

Signcryption --The Road to an International Standard

Yuliang Zheng
University of North Carolina at Charlotte
yzheng@uncc.edu
July 31, 2013

Objectives of Cyber Security

Goals of Cryptography: C + I

Confidentiality

- Symmetric/private key encryption
- Asymmetric/public key encryption

Integrity & Authenticity

- Trusted parties --- symmetric/private key authentication
- Untrusted parties --- asymmetric/public key authentication (digital signature, unforgeability)
- Minimizing cost/overhead
 - Less computation (over large integers)
 - Smaller expansion in length
 (= less communication overhead)
 - Especially important for smartphones & portable devices w/ limited battery life

In the Paper & Ink World: Signature followed by Seal

In the Digital World: Digital Signature followed by Encryption

m

sig

m

Public Key Encryption

Public Key Digital Signature

Notable Public Key Techniques

Public Key Encryption

- Factorization based
 - RSA encryption
 - Rabin
- Discrete log based
 - Diffie-Hellman
 - ElGamal encryption
 - Elliptic curve versions
- Lattice based
 - NTRU encryption

Digital Signature

- Factorization based
 - RSA signature
- Discrete log based
 - ElGamal signature
 - DSA (US standard)
 - Schnorr
 - Elliptic curve versions
- Lattice based
 - NTRU signature

Signature-then-Encryption (based on Discrete Logarithm)

Cost of Signature-then-Encryption

Cost	Comp Cost	Comm Overhead
Schemes	(No. of exp)	(bits)
RSA based		
sig-then-enc	2 + 2	n _a + n _b
DL based		
Schnorr sig +	3 + 2.17	hash + q + p
ElGamal enc	(3 + 3)	

Both techniques require very high overhead! (your smartphone's battery runs out fast!)

Improving Efficiency

- Can we do better than "signature followed by encryption"?
 - For resource-constrained applications
 - Wireless mobile devices
 - Smart card applications
- Can we learn from other disciplines such as
 - Coded modulation in communications
 (= error correcting codes + modulation)
 - Imai-Hirakawa block coded modulation
 - Ungerboeck trellis coded modulation

Communications System

Coded Modulation --- one of the hottest in 80's

Co-Design of Digital Signature and Public Key Encryption?

Goal: Signcryption (1996 @ Monash)

- To achieve both
 - confidentiality
 - authenticity
 - unforgeability &
 - non-repudiation
- With a <u>significantly smaller</u> comp. & comm. overhead:

Cost (signcryption) << Cost (signature) + Cost (encryption)

Signcryption -- Public & Private Parameters

Public to all

- p : a large prime
- q: a large prime factor of p-1
- g: 0<g<p & with order q mod p
- Two 1-way hash functions:
 - $G: \{0, 1\}^* \rightarrow \{0, 1\}^{256}$
 - $H: \{0, 1\}^* \to Z_q$
- (E,D):
 private-key encryption &
 decryption algorithms,
 with 256-bit keys

Alice's keys

- **–** Private key: x_a ∈ $_R$ Z_q
- Public key: $y_a = g^{x_a} \mod p$

- Private key: x_b ∈_R Z_q
- Public key: $y_b = g^{x_b} \mod p$

Signcryption Algorithm

Signcryption by Alice:

$$m \Rightarrow (c, r, s)$$

- Pick $x \in_R \{1, 2, ..., q-1\}$
- $T = y_b^x \mod p$
- $r = H(T, m, y_a, y_b)$
- If $r + x_a = 0 \mod q$, then start over again
- $s = \frac{x}{r + x_a} \mod q$
- $k = G(T, y_a, y_b)$
- $c = E_k(m)$
- Send (c, r, s) to Bob

Unsigncryption by Bob:

$$(c,r,s) \Rightarrow m$$

• Recover *T*:

$$T = (y_a \cdot g^r)^{s \cdot x_b} \bmod p$$

- $k = G(T, y_a, y_b)$
- $m = D_k(c)$
- $r' = H(T, m, y_a, y_b)$
- if r' = r, then accept m; otherwise reject m & indicate ERROR

Signcryption: Savings in Computation

Computational Cost (# of multiplications, the smaller the better)

Signcryption: Savings in Communication

Communication Overhead (# of bits, the smaller the better)

