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Abstract

This paper concerns improper λ-colourings of graphs and focuses on the sizes of the
monochromatic components (i.e., components of the subgraphs induced by the colour classes).
Consider the following three simple operations, which should, heuristically, help reduce monochro-
matic component size: (a) assign to a vertex the colour that is least popular among its neigh-
bours; (b) change the colours of any two adjacent differently coloured vertices, if doing so
reduces the number of monochromatic edges; and (c) change the colour of a vertex, if by so
doing you can reduce the size of the largest monochromatic component containing it without
increasing the number of monochromatic edges. If a colouring cannot be further improved by
these operations, then we regard it as locally optimal. We show that, for such a locally optimal
2-colouring of a graph of maximum degree 4, the maximum monochromatic component size is
O(2(2 log2 n)1/2

). The operation set (a)–(c) appears to be one of the simplest that achieves a
o(n) bound on monochromatic component size. Recent work by Alon, Ding, Oporowski and
Vertigan, and then Haxell, Szabó and Tardos, has shown that some algorithms can do much
better, achieving a constant bound on monochromatic component size. However, the simplicity
of our operation set, and of the associated local search algorithm, make the algorithm, and our
locally optimal colourings, of interest in their own right.

∗Some of the work of this paper was done while Farr was visiting: Department of Applied Computing,
University of Dundee; Institut für Computergraphik und Algorithmen, Technische Universität Wien; and
Department of Computer Science, Royal Holloway, University of London.
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1 Introduction

An assignment, or λ-assignment, of a graph G is a map from V (G) to some set Λ of colours
such as {1, . . . , λ}; i.e., it is a ‘colouring’ that may be improper. We will use terminology
from graph colouring for such maps where the meaning is clear. For example, a colour class
is a preimage, under the λ-assignment, of a single colour. The colour class for colour i ∈ Λ
is denoted by Ci.

A chromon of G under an assignment c is a component of a subgraph of G induced by a
colour class, or in other words, a maximal connected monochromatic subgraph (sometimes
called a monochromatic component). A k-chromon is a chromon with k vertices.

This paper mainly concerns 2-assignments, for a graph, which are locally optimal (in a
natural sense) with respect to maximum chromon size.

A graph G is [λ, C]-colourable if it has a λ-assignment in which every chromon has at most C
vertices. An ordinary (proper) colouring is thus a [λ, 1]-colouring, and the chromons under
such a colouring are just the individual vertices.

A class of graphs Γ is [λ,C]-colourable if every G ∈ Γ is [λ,C]-colourable. Γ is λ-metacolourable
if there exists C such that Γ is [λ,C]-colourable. The metachromatic number χ(Γ) is the
smallest λ such that Γ is λ-metacolourable.

This is similar in spirit to the concept of fragmentability of classes of graphs that we intro-
duced in [9]. In fact, it is to fragmentability as ordinary graph colouring is to independent
sets. This paper, though, does not depend on that one.

Γd denotes the class of graphs of maximum degree ≤ d.

In our main result, we give a simple local search algorithm for finding a 2-assignment of a
graph of maximum degree 4 in which all chromons have size O(2(2 log2 n)1/2). The algorithm
uses three simple operations, involving changing the colour of just one or two vertices at a
time, and appears to be one of the simplest algorithms that attain maximum chromon size
o(n). Our bound on chromon size applies to any 2-assignment that cannot be improved by
applying any of our three operations. Since these operations are arguably the most natural
local operations that can be done in this situation, these 2-assignments are worth studying.
We also note that some such 2-assignments have maximum chromon size within a constant
factor of our upper bound.

Alon et al. [4] show that (in our notation) Γ4 is [2, 57]-colourable. They do not present an
algorithm explicitly, though it is reasonable to expect that their approach would yield one.
More recently, Haxell, Szabó and Tardos [12, §2.2] have shown that Γ4 is [2, 6]-colourable, and
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their proof yields an efficient algorithm. Alon (private communication, 2002) also reports
that an algorithm with some constant bound on chromon size can be obtained using ideas
in [3].

Throughout, G is a graph and n = |V (G)|. An edge is monochromatic if its endpoints
have the same colour. We use the same word for subgraphs, with the obvious meaning. If
X,Y ⊆ V (G), then E(X, Y ) denotes the set of edges with one endpoint in X and the other
in Y .

2 Related work

There is considerable literature on generalisations of graph colouring (see, e.g., [19]). We
briefly mention only the work we are aware of that is closest to ours. In explaining others’
concepts and notation here, we generally use our own terminology.

A very general kind of colouring is introduced by Weaver and West [18] and studied further
by Deuber and Zhu [8]. Let P be a hereditary class of graphs. Weaver and West define
the P-chromatic number χP(G) of a graph G to be the smallest λ such that there is a λ-
assignment for which every chromon belongs to P . If P is the class of graphs of at most C
vertices, then χP(G) ≤ λ if and only if G is [λ,C]-colourable. These authors study χP for
graphs of high girth and for cartesian and lexicographic products.

