On Matroids and Partial Sums of Binomial Coefficients

Arun P. Mani (arunpmani@gmail.com)

Clayton School of Information Technology Monash University, Australia

The 22nd British Combinatorial Conference St Andrews, UK 5 – 10 July 2009

Outline

Introduction

Extended Submodularity in Matroids

The Inequalities

Conclusion

Matroids: A Quick Introduction

Notation

- E : A finite set (groundset)
- ▶ $\rho: 2^E \to \mathbb{Z}_{\geq 0}$: An integer function (rank function)

Definition

 $M(E, \rho)$ is a matroid if:

- (R1) For all $X \subseteq E$, $0 \le \rho(X) \le |X|$.
- (R2) For all $X \subseteq Y \subseteq E$, $\rho(X) \leq \rho(Y)$.
- (R3) For all $X, Y \subseteq E$, $\rho(X \cup Y) + \rho(X \cap Y) \le \rho(X) + \rho(Y)$ (Submodularity).

Matroids: Introduction continued

Some Terminology

Independent Set: A set $X \subseteq E$ such that $\rho(X) = |X|$.

Circuit: A minimal non-independent set.

Spanning Set: A set $X \subseteq E$ such that $\rho(X) = \rho(E)$.

Basis: A set that is both independent and spanning.

Uniform Matroids: Introduction

Notation

 $k, n \in \mathbb{Z}_{\geq 0}$ and $0 \leq k \leq n$.

Definition

A matroid $M(E, \rho) = U_{k,n}$ is a uniform matroid if:

- |E| = n, and
- ▶ For $X \subseteq E$,

$$\rho(X) = \begin{cases} |X| & \text{if } 0 \le |X| \le k, \\ k & \text{if } k < |X| \le n. \end{cases}$$

Uniform Matroids: Introduction continued

$U_{k,n}$ Terminology

Independent Set: A set $X \subseteq E$ such that $|X| \le k$.

Circuit: A set $X \subseteq E$ such that |X| = k + 1.

Spanning Set: A set $X \subseteq E$ such that $|X| \ge k$.

Basis: A set X such that |X| = k.

Whitney Rank Generating Function

Definition

$$R(M; x, y) = \sum_{X \subseteq E} x^{\rho(E) - \rho(X)} y^{|X| - \rho(X)}$$

Properties

- ightharpoonup R(M; 0, 0) counts the number of bases.
- ightharpoonup R(M; 0, 1) counts the number of spanning sets.
- ightharpoonup R(M; 1, 0) counts the number of independent sets.

Properties of $R(U_{k,n})$

$R(U_{k,n})$ Properties

$$R(U_{k,n};0,0) = \text{Number of bases} = \binom{n}{k}$$

$$R(U_{k,n}; 0, 1) = \text{Number of spanning sets} = \sum_{i=k}^{n} {n \choose i}$$

$$R(U_{k,n}; 1, 0) = \text{Number of independent sets} = \sum_{i=0}^{k} \binom{n}{i}$$

Extended Submodularity

Preliminary Definitions

- ▶ Mutually disjoint sets $P_1, P_2, R \subseteq E$
- ▶ Set $S(P_1, P_2, R)$ is a collection of all $2^{|R|}$ partitions (X, Y) of the set $P_1 \cup P_2 \cup R$ under the constraints $P_1 \subseteq X$ and $P_2 \subseteq Y$.

$$S(P_1,P_2,R)=\{(P_1\cup C,P_2\cup (R\setminus C)):C\subseteq R\}.$$

Examples

- $S(P_1, P_2, \phi) = \{(P_1, P_2)\}.$
- $S(P_1 \cup P_2, \phi, \{r\}) = \{ (P_1 \cup P_2 \cup \{r\}, \phi), (P_1 \cup P_2, \{r\}) \}.$

Rank Dominations in Matroids

Notation

- ▶ $P_1, P_2, Q_1, Q_2, R \subseteq E$.
- ▶ P₁, P₂, R are mutually disjoint.
- ▶ Q₁, Q₂, R are mutually disjoint.

