Nowhere-zero 3-flows in arc-transitive graphs on nilpotent groups

Sanming Zhou

Department of Mathematics and Statistics The University of Melbourne, Australia

Monash University, October 28, 2013

Joint work with Xiangwen Li, Central China Normal University (Wuhan)

Proc

Definition

Let D = (V(D), A(D)) be a digraph and A an abelian group. A circulation in D over A is a function

$$f:A(D)\to A$$

such that

$$\sum_{a\in A^+(v)}f(a)=\sum_{a\in A^-(v)}f(a),\quad \text{for all }v\in V(D),$$

where $A^+(v)$ ($A^-(v)$, respectively) is the set of arcs of D leaving from v (entering into v, respectively).

circulations

Circulations and integer flows

Tutte's flow

3-flows in vertextransitive graphs

Proc

Definition

Let D = (V(D), A(D)) be a digraph and A an abelian group. A circulation in D over A is a function

$$f:A(D)\to A$$

such that

$$\sum_{a \in A^+(v)} f(a) = \sum_{a \in A^-(v)} f(a), \quad \text{for all } v \in V(D),$$

where $A^+(v)$ ($A^-(v)$, respectively) is the set of arcs of D leaving from v (entering into v, respectively).

We say that f is nowhere-zero if $f(a) \neq 0$ for every $a \in A(D)$, where 0 is the identity element of A.

Circulations and integer flows

Tutte's flow

3-flows in vertex-transitive

Proof

Theorem

(W. Tutte 1954)

A plane digraph is k-face-colorable if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Circulations and integer flows

Tutte's flov conjectures

3-flows in vertextransitive graphs

Proo

Theorem

(W. Tutte 1954)

A plane digraph is k-face-colorable if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Whether a digraph admits a nowhere-zero circulation over a given abelian group depends only on its underlying undirected graph.

So we can speak of nowhere-zero circulations in undirected graphs.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proo

Theorem

(W. Tutte 1954)

A plane digraph is k-face-colorable if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Whether a digraph admits a nowhere-zero circulation over a given abelian group depends only on its underlying undirected graph.

So we can speak of nowhere-zero circulations in undirected graphs.

Four-Color-Theorem Restated: Every planar graph admits a nowhere-zero circulation over \mathbb{Z}_4 .

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

Definition

A nowhere-zero circulation f over \mathbb{Z} in a digraph D is called a (nowhere-zero) k-flow if

$$-(k-1) \le f(a) \le k-1$$
, for all $a \in A(D)$

integer flows

Circulations and integer flows

Tutte's flow conjectures

vertextransitive graphs

Proo

Definition

A nowhere-zero circulation f over \mathbb{Z} in a digraph D is called a (nowhere-zero) k-flow if

$$-(k-1) \le f(a) \le k-1$$
, for all $a \in A(D)$

Theorem

(W. Tutte 1954)

A graph admits a k-flow if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

integer flows

Circulations and integer flows

Tutte's flow

3-flows in vertextransitive graphs

Proo

Definition

A nowhere-zero circulation f over \mathbb{Z} in a digraph D is called a (nowhere-zero) k-flow if

$$-(k-1) \le f(a) \le k-1$$
, for all $a \in A(D)$

Theorem

(W. Tutte 1954)

A graph admits a k-flow if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Four-Color-Theorem Again: Every planar graph admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proc

Theorem

A graph admits a 2-flow if and only if its vertices all have even degrees.

Theorem

A 2-edge-connected cubic graph admits a 3-flow if and only if it is bipartite.

Circulations and integer

Tutte's flow conjectures

3-flows in vertextransitive

Proof

Tutte's 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968, 1972).

Circulations and integer

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proo

Tutte's 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968, 1972).

Conjecture

(The 5-flow conjecture) Every 2-edge-connected graph admits a 5-flow.

Circulations and integer

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proc

Tutte's 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968, 1972).

Conjecture

(The 5-flow conjecture) Every 2-edge-connected graph admits a 5-flow.

Theorem

(The 8-flow theorem, F. Jaeger 1976) Every 2-edge-connected graph admits a 8-flow.

Circulations and integer

Tutte's flow conjectures

3-flows in vertextransitive graphs

Prod

Tutte's 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968, 1972).