Colourings for which a forbidden induced subgraph is specified for the colour classes are
investigated in [16].

In §3 we will be particularly interested in λ-assignments in which most of the chromons are
paths, with the possibility of some circuits. Assignments in which all chromons are paths
were introduced by Akiyama et al. [2]. They define the k-path chromatic number χ(G; Pk)
of G to be the smallest λ such that there is a λ-assignment for which every chromon is a
path of k vertices. So χ(G; Pk) ≤ λ implies G is [λ, k]-colourable. They concentrate on path
chromatic numbers of planar, outerplanar, regular and bounded-degree graphs. One of their
results gives χ(Γd) ≤ d(d + 1)/2e. Other work on path chromatic numbers includes study of
its complexity [13].

The term “path-chromatic number” is used differently by others, such as in [1, 7, 14], where
it refers to the minimum λ such that there is a λ-assignment of G for which there is no
monochromatic path of k vertices, and is denoted by Pk χ(G). It is clear that if G is [λ,C]-
colourable then PC+1 χ(G) ≤ λ.

We also mention a result of Berman and Paul, who showed in [5] that for λ-assignments of
k-trees, the maximum chromon size is ≤ kdn1/λe, and that such an upper bound cannot be
brought down below bn1/λc.

We note that the well known concept of linear arboricity [11] involves assigning colours to
edges so that the maximal monochromatic connected subgraphs are all paths. Restrictions
on allowed path length have been considered in [6, 17].
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A result of Lovász [15] yields an efficient algorithm for finding 2-colourings of graphs of
maximum degree ≤ 4 with the two colour classes inducing subgraphs of maximum degree
two and one respectively. This result has been used for related algorithmic problems by, e.g.,
Halldórsson and Lau [10]. One of the colour classes has no bound on its chromon size, but it
is not surprising to find that the result has been used as a step towards bounding chromon
size in both colour classes, as we now mention.

Alon et al. [4] show that: the metachromatic number of the class of planar graphs is four; Γd

is [d(d+2)/3e, 12d2−36d+9]-colourable; and, for any k < 3, every G ∈ Γd is [d(d+2)/ke, Ck]-
colourable, where the constant Ck depends on k but not on d. The latter two results use
the abovementioned theorem of Lovász. Alon et al. ask whether χ(Γ5) is 2, and prove other
results including some on edge-colourings.

This latter question is answered in the affirmative by Haxell et al. [12] (with C ≤ 17617),
who also prove that: Γ4 is [2, 6]-colourable; χ(Γ8) ≤ 3; and χ(Γd) ≤ d(d + 1)/3e (and the
same constant bound on chromon size can be used for all d). Among further results, they
show that metacolourability of Γd can be used to prove metacolourability results about Γd′

for certain larger d′.

Alon et al. [4] also proved the lower bound χ(Γd) ≥ (d + 3)/4.

3 Two colours and maximum degree four

In this section, we look at using just two colours on graphs of maximum degree at most four,
and consider some simple operations for which locally optimal 2-assignments have reasonably
small chromons. These operations give an efficient local search algorithm whose performance
we analyse. We begin with some definitions.

If x is one of the two colours at our disposal, then x is its opposite, i.e., the other colour.

If v ∈ V (G), then its cochromatic neighbours are those with the same colour as v, and its
antichromatic neighbours are those of different colour to v.

A vertex is balanced, under a particular assignment, if it has degree 4 and has two neighbours
of each colour.

The number of monochromatic edges in a graph G under an assignment c is denoted by
e(G, c). For each k, 1 ≤ k ≤ n, let ak = ak(G, c) be the number of chromons of size k in G
under c. Write a(G, c) = (an, . . . , a1).

The 2-assignments we find will be locally optimal in the sense that they cannot be improved
by changing the colours of just a few vertices. The notion of “locally optimal” used is
determined by specifying the colour changes that are allowed to happen. We consider briefly
some different sets of allowed changes, and the maximum chromon size of the corresponding
set of locally optimal colourings.
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For some sets of allowed changes, we cannot get a better bound on maximum chromon size
than O(n). Suppose, for example, that our only allowed local change is to flip the colours
of up to two vertices if, by doing so, we reduce a(G, c) under lexicographic order. Then we
might get stuck with maximum chromon size n/2: let G be the skeleton of the antiprism
based on two n/2-gons with n triangles between them (where n is even), with one n/2-gon
coloured white and the other black.

This example demonstrates that, if we want to get an o(n) bound on maximum chromon
size by flipping the colours of at most two vertices at a time, we need to do more than just
try to reduce the size of the largest chromon, or indeed a(G, c). With this in mind, it is
natural to introduce operations that reduce e(G, c). However, flipping just one vertex at a
time, to reduce e(G, c), is not enough, as the antiprism graph shows.

