
4th IJCAI Workshop on

Knowledge and Reasoning in

Practical Dialogue Systems

Edinburgh, Scotland

August 1, 2005

Proceedings edited by Ingrid Zukerman,

Jan Alexandersson and Arne Jönsson

4th IJCAI Workshop on
KNOWLEDGE AND REASONING IN PRACTICAL

DIALOGUE SYSTEMS

This is the fourth workshop on Knowledge and Reasoning in Practical Di-
alogue Systems. The first workshop was organised at IJCAI-99 in Stockholm,1

the second workshop took place at IJCAI-2001 in Seattle,2 and the third work-
shop was held at IJCAI-2003 in Acapulco.3

The current workshop includes research in three main areas: dialogue man-
agement, adaptive discourse planning, and automatic learning of dialogue poli-
cies. Probabilistic and machine learning techniques have significant represen-
tation, and the main applications are in robotics and information-providing
systems.

These workshop notes contain 12 papers that address these issues from
various view-points. The papers provide stimulating ideas and we believe that
they function as a fruitful basis for discussions and further research.

The program committee consisted of the colleagues listed below, who were
assisted by three additional reviewers. Without the time spent reviewing the
submissions and the thoughtful comments provided by these colleagues, the
decision process would have been much more difficult. We would like to express
our warmest thanks to them all.

1Extended versions of selected contributions were published in a special issue of ETAI,

the Electronic Transaction of Artificial Intelligence http://www.ida.liu.se/ext/etai/
2http://www.ida.liu.se/~nlplab/ijcai-ws-01/ijcai-ws/
3see http://www.ida.liu.se/~nlplab/ijcai-ws-03/ijcai-ws/

i

Program Committee

Johan Boye, Telia Research, Sweden
Sandra Carberry, University of Delaware, USA
Peter Heeman, Oregon Graduate Institute, USA
Eric Horvitz, Microsoft Research, USA
Kazunori Komatani, Kyoto University, Japan
Staffan Larsson, Göteborgs Universitet, Sweden
Diane Litman, University of Pittsburgh, USA
Michael McTear, University of Ulster, UK
Norbert Reithinger, DFKI, Germany
Candy Sidner, MERL, USA
David Traum, USC Institute for Creative Technology, USA

Additional Reviewers

Thomas Kleinbauer, DFKI, Germany
Tim Paek, Microsoft Research, USA
Joel Tetreault, University of Pittsburgh, USA

Organizing Committee

Ingrid Zukerman (Chair)
School of Computer Science and Software Engineering
Monash University
Clayton, Victoria 3800, Australia
email: ingrid@csse.monash.edu.au

Jan Alexandersson (Co-chair)
German Research Center for Artificial Intelligence, DFKI GmbH
Stuhlsatzenhausweg 3
D-66 123 Saarbrücken, Germany
email: janal@dfki.de

Arne Jönsson (Co-chair)
Department of Computer and Information Science
Linköping University
S-581 83 Linköping, Sweden
email: arnjo@ida.liu.se

ii

Table of Contents

K. Eliasson:
Towards a Robotic Dialogue System with Learning and Planning
Capabilities . 1

M. Niemann, S. George and I. Zukerman:
Towards a Probabilistic, Multi-layered Spoken Language
Interpretation System . 8

J. Wyatt:
Planning to Resolve Ambiguous References to Objects 16

M.E. Foster and M. White:
Assessing the Impact of Adaptive Generation in the COMIC
Multimodal Dialogue System . 24

P. Wärnest̊al:
User Evaluation of a Conversational Recommender System 32

K. Komatani, R. Hamabe, T. Ogata and H.G. Okuno:
Generating Confirmation to Distinguish Phonologically Confusing
Word Pairs in Spoken Dialogue Systems . 40

S. Lesch, T. Kleinbauer and J. Alexandersson:
Towards a Decent Recognition Rate for the Automatic Classification
of a Multidimensional Dialogue Act Tagset . 46

B. McEleney and G. O Hare:
Efficient Dialogue Using a Probabilistic Nested User Model 54

B. Inouye and A. Biermann:
An Algorithm that Continuously Seeks Minimum Length Dialogs 62

J. Henderson, O. Lemon and K. Georgila:
Hybrid Reinforcement/Supervised Learning for Dialogue Policies
from COMMUNICATOR data . 68

J. D. Williams, P. Poupart and S. Young:
Factored Partially Observable Markov Decision Processes for
Dialogue Management . 76

M. Frampton and O. Lemon:
Reinforcement Learning of Dialogue Strategies using the User’s
Last Dialogue Act . 83

iii

Towards a Robotic Dialogue System with Learning and Planning Capabilities

Karolina Eliasson
Linkoping University

Department of Computer and Information Science
SE - 581 83 Linköping

karel@ida.liu.se

Abstract
We present a robotic dialogue system built on case-
based reasoning. The system is capable of solving
references and manage sub-dialogues in a dialogue
with an operator in natural language. The approach
to handle dialogue acts and physical acts in a uni-
son manner together with the use of plans and sub-
plans makes the system very flexible. This flexi-
bility is used for learning purposes where the op-
erator teaches the system a new word and the new
knowledge can directly be integrated and used in
the old plans. The learning from explanation capa-
bility makes the system adaptable to the operator’s
use of language and the domain it is currently oper-
ating in. The implementation of a case-based plan-
ner suggested in the paper will further increase the
learning and adaptation degree.

1 Introduction
Human-Robot Interaction is a broad and interesting area
which deals with the interaction between a human and a phys-
ical embodied robot. In our work we have focused on inter-
action in natural language with an autonomous Unmanned
Aerial Vehicle (UAV). In a dialogue with such a robot, the
dialogue manager must be able both to interpret the utterance
from the operator, receive additional information to be able to
react correctly to the utterance, and perform a sequence of ac-
tions. To do this, it has to distinguish between dialogue acts
and physical acts. A dialogue act can be to ask a clarifying
question to the operator and a physical act can be to perform
the high-level command land. These acts must be executed
in a correct order to solve the problem at hand. If the infor-
mation is not sufficient for the dialogue manager to complete
the task it has to ask for complementary information from the
operator. In such a case a discourse model is needed to solve
anaphoric references and to manage sub-dialogue.

