Computer Science Curriculum Developments in the 1960s

G.K. Gupta
School of Computer Science & Software Engineering
Monash University
Clayton Victoria 3800 Australia
(gopal@infotech.monash.edu.au)

Abstract

The discipline of Computer Science (CS) was born in the early 1960s when a number of
universities started teaching courses in the new discipline. A number of important
conferences held during the 1960s to discuss the nature of CS and whether CS programs
should be offered in universities culminated in the development of the ACM Curriculum 68.
Curriculum 68 was very influential in providing direction to academics who were struggling
to support or introduce a CS program in their universities and appears to have been widely
used. This paper discusses curriculum efforts in the USA in the 1960s and reviews papers
on CS education published during the period.

Biography

Professor Gopal Gupta completed BE(Hons) at the University of Roorkee (now, IIT
Roorkee), India, a Master’s from the University of Waterloo and PhD from Monash
University. He is currently Professor of Computer Science, Monash University. Previously
he was Professor and Head of Computer Science, James Cook University and Dean of
Information Technology, Bond University. Major areas of interest: biometrics, computer
security and computer science education.

Keywords: Computer Science Curriculum, Computer Science Education, Computer Science
History

1. Introduction

The discipline of Computer Science (CS) emerged in the early 1960s when a number of
universities started teaching courses in this new discipline. This article focuses on efforts to
define a coherent curriculum, especially centered around the Association for Computing
Machinery (ACM). Building on prior work by its Committee on Education, ACM, in 1962,
established a separate Curriculum Committee on Computer Science. The most important
CS education milestone of the 1960s was the development of the ACM Curriculum 68, a
model curriculum for Computer Science, which was very influential and appears to have
been widely used. In this paper, we describe CS curriculum discussions in the 1960s
including major CS curriculum activities and a number of papers on CS education published
during the 1960s.

The paper is organized as follows. In the next section the early days of CS education are
described. Section 3 discusses the 1963 and 1964 ACM National Conference Panel papers
and Section 4 provides a summary of the 1965 Preliminary Recommendations of the ACM
Curriculum Committee on CS. Section 5 reviews the papers presented at the 1967 Stony
Brook Conference on CS education while Section 6 describes a number of other papers
published before 1968. ACM Curriculum 68 is discussed in Section 7. Section 8 briefly
discusses university computer facilities in the 1960s and Section 9 concludes the paper.

2. The Birth of the Discipline — Early 1960s

The early years of the modern computing age, 1940-1955, were dominated by concerns
regarding computer hardware building and maintenance. By the mid-1950s a large number
of computers were being manufactured, many were being installed in the universities, and
the focus of the field started shifting to the use and training for the use of computers.

Although some not-for-credit and for-credit computing courses were being offered in many
universities in the 1950s to enable their students and faculty make effective use of
computers, the earliest significant papers on CS education appear to be by Louis Fein who
was a private consultant in California and a passionate supporter of CS education in
universities. He wrote an unpublished report on computing education for Stanford
University in 1957 and published three papers (Fein 1959a, 1959b, 1961) and was appointed
chairman of the ACM Education Committee in 1960. Fein also organized a panel on
“University Education in Information Processing” at the 1962 IFIP (International
Federation for Information Processing) Congress held in Munich, Germany (Fein, 1962).

In the two similar 1959 papers that were based on his work for Stanford University, Fein
explains that he had been studying the operation of university programs in computing, data
processing and related fields since 1956 by holding formal and informal discussions with
university administrators, computer center directors, faculty members, students and

industry representatives. About 150 universities and colleges were already involved in
computing although only a few had made a determined effort to select a field of interest, set
up a policy and implement it. Most were feeling their way. The most important impact on
university programs at that time was IBM selling heavily discounted IBM 650s to about 50
universities! on the condition that they would offer some computing courses. The
universities were offering a variety of computer courses but, in Fein’s view, most
universities were putting too much emphasis on the computing equipment and courses were
being designed as supplements to the equipment when equipment ought to be a supplement
to the courses. In some cases computing courses were quickly put together to take
advantage of the discounted computing equipment and the scramble to get such equipment
was in some cases disgraceful.

Fein had a clear vision for computer science education in universities and he appears to
have been one of the first to call the field “Computer Science” when he suggested that
universities establish a Graduate School of Computer Sciences (analogous to the Harvard
Business School) consisting of five departments, namely a Computer Department (including
the computer center), Operations Research, Systems, Information and Communication, and
Philosophy of Organization. He recommended a role for the computer center, presented a
list of courses, research topics and equipment required. In Fein’s view, computer science
met most of the characteristics that were required for it to be a discipline.

Fein (1961) presents an interesting and insightful description of university politics and of
the difficulties of establishing a new department in a US university around 1960. He very
strongly supports establishment of university CS departments and shows his frustration by
indicating that there was already a demand (from students), ability to supply the demand
(by faculty) and ability to obtain finance to establish new departments. Fein details the role
of computer center directors who were managing and often having to fund the computer
centers by selling computer and programming time but were reluctant to let go of their
teaching activities. Fein calls the teaching of computing courses by computer centers
“bootlegging” operations and computer center directors “successful bootleggers” and notes
that “in the end, all bootlegging operations must go out of business”. He presents a carefully
worked out plan, including financials, for a CS department (to be called “Synnoetics”) which
would in 1975 consist of 55 faculty members graduating 100 undergraduates, 50 master’s
and 15 doctoral students annually. A list of courses is presented including courses on Turing
machines, automatic programming, compilers, algorithms, foundations of models, non-
numeric models, heuristics, advice giving, simulation, pattern recognition, formal
languages, man-automation systems, and problem solving. A list of possible computing-

1 Although Fein(1959a) notes that IBM “presented” over 50 computers to universities and Knuth
(1972) states that IBM donated about 100 “free” computers, it appears that the computers were not
free.

related courses that could be offered by other university departments is also included and so
1s a list of research topics.

In spite of Fein’s strong views about the discipline of computer science, the emerging
discipline was suffering an identity crisis in the early 1960s (Ceruzzi, 1988). Some
academics thought it was a branch of mathematics, others thought it was electrical
engineering while yet others thought it was a new discipline. This identity crisis led to
considerable confusion about what Electrical Engineering and Mathematics departments
should be doing not only to provide computing knowledge to their own students but also to
meet the growing manpower needs of the computing industry.

As noted earlier, many universities were teaching computing courses. These courses, some
for credit and others non-credit, included courses in numerical analysis, introductory
programming, logic design and switching circuits, offered by Electrical Engineering,
Mathematics and by the computer centers. Harvard, M.I.T., Pennsylvania and Illinois had a
head start and were the first to offer computing courses but there were many others.
Tomkins (1963) provides some details of computing curricula at these universities and at a
number of others (including Michigan and Purdue) and lists another ten (including UCLA,
Berkeley, Columbia, and Wisconsin) that were offering computing courses. Special summer
school sessions were held at the University of Michigan and a 3-year Ford Foundation
Project on the Use of Computers in Engineering Education beginning in the fall of 1959 at
Michigan was designed to cope with the faculty training problem. This project sponsored
workshops, summer terms, visiting professorships, lectures, surveys and preparation of
teaching materials. A total of 217 faculty members from 65 universities participated in
workshops and summer terms (Katz and Organick, 1960-61, Tomkins, 1963). Some other
similar programs were supported by NSF.