Note also that it is insufficient to focus just on reducing e(G, c) alone, if we are only to
flip one or two vertices at a time. Consider a circuit Ck, with all vertices white, together
with k/2 black vertices, each of which is joined to four vertices of Ck in such a way that
the resulting graph is 4-regular. Maximum chromon size is 2n/3, and flipping two vertices
cannot reduce e(G, c).

We are thus drawn to the following set of operations:

(a) If v has more cochromatic neighbours than antichromatic ones, then flip its colour (i.e.,
give it the opposite colour to its present colour, so that it gets the colour least popular
among its neighbours). (This reduces e(G, c).)

(b) If v and w are adjacent, balanced, oppositely coloured vertices, then flip both their
colours. (This reduces e(G, c).)

(c) If flipping the colour of a balanced vertex v would make it belong to a smaller chromon
than its current one, then do so. (This reduces a(G, c), under lexicographic order,
while keeping e(G, c) unchanged.)

(We require v to be balanced in (c) to avoid situations where some periodic sequence of
operations can be applied forever.)

We show below that a 2-assignment for which none of these operations can be done has
maximum chromon size o(n). In the light of the above discussion, this set of operations
appears to be one of the simplest with this property, at least among those based on flipping
colours of small numbers of vertices.

It is straightforward to use these operations as the basis of an algorithm, which essentially
just keeps applying operations (a), (b), (c) for as long as possible.

Algorithm 1. Finding a 2-colouring with small monochromatic components for a graph of
maximum degree at most 4.

1. Input: Graph G with maximum degree ≤ 4.
2. Start with an arbitrary 2-assignment c of G.
3. do
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{
if ( operation (a) can be done, somewhere in G )

do it
else if ( operation (b) can be done, somewhere in G )

do it
else if ( operation (c) can be done, somewhere in G )

do it
} until none of the operations can be done any more.

4. Output: the resulting 2-assignment.

To prove our main result, we will need the following.

Lemma 1 Let H be a graph with ∆(H) ≤ 2δ. Let VM ⊆ V (H), and let M be the set of
edges incident with a vertex in VM . Let E(H) be partitioned into subsets Ej, 1 ≤ j ≤ µ,
and for each e ∈ E(H) write j(e) for the unique j such that e ∈ Ej. Suppose the vertices
of H have positive integer weights w(v), v ∈ V (H), such that, for each uv ∈ E(H) \ M ,
w(u) + w(v) ≥

∣

∣

∣Ej(uv)

∣

∣

∣ + 1. Then there exists U ⊆ V (H) \ VM such that

|E(H −M)| − δ + 1
δ

≤ |U | ≤ |E(H −M)|+ δ − 1
δ

(1)

and
∑

v∈U

w(v) ≥
(

|U | − δ − 1
δ

) (

|E(H)|
2µ

+
1
2

)

+
δ − 1
2δ

. (2)

Proof. We begin by finding a partition E(H −M) = S0 ∪ · · · ∪ Sδ−1 of E(H −M) into δ
parts, as close to equal in size as possible.

If δ = 1, put S0 = E(H −M).

For the moment, suppose δ = 2. Consider H − M . Add a matching A joining up pairs
of odd-degree vertices in H − M , so as to make all degrees even. So all components of
H ′ = (H − M) ∪ A are Eulerian. Let T be a concatenation of Eulerian trails, one from
each component of H ′. Form two disjoint edge sets S0, S1 by going around T , placing the
edges of H −M alternately in S0 and S1. Edges in A are ignored in this allocation: if the
trail contains the subsequence of edges e, f , g, where e ∈ Si and f ∈ A, then g ∈ S1−i, and
certainly f 6∈ S0 ∪ S1. It follows that S0 and S1 have the same size if |E(H −M)| is even
and differ in size by one otherwise.

Now suppose δ ≥ 3. It is routine to form a partition E(H−M) = R0∪· · ·∪Rδ−1 of E(H−M)
into δ parts, each (when considered as a subgraph of E(H −M)) having maximum degree
≤ 2. Now repeatedly do the following: choose any two parts of the partition that differ in
size by at least two; observe that their union has maximum degree ≤ 4, so the argument of
the previous paragraph can be applied, giving two disjoint edge sets R′

0, R′
1, differing in size

by at most one, such that R′
0 ∪ R′

1 = R0 ∪ R1. This procedure can be continued until we
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have a partition E(H−M) = S0∪ · · · ∪Sδ−1 in which any two parts differ in size by at most
one.

Thus, for any δ, we can find a partition E(H −M) = S0 ∪ · · · ∪ Sδ−1 such that, for all i,

|E(H −M)| − δ + 1
δ

≤ |Si| ≤
|E(H −M)|+ δ − 1

δ
. (3)

Suppose without loss of generality that |E1| ≥ · · · ≥ |Eµ|.

