2, 2)\}$ is the set of multigraphs with a loop at vertex 1, a double edge between vertices 1 and 2, and no other bad edges.

▶ Let $B_0, B_1, B_2, ...$ be a sequence of bad edge sets.

Uniformity

- ▶ **Theorem**: If the maximum degree is $d = o(m^{1/4})$, then the output is asymptotically uniform in total variation.
- ▶ *Proof*: Define a **bad edge set** $B = \{(a_i, b_i, n_i)\}$ to be the set of multigraphs with prescribed multiplicities n_i at vertex pairs (a_i, b_i) , and no bad edges anywhere else.

For example, $B = \{(1,1,1), (1,2,2)\}$ is the set of multigraphs with a loop at vertex 1, a double edge between vertices 1 and 2, and no other bad edges.

▶ Let $B_0, B_1, B_2, ...$ be a sequence of bad edge sets.

- ▶ **Theorem**: If the maximum degree is $d = o(m^{1/4})$, then the output is asymptotically uniform in total variation.
- ▶ *Proof*: Define a **bad edge set** $B = \{(a_i, b_i, n_i)\}$ to be the set of multigraphs with prescribed multiplicities n_i at vertex pairs (a_i, b_i) , and no bad edges anywhere else.

For example, $B = \{(1,1,1), (1,2,2)\}$ is the set of multigraphs with a loop at vertex 1, a double edge between vertices 1 and 2, and no other bad edges.

▶ Let $B_0, B_1, B_2,...$ be a sequence of bad edge sets.

Let $X_0, X_1, X_2, ...$ be the states of the chain, and let

$$\mathcal{L}(X_t \mid X_0 \in B_0, \dots, X_t \in B_t) = u_t U_{B_t} + (1 - u_t) E_t,$$

- ▶ **Lemma:** Every graph with the same bad edge set has the same initial probability. Thus, $u_0 = 1$.
- Want to show $u_{\infty} = \lim_{t \to \infty} u_t = 1 o(1)$.
- ▶ If $B_{t+1} = B_t$, then $u_{t+1} \ge u_t$, since the transition probabilities within B_t are symmetric, so the uniform part stays uniform.

Let $X_0, X_1, X_2, ...$ be the states of the chain, and let

$$\mathcal{L}(X_t \mid X_0 \in B_0, \dots, X_t \in B_t) = u_t U_{B_t} + (1 - u_t) E_t,$$

- ▶ **Lemma:** Every graph with the same bad edge set has the same initial probability. Thus, $u_0 = 1$.
- Mant to show $u_{\infty} = \lim_{t \to \infty} u_t = 1 o(1)$.
- ▶ If $B_{t+1} = B_t$, then $u_{t+1} \ge u_t$, since the transition probabilities within B_t are symmetric, so the uniform part stays uniform.

Let $X_0, X_1, X_2, ...$ be the states of the chain, and let

$$\mathcal{L}(X_t \mid X_0 \in B_0, \dots, X_t \in B_t) = u_t U_{B_t} + (1 - u_t) E_t,$$

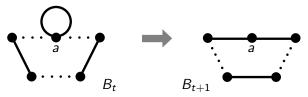
- ▶ **Lemma:** Every graph with the same bad edge set has the same initial probability. Thus, $u_0 = 1$.
- Want to show $u_{\infty} = \lim_{t \to \infty} u_t = 1 o(1)$.
- ▶ If $B_{t+1} = B_t$, then $u_{t+1} \ge u_t$, since the transition probabilities within B_t are symmetric, so the uniform part stays uniform.

Let X_0, X_1, X_2, \ldots be the states of the chain, and let

$$\mathcal{L}(X_t \mid X_0 \in B_0, \dots, X_t \in B_t) = u_t U_{B_t} + (1 - u_t) E_t,$$

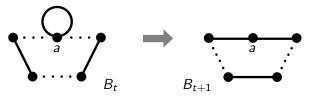
- ▶ **Lemma:** Every graph with the same bad edge set has the same initial probability. Thus, $u_0 = 1$.
- ▶ Want to show $u_{\infty} = \lim_{t \to \infty} u_t = 1 o(1)$.
- ▶ If $B_{t+1} = B_t$, then $u_{t+1} \ge u_t$, since the transition probabilities within B_t are symmetric, so the uniform part stays uniform.