In case the robot will be used by the same operator, it can
be convenient if the robot can adapt to the operator’s use of
language. In that case a flexible control system is needed
which gives the operator the opportunity to explain what a
word means and how a task, new to the dialogue system,
shall be performed. In this manner, the dialogue system can
be adapted not only to the current operator’s use of language

but also to the different tasks that can be of interest in dif-
ferent flight scenarios. To further increase the usefulness of
the dialogue system, we would like it to be able to perform
mixed-initiative planning with user interaction and reuse old
plans and experiences.

In this paper we will describe a dialogue system which uses
case-based reasoning (CBR) to find suitable responses to the
utterances from the operator and messages from the robot.
CBR is a form of machine learning where the system stores
problems and their corresponding solutions in a case base.
When a new target case enters the system, it searches the
case base for similar cases. When the most similar case is
found, its corresponding solution is adapted to the new target
case and the new solution is returned. The new target case
and its solution is then stored in the case base for future use.
See for example [Aamodt, 1994] for an overview. We are
also addressing case-based planning (CBP) where a genera-
tive planner is used when there are no suitable plans in the
case base. The planner should not plan a new solution from
scratch but reuse the old plans as much as possible.

CBR provides our dialogue system with a simple and mod-
ular design where both the dialogue acts and the commands
regarding the physical acts can be represented in a uniform
way. New functionality is directly added by writing new cases
and storing them in the case base. New domain knowledge
similar to existing knowledge can be added to the system
in a simple manner. It can directly be used by the system
without any additional changes to the case base or the case-
bae manager, due to the flexible and adaptable nature of the
CBR design. This provides us with the facility of letting the
system incorporate new information, such as new words or
knowledge about the physical world, into the system. This
knowledge can then directly be used by the cases in the case
base, hence giving the system mechanisms for updating its
own knowledge and increasing its performance. The new in-
formation can be obtained from dialogue with an operator.
Because phrase matching is necessary both in CBR and in
discourse modeling, in the latter to allocate incoming new
phrases to the correct dialogue thread, it makes CBR and dis-
course modeling a suitable combination without producing
any additional overhead.

Our dialogue system CEDERIC, Case-base Enabled Dia-
logue Extension for Robotic Interaction Control, which ad-
dresses the above mentioned features is still under construc-

1

tion and this paper will discuss both implemented features
and some ideas and work in progress. Most of the parts, such
as the CBR framework which uses existing plans, the dis-
course model, and the learning from explanation dialogues
are implemented and tested in a simulator, but the work with
the planner is still ongoing.

2 CEDERIC
CEDERIC is a dialogue system designed for dialogue with
a physical robot, in particular the WITAS autonomous UAV.
The WITAS project focuses on the development of an air-
borne computer system that is able to make rational decisions
about the continued operation of the aircraft, based on var-
ious sources of knowledge including pre-stored geographi-
cal knowledge, knowledge obtained from vision sensors, and
knowledge communicated to it by data link [Doherty et al.,
2000]. The UAV used in the project is a Yamaha RMAX
helicopter which an operator can control by high level voice
commands or by written commands. The operator can ask the
UAV to perform different tasks and request information from
it.

CEDERIC consists of a parser, a case base, domain knowl-
edge, a discourse module and a case-base manager as shown
in Figure 1. The parser parses the sentence given by the op-

Robotic Control System

Speech
Recognizer

Speech
Generator

Case-Base
Manager

Case Base

Domain Knowledge

Discourse Module

CEDERIC

Parser

Figure 1: Architecture of CEDERIC.

erator and generates a parse tree. The parse tree is matched
against cases in the case base by the case-base manager. The
discourse module is responsible for maintaining a discourse
model of the dialogue so far to be able to interpret the op-
erator’s sentences in the right context. The discourse model
helps the system to interpret references which may refer to
sentences earlier in the dialogue. The domain knowledge
contains an ontology of the world as the robot knows it and a
categorization of the world items. The purpose is twofold.
It serves as a world representation which gives CEDERIC
knowledge about which buildings there are in the known
world, what kind of buildings they are, where they are places,
and their attributes such as color and material. It also gives
CEDERIC fundamental knowledge about categorization e.g.
which items that can be called buildings in the dialogue and
which can not.

(PHRASE1
(VERBPHRASE_IMP}
(VERBPHRASE_IMP7 (FLY FLY) (TO TO)
(NP_FLY_TO
(NP_BUILD (DET THE)
(NOUN_BUILD
(NO_CAT SUPERMARKET)))))))}

Figure 2: Parse tree with an unknown word.

The operator can choose to use either speech or text for
the input to the dialogue system. The speech recognizer used
is the off-the-shelf product Nuance and the speech generator
used is one of the off-the-shelf products Festival or Bright-
speech. When learning a new word using speech recognition,
one can choose between having a considerably bigger gram-
mar for the speech recognition than the dialogue manager and
only consider learning in the dialogue manager, or provide the
new word in text form in the learning phase and then compile
it into the speech recognition grammar if that can be done
at runtime. We have chosen the second approach where the
unknown words are provided in text and the learning phase
extends the grammar and lexical rules in the parser within
CEDERIC. The grammar and the lexical rules are the same
as those for the speech recognizer, so the extensions should
be easy to integrate with the speech recognition system if it
allows runtime updates of the grammars.

Regardless of wether a speech recognizer is used or not,
a sentence from the operator arrives to CEDERIC in plain
text format. It is parsed, processed in the CBR engine and
returns either a new phrase in text format to be sent to the
speech generator, or a request to the robotic control system.
The robot requests are in a format similar to KQML [Finin et
al., 1994]. The response the robot sends back to CEDERIC
is also in a KQML-like format. Those messages are sent to
CEDERIC on a different channel than the one the operator
uses. This is because the response should not be parsed in
any way, but be processed directly in the CBR engine.

2.1 Parser
The text string that results from the speech recognizer or is
obtained directly from the operator if he or she provides the
input in text form, is parsed by a chart parser. The chart parser
returns a parse tree of the input sentence. If some of the words
are unknown to the parser it provides all possible solutions
where the unknown words are first labeled with the possi-
ble label and then with the label no cat. Figure 2 shows
an example of a parse tree where the word SUPERMARKET
is unknown. It has been categorized with the possible cate-
gory NOUN BUILD. When there is an unknown word in the
sentence, all the possible parses are collected in a parse tree
which is sent to the case-base manager. The case-base man-
ager can then try the different possible matches and see if it
finds a suitable match with one of its cases.