Suppose that
∑

e∈Si
|Ej(e)| is maximum when i = i∗. Then

∑

e∈Si∗

|Ej(e)| ≥ 1
δ

∑

e∈E(H−M)

|Ej(e)|

=
1
δ

µ
∑

j=1
|Ej \M | · |Ej|

=
1
δ

µ
∑

j=1
(|Ej| − |M ∩ Ej|) · |Ej|

≥ 1
δ

µ
∑

j=1
(|Ej| − ηj) · |Ej|, (4)

where the ηj are chosen to satisfy
µ

∑

j=1
ηj = |M | (5)

and
|E1| − η1 ≥ |E2| − η2 ≥ · · · ≥ |Eµ| − ηµ. (6)

The inequality (4) holds because its right hand side is minimised when the ηj satisfy (5) and
(6) (due to our assumed ordering on the |Ej|). Applying the Cauchy-Schwartz inequality to
the right-hand side of (4), we obtain

∑

e∈Si∗

|Ej(e)| ≥ 1
δµ





µ
∑

j=1
(|Ej| − ηj)









µ
∑

j=1
|Ej|



 (7)

=
1
δµ

(|E(H)| − |M |) |E(H)| (by (5))

≥
(

|Si∗| −
δ − 1

δ

)

|E(H)|
µ

. (by (3)) (8)

Now, Si∗ can be thought of as the edge set of a subgraph HSi∗ = (VSi∗ , Si∗) of H, where VSi∗

consists of all vertices of H incident with an edge of Si∗ . Clearly ∆(HSi∗ ) ≤ 2. Hence HSi∗

is a union of disjoint cycles C1, . . . , Cs1 and paths P1, . . . , Ps2 .
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We describe how to form our set of vertices, U , from subsets of the vertex sets of these paths
and cycles. For each cycle Ci, put UCi = V (Ci), and observe that

∑

v∈UCi

w(v) =
1
2

∑

uv∈E(Ci)

(w(u) + w(v))

≥ 1
2

∑

e∈E(Ci)

(

|Ej(e)|+ 1
)

=
1
2

∑

e∈E(Ci)

|Ej(e)|+
1
2
|E(Ci)| . (9)

For each path Pi = v1, . . . , vk, define

P ′
i =

{

v1, . . . , vk−1, if w(v1) ≥ w(vk);
v2, . . . , vk, if w(v1) < w(vk).

Put UPi = V (P ′
i ) and observe that

∑

v∈UPi

w(v) ≥ 1
2

(

w(v1) + 2
k−1
∑

h=2

w(vh) + w(vk)
)

=
1
2

∑

uv∈E(Pi)

(w(u) + w(v))

≥ 1
2

∑

e∈E(Pi)

(

|Ej(e)|+ 1
)

=
1
2

∑

e∈E(Pi)

|Ej(e)|+
1
2
|E(Pi)| . (10)

Finally put U =
⋃s1

i=1 UCi ∪
⋃s2

i=1 UPi . Observe firstly that |U | = |Si∗ |, so

|E(H −M)| − δ + 1
δ

≤ |U | ≤ |E(H −M)|+ δ − 1
δ

,

by (3), and secondly that
∑

v∈U

w(v) ≥ 1
2

∑

e∈Si∗

|Ej(e)|+
1
2
|Si∗ | (by (9) and (10))

≥ 1
2

(

|Si∗ | −
δ − 1

δ

)

· |E(H)|
µ

+
1
2
|Si∗ | (by (8))

=
(

|U | − δ − 1
δ

)

·
(

|E(H)|
2µ

+
1
2

)

+
δ − 1
2δ

.

Note that the graphs H may have loops and parallel edges, and the degree of a vertex in H
is the number of edges incident at it, with loops counting twice.

We can now prove our main result. It shows that the sizes of chromons in 2-assignments
produced by Algorithm 1 — and, indeed, of any 2-assignment that is locally optimal in our
sense — are bounded by a function of n whose growth rate is intermediate between O(1)
and n1/O(1).
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Theorem 2 Let G be a graph with ∆(G) ≤ 4. Any 2-assignment of G in which none of
operations (a), (b), (c) can be applied further — in particular, any 2-assignment produced
by Algorithm 1 — has maximum chromon size O

(

2(2 log2 n)1/2
)

.

Proof. Suppose ∆(G) ≤ 4.

If v ∈ V (G) then X(v) denotes the unique chromon containing v.

Let c be any 2-assignment (not necessarily one produced by Algorithm 1) for which none of
operations (a), (b), (c) can be done any more. Let X be the set of all chromons in G under
c.

We have already seen that every vertex of G has at least as many antichromatic neighbours
as cochromatic ones (since operation (a) can no longer be done).