▶ Suppose the transition from B_t to B_{t+1} removes a loop (a, a).



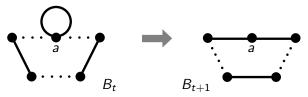
- ▶ Each multigraph in B_t is connected to $(2m O(d^2))^2$ multigraphs in B_{t+1} .
- Each multigraph in B_{t+1} is connected to $\binom{e_a}{2}(2m O(d^2))$ multigraphs in B_t , where e_a is the number of non-loop edges out of a. Note that e_a depends only on B_{t+1} and a, and not on the multigraph that is chosen.

▶ Suppose the transition from B_t to B_{t+1} removes a loop (a, a).



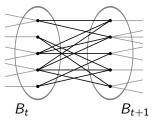
- ▶ Each multigraph in B_t is connected to $(2m O(d^2))^2$ multigraphs in B_{t+1} .
- Each multigraph in B_{t+1} is connected to $\binom{e_a}{2}(2m O(d^2))$ multigraphs in B_t , where e_a is the number of non-loop edges out of a. Note that e_a depends only on B_{t+1} and a, and not on the multigraph that is chosen.

▶ Suppose the transition from B_t to B_{t+1} removes a loop (a, a).



- ▶ Each multigraph in B_t is connected to $(2m O(d^2))^2$ multigraphs in B_{t+1} .
- ▶ Each multigraph in B_{t+1} is connected to $\binom{e_a}{2}(2m O(d^2))$ multigraphs in B_t , where e_a is the number of non-loop edges out of a. Note that e_a depends only on B_{t+1} and a, and not on the multigraph that is chosen.

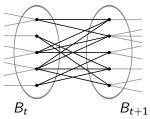
▶ Variation in connectivity between B_t and B_{t+1} is a factor of $1 + O(d^2/m) = 1 + o(m^{-1/2})$.



Starting with uniform in B_t , variation in probability of each connection is $1 + o(m^{-1/2})$. Number of connections entering each point in B_{t+1} also varies by $1 + o(m^{-1/2})$.

Hence,
$$u_{t+1} = (1 - o(m^{-1/2}))u_t$$

▶ Variation in connectivity between B_t and B_{t+1} is a factor of $1 + O(d^2/m) = 1 + o(m^{-1/2})$.



▶ Starting with uniform in B_t , variation in probability of each connection is $1 + o(m^{-1/2})$. Number of connections entering each point in B_{t+1} also varies by $1 + o(m^{-1/2})$.

Hence, $u_{t+1} = (1 - o(m^{-1/2}))u_t$.

- ▶ Similar result if B_{t+1} reduces multiplicity of an edge by 1.
- When B_{t+1} removes a double edge (a, b, 2), a single edge (a, b, 1) remains; need to count this as a bad edge.
- When this remaining edge is removed, discard the triple (a,b,0) so that multiplicity between a and b is no longer prescribed. The proportion of graphs that contain this edge is $O(d_ad_b/m)$, so again $u_{t+1}=(1-o(m^{-1/2}))u_t$.
- ▶ Since there are $O(d^2) = o(m^{1/2})$ bad edges,

$$u_{\infty} = (1 - o(m^{-1/2}))^{o(m^{1/2})} = 1 - o(1).$$

- ▶ Similar result if B_{t+1} reduces multiplicity of an edge by 1.
- ▶ When B_{t+1} removes a double edge (a, b, 2), a single edge (a, b, 1) remains; need to count this as a bad edge.
- When this remaining edge is removed, discard the triple (a,b,0) so that multiplicity between a and b is no longer prescribed. The proportion of graphs that contain this edge is $O(d_ad_b/m)$, so again $u_{t+1} = (1 o(m^{-1/2}))u_t$.
- ► Since there are $O(d^2) = o(m^{1/2})$ bad edges,