Because of the involvement of the electrical engineers and the computer centers, two
conferences dealing with university computing education amongst other topics were held in
1960. The first of these was about the use of computers in engineering education held in
April 1960 and attended by 35 people (Report, 1960a). The second conference was the
conference of computing center directors attended by 98 people, held in June 1960 (Report,
1960Db).

The engineering education conference was also attended by a number of computing
academics including Bruce Arden, Richard Hamming, Elliot Organick and Alan Perlis. The
conference highlighted a diversity of opinions amongst the participants on how, when and
where computing should be introduced in engineering education. For example, Perlis
believed the introductory course should be more about problem solving and algorithms
while Arden thought computing could be used to motivate students’ ideas in mathematics.
Hamming’s view was that the course should focus more on the whole spectrum of
applications including those that were not mathematical.

The directors’ conference discussed CS curricula and research and how the computer centers
should support university teaching and research. The computer center directors made a
number of recommendations including that a university computer center being an essential

part of a university be administered and financed like a university library. The directors
were very interested in CS curriculum, since about 90% of them were academics, many got
involved in computing via their research. They recommended that the universities offer
undergraduate and graduate courses in CS. Furthermore, they noted that this was the first
conference to discuss detailed CS curricula. Most computer centers were offering non-credit
short courses for users and some also offered courses for credits including courses on
introduction to digital computation, advanced programming, even theory of automata,
machine design, numerical analysis and operations research. The directors agreed that CS
was a discipline in its own right. They discussed, but did not agree, whether the computer
centers should themselves develop into academic departments.

In the early 1960s, the name “Computer Science” started to gain currency in the USA
although not all academics agreed with the name. In a talk to engineers in March 1961,
George Forsythe said that “the name Computer Sciences is being attached to the discipline,
as it emerges” (Forsythe, 1961). He noted that the study of the discipline involved the theory
of computer programming, algorithms, numerical analysis, data processing, and the design
of computer systems. Forsythe further noted that it was imperative that all students of
engineering become intimately acquainted with computers in their first year and that the
computing courses be laboratory courses taught by “computer experts”.

Recognizing the importance of computing education, the ACM formed a Curriculum
Committee on CS in 1962 as a subcommittee of the Education Committee. Graduate
computing programs were starting to be introduced in universities and thus there was
considerable interest in CS curriculum. A panel discussion on CS education chaired by
George Forsythe had been held at the 1961 ACM National Conference. The Committee now
organized a panel discussion during the 1963 ACM National Conference and another at the
1964 National Conference. The Committee became an independent committee in 1964 and
presented preliminary recommendations in 1965 which were substantially revised and
extended and published in 1968 as Curriculum 68.

The computing environment in the early 1960s involved large computer installations at
major universities. By 1962, 187 US universities and colleges had computers (Tompkins,
1963). These computers were university resources for research, which often involved
numerical computations. One of the major concerns of the computer centers was to use the
machines effectively and keep them running day and night given the large investment in
them. Tomkins also notes the establishment of the IBM Systems Research Institute (SRI) in
1960 in New York (some references suggest 1957). Although the exact number of Institutes
established is not known, SRIs were established in Europe, Latin America and Australia in
addition to those in the USA. The first SRI had six departments: Systems, Applications,
Programming Languages and Techniques, Machine Organization and Logic, Mathematics
and Statistics, and Operations Research (Tomkins, 1963). SRI was offering courses in such
diverse topics as systems architecture, computational linguistics, human factors,
simulation, information theory, queuing theory, algorithm development and statistics. Some
programs were short (4 weeks or less) while others took six months or longer. IBM was also

offering customer education programs. 14,000 customer personnel participated in these
programs during 1962 (Tomkins, 1963).

Further discussions about the name and nature of the discipline continued throughout the
1960s (Ceruzzi, 1988). For example, a panel discussion on university education in
information processing at IFIP62 could not agree on a definition of the discipline. Saul Gorn
from Pennsylvania suggested that the discipline was “the study of the synthesis and
analysis of mechanical languages and their processors” while others thought the discipline
consisted of information storage, retrieval, sorting and transformation. There was a clear
difference of opinion between the Europeans and the Americans with the Europeans
believing that information processing was not and should not be a new discipline while the
Americans thought that it was emerging as a new basic discipline. The European
universities therefore were reluctant to offer courses in the emerging discipline (Fein, 1962).

Gorn suggested a new name, “Computer and Information Sciences”, for the discipline (Gorn,
1963). In his view, the characteristics of this new discipline were the mechanical languages
and some of their properties. The discipline could be distinguished from others by its
attitude and purpose since in the new discipline, the pragmatic question of the relation of
symbols to users was a central issue. Another important difference was that of background
as a student in the new discipline had to acquire basic knowledge about digital computers
and basic principles of computer programming in addition to basic mathematical
background. Finally, Gorn notes that although computer oriented people in different
universities had appeared in different departments, this could not continue since the other
disciplines that included CS would have to limit the nourishment they could afford to such a
growing child.

Although the Division of Computer Science within the Mathematics Department at
Stanford was established in 1961 (Knuth, 1972), the first CS department was established at
Purdue in 1962 (Rice and Rosen, 2004). A number of universities now started establishing
similar departments. CS departments were established at Miami, Wisconsin, Illinois and
North Carolina universities soon after2. Forsythe (1963) discusses the importance of
universities setting up CS departments as soon as they could hire suitable faculty which
was “astonishingly hard” to find. He notes that CS was not part of Mathematics and was
about halfway between Humanities and Sciences and Engineering. Forsythe presents a list
of topics that should be included in CS and describes how about a dozen US universities

2A number of departments were also established in Australia — the University of Sydney established
the Basser Computing Department within its School of Physics around 1956. It has been reported
that a numerical analysis and computing course was being offered at Sydney as early as 1947 and
courses were being offered at the University of Melbourne from 1955.

were offering integrated CS graduate programs under several organizations. These
organizations included interdepartmental programs as well as a number of programs in
Mathematics.

3. 1963 and 1964 ACM National Conference Panels

At the 1963 ACM National Conference, a panel discussion on CS curriculum was held. Six
papers were presented describing courses which could form the basis of a CS curriculum.
Other educators were asked to write critiques of these papers. The papers and their
critiques were published in the April 1964 issue of the Communications of the ACM. The
aim of the 1964 panel discussion was to address complete undergraduate programs as
opposed to the 1963 panel which discussed courses at different universities.