Thus, each vertex v of degree ≥ 3 is either balanced or has the same colour as a clear
minority (zero or one) of its neighbours. Each chromon is thus either a path (possibly a
trivial one) or a circuit, and we will refer to path-chromons and circuit-chromons with the
obvious meaning. An unbalanced vertex of a chromon is said to be an end vertex of that
chromon. Obviously, path-chromons have two end vertices, except that the trivial path of
just one vertex has one end vertex, while circuit-chromons have none.

Observe next that no two differently coloured balanced vertices can be adjacent, since oper-
ation (b) can no longer be done. It follows that if v and w are adjacent vertices in different
chromons, then at most one of v, w can be balanced.

Note also that an end vertex of a chromon can have at most three balanced neighbours, since
∆(G) ≤ 4.

If v ∈ V (G) and X, X1 and X2 are chromons:

(i) v −→ X indicates that v is balanced, v /∈ X and v is adjacent to an end vertex of X.

(ii) X −→ v indicates that v /∈ X and some balanced w ∈ X is adjacent to v. (It follows
that v cannot be balanced.)

(iii) X1 −→ X2 indicates that v −→ X2 for some balanced v ∈ X1 (or, equivalently,
X1 −→ w for some end vertex w of X2).

The relation (iii) defines a digraph whose vertices represent chromons.

The following observation is central to the proof.

Claim 1: For each balanced vertex v ∈ V (G),

|X(v)| ≤ 1 +
∑

X ∈ X :
v −→ X

|X| (11)

(Note that the sum on the right will have just one or two terms.)
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Proof. v currently belongs to a chromon of size |X(v)|. If its colour is flipped, it will belong
to a chromon of size 1+

∑

X∈X :v−→X |X|. If the inequality (11) does not hold, then operation
(c) can be done.

Let Xmax be any largest chromon, and set

x0 =
{

|Xmax| , if Xmax is a path-chromon;
|Xmax| − 2, if Xmax is a circuit-chromon. (12)

Assume x0 > 3.

Our aim is to find an upper bound for x0 in terms of |V (G)|. We now outline roughly how
we do this.

We will construct a sequence of disjoint sets Ui of chromons, beginning with the singleton
U0 = {Xmax}, in which the successive Ui have increasing numbers of chromons. The average
size of these chromons may decrease as i increases, but not at a significantly greater rate
than halving. We will find lower bounds for the numbers, and average sizes, of the chromons
in these sets. For i = log x0 minus a constant, we find that these bounds give a large enough
lower bound on the total number of vertices in all the chromons (and hence on |V (G)|) that
we can deduce the desired upper bound on x0 in terms of |V (G)|.

At the heart of this approach is the following idea. Consider a chromon X. Each of its
balanced vertices v is adjacent to two end vertices, belonging to either one or two other
chromons. Claim 1 gives a lower bound on the total size of these other chromons in terms
of the size of X. Doing this for all balanced v ∈ X gives, in effect, a lower bound on the
total sizes of those chromons Y such that X −→ Y . The process can be repeated for each of
those chromons Y , and so on. Doing this sufficiently many times gives us many chromons,
whose total size is bounded below in terms of |X|. We have glossed over several technical
issues here, but make things precise below.

In outline, the construction of the Ui proceeds as follows. U0 = {Xmax}. U1 is a selection of
those chromons Y such that Xmax −→ Y . U2 is a selection of those chromons Z such that:
Y −→ Z for some Y ∈ U1 and Z does not appear in U0. U3 is a selection of those chromons
W such that: Z −→ W for some Z ∈ U2 and W does not appear in Uj, j ≤ 1. So the
construction continues. We now describe the Ui, including the aforementioned selections, in
detail.

Each Ui will be a subset of another set of chromons, Yi. These sets will be constructed
inductively, beginning in the next paragraph. In addition, we will refer to the set Bi of
balanced vertices of chromons in Ui, the set Di of end vertices of these same chromons, and
the numbers µi = |Ui|, bi = |Bi| and zi =

∑

X∈Ui
|X|. Finally, for all i, j with 0 ≤ j < i write

Mji = E(Dj, Bi) ⊆ E(G),
mji = |Mji| ,
m•i =

∑

j<i
mji .
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Let B0 be the set of balanced vertices of our largest chromon Xmax, except that if Xmax

is a circuit-chromon then we choose arbitrarily two adjacent s, t ∈ Xmax and put B0 =
Xmax \ {s, t}. Thus we always have |B0| = |Xmax| − 2. Let D0 be the set of end vertices of
Xmax, noting that |D0| = 0 or 2 according as Xmax is a circuit-chromon or a path-chromon
respectively. Put Y0 = U0 = {Xmax}.

