Extended Submodularity and Tutte Polynomial Inequalities for Graphs (Inequalities for Counting Problems in Graphs)

Arun P. Mani (arunpmani@gmail.com)

Clayton School of Information Technology Monash University, Australia

Techniques and Problems in Graph Theory
Bristol, UK
1 – 3 July 2009

Outline

Introduction

Extended Submodularity

The Inequalities

Conclusion

Introduction

Notations

- Graph G 2-connected and synonymous with its edge set E
- G synonymous with its cycle matroid M(G)
- For $X \subseteq E$, its rank $\rho(X) = \text{Size of maximal forest in } X$

Whitney-Tutte Polynomials of Graphs

$$R(G; x, y) = \sum_{X \subseteq E} x^{\rho(E) - \rho(X)} y^{|X| - \rho(X)}$$

$$T(G; x, y) = R(G; x - 1, y - 1)$$

Properties of Graph Polynomials

Graph Polynomials and Counting

- R(G; 0, 0) = T(G; 1, 1) counts the number of spanning trees of G
- R(G; 1, 0) = T(G; 2, 1) counts the number of forests
- R(G; 0, 1) = T(G; 1, 2) counts the number of connected spanning subgraphs

The Problem

Notation

- For $e \in E$, graph G/e is obtained by contracting edge e in G
- $\{e, f\} \subseteq E$ is not a cutset of G
- $x, y \in \mathbb{R}_{\geq 0}$

Graph Polynomial Inequalities

ls

$$R(G; x, y) \cdot R(G/e/f; x, y) \leq R(G/e; x, y) \cdot R(G/f; x, y),$$

in the region xy < 1 and $x, y \ge 0$?

The Problem (Cont'd)

What's Known

- Studied at points (0,0), (1,0) and (0,1) corresponding to spanning trees, forests and connected spanning subgraphs
- True for all graphs at (0,0) [Tutte]
- True for Series-Parallel graphs at the points (1,0) and (0,1) [Semple and Welsh]
- Conjectured to be true at (1,0) and (0,1) for all graphs
- Direction of inequality reversed in the region xy ≥ 1 and known to be true for all graphs (and matroids) [Seymour and Welsh]

The Problem (Cont'd)

Notation

- $E_1, E_2 \subseteq E$
- $k = \rho(E_1) + \rho(E_2) \rho(E_1 \cup E_2) \rho(E_1 \cap E_2)$

The Problem (Version 2)

ls

$$x^k \cdot R(E_1 \cup E_2; x, y) \cdot R(E_1 \cap E_2; x, y) \le R(E_1; x, y) \cdot R(E_2; x, y),$$

when $xy < 1$ and $x, y > 0$?

The Problem (Cont'd)

Version Differences

- The "new" inequality true for all E₁, E₂ ⊆ E ← "old" inequality true for G and all its minors
- "New" version also lets us study validity for some subsets
 E₁, E₂ ⊆ E even if other choices for E₁, E₂ are known to fail
 or simply hard to prove

Our Approach

- Introduce a notion of extended submodularity for the rank function, ρ
- Extended submodularity of G and its minors (restricted to the subsets E₁, E₂) ⇒ "New" inequality
- Show Series-Parallel graphs have extended submodularity on all subsets E₁, E₂ ⊆ E

Submodularity

Notation

- $E_1, E_2 \subseteq E$
- For $X \subseteq E$, $\rho(X) =$ Size of maximal forest in X

Definition

$$\rho(E_1 \cup E_2) + \rho(E_1 \cap E_2) \le \rho(E_1) + \rho(E_2)$$

Extended Submodularity

Preliminary Definitions

- Mutually disjoint sets P₁, P₂, R ⊆ E
- Set $S(P_1, P_2, R)$ is a collection of all $2^{|R|}$ partitions (X, Y) of the set $P_1 \cup P_2 \cup R$ under the constraints $P_1 \subseteq X$ and $P_2 \subseteq Y$.

$$S(P_1, P_2, R) = \{(P_1 \cup C, P_2 \cup (R \setminus C)) : C \subseteq R\}$$

Examples

- $S(P_1, P_2, \phi) = \{(P_1, P_2)\}$
- $S(P_1 \cup P_2, \phi, \{r\}) = \{(P_1 \cup P_2 \cup \{r\}, \phi), (P_1 \cup P_2, \{r\})\}$