In addition to the courses, the name and nature of the discipline was also discussed at the
1963 Panel (Keenan, 1964). In Keenan’s view, it was the intellectual orientation of the
investigator that made CS different from other disciplines like mathematics, linguistics,
electrical engineering, or physics and he notes that a computer scientist was concerned with
the following four topics:

1. Organization and interaction of equipment constituting an information processing
system

2. Development of software systems with which to control and communicate with the
equipment

3. Derivation and study of procedures and basic theories for the specification of
processes

4. Application of systems, software, procedures and theories of computer science to
other disciplines

Keenan gives examples of the kind of work that was involved in each of these. He also notes
that over 15,000 computers were in use at that time with a production rate of 500
computers a month and questions whether the ability to build computers was outstripping
the ability to educate people who could make intelligent use of the machines. Keenan goes
on to discuss the type of CS education that was needed and classifies education into the
following five types: general education, training of programmers, orientation of scientists,
education of computer specialists and development of computer scientists.

Keenan’s introduction is followed by six papers:

e An introductory course Programming digital computers by Alan Perlis of Carnegie
Institute of Technology (Perlis, 1964)

e An introductory course Introduction to digital computing by Bruce Arden of the
University of Michigan (Arden, 1964)

e Two courses in Numerical analysis by George Forsythe of Stanford University
(Forsythe, 1964)

e Four courses in Logic by Robert Korfhage of Purdue University (Korfhage, 1964)

® One course in Mechanical languages by Saul Gorn of the University of Pennsylvania
(Gorn, 1964)

e Fours courses in Logic design and switching theory by David Muller of the
University of Illinois. (Muller, 1964)

Perlis discusses a first one-semester course in programming which had been offered at
Carnegie since 1958. The basic aims of the course were to teach programming, and to teach
the nature of computers through giving the students a large number of examples in problem
solving. The major themes covered in the course were: structure of algorithms including
iteration and recursion; structure of languages including flowcharts and Algol grammar;
structure of machines including introduction to translator and number systems; structure of
programs including the distinction between programs and algorithms; and structure of data
including vectors and matrices. Perlis also presents a proposal for an undergraduate option
in computing within a department of mathematics program which includes a total of only
six computing courses in the four-year program (programming, switching theory, computer
systems, numerical analysis, logic and theory of computation).

In Arden’s view, the only aim of CS was to train programmers and analysts. He notes that a
programmer-analyst was concerned with numerical and non-numerical algorithms,
languages for their expression and machines for their representation. He then presents a
first course that surveyed relevant topics and provided, largely by examples, an introduction
to programming with an emphasis on numerical algorithms. He poses the question: should
the first course be a survey course, or should the principal concern be the development of
working skills? So the issues of breadth vs. depth and the role of programming in the first
course have been around since the birth of the discipline. In a critique of the course, C. C.
Gotlieb questions the compression of computer systems, numerical analysis and
programming into one course.

Forsythe presents two courses in numerical analysis: a first course (30 lectures) for
freshmen and sophomores requiring a programming prerequisite and a senior course (90
lectures) for juniors, seniors and graduate students requiring a programming course and
considerable mathematics background as prerequisites. Forsythe notes the importance of
good exercises and comments that there should be a marriage of good analysis and
imaginative programming. In a critique of the courses a number of suggestions are made for
improving them. Korfhage proposes a series of four theory courses — introduction to logic
and algorithms, logical design, mathematical logic, and a graduate course on computability
and algorithms. In a critique of these courses, Hao Wang of Harvard suggested that the first
course be split in two, one devoted to logic, the other to algorithms.

Gorn describes a course in programming languages for first-year graduate students. A
prerequisite course on introduction to digital computers was required. The course was
concerned mainly with having the students design symbol manipulation processors,
generators, recognizers, translators, and various interpreters. Muller on the other hand
discusses the place of logical design and switching theory in the CS curriculum and presents
an outline of four courses. The courses included an introductory course which covers
computer organization followed by three courses — Switching Theory I, Switching Theory
II, and Logical Design. The logical design course includes arithmetic operations and a case
study in system design. The last two courses were for graduate students.

Almost all the courses described above were packed with too much material since most
university programs that included computing (e.g. mathematics) included only a small
number of computing courses. Also, the course descriptions included textbook references
which indicated that CS textbooks on many topics were becoming available.

The 1964 Panel included three presentations of complete undergraduate CS programs.
Schweppe (1964) presented a program proposed to start at the University of Maryland in
Fall 1965. Conte (1964) presented the CS program at Purdue and Varga (1964) presented
the undergraduate program at Case Institute of Technology. These provided three different
approaches. The Case computer technology program was based on the belief that a
computer technology undergraduate program had to be closely related to engineering and
the program was therefore offered within the Division of Engineering. It allowed students a
choice of either of the two branches: computer engineering or numerical methods and
programming. Purdue CS Department was offering undergraduate and graduate degree
programs. The undergraduate program included a minimum of 24 hours of mathematics
and 16 hours of CS. The CS courses included 7 hours in programming and systems, 6 hours
in numerical analysis and 3 hours in Boolean algebra and switching theory. Three major
areas of concentration (numerical analysis, logic and automata theory, and programming
and systems) were available at the graduate level with most students entering the graduate
program after an undergraduate mathematics degree. The proposed Maryland program was
developed in the Computer Science Center of the university and included courses for both
undergraduate and masters programs. The programs were quite different from the other
two. They emphasized an algorithmic approach to solving problems and included courses
like algorithmic methods, computational laboratory, numerical calculus, language and
structures of computers, and non-numerical processing. Majors in CS were required to take
at least 30 hours of CS courses.

4. 1965 Preliminary Recommendations

By the mid-1960s, it was becoming clear that the name “Computer Science” had
overwhelming support within the academic computing community. In fact a large number of
universities were already offering or planning to offer undergraduate CS or related
programs (Atchison and Hamblen, 1964). Given that the work of the ACM Curriculum

Committee on CS was being overtaken by developments on the campuses, the Committee
decided to provide some preliminary guidelines.

These Recommendations were the result of about three years effort by the ACM Curriculum

Committee on CS. The report presents the following about the nature of the discipline:

Computer Science is concerned with information in much the same sense that
Physics is concerned with energy; it is devoted to the representation, storage,
manipulation and presentation of information. Some forms of information have
been more thoroughly studied and are better understood than others;
nevertheless, all forms of information — numeric, alphabetic, pictorial, verbal,
tactile, olfactory are of interest to Computer Science. (ACM, 1965)

The Preliminary Recommendations included five required CS courses, four highly
recommended CS courses and a selection of seven CS electives so that the programs based
on the recommendations were flexible enough that graduating students could undertake
graduate work in CS or in another field or join the industry to work on systems
programming or application programming.