Now, for each i ≥ 1, define Yi, Ui inductively as follows. Let Yi be the set of chromons
X such that there exists another chromon X ′ ∈ Ui−1 with X ′ −→ X. To construct Ui, we
construct a graph H and use Lemma 1. The vertices of H are precisely the chromons in
Yi; the vertex corresponding to chromon X ∈ Yi is denoted by vX . The edge set E(H)
corresponds to Bi−1 as follows. For each z ∈ Bi−1, we put an edge ez in E(H) which joins
all chromons X (at least one and at most two in number) such that z −→ X. If there exists
just one such chromon X, then ez is a loop and contributes 2 to degH vX . Let the chromons
in Ui−1 be U1, . . . , Uµi−1 . For each j, 1 ≤ j ≤ µi−1, put Ej = {ez | z ∈ Bi−1∩Uj}, so that the
Ej partition E(H). For each z ∈ Bi−1, let Ej(ez) be the unique Ej such that ez ∈ Ej. Let
VM = {vX | X ∈ Yi ∩

⋃i−2
j=0 Uj}, and let M be the set of edges of H incident with a vertex in

VM . Note that
m•(i−1)/2 ≤ |M | ≤ m•(i−1) . (13)

For all vX ∈ V (H), set w(vX) = |X|. Now, if vX and vY are adjacent in H via edge ez, then

w(vX) + w(vY ) = |X|+ |Y |
≥ |X(z)| − 1 (by Claim 1)

=
∣

∣

∣Ej(vXvY )

∣

∣

∣ + 1. (14)

Note that the slight peculiarity of our handling of the case when Xmax is a circuit-chromon
— in (12) and the definition of B0 — is directed at ensuring that this inequality (14) still
holds when i = 1 and Xmax is a circuit-chromon.

Now, if X is a circuit-chromon, then there is no vertex u such that u −→ X, since such
a relationship depends on u being adjacent to an end vertex of X. So all chromons in Yi,
i ≥ 1, are path-chromons, though it is possible that Xmax may be a circuit-chromon.

If X ∈ Yi then each endpoint of X has at most three balanced neighbours. It follows that
∆(H) ≤ 6.

The hypotheses of Lemma 1 are satisfied (with δ = 3), and we deduce the existence of a set
U ⊆ V (H) \ VM with the properties guaranteed by that Lemma. Translating back into G
and putting Ui = {X | vX ∈ U}, we find that (in the notation introduced earlier, and using
(13)):

bi−1 −m•(i−1) − 2
3

≤ µi ≤
bi−1 −m•(i−1)/2 + 2

3
, (15)

zi ≥
(

µi −
2
3

)

(

bi−1

2µi−1
+

1
2

)

+
1
3
. (16)

We also have the following easy upper bound on zi:

zi ≤ bi + 2µi . (17)

11



This is proved by observing that each of the µi chromons in Ui has at most two end vertices,
so of the total number zi of vertices in these chromons, at most 2µi are end vertices. The
rest are balanced. The inequality follows, with equality if and only if no chromon in Ui is
trivial.

We now define some quantities that turn out to be useful lower bounds on the average sizes
of chromons in Ui. Set

xi = x02−i − 3, (18)

and note that
xi−1 = 2xi + 3. (19)

We now prove a series of further claims which will lead us to the desired result. Many of them
will (at least until further notice) be subject to a technical condition given in the following
definition.

We say k is normal if k = 0 or µj ≥ xj + 1/2 for all j such that 1 ≤ j ≤ k.

Claim 2: If i is normal, then
zi ≥ xiµi .

Proof. We prove it by induction on i. The claim is immediate if i = 0.

Suppose that i > 0. The claim is immediate if µi = 0, or xi ≤ 0, or (since zi ≥ µi) if
0 < xi ≤ 1. Otherwise,

zi

µi
>

(

1− 2
3µi

) (

bi−1

2µi−1
+

1
2

)

+
1
3

(by (16))

≥
(

1− 2
3µi

) (

zi−1

2µi−1
− 1

2

)

+
1
3

(by (17))

≥
(

1− 2
3µi

)

xi−1 − 1
2

+
1
3

(by inductive hypothesis)

=
(

1− 2
3µi

)

(xi + 1) +
1
3

(by (19))

≥ xi +
2
3
− 1

3(xi + 1/2)
(since i is normal)

> xi ,

since now xi > 1.

Claim 3: If i is normal, then
bi ≥ µi(xi − 2) . (20)

Proof. Use (17) and Claim 2.

Claim 4: For any k ≥ 1,
(i) If Xmax is a circuit, then m0k = 0; if it is a path, then m0k ≤ 6.
(ii) For all j ≥ 1, mjk ≤ 5µj.

12



Proof. (i) Xmax is either a circuit-chromon, with no endpoints, or a path-chromon with
exactly two endpoints. In the latter case, each endpoint has at most three balanced neigh-
bours.