$$u_{\infty} = (1 - o(m^{-1/2}))^{o(m^{1/2})} = 1 - o(1).$$

- ▶ Similar result if B_{t+1} reduces multiplicity of an edge by 1.
- ▶ When B_{t+1} removes a double edge (a, b, 2), a single edge (a, b, 1) remains; need to count this as a bad edge.
- When this remaining edge is removed, discard the triple (a,b,0) so that multiplicity between a and b is no longer prescribed. The proportion of graphs that contain this edge is $O(d_ad_b/m)$, so again $u_{t+1} = (1 o(m^{-1/2}))u_t$.
- Since there are $O(d^2) = o(m^{1/2})$ bad edges,

$$u_{\infty} = (1 - o(m^{-1/2}))^{o(m^{1/2})} = 1 - o(1).$$

- ▶ Similar result if B_{t+1} reduces multiplicity of an edge by 1.
- ▶ When B_{t+1} removes a double edge (a, b, 2), a single edge (a, b, 1) remains; need to count this as a bad edge.
- When this remaining edge is removed, discard the triple (a,b,0) so that multiplicity between a and b is no longer prescribed. The proportion of graphs that contain this edge is $O(d_ad_b/m)$, so again $u_{t+1} = (1 o(m^{-1/2}))u_t$.
- ► Since there are $O(d^2) = o(m^{1/2})$ bad edges,

$$u_{\infty} = (1 - o(m^{-1/2}))^{o(m^{1/2})} = 1 - o(1).$$

With explicit constants, the TV distance to uniformity is

$$\frac{d^2\bar{d}^2}{4m}$$
, where $\bar{d} = \frac{1}{2m}\sum_i d_i(d_i-1)$.

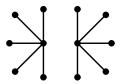
Examples with power law distribution:

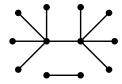
With explicit constants, the TV distance to uniformity is

$$\frac{d^2\bar{d}^2}{4m}$$
, where $\bar{d} = \frac{1}{2m}\sum_i d_i(d_i-1)$.

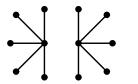
Examples with power law distribution:

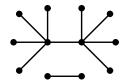
Vertices	Max Degree	Exponent	TV Bound
10 ⁶	100	2.5	0.125
10 ³	12	2.5	0.141
10 ⁹	959	2.5	0.125
10 ⁶	100	2.0	0.526
10 ⁶	100	3.0	0.017
10 ⁶	200	2.5	0.500
10 ⁶	50	2.5	0.014
10 ⁶	20	2.5	0.001



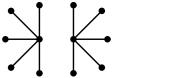


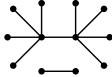
- ▶ **Definition**: Probability ratio metric for measures on a finite set S is $d(\mu, \nu) = \max_{x \in S} \big| \log \mu(x) \log \nu(x) \big|$.
- ▶ **Theorem**: Taking a sample $O(\log m)$ steps after a simple graph is reached yields an asymptotically uniform graph.
- ▶ Runtime is again O(m).



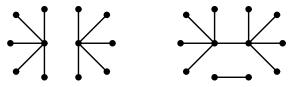


- ▶ **Definition**: Probability ratio metric for measures on a finite set S is $d(\mu, \nu) = \max_{x \in S} \big| \log \mu(x) \log \nu(x) \big|$.
- ▶ **Theorem**: Taking a sample $O(\log m)$ steps after a simple graph is reached yields an asymptotically uniform graph.
- ▶ Runtime is again O(m).





- ▶ **Definition**: Probability ratio metric for measures on a finite set S is $d(\mu, \nu) = \max_{x \in S} \big| \log \mu(x) \log \nu(x) \big|$.
- ▶ **Theorem**: Taking a sample $O(\log m)$ steps after a simple graph is reached yields an asymptotically uniform graph.
- ▶ Runtime is again O(m).