2.2 Case Design
To be able to reuse parts of a solution, each solution to a sen-
tence is divided into smaller units, each of which performs
an isolated part of the solution. These units are called atomic

2

cases. For the robot to know how to construct the whole so-
lution out of the atomic cases it needs a plan. Already known
and tested plans are stored in plan cases. Both plan cases and
atomic cases have a problem part. This part of the case con-
sists of the name of the case and the problem information that
the target case need to have to match the case. The problem
information can be either:

• a parse tree

• the result from a previously executed atomic case or
plancase

• a response from the robotic control system in KQML-
like format.

They also have a discourse update part which updates the
discourse model of the dialogue with new information about
the current dialogue.

The solution part of a plan case is a plan. The plan con-
sists of the name of other plan cases and atomic cases. The
solution part of an atomic case consists of procedures which
return an answer. An atomic case can for example be get-
referenceid which takes a parse-tree of a sentence like white
church, checks its domain knowledge for a match and returns
every matching reference id to such a building. The next item
in the plan could then use this information to produce another
step in the plan.

2.3 Case Matching
When a case match is performed, the problem information of
the case is matched against the target case. The whole target
case does not have to match the problem information com-
pletely to be considered a perfect match. It is sufficient that
all the problem information occurs in the correct order in the
target case. This approach makes the cases more general and
does not leave it to the case-base manager to adapt each tar-
get case in a suitable way to obtain the new target case match.
This is very useful when you want a case to be able to match
several similar target cases. An example in our domain is the
command fly to the red hospital. The parse tree
for this sentence looks like this:

(PHRASE1
(VERBPHRASE_IMP
(VERBPHRASE_IMP7 (FLY FLY) (TO TO)
(NP_FLY_TO
(NP_BUILD (DET THE)
(ADJPHRASE_BUILD (ADJ_COLOR RED))
(NOUN_BUILD HOSPITAL))))))

If the whole parse tree where to be matched, we would need
a new case for every possible combination of color and build-
ing. Moreover, we would have to write new cases for the sim-
ilar cases where another attribute instead of color is given, or
where no attribute at all is provided in the sentence. This
could however be solved with adaptation in the case-base
manager before the match but the more similar target cases
there are, the more information about adaptation of the target
cases has to be hard coded into the case-base manager with no
possibility to learn or expand the knowledge by experience.
We have taken the decision to let the problem information
leave out some of the specific information in the match and

act as a general case. The problem information for a case
matching the example above can look like this:

(PHRASE1
(VERBPHRASE_IMP
(VERBPHRASE_IMP7 (FLY FLY) (TO TO)
(NP_FLY_TO))))

The cases are ranked dependent on how well they match
the target case. The ranking includes two parameters:

• How well the target case covers the case.

• How well the case covers the target case.

Both parameters are expressed on a scale from 0 to 100. The
first parameter is obviously the most important one and the
cases are firstly sorted by it and secondly by the the second
one. That is, we want cases for which the information in
the target case are enough to fulfill the requirement of the
case and if we find several such cases, we prefer cases which
match as much of the target case as possible.

2.4 Discourse Module
For a dialogue in natural language to run smoothly, the partic-
ipants have to know the history of it. If a computer dialogue
system will be able to work properly in such a natural dia-
logue with a human user it has to maintain a discourse model
of the dialogue so far to be able to interpret the utterances
of the user in the right context. The discourse model helps
the system to interpret references to utterances earlier in the
dialogue.

The discourse model implemented in CEDERIC is a
slightly modified version of the one described in [Eliasson,
2005]. Its design is highly inspired by the discourse model
presented in [Pfleger et al., 2003] for the SmartKom project.
It is built up of four different objects, that are linked to one
another in a hierarchical manner to represent the meaning of
the dialogue.

The linguistic objects. These objects are furthest down in
the chain of objects and thus most specific on the word
level. They contain information of how the nouns in the
dialogue where uttered. They could for example have
been references by the word it or by a noun and a de-
terminant.

The discourse objects. These objects contain the different
nouns together with their attributes mentioned in the di-
alogue. A discourse object can also be composite. An
enumeration of several objects can be seen as a discourse
object representing the enumeration as such, and this
object contains the enumerated objects as its children.
This gives CEDERIC the opportunity to understand ref-
erences referring to the order of the enumerations, e.g.
the first one. The discourse objects have a link
to the corresponding linguistic object.

The dialogue objects. These objects group those sen-
tences having the same direct goal, with their re-
spective associated information. The sentence fly
to the hospital gives for example, when it is
executed, a dialogue object grouping the sentences
fly to the hospital, ok and I am at the

3

hospital now. If any sub-dialogues come up, they
will be saved in a new dialogue object with their direct
goal to clarify some matter in the dialogue. Dialogue
objects contain information about the topic of the dia-
logue, which discourse objects were created due to the
utterances, and which future utterances this dialogue ob-
ject expects before considering the dialogue or the sub-
dialogue to be completed. These expectations on future
dialogue are saved in a modified initiative-response (IR)
unit [Ahrenberg et al., 1991]. Unlike the original IR-
units described by Ahrenberg, IR-units in our context
can contain more than two subelements. This is neces-
sary because they shall also be able to represent the re-
sponse from the robot when the system sends a request.
The fly to the hospital example above shows
such an example.

The global focus space. The various objects in the dialogue
layer which belongs to the same dialogue, including sub-
dialogues, are grouped together in a top object called
the global focus space. It contains information about
the main topic of the dialogue and about which dialogue
objects belong to it. Each global focus space also keeps
track of the discourse object last mentioned, to be able
to resolve references such as it. This is known as the
local focus stack. The last mentioned discourse object is
said to be in focus.