Signcryption as a "Magic" Envelope

The End Result

Kill two birds with one stone

Security Model & Proofs

- Security proofs in 2002, with Joonsang Baek & Ron Steinfeld
 - 1st security model
 - 1st mathematical proofs

Joonsang

Ron

Applications of Signcryption

- Efficient "drop-in" replacement of "signingthen-encrypting"
 - Smartphones & other battery powered devices
- Ad hoc/sensor network security
- Secure SIP for VOIP
- Efficient key establishment
- Many more

Further Developments

- Extensions: pairing, factorization,
- Add "bells and whistles"
 - Multi-recipients, proxy, blind, threshold, ring, ID based, certificateless,
- Authenticated encryption (Authencryption)
 - Co-design of shared key authentication and encryption
- New PhD theses

(C) Y. Zheng

23

Typical Cycle of Research

Add Commercialization

Commercialization of Signcryption

Signcryption Patents

- Patents
 - Applied in 1996
 - Received both in Australia and USA

 Support from Prof. Cliff Bellamy

Transfer of Patent Rights

- 2007
 - Sold to

- IV
 - Established by ex-Microsoft executive Nathan Myhrvold
 - One of the top 5 patent holders in the US

Signcryption Standards

ISO

In 2006, ISO

--- International Standardization Organization ---

started to look into establishing uniform standard for various signcryption techniques

- I was notified in 2008
 - Accepted invitation to help the standard

ISO Standardization Process

ISO/IEC JTC1/SC27,
 "Information technology—
 Security techniques—Signcryption"

- ISO
 - JTC1, SC 27, WG 2
 - 2006, proposal to standardize signcryption
 - Proposal approved in Spring 2008
 - Project #29150 started at ISO Kyoto meeting, April 2008
 - Completed at the end of 2011 (after 4 years work)

ISO Process

- ISO ≈ mini UN
 - 1 country 1 vote
- "textbook" algorithms not adequate
 - Need to be transformed into robust techniques for real-world use
- Face-to-face meetings: twice a year
- Lot of online & offline discussions/telemeetings
- Min. # of stags = 6
- Min. # of years = 4

Personal experience

- Overcoming challenges
 - Time commitments
 - Funding for travelling to meetings
 - Skills to work with delegates from various countries
 - Understanding important non-technical aspects
 - Usability, simplicity, compatibility, acceptability
- Great satisfaction
 - Help industrial experts include best-of-breed crypto techniques into int'l standards
 - Turn "textbook" algorithms into industrial standards
 - Identify problems of practical importance which tend to be ignored in academic research
- Standards bodies embracing expert advice
 - Urge you to consider participation

INTERNATIONAL STANDARD

1SO/IEC 29150

First edition 2011-12-15

Information technology — Security techniques — Signcryption

Technologies de l'information — Techniques de sécurité — Signcryptage

Reference number ISO/IEC 29150:2011(E)

signcryption.org

Home

Introduction

Standardization

Publications

Theses

Books

Patents

Contact

Welcome to Signcryption (ISO 29150)

Signcryption, an international standard for data protection (<u>ISO/IEC 29150</u>), was invented in 1996. Details of the newly discovered public key cryptographic technology were first disclosed to the public at the CRYPTO'97 conference held in Santa Barbara. Since then, I have witnessed a steadily increasing amount of interest in the technology from both researchers and practitioners alike. Each year, extensions, refinements and adaptations of the original techniques are being published at a number of workshops and conferences; advanced degrees are being conferred to graduate students who have chosen signcryption as their research foci; new applications are being developed to take advantage of benefits afforded by signcryption.

To better serve the community of researchers and practitioners who are interested in the technology, I have established this web portal for all information related to signcryption technology. I hope that you find this portal useful.

Your feedback on the web site is important for its accuracy, completeness and relevance. I welcome your comments and suggestions.

Thank you,

Yuliang Zheng Inventor of Signcryption

What Should/Can be Commercialized

- Practical
- Critical
- Less dependent on other techniques
- Resources available
 - Funds, key persons, time
- Desire to commercialize!
- When not to
 - Too theoretical (no use in 10 years), minor improvement, strong dependency on other patents, no funds
 - We all stand on others' shoulders! --- Not patenting is equally honorable!

Q&A

Thanks!