Conjecture

(The 5-flow conjecture) Every 2-edge-connected graph admits a 5-flow.

Theorem

(The 8-flow theorem, F. Jaeger 1976) Every 2-edge-connected graph admits a 8-flow.

Theorem

(The 6-flow theorem, P. Seymour 1981) Every 2-edge-connected graph admits a 6-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

Tutte's 4-flow conjecture

Conjecture

(The 4-flow conjecture)

Every 2-edge-connected graph with no Petersen graph minor admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proo

Tutte's 4-flow conjecture

Conjecture

(The 4-flow conjecture)

Every 2-edge-connected graph with no Petersen graph minor admits a 4-flow.

Confirmed for cubic graphs by Robertson, Sanders, Seymour and Thomas.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proc

Tutte's 4-flow conjecture

Conjecture

(The 4-flow conjecture)

Every 2-edge-connected graph with no Petersen graph minor admits a 4-flow.

Confirmed for cubic graphs by Robertson, Sanders, Seymour and Thomas.

Theorem

(F. Jaeger 1979)

Every 4-edge-connected graph admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proo

Tutte's 3-flow conjecture

Conjecture

(The 3-flow conjecture) Every 4-edge-connected graph admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows i vertextransitive graphs

Proc

Tutte's 3-flow conjecture

Conjecture

(The 3-flow conjecture) Every 4-edge-connected graph admits a 3-flow.

Theorem

(M. Kochol 2001)

The 3-flow conjecture is true if and only if every 5-edge-connected graph admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive

Proo

recent breakthrough

Theorem

(C. Thomassen 2012)

Every 8-edge-connected graph admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows i vertextransitive graphs

Prod

recent breakthrough

Theorem

(C. Thomassen 2012)

Every 8-edge-connected graph admits a 3-flow.

Theorem

(L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013) Every 6-edge-connected graph admits a 3-flow.

Circulations and integer flows

Tutte's flov conjectures

3-flows in vertextransitive graphs

Proof

motivation

Theorem

(M. E. Watkins 1969; W. Mader 1970) Every vertex-transitive graph of valency d is d-edge-connected.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proc

motivation

Theorem

(M. E. Watkins 1969; W. Mader 1970) Every vertex-transitive graph of valency d is d-edge-connected.

Conjecture

(Vertex-transitive version of the 3-flow conjecture) Every vertex-transitive graph of valency at least 4 admits a 3-flow.

It suffices to prove this for vertex-transitive graphs of valency 5.

and integer flows

Tutte's flow

3-flows in vertextransitive graphs

Proo

3-flows in Cayley graphs on nilpotent groups

Theorem

(P. Potačnik 2005)

Every Cayley graph of valency at least 4 on a finite abelian group admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proc

3-flows in Cayley graphs on nilpotent groups

Theorem

(P. Potačnik 2005)

Every Cayley graph of valency at least 4 on a finite abelian group admits a 3-flow.

Theorem

(M. Nánásiová and M. Škoviera 2009)

Every Cayley graph of valency at least 4 on a finite nilpotent group admits a 3-flow.

A finite group is nilpotent if it is the direct product of its Sylow subgroups.

Circulations and integer flows

Tutte's flow

3-flows in vertextransitive graphs

Proo

an intermediate goal

Prove that every graph of valency at least 4 admitting a nilpotent vertex-transitive group of automorphisms admits a 3-flow.

As before it suffices to prove this for the case of valency 5.

Circulations and integer flows

Tutte's flov conjectures

3-flows in vertextransitive graphs

Proc

symmetry of graphs

Definition

A graph Γ is G-vertex-transitive (G-edge-transitive, G-arc-transitive, respectively) if it admits G as a group of automorphisms such that G is transitive on the set of vertices (edges, arcs, respectively) of Γ , where an arc is an ordered pair of adjacent vertices.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proo

result so far

Theorem

(X. Li and S. Zhou 2013)

Let G be a finite nilpotent group. Then every

G-vertex-transitive and G-edge-transitive graph with valency at least 4 and not divisible by 3 admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proc

Theorem

(X. Li and S. Zhou 2013)

Let G be a finite nilpotent group. Then every
G-vertex-transitive and G-edge-transitive graph with valency at

least 4 and not divisible by 3 admits a 3-flow.