The Recommendations presented a list of courses that were based on courses in existence,
for example some were based on courses described at the 1963 and 1964 ACM National
Conferences. The report also contained a catalogue-type description of each course with a
list of references for each and noted that adequate texts were not available for some of them.
The structure of the recommended program is shown in the table below that is reproduced
from the 1965 report3.

Computer Science Supporting
Courses\ Basic Courses Theory Courses Numerical Algorithms Computer Models
Recommendations and Applications
Required 1 Introduction to 5 Algorithmic 3 Numerical Beginning Analysis
Algorithmic Languages and Calculus (or (12 cr)
Processes Compilers Course 7) Linear Algebra (3)
2 Computer
Organization and
Programming
4 Information
Structures
Highly 6 Logic Design and 7 Numerical Algebraic Structures
Recommended Switching Theory Analysis I Statistical Methods
Electives 9 Computer and 8 Numerical Differential
Programming Analysis II Equations
Systems Advanced Calculus
Physics (6 cr)
Other Electives 10 Combinatorics 13 Constructive Logic 11. Systems Analog Computers

3 The course numbers show the sequence of courses in the preliminary recommendations.

-10 -

and Graph Theory | 14 Introduction to Simulations Electronics
Automata Theory 12 Mathematical Probability and
15 Formal Languages Optimization Statistics Theory
Techniques Linguistics
16 Heuristic Logic
Programming Philosophy and
Philosophy of
Science

These recommendations did not include courses on computer architecture, operating
systems, artificial intelligence, computer graphics or software development.

5. 1967 Stony Brook Conference

Originally the aim of this conference was to invite about 30 individuals to assist Stony
Brook in founding a graduate CS program. Given the interest of the CS community at that
time in issues like what should be taught in a CS program and at what level, it turned into
an important four-day conference of about 70 invited participants from educational,
industrial and governmental organizations. The conference, that included six Europeans,
one Australian and eleven people from industry, was held at Stony Brook during June
19674. The aims of the conference included discussing CS graduate programs in detail,
specifying the content and structure of master’s and doctoral programs, against a
background where some academics were still questioning the very premise of such programs
(in spite of more than 20,000 undergraduate CS majors and almost 5,000 graduate majors
enrolled in US universities in 1966-67 according to Hamblen (1968)).

Misconceptions about CS existed even in the National Academy of Sciences and other US
government bodies since they believed that there was no need for a special program in CS
as there was none for electron microscopy and both were just tools. CS was not considered a
coherent intellectual discipline. Also, the best computing professionals were trained in
mathematics or physics or electrical engineering and therefore training of faculty and
students could be carried out by these disciplines. Some believed that computing was only a
fad which was going to subside (Oettinger, 1966).

In addition, the conference was to consider the controversial issue of CS organizational
structure in a university given the almost total rejection of CS by some academics and total
acceptance by others. Issues of the relationship between computer centers and CS academic
programs including joint appointments, CS research in computer centers and the role of CS
academics in computing services, were also to be discussed. It was noted that people holding
conflicting and competing viewpoints were purposely invited to bring important issues into
the open for debate.

4 http!//www.cs.sunysb.edu/welcome/OurHistory.html provides a list of participants and their group
photo.

- 11 -

Many conference participants were concerned about the role of CS in higher education.
There was a fear that CS was not considered to have sufficient intellectual respectability
within the academic community given the commonly expressed view that a computer was
just a tool and a body of study based upon a tool was not a proper intellectual discipline. The
fears were not helped by Oettinger (1967), President of the ACM at that time and Professor
of Linguistics and of Applied Mathematics at Harvard, who noted that departments of CS
had no place in the eternal scheme of things and that it was an intellectual mistake to have
CS departments. He then added that he could see no tactical alternative to having them
although he was worried about the isolation of CS in a separate department from
mathematics and engineering. He also opposed the name "Computer Science” and noted
that using that name was dangerously misleading to students and the world at large since
most of what CS academics did was engineering. Oettinger thought that CS graduates
should be well versed in physics, mathematics, engineering, economics and social sciences.
In the discussion that followed Oettinger’s talk it was noted that it was perhaps politically
correct for a Harvard academic not to believe in CS.

The uncertainties about the intellectual substance of computing came mostly from
mathematicians or pure scientists but not from engineers. Friction already existed between
pure and applied mathematics. Although there was an enormous range of intellectual
activity in computing, most observers were not familiar with the full scope of CS (Beckman,
1967). Beckman briefly described CS programs in 19 US universities and emphasized the
importance of proper staffing and organization and the computing subjects taught. The
issue of a suitable organization structure for CS was discussed and several different options
presented. Beckman concluded that there was no correct organizational structure that
would suit all universities. Although Zadeh (1967) from the Department of Electrical
Engineering and Computer Science at Berkeley, agreed that there was no perfect
organizational structure for CS, he argued that many EE departments took it as their
responsibility to provide their students with extensive training in digital information
processing and CS. In his view, it did not make sense to establish separate CS departments
when there were established EE departments already offering computing programs.

Although some people were reluctant to support establishment of a new department, others
were strong proponents of a separate CS department structure. Alan Perlis from the
Department of Computer Science at Carnegie-Mellon and Stanley Gill from the Computing
Center at Imperial College, London believed CS had other interests outside Mathematics
and EE (Perlis’ paper was titled “Computer Science is Neither Mathematics nor Electrical
Engineering”) that would be damaged if it was placed in either Mathematics or in EE. Gill
noted that CS may have been hotch-potch at that time but so was EE and he did not want
EE “messing up CS”. CS was not part of EE and the misconception had caused too much
damage already. Gill disagreed with Zadeh’s comment that CS lies close to mathematics in
its attitude and remarked that it was the attitude of mathematicians that led to their
dismal failure to adopt CS when they had the chance. CS had a very different attitude (Gill,
1967 and Perlis, 1967).

-12 -

Perlis discussed the CS PhD program at Carnegie-Mellon University which consisted of
logic and algebraic theory courses in the first year as well as programming languages,
systems programming, complex information processing systems, and a seminar. In the
second year, formal structures in CS, automata theory, design of digital computer systems,
numerical analysis, optimization techniques and linguistics courses were offered. Perlis
suggested that no one should obtain a graduate degree in CS who was not able to expertly
program in at least three different programming languages and on a large scale. He further
commented that programming is at the root of CS; not machines, not algorithms, not
recursive function theory, not mathematical linguistics. In his view, CS existed only because
of computer programming. Thus from the very early days of CS education, such views
encouraged the belief that “CS = Programming”.

There were others who had a very different view of the discipline. One of these views
suggested that a discipline may be viewed as a subset of knowledge which has three
important characteristics: scope, depth, and structure (Slamecka, 1967). For it to be a
science, a discipline had to have a rather general principle, a phenomenon, or an entity
occurring widely as a primitive in the universe or in man’s conscious world. What was the
denominator of computer and information science? In Slamecka’s view, it was unlikely to be
the computer. A complex machine can hardly be considered a principle. The algorithm was
also not a primitive since it was a process acting on entities or elements. Slamecka
recommended that a more basic denominator was needed and it was information.