Definition

We say $S(P_1,P_2,R)$ is rank dominated by $S(Q_1,Q_2,R)$ in matroid $M(E,\rho)$ (written as $S(P_1,P_2,R) \leq_M S(Q_1,Q_2,R)$) if there exists a bijection $\pi: S(P_1,P_2,R) \to S(Q_1,Q_2,R)$ such that whenever $\pi(W,Z) = (X,Y)$ we have $\rho(W) + \rho(Z) \leq \rho(X) + \rho(Y)$.

Extended Submodularity

Submodularity

For all subsets $P_1, P_2 \subseteq E$ and all matroids M, we have $S(P_1 \cup P_2, \phi, \phi) \leq_M S(P_1, P_2, \phi)$.

Extended Submodularity

- ▶ Given a matroid M, for what mutually disjoint sets $P_1, P_2, R \subseteq E$ do we have $S(P_1 \cup P_2, \phi, R) \leq_M S(P_1, P_2, R)$?
- If true, then M is said to have the extended submodular property on sets P₁, P₂, R.

Extended Submodularity: Definition

$$S(P_1 \cup P_2, \phi, R) \xrightarrow{\leq_G} S(P_1, P_2, R)$$

$$(W, Z) \qquad \rho(W) + \rho(Z) \qquad (X, Y)$$

$$P_1 \cup P_2 \subseteq W \qquad \leq \rho(X) + \rho(Y) \qquad P_1 \subseteq X$$

$$P_2 \subseteq Y \qquad \vdots \qquad \vdots$$

$$W \cup Z = X \cup Y = P_1 \cup P_2 \cup R$$

$$W \cap Z = X \cap Y = \phi$$

Extended Submodularity: Uniform Matroids

Lemma

Let $M(E, \rho) = U_{k,n}$. Then for all mutually disjoint $P_1, P_2, R \subseteq E$, $S(P_1 \cup P_2, \phi, R) \leq_M S(P_1, P_2, R)$.

Proof Steps (Induction on $|P_1|$.)

- ▶ Base Case (Non-trivial): For all $P, R \subseteq E$, there exists a bijection $\pi_0 : S(P, \phi, R) \to S(\phi, P, R)$ such that whenever $\pi_0(W, Z) = (X, Y)$:
 - (1) $\rho(W) + \rho(Z) \le \rho(X) + \rho(Y)$, and
 - (2) $|W| \ge |X|$.
- Inductive Hypothesis: Let π : S(P₁ ∪ P₂, φ, R) → S(P₁, P₂, R) be a bijection satisfying both (1) and (2) above.

Extended Submodularity in $U_{k,n}$: Proof continued

Proof Steps (continued)

▶ Inductive Step: For $p \in E \setminus (P_1 \cup P_2 \cup R)$, define $\pi' : S(P_1 \cup P_2 \cup \{p\}, \phi, R) \rightarrow S(P_1 \cup \{p\}, P_2, R)$ as

$$\pi'(W \cup \{p\}, Z) = (X \cup \{p\}, Y),$$

whenever $\pi(W, Z) = (X, Y)$.

▶ Straightforward to check from (1) and (2) that $\rho(W \cup \{p\}) + \rho(Z) \le \rho(X \cup \{p\}) + \rho(Y)$. Hence, $S(P_1 \cup P_2 \cup \{p\}, \phi, R) \le_M S(P_1 \cup \{p\}, P_2, R)$.

The Inequality Theorem

Notation

- $ightharpoonup E_1, E_2 \subseteq E$.
- $r = \rho(E_1) + \rho(E_2) \rho(E_1 \cup E_2) \rho(E_1 \cap E_2).$
- ▶ For $X \subseteq E$, M | X is the matroid restriction of M to set X, defined as $M \setminus (E \setminus X)$.

Theorem

If
$$M(E, \rho) = U_{k,n}$$
, then for all $E_1, E_2 \subseteq E$,

$$x' \cdot R(M|E_1 \cup E_2; x, y) \cdot R(M|E_1 \cap E_2; x, y) \le R(M|E_1; x, y) \cdot R(M|E_2; x, y)$$

when xy < 1 and x, y > 0.