- ▶ **Definition**: Probability ratio metric for measures on a finite set S is $d(\mu, \nu) = \max_{x \in S} \big| \log \mu(x) \log \nu(x) \big|$.
- ▶ **Theorem**: Taking a sample $O(\log m)$ steps after a simple graph is reached yields an asymptotically uniform graph.
- ▶ Runtime is again O(m).

- Some properties of the collaboration graph: n = 253,339; m = 496,489; d = 502; and $\bar{d} = 38$.
- One large connected component containing Erdős. Mean distance to Erdős within this component is 4.7.
- Generating a graph with the same degrees takes 0.2 seconds, compared to 0.9 seconds to compute mean Erdős number.
- ► For 10,000 samples, sample mean was 4.119 with standard deviation 0.025. Thus, the real-world mean Erdős number is 22 standard deviations above the simulated mean.

- Some properties of the collaboration graph: n = 253,339; m = 496,489; d = 502; and $\bar{d} = 38$.
- ▶ One large connected component containing Erdős. Mean distance to Erdős within this component is 4.7.
- Generating a graph with the same degrees takes 0.2 seconds, compared to 0.9 seconds to compute mean Erdős number.
- ► For 10,000 samples, sample mean was 4.119 with standard deviation 0.025. Thus, the real-world mean Erdős number is 22 standard deviations above the simulated mean.

- Some properties of the collaboration graph: n = 253,339; m = 496,489; d = 502; and $\bar{d} = 38$.
- ▶ One large connected component containing Erdős. Mean distance to Erdős within this component is 4.7.
- Generating a graph with the same degrees takes 0.2 seconds, compared to 0.9 seconds to compute mean Erdős number.
- ► For 10,000 samples, sample mean was 4.119 with standard deviation 0.025. Thus, the real-world mean Erdős number is 22 standard deviations above the simulated mean.

- Some properties of the collaboration graph: n = 253,339; m = 496,489; d = 502; and $\bar{d} = 38$.
- ▶ One large connected component containing Erdős. Mean distance to Erdős within this component is 4.7.
- Generating a graph with the same degrees takes 0.2 seconds, compared to 0.9 seconds to compute mean Erdős number.
- ▶ For 10,000 samples, sample mean was 4.119 with standard deviation 0.025. Thus, the real-world mean Erdős number is 22 standard deviations above the simulated mean.

- ► For graphs with given degree sequence, we obtained best possible runtime under a typical sparseness constraint.
- ► The fact that it works well for multi-star suggests sparseness constraint may not be essential. Can we weaken it?
- Possible place for improvement: current proof does not require choosing the bad edges randomly, only the good edges.
- The strategy applies to many other combinatorial structures However, our other examples are either trivial or intractable. Can we apply it to anything else in an interesting way?

- ► For graphs with given degree sequence, we obtained best possible runtime under a typical sparseness constraint.
- ► The fact that it works well for multi-star suggests sparseness constraint may not be essential. Can we weaken it?
- Possible place for improvement: current proof does not require choosing the bad edges randomly, only the good edges.
- The strategy applies to many other combinatorial structures However, our other examples are either trivial or intractable. Can we apply it to anything else in an interesting way?

- ► For graphs with given degree sequence, we obtained best possible runtime under a typical sparseness constraint.
- ► The fact that it works well for multi-star suggests sparseness constraint may not be essential. Can we weaken it?
- ▶ Possible place for improvement: current proof does not require choosing the bad edges randomly, only the good edges.
- ► The strategy applies to many other combinatorial structures However, our other examples are either trivial or intractable. Can we apply it to anything else in an interesting way?

- ► For graphs with given degree sequence, we obtained best possible runtime under a typical sparseness constraint.
- ► The fact that it works well for multi-star suggests sparseness constraint may not be essential. Can we weaken it?
- Possible place for improvement: current proof does not require choosing the bad edges randomly, only the good edges.
- The strategy applies to many other combinatorial structures. However, our other examples are either trivial or intractable. Can we apply it to anything else in an interesting way?