If information and symbols were the denominator, the entire process of converting a
problem to its solution was information manipulation. In Slamecka’s view, CS was trying to
understand and control via symbols a variety of problems; few concepts were as powerful.
Slamecka recommended that the discipline be called Information Science and Engineering
and described the structure of the discipline by viewing it as consisting of three theories or
concerns:

1. Theory of information — this remained to be developed but includes nature and
properties of information including information representation, information
relations, information measure, and information structure.

2. Theory of information process — concerned with the generation, transmission,
transformation, storage and control of information. Slamecka discussed three levels
of information process theory — syntactic, semantic and pragmatic.

3. Theory of information systems — the theory of all systems that generate, store, and/or
transmit information. Slamecka noted that difficult areas in the theory of
information systems lie at the semantic and pragmatic levels and these were poorly
developed.

Slamecka noted that theories of information and of information process are of the nature of
science while the theory of information systems was engineering in its character. CS

- 13-

therefore straddled and united science and engineering. Unfortunately, there was little
support for Slamecka’s views given that there were others who were presenting a much
simpler view that CS was mostly about programming.

Four workshops discussing the master’s program, the doctoral program, the position of
Computing Science in the university structure, and the computing center and the academic
program were held at the conference.

The master’s program workshop report (Ashenhurst, 1967) noted a number of possible
objectives for the master’s program but put the heaviest emphasis on the technical
professional degree, to some extent integrating it with a predoctoral degree. The workshop
focused on a list of questions about the master’s program, for example what capabilities
should the graduate have, what mathematics and programming level should be prerequisite
and whether a thesis or a project should be part of the program? References were made to
Curriculum 68 which was under preparation at that time. A list of industry positions that
could be suitable for master’s graduates was presented. The workshop agreed that a
professional master’s needed to be more than one year but perhaps not two years.

The PhD program workshop report (Hull, 1967) discussed PhD programs at five universities
(Purdue, Pennsylvania, Michigan, Wisconsin and Toronto) and discussed reports from seven
subject areas with the aim of determining to what extent each area should be required for
all doctoral students. Since four of the five PhD programs discussed were being run by
graduate schools that had no undergraduate CS program and were admitting students from
many disciplines, the issue of whether a BS degree in CS was a sufficient basis to go on to
graduate studies came up. Many participants thought a BS degree in CS was not a good
preparation, with some participants from successful graduate CS schools questioning the
necessity or desirability of undergraduate programs in CS.

There was lively discussion about undergraduate CS programs after each of the master’s
and doctoral program workshop report presentations. Not only was there concern about
admitting CS graduates to CS PhD programs, there was also some concern about admitting
a CS graduate to a CS master’s. Some people thought that a master’s program was likely to
cover material similar to that which a CS graduate would have studied at undergraduate
level and therefore a university might not need to offer both. Elliot Organick from the
University of Houston remarked that he was disturbed that there was no workshop on
undergraduate education in the conference. In his view, throughout the conference there
was a negative or apologetic or inconsiderate attitude towards undergraduate CS programs
from many participants. One of the reasons for this might have been that CS academics
were having difficulty figuring out how such a program would fit with CS graduate studies
and in the view of some graduate studies were more important for CS to become
respectable. Organick noted that universities must develop the capacity to supply
adequately educated computing graduates to meet the critical need of the society. He
thought that undergraduate programs would not impact graduate programs significantly
since no more than 10% or 15% of undergraduates would want to go on to graduate studies.
Others thought the ratio could be more like 30%, as it was in engineering.

-14-

The CS in university structure workshop report (Atchison, 1967) lists eight different
solutions. The workshop unanimously agreed that CS was a separate academic discipline
and a suitable administrative structure was needed to nourish the new discipline.

The workshop report on the computing center and the academic program (King, 1967) lists
the functions of the computing center and discusses a number of issues about the centers
and CS academic programs. It was noted that organization of computing services was likely
to change significantly in the future.

6. Other Pre-1968 Papers

In an influential paper, Forsythe (1967) addressed many of the issues that were facing the
CS community in the mid-1960s. Forsythe defined CS as “the art and science of
representing and processing information and, in particular, processing information with the
logical engines called automatic digital computers”. He noted that the difference between
engineering and CS was that “computer scientists work with a very abstract medium
(information) and design systems typically far more complex in detail than most elaborate
engineering systems”.

Forsythe identified different groups of students to whom CS education should be directed:
non-technical students, specialists in other fields, and CS specialists. He recommended that
to achieve these objectives it was necessary to create a department of CS without which
computer education could not even keep up with progress in the discipline. Utilizing a
number of computer scientists that were scattered through other university departments
would be quite ineffective in satisfying the needs of CS.

Forsythe noted that Stanford had no undergraduate program in CS and had no intention of
starting one. Curiously enough, Forsythe’s view was that a bachelor’s degree in CS would be
a terminal degree although CS could be appropriate for graduate work in another discipline.
Forsythe also remarked that the 1965 Preliminary Recommendations were similar to a
master’s curriculum.

In a survey of the coursework done by CS master’s degree students at 25 US universities, it
was found that all students were taking a programming course (Fortran, Algol or MAD?),
one or two courses in numerical analysis, and there was considerable emphasis on software
design and construction, Boolean algebra, and automata theory. Artificial intelligence was
present in many. There were few courses on computer applications, numerical control,
hardware design and there were almost no business related courses (Elliot,1968).

> MAD, the Michigan Algorithmic Decoder, was designed at the Michigan Computer Center by Bernard Galler,
Bruce Arden and Robert Graham. It was designed for rapid compilation for student problems (Tomkins, 1963).

-15-

Considerable discussion took place regarding directions for including computing in EE
curricula and the role EE departments needed to play in providing undergraduates with CS
competence. The COSINE Committee of the National Academy of Engineering was formed
in 1965 (COSINE, 1967, 1968). The committee believed that EE had vital concern not only
with the use but also with the conception, design and construction of digital computers. A
major reorganization of the EE curricula with greater emphasis on discrete systems that
could accommodate the needs of students wishing to major in computer sciences within EE
was required. It was recommended that EE curricula needed to be much more flexible
allowing a student almost a full year of electives from courses that were comparable to those
taken by CS students. The Committee presented subject areas rather than courses that
could be covered. This included only a small number of computing courses; a number of
significant areas were not included, for example, data structures, databases, computer
graphics and artificial intelligence. An option within EE was recommended as the best route
for offering the Computer Engineering program.

7. Curriculum 68

As noted earlier, the number of CS programs being offered in the USA was growing rapidly
and experience from these programs and new developments in computing led to the 1965
Preliminary Recommendations being substantially revised. The Curriculum 68 report
recognized that the debate on the justification and description of CS as a discipline had
progressed. It also noted that the name of the discipline was still under discussion,
including whether it should be called CS, or perhaps given a name that had a broader scope,
for example Information Science or even Computing and Information Science. Given the
strong support for the name Computer Science, the Committee endorsed it.