This together with the LTWZ theorem implies:

Corollary

Let G be a finite nilpotent group. Then every G-vertex-transitive and G-edge-transitive graph with valency at least 4 admits a 3-flow.

and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

- Any *G*-arc-transitive graph without isolated vertices is *G*-vertex-transitive and *G*-edge-transitive
- Any *G*-vertex-transitive and *G*-edge-transitive graph with odd valency is *G*-arc-transitive

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proo

- Any *G*-arc-transitive graph without isolated vertices is *G*-vertex-transitive and *G*-edge-transitive
- Any *G*-vertex-transitive and *G*-edge-transitive graph with odd valency is *G*-arc-transitive

Therefore, the corollary above is equivalent to the following:

Corollary

Let G be a finite nilpotent group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

nilpotent groups

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

Definition

The characteristic subgroups $\gamma_i(G)$ of a group G are inductively defined by:

$$\gamma_1(G) = G, \quad \gamma_{i+1}(G) = [\gamma_i(G), G],$$

where for $H, K \leq G$, [H, K] is the subgroup of G generated by the commutators $h^{-1}k^{-1}hk$, $h \in H, k \in K$.

nilpotent groups

Circulations and integer flows

Tutte's flov conjectures

3-flows in vertextransitive graphs

Proo

Definition

The characteristic subgroups $\gamma_i(G)$ of a group G are inductively defined by:

$$\gamma_1(G) = G, \quad \gamma_{i+1}(G) = [\gamma_i(G), G],$$

where for $H, K \leq G$, [H, K] is the subgroup of G generated by the commutators $h^{-1}k^{-1}hk$, $h \in H, k \in K$.

A group G is nilpotent if there is an integer c such that $\gamma_{c+1}(G) = 1$; the least such c is called the nilpotency class of G, denoted by c(G).

nilpotent groups

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

Definition

The characteristic subgroups $\gamma_i(G)$ of a group G are inductively defined by:

$$\gamma_1(G) = G, \quad \gamma_{i+1}(G) = [\gamma_i(G), G],$$

where for $H, K \leq G$, [H, K] is the subgroup of G generated by the commutators $h^{-1}k^{-1}hk$, $h \in H, k \in K$.

A group G is nilpotent if there is an integer c such that $\gamma_{c+1}(G) = 1$; the least such c is called the nilpotency class of G, denoted by c(G).

Nilpotent groups with nilpotency class 1 are precisely abelian groups.

Circulations and integer flows

Tutte's flow

3-flows in vertextransitive graphs

Proof

multicovers

Definition

Let Γ be a graph and $\mathcal P$ a partition of $V(\Gamma)$.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertex-transitive

Proc

multicovers

Definition

Let Γ be a graph and \mathcal{P} a partition of $V(\Gamma)$.

 Γ is a multicover of the quotient $\Gamma_{\mathcal{P}}$ if for each pair of adjacent $P,Q\in\mathcal{P}$, the subgraph $\Gamma[P,Q]$ of Γ induced by $P\cup Q$ is a t-regular bipartite graph with bipartition $\{P,Q\}$ for some integer $t\geq 1$ independent of P,Q.

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proc

Definition

Let Γ be a graph and \mathcal{P} a partition of $V(\Gamma)$.

 Γ is a multicover of the quotient $\Gamma_{\mathcal{P}}$ if for each pair of adjacent $P,Q\in\mathcal{P}$, the subgraph $\Gamma[P,Q]$ of Γ induced by $P\cup Q$ is a t-regular bipartite graph with bipartition $\{P,Q\}$ for some integer $t\geq 1$ independent of P,Q.

Lemma

Let $k \ge 2$ be an integer. If a graph admits a k-flow, then its multicovers all admit a k-flow.

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

Definition

Let Γ be a G-vertex-transitive graph, and let $N \subseteq G$.

The set \mathcal{P}_N of N-orbits on $V(\Gamma)$ is a G-invariant partition of $V(\Gamma)$, called a G-normal partition of $V(\Gamma)$.

Denote $\Gamma_N := \Gamma_{\mathcal{P}_N}$.

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

Lemma

(Praeger 1980's?)