To keep track of the current dialogue in focus, CEDERIC
saves the different global focus spaces in a stack called the
global focus stack. The global focus space on top of the stack
is said to be the one in focus. If every IR-unit belonging
to a global focus space is closed, that is, has received all its
subelements, the global focus space is marked as closed and
removed from the stack. Several dialogues can be open and
ongoing at the same time and are thus members of the stack
but only one dialogue can be in focus at the same time.

When a new sentence is recognized and matched with a
case in the case base, the discourse update part of the case
is executed. This information creates new objects in the dif-
ferent layers and links them together to reflect the identified
dialogue.

2.5 Case-Base Manager
The case-base manager is the main engine responsible for the
data flow in the dialogue system. It matches the target case
with the cases in the case base as described in section 2.3,
selects the first case in the ranked case list, and evaluates the
first item in the selected case’s plan. During the execution of
the plan it stores the plan history. If one of the plan items in
the current plan does not match the input from a previously
executed plan item, the case-base manager selects the next
case in the ranked case list and checks if the history equals
the first part of that case’s plan. If so, the case-base manager
can switch to that plan and continue with it. In this way, CED-
ERIC can cope with information not known from start. This is
important when the dialogue system has a sub-dialogue with
the operator to clarify some information. With the operator in
the loop, the data gets unpredictable, because CEDERIC can
not know which answer the operator will provide in advance

and hence the plan chosen from the beginning can be found
to be wrong.

The case-base manager is also responsible for keeping
track of the different ongoing dialogues. When a new sen-
tence arrives from the operator, it could be one of the follow-
ing cases:
• The operator continues the current dialogue, possibly by

the start of a sub-dialogue.
• The operator returns to an older non-completed dialogue

with is not presently in focus.
• The operator starts a new dialogue, possibly without

ending the recent dialogue properly.
It is important to recognize which of these three cases it is,
to be able to provide the correct discourse for the evalua-
tion of the sentence. The case-base manager starts by check-
ing if there are any ongoing plans and in that case the case-
base manager tries to go on with it, possibly by changing
to another plan as described above. If it does not give any
result, the manager tests to execute one of the saved older
non-completed plans with its corresponding discourse. If that
fails as well it starts a new dialogue with an empty discourse
model.

2.6 Learning from Explanation
CEDERIC can ask the operator for guidance if the parsed
sentence contains the category no cat. As described in sec-
tion 2.1, the parser generates all possible parses with both the
no cat category and the possible category. To be able to
catch those no cat parses, CEDERIC needs to have cases
that match both the sentence where the no cat was found
and the no cat itself. By providing CEDERIC with such
cases, it can ask the operator questions that makes him or her
explain how CEDERIC should react. We take the parse tree
in Figure 2 as an example. It has been generated from the
sentence Fly to the supermarket where the word
supermarket is not in the parser’s vocabulary. The case
base contains a case where the problem part is the parse tree
in Figure 2, but with the word supermarket omitted (ob-
viously, because we want the case to match all unknown
words!). This case is fully covered by the target parse tree
which characterizes a good match and its plan is executed,
which, depending on the answers from the operator, can result
in the dialogue in Figure 3. After the execution of this dia-
logue, the vocabulary of the parser is extended to also contain
the word supermarket which is a building. The newly
gained information such as the color and the category of the
supermarket will be saved in the domain knowledge as well.
The next time the operator wants the robot to fly to the super-
market, the sentence will be correctly parsed and the case that
matches such a sentence will provide a correct solution.

The dialogue shown above where the operator guides the
UAV to an unknown building can be used with any word that
the operator wants to use as an identifier for a particular build-
ing. This particular plan case is however not general enough
to handle other types of words, which are not buildings. They
can be handled analogously by using other plan cases which
describes the sub-dialogue suitable to learn CEDERIC how
to react properly on them.

4

Operator: Fly to the supermarket.
CEDERIC: I do not know what a supermarket is.

Is it a building?
Operator: Yes.
CEDERIC: Can you give me a reference object near the

supermarket so I can start by flying to it?
Operator: It is near the red hospital.
CEDERIC: Ok, I will start by flying to the hospital and

then I will ask for more guidance.
CEDERIC: I am at the hospital now.
CEDERIC: In which direction shall I fly to look for the.

supermarket and what characteristics does
it have?

Operator: Fly eastwards and look for a blue building.
CEDERIC: I start fly and look for the supermarket.

I will stop when I see it.
CEDERIC: I have found the supermarket now and hover

over it.

Figure 3: An example of a teaching situation between the
operator and CEDERIC.

The main approach is generally applicable and a similar
solution has been tested for teaching CEDERIC new verbs,
which are synonyms for already known commands. The sen-
tence Go to the red hospital, where the word go
is unknown to the parser and hence categorized with the cat-
egory no cat and the potential category fly, is matched
with a case whose response is to ask the operator if the words
fly and go are synonyms. If the operator answers yes, CED-
ERIC will process the command as a fly command and put
the new word go in the vocabulary. It also creates a new case
which changes the word go to fly and calls the plan case for
fly commands.

It should also be possible to learn CEDERIC new compos-
ite commands in a similar fashion, if the building blocks are
already known. This is however not tested yet.

2.7 Planner
Case-based Planning (CBP) is a CBR field where the solution
to a problem is stored as a plan. When a new problem enters
the system, the case base is searched for a case whose plan
can easily be adapted to the new problem. The found plan
may partly be used while the remaining plan items are taken
from another case or by using a generative planner. A survey
of CBP and CBP systems can be found in e.g. [Munoz-Avila
et al., 1998] and [Spalazzi, 2001]. This planning technique
can be very useful in CEDERIC for solving new, unseen com-
posite problems. CEDERIC does already handle plans and it
can switch between plans if the current one turns out to be
wrong, but with the use of CBP the system can also combine
several different plans into a composite one. It can also solve
problems similar to those which have a solution by using the
known solution plans and exchange the non suiting plan items
to other plan items suggested by the generative planner. An
example of the use of CBP is when CEDERIC knows how
to solve the problem Fly to the hospital where the
solution is to first look up the position of the hospital in the

domain knowledge and then send a request to the robotic con-
trol system to fly to that position. We assume it also knows
how to ask the robotic control system for a position of a car.
If the operator gives the command Fly to the parked
car, CEDERIC can create a plan which first asks the robotic
control system for a position of the car and then use this po-
sition as input to the second part of the plan for flying to the
hospital.