(ii) Now suppose X ∈ Uj and j ≥ 1. X now has exactly two endpoints, and one of these
(say w) is adjacent to some v ∈ Bj−1. So at most 5 of the neighbours of endpoints of X can
be in ∪i>jBi. Since this is true for all X ∈ Uj, we deduce (ii).

Claim 5: If k is normal, k ≥ 1 and xk > 2, then

m•k ≤
5

xk − 2

∑

j<k

bj ± 3 ,

where the final summand is 3 if Xmax is a path-chromon and −3 if it is a circuit-chromon.

Proof.

m•k =
∑

j<k

mjk

= m0k +
k−1
∑

j=1
mjk

≤ (3± 3) + 5
k−1
∑

j=1
µj (Claim 4(i),(ii))

≤ 5
∑

j<k

bj

xj − 2
± 3 (Claim 3)

≤ 5
xk − 2

∑

j<k

bj ± 3 .

Throughout the above, the sign ± has the same interpretation as in the statement of the
Claim.

Claim 6: If i is normal and xi > 4, then

bi >
xi − 4

3

∑

j<i
bj .

Proof. We use induction on i. It is immediate for i = 0, since the sum on the right is 0, and
x0 > 2 implies b0 > 0.

Suppose i = 1.

b1 ≥ µ1(x1 − 2) (Claim 3)

≥ x1 − 2
3

b0 −
2(x1 − 2)

3
(by (15), left side, and noting that m•0 = 0)

=
x1 − 3

3
b0 +

b0 − 2(x1 − 2)
3

>
x1 − 3

3
b0 >

x1 − 4
3

13



since b0 ≥ x0 − 2 > 2x1 − 4.

Now suppose that i ≥ 2 and bi−1 > ((xi−1 − 4)/3)
∑

j<i−1 bj.

bi ≥ µi(xi − 2) (Claim 3)

≥ xi − 2
3

bi−1 −
xi − 2

3
m•(i−1) −

2(xi − 2)
3

(by (15), left side)

≥ xi − 2
3

bi−1 −
5
3
· xi − 2
xi−1 − 2

∑

j<i−1
bj ∓ (xi − 2)− 2(xi − 2)

3
(Claim 5)

>
xi − 2

3
bi−1 −

5
6

∑

j<i−1
bj ∓ (xi − 2)− 2(xi − 2)

3
(by (19))

=
xi − 4

3
bi−1 +

2
3

bi−1 −
5
6

∑

j<i−1
bj ∓ (xi − 2)− 2(xi − 2)

3

>
xi − 4

3
bi−1 +

2
3

xi−1 − 4
3

∑

j<i−1
bj −

5
6

∑

j<i−1
bj ∓ (xi − 2)− 2(xi − 2)

3

(by inductive hypothesis)

=
xi − 4

3
bi−1 +

(4xi

9
− 19

18

)

∑

j<i−1
bj ∓ (xi − 2)− 2(xi − 2)

3
(by (19))

≥ xi − 4
3

∑

j<i
bj +

(xi

9
+

5
18

)

bi−2 ∓ (xi − 2)− 2(xi − 2)
3

.

But bi−2 ≥ µi−2(xi−2− 2) = µi−2(4xi +7) ≥ 4xi +7 (by Claim 3, and using (19) twice). Also
xi > 4 implies (xi/9 + 5/18) > 13/18. Hence (xi/9 + 5/18)bi−2 ∓ (xi − 2)− 2(xi − 2)/3 > 0,
and the Claim follows.

Claim 7: If k is normal and xk > 4, then

m•k <
15bk

(xk − 2)(xk − 4)
+ 3.

Proof. The claim is immediate if k = 0. Suppose then that k ≥ 1.

m•k ≤ 5
xk − 2

∑

j<k

bj + 3 (Claim 5)

<
5

(xk − 2)
3bk

(xk − 4)
+ 3 (Claim 6).

Claim 8: If i− 1 is normal and xi > 4, then

3µi ≥ µi−1(xi−1 − 2)
(

1− 15
(xi−1 − 2)(xi−1 − 4)

− 5
(xi−1 + 1/2)(xi−1 − 2)

)

.

Proof. Use (15) (left side) and Claims 7 and 3; the last term of the last factor uses Claim 3
and normality.
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Claim 9: If 0 ≤ i < log2(x0/7), then i is normal.

Proof. We use induction on i. It is trivial if i = 0 or x0 ≤ 14. Suppose x0 > 14 and that
the Claim is true for all j < i, where i < log2(x0/7). Since i− 1 is normal, Claim 8 applies,
and this together with µi−1 ≥ xi−1 + 1/2 gives

µi ≥ (1/3)(xi−1 + 1/2)(xi−1 − 2)
(

1− 15
(xi−1 − 2)(xi−1 − 4)

− 5
(xi−1 + 1/2)(xi−1 − 2)

)

≥ (1/3)(xi−1 + 1/2)(xi−1 − 2)− 5
xi−1 + 1/2
xi−1 − 4

− 5
3

= (1/3)(2xi + 7/2)(2xi + 1)− 5
2xi + 7/2
2xi − 1

− 5
3

(by (19))

= (2/3)(2xi + 7/2)(xi + 1/2)− 415/42
> xi + 1/2,

since xi > 4, which follows from our upper bound on i.