Let Γ be a connected G-vertex-transitive graph, and $N \subseteq G$ be intransitive on $V(\Gamma)$. Then

- (a) Γ_N is G/N-vertex-transitive under the induced action of G/N on \mathcal{P}_N ;
- (b) for $P, Q \in \mathcal{P}_N$ adjacent in Γ_N , $\Gamma[P, Q]$ is a regular subgraph of Γ ;
- (c) if in addition Γ is G-edge-transitive, then Γ_N is G/N-edge-transitive and Γ is a multicover of Γ_N .

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertex-transitive graphs

Proof

result so far

Theorem

(X. Li and S. Zhou 2013)
Let G be a finite nilpotent group. Then every
G-vertex-transitive and G-edge-transitive graph with valency at
least 4 and not divisible by 3 admits a 3-flow.

Circulations and integer flows

Tutte's flov

3-flows in vertextransitive

Proof

outline of proof

• We may assume G is faithful on $V(\Gamma)$.

and integer flows

Tutte's flov conjectures

3-flows in vertextransitive graphs

Proof

outline of proof

- We may assume G is faithful on $V(\Gamma)$.
- Make induction on c(G).

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

outline of proof

- We may assume G is faithful on $V(\Gamma)$.
- Make induction on c(G).
- If c(G) = 1, then G is abelian and so is regular on $V(\Gamma)$; hence Γ is a Cayley graph on G and so the result holds by Potačnik's result.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

outline of proof

- We may assume G is faithful on $V(\Gamma)$.
- Make induction on c(G).
- If c(G) = 1, then G is abelian and so is regular on $V(\Gamma)$; hence Γ is a Cayley graph on G and so the result holds by Potačnik's result.
- Assume for some $c \ge 1$ the result holds for any finite nilpotent group of nilpotency class c.

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proo

- We may assume G is faithful on $V(\Gamma)$.
- Make induction on c(G).
- If c(G) = 1, then G is abelian and so is regular on $V(\Gamma)$; hence Γ is a Cayley graph on G and so the result holds by Potačnik's result.
- Assume for some $c \ge 1$ the result holds for any finite nilpotent group of nilpotency class c.
- Let G be a finite nilpotent group with nilpotency class c(G) = c + 1. Let Γ be a connected G-vertex-transitive and G-edge-transitive graph such that $val(\Gamma) \geq 4$ and $val(\Gamma)$ is not divisible by 3.

Tutte's flow conjectures

3-flows in vertextransitive graphs

- We may assume G is faithful on $V(\Gamma)$.
- Make induction on c(G).
- If c(G) = 1, then G is abelian and so is regular on $V(\Gamma)$; hence Γ is a Cayley graph on G and so the result holds by Potačnik's result.
- Assume for some $c \ge 1$ the result holds for any finite nilpotent group of nilpotency class c.
- Let G be a finite nilpotent group with nilpotency class c(G) = c + 1. Let Γ be a connected G-vertex-transitive and G-edge-transitive graph such that $val(\Gamma) \ge 4$ and $val(\Gamma)$ is not divisible by 3.
- If $val(\Gamma)$ is even, Γ has a 2-flow and so a 3-flow.

Tutte's flow conjectures

3-flows in vertextransitive

- We may assume G is faithful on $V(\Gamma)$.
- Make induction on c(G).
- If c(G) = 1, then G is abelian and so is regular on $V(\Gamma)$; hence Γ is a Cayley graph on G and so the result holds by Potačnik's result.
- Assume for some $c \ge 1$ the result holds for any finite nilpotent group of nilpotency class c.
- Let G be a finite nilpotent group with nilpotency class c(G) = c + 1. Let Γ be a connected G-vertex-transitive and G-edge-transitive graph such that $val(\Gamma) \ge 4$ and $val(\Gamma)$ is not divisible by 3.
- If $val(\Gamma)$ is even, Γ has a 2-flow and so a 3-flow.
- Assume val(Γ) \geq 5 is odd.