CBP can also be useful for CEDERIC to understand im-
plicit information and to extend a plan when appropriate. One
example is if the operator tells CEDERIC to fly somewhere
but the UAV has not taken off yet. Then CEDERIC can un-
derstand the implicit command to take off and then perform
the fly command. To make the planning more reliable, the
dialogue system can report the plan to the operator and ask
for confirmation before executing it.

Together with dialogue features already provided by CED-
ERIC, CBP can be used not only to perform planning by itself
but also to implement mixed-initiative planning with user in-
teraction. The system can ask the operator questions and the
planning can be performed in cooperation with the operator.
This will increase the usefulness of the system and the system
will learn from it and can reuse the plans in the future. CBP
can in particular be useful for developing the learning from
explanation features described in section 2.6. further, where
the system and the operator can plan a new learning sequence.

It has been argued that the CBP technique, where already
stored plans are adapted to a new problem, does not add any-
thing considering time complexity compared to generating
new plans from scratch [Nebel and Koehler, 1995]. In our
case however, low time complexity is not the most important
reason for reusing old plans. When dealing with real world
problems, several factors can affect the result and all factors
may not be included in the problem formulation. Therefore,
it is safer to use an already proven plan to a large extent than
to generate a new one.

3 Implementation and Testing
The case base manager and the parser are implemented in
lisp. The case base, domain knowledge and discourse model
are implemented in The Knowledge Machine [Clark and
Porter, 2004]. The planning with a generative planner and
the use of several case plans to achieve a plan to a new target
problem is still work in progress.

CEDERIC has been tested connected to a simulated UAV
situated in a simulated environment. The simulated UAV can
perform high level actions such as flying to a building with a
certain unique identity, flying in a certain direction, take off,
land, ascend and descend. It reports the results of an action
and also reports if it observes any buildings as it flies. It is
able to answer status questions such as the current altitude,
velocity and heading, etc [Andersson, 2005]. The interface
between CEDERIC and the simulator is very similar to the
interface offered by the actual WITAS UAV, in order to make
it straightforward to use CEDERIC during actual flights. The
simulation of UAV movements and environment only goes to
the level of detail that is required for this interface, and does
not go down to the level of exact flight dynamics.

5

Operator: Fly to the school.
CEDERIC: I have two schools to choose between.

Which one do you mean?
Operator: Which can I choose between?
CEDERIC: You can choose between the one on

Harborroad and the one on Mainstreet.
Operator: The one on Harborroad.
CEDERIC: Ok.
CEDERIC: I am at the school now.

Figure 4: A dialogue example.

Due to the work in progress status of CEDERIC, it has not
yet been rigorously tested in a formal manner. However, it
has been tested with various types of dialogue, from simple
robotic control commands such as take off and land to
complex dialogue with sub-dialogues and learning from ex-
planation. Figure 3 gives an example of an implemented and
tested learning from explanation dialogue. In the tests, the
first sentence has been provided in text because the speech
recognizer does not yet recognize the new word, but the rest
of the dialogue has been tested using a speech recognizer.
The answers are all produced by a speech generator. Figure 4
gives an example of a dialogue with several sub-dialogues. It
has been tested using speech in and speech out.

The sub-dialogue for finding a unique object is not tightly
connected to a specific dialogue but can be used as a sub-plan
in every dialogue where the system needs a unique reference
identification to the object the operator refers to. Other sub-
dialogues can easily be implemented in a similar fashion and
used whenever it may be useful.

4 Related Work
Conversational CBR (CCBR) is an area within CBR where
the user usually wishes to query a database with items, e.g.
searching for a computer to buy on an e-commerce site. Aha
et. al. provide an overview of CCBR in [Aha et al., 2001].
The e-commerce system ExpertClerk is described in [Shi-
mazu, 2002]. Case Advisor is a generic CCBR system which
allows an organization to efficiently author and retrieve solu-
tions from a knowledge database to solve customer problem.
It is a commercial tool but some of its features is described in
e.g. [Racine and Yang, 1997]. CCBR differs from our work
in several essential ways. CEDERIC is capable of learning
from experience and saves new cases in the case base for fur-
ther use, which CCBR systems do not. It is also capable of
learning from explanation whereas CCBR systems are not.
Another big difference is that the sentences in CEDERIC can
be saved in cases of their own and do not have to be coupled
to a physical action, i.e. the questions are separated from the
items in the case base.

HICUP [Aha et al., 2001] is a CCBR system with inte-
grated planning capabilities developed by Aha et al. HICUP
is used to plan noncombatant evacuation operations (NEOs).
HICUP uses published military doctrines as well as informa-
tion from previously performed NEOs to guide the search. As
in CCBR, the user gets simple questions to narrow the simi-

lar case set. HICUP does not save its own solutions and thus
does not learn from experience more than using the informa-
tion from previously performed NEOs which is manually fed
into the system, in contrast to CEDERIC which saves the so-
lutions for further use. HICUP also differs from CEDERIC
in the use of language in the system. HICUP does not pro-
vide the user with a rich dialogue and does not learn from
explanation.

Within the WITAS project, several dialogue systems
with various capabilities have been developed. The first
WITAS Dialogue System [Lemon et al., 2001] was a sys-
tem for multi-threaded robot dialogue using spoken I/O. The
DOSAR-1 system [Sandewall et al., 2003] was a new im-
plementation using another architecture and a logical base.
This system has been extended into the current OPAS sys-
tem [Sandewall et al., 2005]. Our work takes a rather differ-
ent approach than their systems due to the use of CBR, the in-
tegration of learning capabilities using adaptation of the cases
and learning from explanation. Our system also addresses the
issue of planning and reuse of plans in dialogue and robotic
actions.

Some work has been done concerning robotic dialogue and
learning from explanation. Asoh et al. [Asoh et al., 1997]
have developed a robot called Jijo-2, which is able to create
a map over its surroundings through conversation with a hu-
man teacher. The human teacher can give the robot a descrip-
tion of how the surroundings look like and how to solve way-
finding problems and the robot can ask the teacher questions.
Theobalt et al. have created a robot similar to Jijo-2, which
uses domain knowledge in the learning process [Theobalt et
al., 2002]. Carl [Lopes, 2002] is a robot which has some ca-
pabilities of learning from explanation. The operator can tell
Carl facts that are stored in the memory of the robot. This
information can be used later on in the dialogue. None of
these robots use CBP for their dialogue and task planning as
CEDERIC does and they can not reuse old plans unless told
to learn them in advance as in learning from explanation.

