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Matroids: A Quick Introduction

Notation
I E : A finite set (groundset)
I ρ : 2E → Z≥0 : An integer function (rank function)

Definition
M(E , ρ) is a matroid if:

(R1) For all X ⊆ E , 0 ≤ ρ(X ) ≤ |X |.
(R2) For all X ⊆ Y ⊆ E , ρ(X ) ≤ ρ(Y ).
(R3) For all X ,Y ⊆ E ,

ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X ) + ρ(Y )
(Submodularity).



Matroids: Introduction continued

Some Terminology

Independent Set: A set X ⊆ E such that ρ(X ) = |X |.
Circuit: A minimal non-independent set.

Spanning Set: A set X ⊆ E such that ρ(X ) = ρ(E).
Basis: A set that is both independent and spanning.



Uniform Matroids: Introduction

Notation
k ,n ∈ Z≥0 and 0 ≤ k ≤ n.

Definition
A matroid M(E , ρ) = Uk ,n is a uniform matroid if:

I |E | = n, and
I For X ⊆ E ,

ρ(X ) =

{
|X | if 0 ≤ |X | ≤ k ,
k if k < |X | ≤ n.



Uniform Matroids: Introduction continued

Uk ,n Terminology

Independent Set: A set X ⊆ E such that |X | ≤ k .
Circuit: A set X ⊆ E such that |X | = k + 1.

Spanning Set: A set X ⊆ E such that |X | ≥ k .
Basis: A set X such that |X | = k .



Whitney Rank Generating Function

Definition

R(M; x , y) =
∑
X⊆E

xρ(E)−ρ(X)y |X |−ρ(X)

Properties

I R(M; 0,0) counts the number of bases.
I R(M; 0,1) counts the number of spanning sets.
I R(M; 1,0) counts the number of independent sets.



Properties of R(Uk ,n)

R(Uk ,n) Properties

R(Uk ,n; 0,0) = Number of bases =

(
n
k

)

R(Uk ,n; 0,1) = Number of spanning sets =
n∑

i=k

(
n
i

)

R(Uk ,n; 1,0) = Number of independent sets =
k∑

i=0

(
n
i

)



Extended Submodularity

Preliminary Definitions

I Mutually disjoint sets P1,P2,R ⊆ E
I Set S(P1,P2,R) is a collection of all 2|R| partitions (X ,Y )

of the set P1 ∪ P2 ∪ R under the constraints P1 ⊆ X and
P2 ⊆ Y .

S(P1,P2,R) = {(P1 ∪ C,P2 ∪ (R \ C)) : C ⊆ R}.

Examples

I S(P1,P2, φ) = {(P1,P2)}.
I S(P1 ∪ P2, φ, {r}) = {(P1 ∪ P2 ∪ {r}, φ), (P1 ∪ P2, {r})}.



Rank Dominations in Matroids

Notation
I P1,P2,Q1,Q2,R ⊆ E .
I P1,P2,R are mutually disjoint.
I Q1,Q2,R are mutually disjoint.

Definition
We say S(P1,P2,R) is rank dominated by S(Q1,Q2,R) in
matroid M(E , ρ) (written as S(P1,P2,R) ≤M S(Q1,Q2,R)) if
there exists a bijection π : S(P1,P2,R)→ S(Q1,Q2,R) such
that whenever π(W ,Z ) = (X ,Y ) we have
ρ(W ) + ρ(Z ) ≤ ρ(X ) + ρ(Y ).



Extended Submodularity

Submodularity
For all subsets P1,P2 ⊆ E and all matroids M, we have
S(P1 ∪ P2, φ, φ) ≤M S(P1,P2, φ).

Extended Submodularity

I Given a matroid M, for what mutually disjoint sets
P1,P2,R ⊆ E do we have
S(P1 ∪ P2, φ,R) ≤M S(P1,P2,R)?

I If true, then M is said to have the extended submodular
property on sets P1,P2,R.



Extended Submodularity: Definition

P1∪P2⊆W



W∪Z=X∪Y=P1∪P 2∪R

W ,Z  X ,Y W Z 

x≤X Y 

W∩Z=X∩Y=

S P1∪P2, , R  S P1, P2, R

P1⊆X
P2⊆Y

a≤G a



Extended Submodularity: Uniform Matroids

Lemma
Let M(E , ρ) = Uk ,n. Then for all mutually disjoint P1,P2,R ⊆ E ,
S(P1 ∪ P2, φ,R) ≤M S(P1,P2,R).

Proof Steps (Induction on |P1|.)

I Base Case (Non-trivial): For all P,R ⊆ E , there exists a
bijection π0 : S(P, φ,R)→ S(φ,P,R) such that whenever
π0(W ,Z ) = (X ,Y ):

(1) ρ(W ) + ρ(Z ) ≤ ρ(X ) + ρ(Y ), and
(2) |W | ≥ |X |.

I Inductive Hypothesis: Let
π : S(P1 ∪ P2, φ,R)→ S(P1,P2,R) be a bijection satisfying
both (1) and (2) above.



Extended Submodularity in Uk ,n: Proof continued

Proof Steps (continued)

I Inductive Step: For p ∈ E \ (P1 ∪ P2 ∪ R), define
π′ : S(P1 ∪ P2 ∪ {p}, φ,R)→ S(P1 ∪ {p},P2,R) as

π′(W ∪ {p},Z ) = (X ∪ {p},Y ),

whenever π(W ,Z ) = (X ,Y ).
I Straightforward to check from (1) and (2) that
ρ(W ∪ {p}) + ρ(Z ) ≤ ρ(X ∪ {p}) + ρ(Y ). Hence,
S(P1 ∪ P2 ∪ {p}, φ,R) ≤M S(P1 ∪ {p},P2,R).