Circulations and integer flows

Tutte's flov

3-flows in vertex-transitive

Proof

• Let N := Z(G) be the centre of G.

and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

- Let N := Z(G) be the centre of G.
- Then $N \subseteq G$, $N \ne 1$, and G/N is nilpotent of class c(G) 1 = c.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertex-transitive graphs

- Let N := Z(G) be the centre of G.
- Then $N \subseteq G$, $N \ne 1$, and G/N is nilpotent of class c(G) 1 = c.
- If N is transitive on $V(\Gamma)$, then it is regular on $V(\Gamma)$. So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.

Tutte's flow conjectures

3-flows in vertex-transitive graphs

- Let N := Z(G) be the centre of G.
- Then $N \subseteq G$, $N \ne 1$, and G/N is nilpotent of class c(G) 1 = c.
- If N is transitive on $V(\Gamma)$, then it is regular on $V(\Gamma)$. So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.

Tutte's flow conjectures

3-flows in vertextransitive graphs

- Let N := Z(G) be the centre of G.
- Then $N \subseteq G$, $N \ne 1$, and G/N is nilpotent of class c(G) 1 = c.
- If N is transitive on $V(\Gamma)$, then it is regular on $V(\Gamma)$. So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-vertex- and G/N-edge-transitive graph, and Γ is a multicover of Γ_N .

Tutte's flow conjectures

3-flows in vertextransitive graphs

- Let N := Z(G) be the centre of G.
- Then $N \subseteq G$, $N \ne 1$, and G/N is nilpotent of class c(G) 1 = c.
- If N is transitive on V(Γ), then it is regular on V(Γ). So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-vertex- and G/N-edge-transitive graph, and Γ is a multicover of Γ_N .
- $val(\Gamma_N)$ is a divisor of $val(\Gamma)$ and so is not divisible by 3.

Tutte's flow conjectures

3-flows in vertextransitive graphs

- Let N := Z(G) be the centre of G.
- Then $N \subseteq G$, $N \ne 1$, and G/N is nilpotent of class c(G) 1 = c.
- If N is transitive on $V(\Gamma)$, then it is regular on $V(\Gamma)$. So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-vertex- and G/N-edge-transitive graph, and Γ is a multicover of Γ_N .
- $val(\Gamma_N)$ is a divisor of $val(\Gamma)$ and so is not divisible by 3.
- If $val(\Gamma_N) = 1$, then Γ is a regular bipartite graph of valency at least two and so admits a 3-flow.

and integer flows

Tutte's flow conjectures

3-flows in vertex-transitive

Proof

• Assume $val(\Gamma_N) > 1$.

and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

- Assume val(Γ_N) > 1.
- Then $val(\Gamma_N) \ge 5$ and every prime factor of $val(\Gamma_N)$ is no less than 5.

and integer flows

Tutte's flow conjectures

3-flows in vertex-transitive

- Assume val(Γ_N) > 1.
- Then $val(\Gamma_N) \ge 5$ and every prime factor of $val(\Gamma_N)$ is no less than 5.
- Since G/N is nilpotent of class c, by the induction hypothesis, Γ_N admits a 3-flow.

Tutte's flow conjectures

3-flows in vertex-transitive

- Assume val(Γ_N) > 1.
- Then $val(\Gamma_N) \ge 5$ and every prime factor of $val(\Gamma_N)$ is no less than 5.
- Since G/N is nilpotent of class c, by the induction hypothesis, Γ_N admits a 3-flow.
- Since Γ is a multicover of Γ_N , Γ admits a 3-flow.

Tutte's flow conjectures

3-flows in vertextransitive

- Assume val $(\Gamma_N) > 1$.
- Then $val(\Gamma_N) \ge 5$ and every prime factor of $val(\Gamma_N)$ is no less than 5.
- Since G/N is nilpotent of class c, by the induction hypothesis, Γ_N admits a 3-flow.
- Since Γ is a multicover of Γ_N, Γ admits a 3-flow.
- This completes the proof.

Circulations and integer flows

Tutte's flow conjectures

3-flows in vertextransitive graphs

Proof

difficulty for vertex- but not edge-transitive graphs

A G-vertex- but not G-edge-transitive graph Γ may not be a multicover of its normal quotients Γ_N .

In fact, in this case blocks of a normal partition are not necessarily independent sets.

This makes a similar induction difficult.

Work in progress. Ideas are welcome.

Circulations and integer flows

Tutte's flov conjectures

3-flows in vertextransitive

Proof

thank you for your attention