Partial Sums of Binomial Coefficients

Notation

k: a fixed non-negative integer.

For $n \ge 0$, let

$$A_n^k = \sum_{i=0}^k \binom{n+k}{i}.$$

A sequence $\{A_n\}$ is log-concave if $A_{n+1}A_{n-1} \leq A_n^2$ when $n \geq 1$.

Proposition [Semple and Welsh]

For all $k \ge 0$, the sequence $A_0^k, A_1^k, A_2^k, \cdots$ is log-concave.

Sequence A_n^k is Log-concave: An Injective Proof

Some Definitions

- ▶ $U_{k,n+1}$: Uniform matroid with $E = \{1, \dots, n+1\}$.
- ► $E_1 = \{1, \dots, n\}$
- ► $E_2 = \{2, \dots, n+1\}$
- ▶ $E_1 \cap E_2 = \{2, \cdots, n\}.$

Definitions continued

- \triangleright A_{n+1} : Set of all subsets of *E* of size at most *k*.
- ▶ A_{n-1} : Set of all subsets of $E_1 \cap E_2$ of size at most k.
- \blacktriangleright \mathcal{A}_n^1 : Set of all subsets of E_1 of size at most k.
- $ightharpoonup A_n^2$: Set of all subsets of E_2 of size at most k.

The Proof Method

Show an injection $\sigma: \mathcal{A}_{n+1} \times \mathcal{A}_{n-1} \to \mathcal{A}_n^1 \times \mathcal{A}_n^2$.

The Injection σ

- ▶ Let $(W, Z) \in A_{n+1} \times A_{n-1}$.
- ▶ Let $T = W \cap Z$.
- ▶ Let $W' = W \setminus T$, $Z' = Z \setminus T$.
- ▶ Let $P_1 = W' \setminus E_2$, $P_2 = W' \setminus E_1$ and $R = (W' \cup Z') \cap (E_1 \cap E_2)$.

The Injection σ continued

- ▶ Note 1: $(W', Z') \in S(P_1 \cup P_2, \phi, R)$.
- ▶ Note 2: The matroid $U_{k,n+1}/T$ is also uniform.
- ▶ Hence there exists a rank dominating bijection $\pi: S(P_1 \cup P_2, \phi, R) \to S(P_1, P_2, R)$ in $U_{k,n+1}/T$ (Extended Submodularity Property).
- ▶ Let $\pi(W', Z') = (X', Y')$.
- ▶ Let $X = X' \cup T$, $Y = Y' \cup T$.
- ▶ Then $(X, Y) \in 2^{E_1} \times 2^{E_2}$ and $\rho(W) + \rho(Z) \leq \rho(X) + \rho(Y)$.

The Injection σ continued

- ▶ But $\rho(W) = |W|$, $\rho(Z) = |Z|$ and |W| + |Z| = |X| + |Y|.
- ▶ Hence $\rho(X) = |X|$ and $\rho(Y) = |Y|$.
- ▶ In other words, $(X, Y) \in \mathcal{A}_n^1 \times \mathcal{A}_n^2$.
- ▶ Define $\sigma(W, Z) = (X, Y)$.

Log-concavity Results for Binomial Expansion of $(1 + x)^n$

Notation

k: fixed non-negative integer.

x > 0: A positive real number.

Proposition

Let

$$B_n^{k,x} = \sum_{i=0}^k {n+k \choose i} x^i$$
 and $C_n^{k,x} = \sum_{i=0}^n {n+k \choose i} x^i$.

For all $k \ge 0$, the sequences $B_0^{k,x}, B_1^{k,x}, \cdots$ and $C_0^{k,x}, C_1^{k,x}, \cdots$ are log-concave.

Concluding Remarks

Some Closing Observations

- Extended submodularity of matroids can be used to obtain injective proofs of some combinatorial inequalities.
- Only a few fully extended submodular matroid classes have been identified so far. Is there a characterization for all of them?
- Can the log-concavity results be used to approximate partial sum of binomial coefficients and binomial expansions quickly on a computer?