The Inequality Theorem

Notation
I E1,E2 ⊆ E .
I r = ρ(E1) + ρ(E2)− ρ(E1 ∪ E2)− ρ(E1 ∩ E2).
I For X ⊆ E , M|X is the matroid restriction of M to set X ,

defined as M \ (E \ X ).

Theorem
If M(E , ρ) = Uk ,n, then for all E1,E2 ⊆ E ,

x r ·R(M|E1∪E2; x , y)·R(M|E1∩E2; x , y) ≤ R(M|E1; x , y)·R(M|E2; x , y),

when xy < 1 and x , y ≥ 0.



Partial Sums of Binomial Coefficients

Notation
k : a fixed non-negative integer.
For n ≥ 0, let

Ak
n =

k∑
i=0

(
n + k

i

)
.

A sequence {An} is log-concave if An+1An−1 ≤ A2
n when n ≥ 1.

Proposition [Semple and Welsh]
For all k ≥ 0, the sequence Ak

0,A
k
1,A

k
2, · · · is log-concave.



Sequence Ak
n is Log-concave: An Injective Proof

Some Definitions
I Uk ,n+1 : Uniform matroid with E = {1, · · · ,n + 1}.
I E1 = {1, · · · ,n}
I E2 = {2, · · · ,n + 1}
I E1 ∩ E2 = {2, · · · ,n}.



Injective Proof continued

Definitions continued
I An+1 : Set of all subsets of E of size at most k .
I An−1 : Set of all subsets of E1 ∩ E2 of size at most k .
I A1

n : Set of all subsets of E1 of size at most k .
I A2

n : Set of all subsets of E2 of size at most k .

The Proof Method
Show an injection σ : An+1 ×An−1 → A1

n ×A2
n.



Injective Proof continued

The Injection σ

I Let (W ,Z ) ∈ An+1 ×An−1.
I Let T = W ∩ Z .
I Let W ′ = W \ T , Z ′ = Z \ T .
I Let P1 = W ′ \ E2, P2 = W ′ \ E1 and

R = (W ′ ∪ Z ′) ∩ (E1 ∩ E2).



Injective Proof continued

The Injection σ continued

I Note 1: (W ′,Z ′) ∈ S(P1 ∪ P2, φ,R).
I Note 2: The matroid Uk ,n+1/T is also uniform.
I Hence there exists a rank dominating bijection
π : S(P1 ∪ P2, φ,R)→ S(P1,P2,R) in Uk ,n+1/T (Extended
Submodularity Property).

I Let π(W ′,Z ′) = (X ′,Y ′).
I Let X = X ′ ∪ T , Y = Y ′ ∪ T .
I Then (X ,Y ) ∈ 2E1 × 2E2 and ρ(W ) + ρ(Z ) ≤ ρ(X ) + ρ(Y ).



Injective Proof continued

The Injection σ continued

I But ρ(W ) = |W |, ρ(Z ) = |Z | and |W |+ |Z | = |X |+ |Y |.
I Hence ρ(X ) = |X | and ρ(Y ) = |Y |.
I In other words, (X ,Y ) ∈ A1

n ×A2
n.

I Define σ(W ,Z ) = (X ,Y ).



Building the Injection σ: A 1000 Word Proof

E1 E 2



Building the Injection σ: A 1000 Word Proof

E1 E 2

W

Z



Building the Injection σ: A 1000 Word Proof

E1 E 2

W

Z

W '

Z ' T



Building the Injection σ: A 1000 Word Proof

E1 E 2

W

Z

W '

Z ' T

P1 P2 R



Building the Injection σ: A 1000 Word Proof

E1 E 2

W

Z

W '

Z '
T

P1 P2 R

X '

Y 'S P1∪P 2, , R≤U /T S P1,P2,R



Building the Injection σ: A 1000 Word Proof

E1 E 2

W

Z

W '

Z '
T

P1 P2 R

X '

Y 'S P1∪P 2, , R≤U /T S P1,P2,R

X
Y



Building the Injection σ: A 1000 Word Proof

E1 E 2

W

Z

W '

Z '
T

P1 P2 R

X '

Y 'S P1∪P 2, , R≤U /T S P1,P2,R

X
Y

W =∣W∣,
Z =∣Z∣

X =∣X∣,
Y =∣Y∣


W∪Z=X∪Y ,
W∩Z=X∩Y



Log-concavity Results for Binomial Expansion of
(1 + x)n

Notation
k : fixed non-negative integer.
x > 0 : A positive real number.

Proposition
Let

Bk ,x
n =

k∑
i=0

(
n + k

i

)
x i and Ck ,x

n =
n∑

i=0

(
n + k

i

)
x i .

For all k ≥ 0, the sequences Bk ,x
0 ,Bk ,x

1 , · · · and Ck ,x
0 ,Ck ,x

1 , · · ·
are log-concave.



Concluding Remarks

Some Closing Observations

I Extended submodularity of matroids can be used to obtain
injective proofs of some combinatorial inequalities.

I Only a few fully extended submodular matroid classes
have been identified so far. Is there a characterization for
all of them?

I Can the log-concavity results be used to approximate
partial sum of binomial coefficients and binomial
expansions quickly on a computer?
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