Rank Dominations in Graphs

Notation

- $P_1, P_2, Q_1, Q_2, R \subseteq E$
- P_1, P_2, R are mutually disjoint
- Q₁, Q₂, R are mutually disjoint

Definition

We say $S(P_1, P_2, R)$ is rank dominated by $S(Q_1, Q_2, R)$ in graph G (written as $S(P_1, P_2, R) \leq_G S(Q_1, Q_2, R)$) if there exists a bijection $\pi: S(P_1, P_2, R) \to S(Q_1, Q_2, R)$ such that whenever $\pi(W, Z) = (X, Y)$ we have $\rho(W) + \rho(Z) \leq \rho(X) + \rho(Y)$

Extended Submodularity

Submodularity

For all subsets $E_1, E_2 \subseteq E$ and all graphs G, we have $S(P_1 \cup P_2, \phi, \phi) \leq_G S(P_1, P_2, \phi)$

Extended Submodularity

- Given a graph G, for what mutually disjoint sets $P_1, P_2, R \subseteq E$ do we have $S(P_1 \cup P_2, \phi, R) \leq_G S(P_1, P_2, R)$?
- If true, then G is said to have the extended submodular property on sets P₁, P₂, R

Extended Submodularity: Definition

$$S(P_1 \cup P_2, \phi, R) \xrightarrow{\leq_G} S(P_1, P_2, R)$$

$$(W, Z) \qquad \rho(W) + \rho(Z) \qquad (X, Y)$$

$$P_1 \cup P_2 \subseteq W \qquad \leq \rho(X) + \rho(Y) \qquad P_1 \subseteq X$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$W \cup Z = X \cup Y = P_1 \cup P_2 \cup R$$

$$W \cap Z = X \cap Y = \phi$$

Extended Submodularity: What's Known?

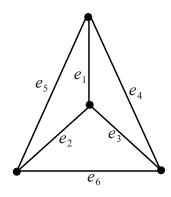
- For all $P,R\subseteq E$ and all graphs G, it is easy to show $S(P,\phi,R)\leq_G S(P,\phi,R)$ and $S(P,\phi,R)\leq_G S(\phi,P,R)$ (For the second one use the map $\pi(X,Y)=(Y,X)$)
- For all P₁, P₂, R ⊆ E and all graphs G, if P₁ ∪ P₂ is a connected spanning subgraph then
 S(P₁ ∪ P₂, φ, R) ≤_G S(P₁, P₂, R) [Noble]
- For all $P_1, P_2, R \subseteq E$ and all graphs G, if $|R| \le 3$, $S(P_1 \cup P_2, \phi, R) \le_G S(P_1, P_2, R)$ (Non-trivial)

Extended Submodularity: Counterexample

$$P_1 = \{e_1\}$$

 $P_2 = \{e_6\}$
 $R = \{e_2, e_3, e_4, e_5\}$

$$S(P_1 \cup P_2 \phi, R) \not\leq S(P_1 P_2 R)$$



 $Graph K_{A}$

Fully Extended Submodular Graphs

Notation

For a graph G and subset $T \subseteq E$, the T-Minor Family is

$$\mathcal{MF}(G,T) = \{G/C \setminus (T \setminus C) : C \subseteq T\}$$

Definition

A graph G is fully extended submodular if for all mutually disjoint subsets $P_1, P_2, R \subseteq E$, we have $S(P_1 \cup P_2, \phi, R) \leq_H S(P_1, P_2, R)$ in all minors $H \in \mathcal{MF}(G, E \setminus (P_1 \cup P_2 \cup R))$

Fully Extended Submodular Graphs

Notation

Let \mathcal{ESG} denote the class of graphs that are fully extended submodular

Properties

- If $G \in \mathcal{ESG}$ then so are its minors
- If $G \in \mathcal{ESG}$ then its (matroid) dual $G^* \in \mathcal{ESG}$