The Curriculum 68 committee was concerned about how much it should advocate
undergraduate programs as opposed to graduate programs but it found that both
undergraduate and graduate programs were growing rapidly and therefore it was necessary
to provide direction to both. The Committee’s immediate objectives were to organize known
material into a rational academic curriculum and provide a sense of direction to the colleges
and universities for undergraduate and master’s degree programs. Doctoral programs were
also discussed since computer scientists considered the establishment of doctoral programs
to be very important for the discipline to achieve respectability. The report also includes
recommendations about service courses, CS minors and continuing education.

The report was well-organized, lucid and complete as well as visionary given the
environment in which it was prepared and to some extent it helped standardize the CS
curriculum. The recommendations also encouraged publication of many textbooks since the
authors could now write for the recommended courses. The Curriculum 68 committee
consisted of 12 people, almost all of whom attended the Stony Brook conference. William
Atchison, a member of the Committee and the first chairman of the ACM Curriculum
subcommittee, has noted that the Committee worked very hard, and sought advice from a

-16 -

large number of consultants (Curriculum 68 Report lists 36 consultants and 28 others who
sent written comments), with the aim of maximizing the shelf-life of Curriculum 68. Since
most of the curriculum designers had their training in mathematics, much time was spent
on discussing just how much mathematics should be required in the curriculum (Atchison,
1981).

The report made it clear that establishing a CS program in a college or university faced
formidable difficulties given the problems of finding adequate faculty, providing adequate
laboratory facilities and developing new courses in the discipline.

The Committee proposed a classification of CS, somewhat similar to what Slamecka had
proposed:

1. Information structures and processes — including the representation and
transformation of information structures and theoretical models for such
representations and transformations. This area embraced data structures,
programming languages and models of computation.

2. Information processing systems — systems having the ability to transform
information; interaction of software and hardware. It included computer design and
organization, translators and interpreters, computer and operating systems and
special purpose systems.

3. Methodologies — application areas of computing including numerical mathematics,
data processing and file management, text processing, symbol manipulation,
computer graphics, simulation, information retrieval, artificial intelligence, process
control and instructional systems.

In addition to the above three areas, two other related areas were listed. These were
“Mathematical Sciences” (12 course titles listed) and “Physical and Engineering Sciences” (9
course titles).

The 1965 Preliminary Recommendations had envisaged 16 CS courses; 11 were retained in
Curriculum 68 while two of the others (Computer Organization and Programming,
Algorithmic Languages and Compilers) were split into two courses each and three were
omitted (Combinatorics and Graph Theory, Mathematical Optimization Techniques, and
Constructive Logic) since they were considered outside CS. Seven new courses were added,
including a course on discrete mathematics and another on computer organization; a total of
22.

Curriculum 68 recommended that a major in CS should consist of at least 30 semester hours
of CS courses, including eight core subjects consisting of four basic courses and the first four
intermediate courses, plus two electives from the remaining intermediate courses. This
required that only about a quarter of a four-year degree program be devoted to CS courses
and therefore the recommendations were flexible. The Committee noted that undue

-17 -

specialization was not appropriate in the undergraduate program but technical electives
could be used to develop, for example, specializations in applied systems programming,
computer organization and design, scientific applied programming, or data processing
programming.

The Curriculum 68 committee discussed the role of programming experience and asserted
that developing programming skill is by no means the main purpose of an undergraduate
program in CS; nevertheless such skill is an important by-product. True-to-life
programming projects, perhaps during summer employment, were recommended.

The Committee accepted the recommendations reported in Atchison (1966) regarding the
mathematics content of a CS undergraduate program. A minimum of 18 semester hours of
mathematics courses (Introductory Calculus, Mathematical Analysis, Probability, Linear
Algebra and two electives) was recommended.

A major Curriculum 68 contribution was detailed course descriptions including course
philosophy and associated textbooks and references. In addition, the report provides
detailed course interrelationships including prerequisites.

7.1 Curriculum 68 — Basic and Intermediate Courses

Curriculum 68 recommended four basic courses, nine intermediate courses, and nine
advanced courses. The core curriculum, as noted earlier, consisted of four basic courses and
the first four intermediate courses. The basic courses were intended to be taught primarily
at the freshman-sophomore level. The proposed number of hours of lectures and laboratories
each week and the number of credit hours are shown for each course. Laboratory work
would be confined to three of the four basic courses and two advanced courses. Detailed
curriculum and an annotated bibliography were provided for each course. The four basic
courses were:

B1: Introduction to computing (2-2-3)

B2: Computers and programming (2-2-3)

B3: Introduction to discrete structures (3-0-3)
B4: Numerical calculus (2-2-3)

These courses included material in some of the courses presented in the 1963 ACM National
Conference Panel. B1 was mostly about algorithms and programming using a single
language and perhaps introducing a second language that was quite different (e.g.
SNOBOL). B2 was about machine language and assembler programming. B3 was a basic
discrete mathematics course while B4 was a basic numerical algorithms course. These were
supplemented by nine intermediate courses which were designed for junior-senior level:

e I1: Data structures (3-0-3)
e I2: Programming languages (3-0-3)

- 18 -

I3: Computer organization (3-0-3)
I4: Systems programming (3-0-3)
I5: Compiler construction (3-0-3)
16: Switching theory (3-0-3)

I7: Sequential machines (3-0-3)
I8: Numerical analysis I (3-0-3)
19: Numerical analysis II (3-0-3)

The first four intermediate courses were part of the core and consisted of mostly basic CS
material. I1 dealt with data structures like lists, arrays, trees and graphs, and searching,
sorting and storage structures for them. I2 covered specification of programming language
syntax and semantics, storage allocation, list processing, string manipulation and
simulation languages. I3 was computer organizations which brought together material from
previous courses. 14 was devoted to a study of batch processing, loading, subroutine linkage,
databases and their design, design of files, tables and lists, and restricted accessing
methods. The next five intermediate courses were more specialized.

The eight required core courses (B1-4, I1-4) provided a fair balance including one numerical
analysis course and a discrete structures course.

7.2 Curriculum 68 — Advanced Courses

The advanced courses were to be offered at junior-senior level or at graduate level and were
classified as such either because of their higher level prerequisites and required maturity or
because of their concern with special applications. Detailed curriculum and an annotated
bibliography were provided for each advanced course.