5 Conclusions and Future Work
We propose a robotic dialogue system with learning capabili-
ties which make it adaptable with respect to the operator and
the problem domain. The system, CEDERIC, is built using
CBR techniques and includes a parser, a case base, domain
knowledge, a discourse module and a case-base manager. It
is capable of having a dialogue including sub-dialogue such
as clarifying questions and can handle references. The dia-
logue acts and the commands regarded the physical acts are
treated in a uniform manner and the dialogue acts contributes
to the solution of a problem as much as the physical acts
do. The acts are saved in the case base and can be reused
at any time. The case base also includes plan cases whose
solution is a plan consisting of other sub-plans or atomic ac-
tions. The operator can adapt the system by serving as a
teacher. The systems learns from explanation and when a
new word is learnt, it can easily be used in different contexts.
This is done by the flexible plan architecture where compos-
ite acts are modeled as plans. Several plans can match the
initial problem definition and if it turns out that the selected
plan does not match the actual course of events, the system

6

switches to another more suiting plan.
CEDERIC is tested connected to a simulated UAV and it

is able to send and receive messages both from the operator
and the robotic control system and to perform a dialogue in
natural language. More exhaustive tests will be performed
when the system reaches a mature status.

CEDERIC is work in progress and an integrated planner
module built on CBP techniques is currently developed. The
planner module will provide CEDERIC with advanced learn-
ing functions and abilities to understand implicit knowledge
that the operator does not provide. The planner performs
mixed initiative case-based planning with user interaction
where the system is able to reuse parts of plans from several
cases in the case base to solve a new planning problem. Using
the dialogue features, the operator can guide the search and
teach the system new information during a planning action.

We expect CEDERIC to be a full fledged dialogue and
planning system which can work in cooperation with the op-
erator in a safe and secure way. When it is mature enough, we
expect to test the system connected to the physical helicopter
and to demonstrate the system in actual flight.

Acknowledgement
This research work was funded by the Knut and Alice Wal-
lenberg Foundation, Sweden.

References
[Aamodt, 1994] Agnar Aamodt. Case-based reasoning;

foundational issues, methodological variations, and sys-
tem approaches. AI Communications, 7(1):39–59, 1994.

[Aha et al., 2001] David W. Aha, Leonard A. Breslow, and
Hector Munoz-Avila. Conversational case-based reason-
ing. Applied Intelligence, 14(1):9–32, 2001.

[Ahrenberg et al., 1991] Lars Ahrenberg, Arne Jönsson, and
Nils Dahlbäck. Discourse representation and discourse
management for a natural language dialogue system. Tech-
nical report, Institutionen för Datavetenskap, Universitetet
och Tekniska Högskolan Linköping, 1991.

[Andersson, 2005] Peter J. Andersson. Hazard: A
framework towards connecting artificial intelligence and
robotics. In Proceedings of the Workshop on Representa-
tion, Reasoning and Learning in Computer Games, 2005.

[Asoh et al., 1997] Hideki Asoh, Satoru Hayamizu, Isao
Hara, Yoichi Motomura, Shotaro Akaho, and Toshi-
hiro Matsui. Socially embedded learning of the office-
conversant mobil robot Jijo-2. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1997.

[Clark and Porter, 2004] Peter Clark and Bruce Porter. KM -
The Knowledge Machine 2.0: Users Manual, 2004.

[Doherty et al., 2000] Patrick Doherty, Gösta Granlund,
Krzysztof Kuchinski, Erik Sandewall, Klas Nordberg, Erik
Skarman, and Johan Wiklund. The witas unmanned aerial
vehicle project. In Proceedings of the 12th European Con-
ference on Artificial Intelligence, 2000.

[Eliasson, 2005] Karolina Eliasson. Integrating a discourse
model with a learning case-based reasoning system. In
Proceedings of DIALOR-05, 2005.

[Finin et al., 1994] T. Finin, R. Fritzson, D. McKay, and
R. McEntire. KQML as an Agent Communication Lan-
guage. In N. Adam, B. Bhargava, and Y. Yesha, editors,
Proceedings of the 3rd International Conference on In-
formation and Knowledge Management (CIKM’94), pages
456–463, Gaithersburg, MD, USA, 1994. ACM Press.

[Lemon et al., 2001] Oliver Lemon, Anne Bracy, Alexander
Gruenstein, and Stanley Peters. The WITAS multi-modal
dialogue system. In Proceedings of EuroSpeech, 2001.

[Lopes, 2002] L. Seabra Lopes. Carl: from situated activity
to language level interaction and learning. In Proceedings
of IEEE International Conference on Intelligent Robots
and Systems, 2002.

[Munoz-Avila et al., 1998] Hector Munoz-Avila, Ralph
Bergmann Manuela Veluso, and Erica Melis. Case-based
reaoning applied to planning tasks. Case-Based Rea-
soning Technology from Foundations to Applications,
1998.

[Nebel and Koehler, 1995] Bernhard Nebel and Jana
Koehler. Plan reuse versus plan generation: a theoretical
and empirical analysis. Artif. Intell., 76(1-2):427–454,
1995.

[Pfleger et al., 2003] Norbert Pfleger, Jan Alexandersson,
and Tilman Becker. A robust and generic discourse model
for multimodal dialogue. In Workshop Notes of the IJCAI-
03 Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, 2003.

[Racine and Yang, 1997] Kristi Racine and Qiang Yang.
Maintaining unstructured case base. In Proceddings of the
Second International Conference on CBR, 1997.

[Sandewall et al., 2003] Erik Sandewall, Patrick Doherty,
Oliver Lemon, and Stanley Peters. Words at the right time:
Real-time dialogues with the witas unmanned aerial vehi-
cle. In Proceedings of the 26th Annual German Confer-
ence in AI, 2003.