Properties of \mathcal{ESG}

Properties

- $K_4 \notin \mathcal{ESG}$ but every minor of K_4 belongs to \mathcal{ESG}
- If \mathcal{SP} denotes the class of Series-Parallel graphs, then $\mathcal{SP} = \mathcal{ESG}$ (Yet another characterization of the class \mathcal{SP})
- In other words, every graph without a K₄ minor belongs to ESG

$$SP = ESG$$

Definition

Graph G' is a parallel extension of graph G if G' has a two edge cycle $\{e,f\}$ such that $G'\setminus f=G$, and a series extension of G if it has a two edge minimum cutset $\{e,f\}$ such that G'/f=G

Proof Steps

- Graph with one edge is trivially in \mathcal{ESG}
- If $G \in \mathcal{ESG}$ then show its parallel extensions are also in \mathcal{ESG}
- Using duality arguments show the series extensions of G
 are also in ESG, and so SP ⊆ ESG
- Equality follows because any graph that is not series-parallel is known to contain a K₄ minor

Parallel Extension in \mathcal{ESG}

Notation

- Let G' be a parallel extension of G ∈ ESG with G' \ f = G
 and {e, f} a cycle
- $N' \in \mathcal{MF}(G', E \setminus (P_1 \cup P_2 \cup R))$

Proof Idea

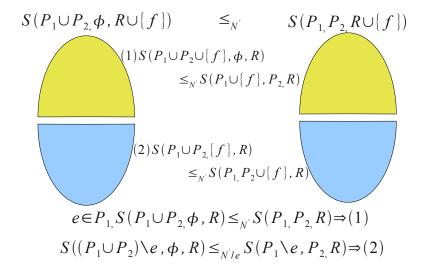
- $S(P_1 \cup P_2, \phi, R) \leq_{N'} S(P_1, P_2, R)$ if $f \notin P_1 \cup P_2 \cup R$ (Easy)
- If $e \notin P_1 \cup P_2 \cup R$ then easily $S(P_1 \cup P_2 \cup \{f\}, \phi, R) \leq_{N'} S(P_1 \cup \{f\}, P_2, R)$ and $S(P_1 \cup P_2, \phi, R \cup \{f\}) \leq_{N'} S(P_1, P_2, R \cup \{f\})$ because we know f is just a parallel edge to e

Parallel Extension in \mathcal{ESG}

Proof (Cont'd)

- If $e \in P_1$ then $S(P_1 \cup P_2 \cup \{f\}, \phi, R) \leq_{N'} S(P_1 \cup \{f\}, P_2, R)$ because the rank sums of the individual partitions on LHS do not increase by adding parallel edge f
- Also $S(P_1 \cup P_2, \phi, R \cup \{f\}) \leq_{N'} S(P_1, P_2, R \cup \{f\})$ because
 - 1. $S(P_1 \cup P_2, \phi, R) \leq S(P_1, P_2, R)$ in N', and
 - 2. $S((P_1 \cup P_2) \setminus \{e\}, \phi, R) \leq S(P_1 \setminus \{e\}, P_2, R)$ in N'/e
- And so on . . .

Proof (Cont'd)



The Inequality Theorem

Notation

$$k = \rho(E_1) + \rho(E_2) - \rho(E_1 \cup E_2) - \rho(E_1 \cap E_2)$$

The Theorem

If $G \in \mathcal{ESG}$ then for all $E_1, E_2 \subseteq E$,

$$x^k \cdot R(E_1 \cup E_2; x, y) \cdot R(E_1 \cap E_2; x, y) \leq R(E_1; x, y) \cdot R(E_2; x, y),$$

when xy < 1 and $x, y \ge 0$.

Concluding Remarks

- Therefore Series-Parallel graphs satisfy the "old" inequality at all points $x, y \ge 0$ such that xy < 1, and not just at (0,0),(1,0) and (0,1)
- What more can be said about extended submodularity in graphs with a K_4 minor? For example, is it true that in all graphs $S(P_1 \cup P_2, \phi, R) \leq S(P_1, P_2, R)$ whenever R is a forest? (This would imply "new" inequality is true whenever $E_1 \cap E_2$ is a forest.)
- Conjecture: The "new" inequality is true for all graphs and all subsets E_1 , E_2 (and hence the "old" inequality for all graphs). But can extended submodularity be "further extended" to deal with the general case?