It follows that, in all previous claims, if x0 > 7 then any requirement of normality can be
dropped. From this observation, and Claim 8, it follows that for all i < log2(x0/7), and
provided x0 > 7,

µi ≥ 3−i
i−1
∏

j=0
xj

(

1− 2
xj

) (

1− 15
(xj − 2)(xj − 4)

− 5
(xj + 1/2)(xj − 2)

)

> 3−i
i−1
∏

j=0
xj

(

1− 2
xj

) (

1− 20
(xj − 2)(xj − 4)

)

= 3−ixi
02
−i(i−1)/2

i−1
∏

j=0

(

1− 3 · 2j

x0

) (

1− 2
xj

) (

1− 20
(xj − 2)(xj − 4)

)

. (21)

From here it is routine to show that, for all ε > 0, there exists a constant αε > 7 such that,
if 0 ≤ i < log2(x0/αε) and x0 > αε,

µi > xi
03
−i2−i(i−1)/2(1− ε)i.

Hence

log2 µi > i log2(x0(1− ε)/3)− i(i− 1)/2
= i(log2 x0 − i/2 + 1/2 + log2((1− ε)/3)).

Using n > µi, and setting i = blog2(x0/αε)c − 1 and β = x02−i > αε (so i = log2(x0/β)), we
have

log2 n > log2(x0/β)(log2(x0/β)− (1/2) log2(x0/β) + log2(β(1− ε)21/2/3))
> (1/2)(log2(x0/β))2,

provided ε < 1− 3
√

2/14 and x0 > 2αε. It follows that

x0 < β 2(2 log2 n)1/2
.
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This gives us the required upper bound on maximum chromon size in terms of the number
of vertices of the graph. (Note that if our lower bound x0 > 2αε does not hold, then x0 is
bounded above by a constant.)

We now show that the worst case bound given in Theorem 2 is sharp, up to a constant factor,
for the 2-assignments considered there.

Let G1 be the 4-star K1,4 with two of its leaves distinguished; we call these its terminals. The
central vertex and the terminals are coloured White; the other two leaves are Black. Now,
for each k ≥ 2, form Gk recursively from Gk−1 as follows. Take a path v0, v1, . . . , v3·2k−1−1

of 3 · 2k−1 vertices, and colour these vertices according to the parity of k: Black for even,
White for odd. Take 3 · 2k−2− 1 disjoint copies of Gk−1; call them G(j)

k−1, 0 ≤ j ≤ 3 · 2k−2− 2.
For each such j, set j′ = 2j + 1, join one terminal of G(j)

k−1 to both vj′ and vj′+1, and join
the other terminal to both vj′+2 and vj′+3 (or v1 and v2, if j = 3 · 2k−2 − 2). Finally, the
terminals of Gk are v0 and v3·2k−1−1.

It can be shown that the 2-assignment given here cannot be improved by the local operations
(a)–(c), and that the size of the largest chromon is Θ

(

2(2 log2 nk)1/2
)

, where nk = |V (Gk)|.

This shows that the constant factor
√

2 in the exponent of the upper bound of Theorem
2 cannot to be reduced by just looking at any 2-assignment that is locally optimal in our
sense and improving on our analysis of maximum chromon size. The results of Alon et al.
[4] and Haxell et al. [12] show however that some 2-assignments have much smaller largest
chromons.

One can propose further operations that might, heuristically, improve the chromon sizes still
further. For example, consider the following:

(d) Suppose u, v, w form a path of length 2 such that: u and w are nonadjacent and
balanced and have the same colour, and v is differently coloured and does not have
four antichromatic neighbours. Then flip the colours of u, v and w.

This reduces e(G, c). A 2-assignment that is locally optimal with respect to the operations
(a)–(d) has an additional property not generally found in those discussed in Theorem 2: if
v is an end vertex of a chromon, then either (i) v has at most one balanced neighbour, or
(ii) v has two balanced neighbours that must belong to the same chromon and are adjacent,
or (iii) v has three balanced neighbours which constitute a circuit-chromon which is actually
a triangle. This allows some slight tightening of the analysis in the proof of Theorem 2 (in
which Lemma 1 is now used with δ = 2). However, the effect is not huge: the bound still has
the form O

(

2(2 log2 n)1/2
)

, with the improvement being just a constant factor. The graphs Gk

described above demonstrate, again, that this bound is best possible up to a constant factor.
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