[Sandewall et al., 2005] Erik Sandewall, Hannes Lindblom,
and Björn Husberg. Integration of live video in a system
for natural language dialog with a robot. In Proceedings
of DIALOR-05, 2005.

[Shimazu, 2002] Hideo Shimazu. ExpertClerk: A conversa-
tional case-based reasoning tool for developing salesclerk
agents in e-commerce webshops. Artif. Intell. Rev., 18(3-
4):223–244, 2002.

[Spalazzi, 2001] Luca Spalazzi. A survey on case-based
planning. Artificial Intelligence Review, 16(1):3–36, 2001.

[Theobalt et al., 2002] Christian Theobalt, Johan Bos, Tim
Chapman, Arturo Espinosa-Romero, Mark Fraser, Gillian
Hayes, Ewan Klein, Tetsushi Oka, and Richard Reeve.
Talking to godot: Dialogue with a mobile robot. In Pro-
ceedings of IEEE/RSJ International Conference on Intelli-
gent Robots and System, 2002.

7

Towards a Probabilistic, Multi-layered Spoken Language Interpretation System

Michael Niemann and Sarah George and Ingrid Zukerman
School of Computer Science and Software Engineering

Monash University
Clayton, VICTORIA 3800, AUSTRALIA
{niemann,sarahg,ingrid}@csse.monash.edu.au

Abstract

We present a preliminary report of a probabilistic
spoken-language interpretation mechanism that is part
of a dialogue system for an office assistant robot. We
offer a probabilistic formulation for the generation of
candidate interpretations and the selection of the inter-
pretation with the highest posterior probability. This
formulation is implemented in a multi-layered inter-
pretation process that integrates spoken and sensory
input, and takes into account alternatives derived from
a user’s utterance and expectations obtained from the
context. Our preliminary results are encouraging.

1 Introduction
We present a preliminary report of a probabilistic spoken-
language interpretation mechanism that is part of a dialogue
system for an office assistant robot called DORIS (Dialogue
Oriented Roaming Interactive System). Eventually, DORIS
is expected to exist in the physical world, participate in di-
alogue, be able to answer simple questions about its environ-
ment, cooperate with the user in achieving a mutual under-
standing of goals and world state, and achieve goals. The
hypothetical dialogue in Figure 1 illustrates some of the ca-
pabilities envisaged for DORIS.
• Lines 1-3 illustrate DORIS’ understanding that it has to

record Sarah’s message, and formulate a plan to exe-
cute the “telling” action (finding Ingrid and playing back
Sarah’s message).

• Lines 4-5 show pronoun disambiguation during discourse
interpretation, and the ability to judge (to a certain extent)
the appropriateness of an answer during response genera-
tion (if DORIS had last seen Sarah yesterday, then a more
appropriate answer may be “I don’t know”).

• Lines 6-7 show the envisaged ability to understand indi-
rect speech acts during discourse interpretation, and the
ability to formulate a dynamic plan – looking for Sarah.

• Line 8 demonstrates DORIS’ understanding of “get Sarah”
(line 6): telling Sarah that she is being fetched, and in-
forming Sarah of Ingrid’s location.

• Lines 9 and 10 illustrate DORIS’ prospective ability to
(a) process several sentences, (b) disambiguate between
objects in the world (electronic notebook versus paper
pad), and (c) act on a portion of the discourse that was

1 Sarah: Doris, please tell Ingrid I’m ready for the meet-
ing now.

2 DORIS: Certainly. [Finds Ingrid in her office]
3 DORIS: Hello Ingrid. Sarah said PLAYBACK MESSAGE.
4 Ingrid: Where is she?
5 DORIS: I saw her in the kitchen 3 minutes ago.
6 Ingrid: Can you please get her?
7 DORIS: OK. [Goes to kitchen. Sarah is not there. Looks

for Sarah, finds her in her office]
8 DORIS: Hello Sarah. Ingrid asked me to fetch you. She

is in her office.
9 Sarah: I’ll be there in a minute. I would like you to

carry my notebook, so I don’t spill coffee on it.
10 DORIS: I understood that you want me to carry your

notebook, but not the rest of what you said. Is
that enough?

11 Sarah: That is fine.
12 DORIS: OK. [Follows Sarah back to Ingrid’s office, car-

rying the notebook]

Figure 1: Hypothetical dialogue with DORIS

understood, while (d) asking a general question about
two portions that were not fully processed. This pro-
cessing failure could be due to a number of reasons, e.g.,
speech recognition failure, or failure to associate actions
(e.g., spill) or objects in the real world (e.g., coffee) with
Sarah’s discourse.

Clearly, many of these capabilities are quite speculative.
However, by specifying such high aims, we encourage the
development of a general framework that will support such
capabilities. As seen in the rest of this paper, our current pro-
totype is considerably more modest than the envisaged one.
To speed up development, at present DORIS is a virtual agent,
rather than a physical robot. Also, for this prototype we are
concentrating on the interpretation of one type of spoken sen-
tence (imperatives).

The focus of this paper is on the generation of candidate
interpretations from individual spoken sentences, and the se-
lection of a preferred interpretation, where an interpretation
consists of a frame-based internal representation of the utter-
ance. This frame forms the basis for the robot’s action or the
next dialogue turn. For example, Figure 2 shows an interpre-
tation for the request “Get the blue mug”. If the location of
MUG05 is known, DORIS can act on this request. Otherwise, it
can either look for the mug or inquire about its location.

8

PropositionalContent:
{

Action: fetch deliver
Agent: DORIS (addressee)
Patient: MUG05 (COLOUR blue)
Recipient: MICHAEL (speaker)

}

Figure 2: Interpretation of “Get the blue mug”

The main idea behind our mechanism is that the best inter-
pretation of a user’s utterance is that with the highest posterior
probability. This idea has long been dominant in Automatic
Speech Recognition [Young, 2002], and has gained popu-
larity for other aspects of language interpretation in the last
decade [Miller et al., 1996]. In addition, the use of contextual
information to improve speech recognition performance has
also become increasingly popular, e.g., [Rayner et al., 2000;
Bos et al., 2003]. In this paper, we combine these ideas in
a spoken language interpretation system for a robot. Our
contributions are: (1) a probabilistic formalism for the se-
lection of the interpretation with the highest posterior prob-
ability that integrates spoken and sensory input; and (2) a
probabilistically-motivated interpretation process that takes
into account alternatives derived from the user’s utterance and
expectations obtained from the context.