A1l: Formal languages and syntactical analysis (3-0-3)

A2: Advanced computer organization (3-0-3)

A3: Analogue and hybrid computing (2-2-3)

A4: System simulation (3-0-3)

A5: Information organization and retrieval (3-0-3)

A6: Computer graphics (2-2-3)

AT7: Theory of computability (3-0-3)

AS8: Large-scale information processing systems (3-0-3)

A9: Artificial intelligence and heuristic programming (3-0-3)

The nine advanced courses dealt with a variety of topics. Al covered the theory of context-
free grammars and formal languages, syntactic analysis and the relationship between
formal languages and automata. A2 dealt with computer system design including computer
arithmetic, storage management, input-output, and comparison of different computer
systems. A3 dealt with the concerns of engineers, some of whom were still using analogue
computers. A4 dealt with simulation and modelling of discrete systems. A5 covered
techniques for organizing, storing, matching and retrieving information. A6 dealt with

-19 -

handling of graphical information including line drawings, block diagrams and 3-D surfaces.
AT covered abstract models of machines including Turing machines. A8 dealt with data
processing and covered information storage and retrieval in the business data processing
environment. A9 was to deal with computer applications that attempt to achieve goals
considered to require human mental capabilities.

7.3 Curriculum 68 — Master’s and PhD Programs

The Committee recommended an outstanding master’s program that was to include both
breadth and depth. To obtain breadth, courses were to be taken from each of the three areas
of CS (viz. Information structures and processes, Information processing systems, and
Methodologies). To obtain depth, a student was to develop an area of concentration in which
a thesis or project should be done. It was recommended that a master’s program consist of
nine courses including two courses from each of the three areas of CS and further courses in
mathematics or CS containing high mathematical content.

It was noted that doctoral programs would vary from university to university depending on
the interests of the faculty members and therefore detailed recommendations for the
doctoral program were not possible. The report referred to the Stony Brook Conference for
further discussion of such programs. Following Curriculum 68, a number of solicited articles
dealing with research and teaching areas relevant to doctoral programs were published.

8. Computing Facilities in the 1960s

The computer facilities available at each university impacted the type of computing courses
that were being offered and whether the university introduced a CS program.

As noted earlier, the IBM program of heavily discounting machines to more than 50
universities in the 1950s helped many universities establish computing facilities. More
importantly, during the 1950s and 1960s, National Science Foundation provided
considerable grant money to universities to establish or upgrade computing facilities
(Aspray and Williams, 1994). NSF started getting grant proposals with computing
requirements in 1953 and as a result an Ad Hoc Advisory Panel on University Computing
Facilities under the chairmanship of John von Neumann was established in 1955. In the
beginning, the Foundation redirected some funds to computing but demand for computing
facilities was growing and in 1958 NSF received 19 facilities requests, most of them for
computing. From 1959, the Foundation decided to allocate a separate budget for large
computer equipment purchases. NSF support for computer facilities rose from $2.5 million
in 1961 to $11.3 million in 1967 and then declined over the next five years.

As a result of growing computing needs and rapidly changing technology (e.g. time-sharing
systems, IBM System 360) a number of investigations into computing needs were
conducted. Two important reports, the 1966 Rosser report “Digital Computer Needs in
Universities and Colleges” (Rosser, 1966) and the 1967 Pierce report “Computers in Higher

-20-

Education” (Pierce, 1967), provided much information, made many recommendations and
had considerable impact on funding for computers in higher education. The Rosser
committee found that computing facilities at universities were growing quickly. There were
40 university computing centers in 1957, 400 in 1964. It recommended that the academic
computing community be doubled over the years 1964 to 1968. The Pierce committee
recommended that the Government cooperate with universities to improve computing
facilities and called for extensive training of faculty to meet the demand for computing
courses. Another survey of expenditures, sources of funds and utilization of computers in
higher education was carried out in 1966 by Hamblen (1968) and a list of computers
installed and on order is included in this paper. Commenting on some of the information
collected during 1966-67, Hamblen (1971) notes that the majority of 32 bachelor’s degree
programs surveyed by him were lacking adequate hardware. More computers and links to
larger computers were needed.

9. Conclusions

This paper has described the debates that were going on in the 1960s about the nature of
CS, whether it constituted a respectable discipline and whether universities ought to offer
CS programs. If they were to offer CS programs, what should be included in them? Other
issues were whether departments of CS needed to be established at universities and what
role computer centers ought to play in teaching.

The debates on whether computing should be in engineering or mathematics were
inconclusive since neither engineering nor mathematics were able to reach consensus on
what should be taught in computing. Thus there was slow progress in effective curriculum
changes in both discipline areas to accommodate computing. As an example, Rice and Rosen
(2004) describe friction between CS advocates and mathematics in the early 1960s at
Purdue. There were debates in the CS community as well. Korfhage (1969) reports an
amusing discussion in which a CS academic was suggesting that the CS curriculum should
be less theoretical, more practical, while a voice from industry was calling for more theory.
Finally, voices of business-oriented computing advocates were lost in these debates. Some
early business computing programs were started in junior colleges while Data Processing
Management Association (DPMA) was promoting certificate programs that required three
years experience in the field (Tomkins, 1963).

Major developments in CS curriculum in the USA during the 1960s culminated in the ACM
proposals presented as Curriculum 68. Although Curriculum 68 did not stop the debates
about where a CS department should be located in a university or when a university should
start an undergraduate CS program, the landmark contribution was very influential in
showing that CS was indeed a discipline. It provided direction to academics who were
struggling to support or introduce CS programs within their universities and therefore
spawned many undergraduate and graduate degree programs. Curriculum 68 stood the test
of time in a very dynamic field. The basic and intermediate courses it recommended are still

-21-

the basis of many undergraduate programs. The Curriculum 68 committee showed

tremendous foresight and perhaps no curriculum effort since then has had the same impact
on CS.

Acknowledgements

I wish to thank Karl Reed for carefully reading a draft and making a number of valuable
suggestions. I also thank the referees for their comments which have assisted in improving
the paper and Dr David Grier, Editor in Chief of the Annals, for encouragement.

References

ACM (1965), ACM Curriculum Committee on Computer Science, An Undergraduate
Program in Computer Science — Preliminary Recommendations, Comm. ACM, Vol 8, No 9,
pp 543-52.

ACM (1968), ACM Curriculum Committee on Computer Science, Curriculum 68:
Recommendations for the Undergraduate Program in Computer Science, Comm. ACM,
Vol 11, No 3, pp 151-97.

Arden, B. W. (1964), On Introducing Digital Computing, Comm. ACM, Vol 7, No 4,
pp 212-14.

Ashenhurst, R. L. (1967), The Master’s Program in Computing Science — A Report of the
Workshop, in Finerman (1967¢c), pp 123-54.

Aspray, W. and B. O. Williams (1994), Arming American Scientists: NSF and the Provision
of Scientific Computing Facilities for Universities, 1950-1973, IEEFE Annals of the History of
Computing, Vol 16, No 4, pp 60-74.

Atchison, W. F. (1966), Mathematics for Undergraduate Computer Scientists, Comm. ACM,
Vol 9, No 9, pp 662-3.

Atchison, W. F. and J. W. Hamblen (1964), Status of Computer Science Curricula in
Colleges and Universities, Comm. ACM, Vol 7, No 4, pp 225-7.

Atchison, W. F. (1967), The Position of Computing Science in the University Structure — A
Report of the Workshop, in Finerman (1967c¢), pp 169-76.

Atchison, W. F. (1981), Computer education, past, present, and future, ACM SIGCSE
Newsletter, Vol 13, No 4, pp 2-6.

Beckman, F. S. (1967), Graduate Computer Science Programs at American Universities, in
Finerman (1967c¢), pp 39-60.

-22 -

Ceruzzi, P. (1988), Electronics Technology and Computer Science, 1940-1975: A Coevolution,
IEEFE Annals of the History of Computing, Vol 10, No 4, pp 257-75.

Conte, S. D. (1964), The Computer Sciences Program at Purdue University, Proc 1964 ACM
National Conference, p L1.2.1.

COSINE (1967), Cosine Committee, Computer Science in Electrical Engineering,
Commission on Engineering Education, Washington DC.

COSINE (1968), Commission on Engineering Education, Computer Science in Electrical
Engineering, IEEE Spectrum, March, pp 96-103.

Elliot, R.W. (1968), Master’s Level Computer Science Curricula, Comm. ACM, Vol 11, No 7,
pp 507-8.

Fein, L. (1959a), The Role of the University in Computers, Data Processing and Related
Fields, Proc. Western Joint Computer Conference, San Francisco, Vol 15, pp 119-26.

Fein, L. (1959b), The Role of the University in Computers, Data Processing and Related
Fields, Comm. ACM, Vol 2, pp 7-14.

Fein, L. (1961), The Computer-Related Sciences (Synnoetics) at a University in the Year
1975, Am Scientist, Vol 49, No 2, pp 149-68.

Fein, L. (1962), Organiser, Panel on University Education in Information Processing,
IFIP62, pp 763-5.

Finerman, A. (1967a), University Education in Computing Science: Introduction, in
Finerman (1967c¢), pp 1-4.

Finerman, A. (1967b), University Education in Computing Science: Summary, in Finerman
(1967¢c), pp 193-214.

Finerman, A. (1967c¢), ed., University Education in Computing Science, ACM Monograph,
Academic Press, New York.

Forsythe, G. E. (1961), Engineering Students must Learn both Computing and
Mathematics, Journal of Engg Edu., Vol 52, No. 3, pp 177-88.

Forsythe, G. E. (1963), Educational Implications of the Computer Revolution, in
Applications of Digital Computers, V. F. Freiberger and W. Prager (eds.), pp 166-178.

Forsythe, G. E. (1964), An Undergraduate Curriculum in Numerical Analysis, Comm. ACM,
Vol 7, No 4, pp 214-15.

-23-

Forsythe, G. E. (1967), A University’s Education Program in Computer Science, Comm.
ACM, Vol 10, No 1, pp 3-11.

Gill, S. (1967), Planning a Profession, in Finerman (1967c¢), pp 117-22.

Gorn, S. (1963), The Computer and Information Sciences: A New Basic Discipline, SIAM
Review, Vol 5, pp 150-5.

Gorn, S. (1964), Mechanical Languages: A Course Specification, Comm. ACM, Vol 7, No 4,
pp 219-22.

Hamblen, J. W. (1968), Education: Expenditures, sources of funds, and utilization of digital
computers for research and instruction in higher education: 1964-65 with projections for

1968-69, Comm. ACM, Vol 11, No 4, pp 257-61.

Hamblen, J. W. (1971), Using computers in higher education: past recommendations, status,
and needs, Comm. ACM, Vol 14, No 11, pp 709-12.

Hull, T. E. (1967), The Doctoral Program in Computing Science — A Report of the Workshop,
in Finerman (1967c), pp 155-68.

Katz, D. L. and Organick, E. I. (1960-61), Use of Computers in Engineering Undergraduate
Teaching, J. Engg. Educ., Vol 51, pp 183-205.

Keenan, T. (1964), Computers and Education, Comm. ACM, Vol 7, No 4, pp 205-9.

King, K. (1967), The Computing Center and the Academic Program — A Report of the
Workshop, in Finerman (1967¢), pp 177-92.

Korfhage, R. R. (1964), Logic for the Computer Sciences, Comm. ACM, Vol 7, No 4,
pp 216-18.

Korfhage, R. R. (1969), CSE: Theory or Practice, SIGCSE Bulletin, Vol 1, No 4,
pp 6-7.

Knuth, D. E. (1972), George Forsythe and the Development of Computer Science, Comm.
ACM, Vol 15, No 8, pp 721-7.

Muller, D. E. (1964), The Place of Logical Design and Switching Theory in the Computer
Curriculum, Comm. ACM, Vol 7, No 4, pp 222-5.

Oettinger, A. G. (1966), President’s Letter to the ACM Membership. Comm. ACM, Vol 9, No
12, pp 838-9.

Oettinger, A. G. (1967), Computers and Education, in Finerman (1967¢c), pp 27-38.

_24-

Perlis, A. J. (1964), Programming of Digital Computers, Comm. ACM, Vol 7, No 4,
pp 210-11.

Perlis, A. J. (1967), Computer Science in Neither Mathematics nor Electrical Engineering,
in Finerman (1967c¢), pp 69-80.

Pierce, J. R. (1967), Chairman, Panel on Computers in Higher Education, President’s
Science Advisory Committee, “Computers in Higher Education”, Government Printing

Office, Washington, DC.

Report (1960a), Conference Report on The Use of Computers in Engineering Classroom
Instruction, Comm. ACM, Vol 3, No 10, pp 522-7.

Report (1960b), Report on a Conference of University Computing Center Directors, Comm.
ACM, Vol 3, No 10, pp 519-21.

Rice, J. and Rosen, S. (2004). Computer Sciences at Purdue University — 1962 to 2000. IEEE
Annals of the History of Computing, Vol 24, No 2, pp 48-61.

Rosser, J. B. (1966), Chairman, Committee on Uses of Computers, National Academy of
Sciences-National Research Council, “Digital Computer Needs in Universities and
Colleges”, NAS-NRC, Publication 1233, Washington, DC.

Schweppe, E. J. (1964), A Proposed Academic Program in the Computer Sciences, Proc 1964
ACM National Conference, pp L1.1.1 - L1.1.2.

Slamecka, V. (1967), The Science and Engineering of Information, in Finerman (1967c¢), pp
81-92.

Tompkins, H. E. (1963), Computer Education, in Advances in Computers, Vol 4, Academic
Press, New York, pp 135-68.

Varga, R. S. (1964), Computer Technology at Case, Proc 1964 ACM National Conference, pp
L1.3.1-1.1.3.2.

Zadeh, L. A. (1967), The Dilemma of Computer Sciences, in Finerman (1967c¢), pp 61-8.

-25-