This paper is organized as follows. In Section 2 we present
an overview of the interpretation process, and in Section 3
we calculate the probability of an interpretation. Section 4
describes our interpretation process in more detail, followed
by preliminary results in Section 5. Related work is discussed
in Section 6, followed by concluding remarks.

2 Overview of the Interpretation Process
The procedure for generating interpretations receives as input
a speech wave obtained from a user’s utterance, and generates
one or more frame-based interpretations. Each interpretation
is assigned a probability based on how well it fits the speech
wave and how reasonable it is in the current context.

The interpretation of an utterance is performed by a multi-
stage search process, where the best candidates generated at
each stage are used as the basis for the next stage, and the
probability of a candidate generated at a particular stage con-
tributes to the probabilities of its “children” generated at the
next stage. Figure 3(a) shows the interpretation process, and
Figure 3(b) illustrates an example of a single search sequence
for the sentence “Get the blue mug”.

Our architecture investigates the use of general syntactic
information and semantic information for as long as possi-
ble, and the incorporation of domain-related information only
in the final stages of the interpretation process. Specifically,
no domain knowledge is used for the first three stages of the
interpretation process (in fact, general off-the-shelf tools are
used for the first two stages). In addition, domain knowl-
edge is gradually incorporated in an interpretation, starting
with abstract features that are relevant to our domain, then
matching domain actions to verbs, and finally matching do-
main entities to the other elements of an interpretation. The
expectation from our approach is that it will be able to process
relatively unconstrained utterances by casual users, at least

up to a point, and provide the opportunity for the system to
learn additional forms of expression and mappings between
linguistic entities and domain actions and objects. Further,
our architecture clearly delineates the portions of the system
that should be modified when porting it to a different domain.

In the first stage of the interpretation process, the sys-
tem activates an Automatic Speech Recognizer (ASR), which
generates candidate sequences of words (Text). A probabilis-
tic parser then generates Parse Trees for the most promising
word sequences. The best Parse Trees are used next to con-
struct Parse Frames. Each element of a Parse Frame is as-
signed a semantic role, e.g., Action, Agent, Patient and Re-
cipient, and points to a sub-tree in the parent Parse Tree. The
feature extraction stage applies rules to extract semantic fea-
tures from the Parse Frame. Examples of these features for
nouns are: definite/indefinite, colour and size (this stage col-
lapses several Parse Frames into one Feature Frame). In the
next stage, the system builds Action Frames composed of do-
main actions and constraints that match the elements in each
Feature Frame. For instance, the word “get” maps to several
domain actions, e.g., fetch deliver and fetch person.
Each of these mappings has its own constraints that apply to
the Agent, Patient, etc in the frame, e.g., fetch deliver re-
quires the Patient to be a movable thing, and fetch person
requires the Patient to be a person. In the final stage of the in-
terpretation process, the entities and constraints in the Action
Frame are unified with actual entities in the domain, yielding
a Unified Frame.

Our current prototype generates a ranked list of interpreta-
tions. This list will be used to determine a course of action as
follows. If one of the Unified Frames generated by DORIS is
a clear winner, i.e., its posterior probability exceeds an “ac-
ceptable” threshold and is significantly higher than that of the
other interpretations, then it will be selected by the system.
Otherwise, DORIS will ask a clarification question. Further,
the probabilities calculated at each stage of the interpretation
process will be used to decide whether a clarification question
should be asked at that stage.

2.1 Anytime algorithm
A search algorithm generates a search graph by expanding
candidate options. This is done by means of an selection-
expansion cycle that is repeated until all the options have been
considered (full expansion) or until the system runs out of re-
sources, e.g., time or memory. The selection step determines
which option is to be expanded next, and the expansion step
generates the children of that option (e.g., the children of a
Feature Frame are Action Frames).

Since full expansion is often not feasible, we apply an in-
terpretation process based on the anytime algorithm described
in [George and Zukerman, 2004], which produces a plausible
interpretation after a few seconds (Section 5). Anytime algo-
rithms produce reasonable results at any point in time [Dean
and Boddy, 1988]. These results generally improve as time
elapses, typically exhibiting an asymptotic behaviour. Thus,
our interpretation algorithm can act on a “good” interpreta-
tion produced after a few seconds, but can continue process-
ing in the background, and “change its mind” if a better inter-
pretation is discovered later.

Our anytime algorithm differs from normal search algo-
rithms in that it expands a selected option one child at a time,

9

Action: Get
Agent:

Recipient:
Patient: mug [DEFINITE Y, COLOUR blue]

Agent: DORIS
Action: fetch_deliver

Patient: MUG05
Recipient: MICHAEL

. . .

. . .

. . .

. . .

. . .

. . .

Speech
Wave

Text1 Text3 Text4Text2

Parse
Frame2

Parse
Frame4

Parse
Frame1

Parse
Frame3

Frame1
Feature

Frame2
Feature

Frame3
Feature

Frame1
Action

Frame2
Action

Frame4
Action

Frame3
Action

Frame4
Feature

Frame4
Unified

Frame2
Unified

Frame3
Unified

Frame1
Unified

Parse
Tree1

Parse Parse Parse
Tree2 Tree3 Tree4

Recognize
Speech

Sub−categorize
Verb

Extract
Features

Unify with
Domain

Actions and
Constraints

Propose Domain

Parse

(S1 (S (VP (VB Get)
(NP (DT the) (JJ blue) (NN mug)))))

 Action = Get

Recipient =
Patient = NP
Agent = VERB NP

Agent: HEARER
Patient: [CALLED mug, DEFINITE Y, COLOUR blue]
Recipient: SPEAKER

Action: fetch_deliver [Patient: MOVABLE Y, NATURE thing]

(a) Search graph (b) One sequence in the search graph

Frame1
Action

FeatureFrame1

ParseFrame1

ParseTree1

SpeechWave

UnifiedFrame1

Text1 Get the blue mug

Figure 3: Flow of information in the interpretation process

rather than generating all its children at once, e.g., when it
expands a Feature Frame, it generates a single Action Frame.
The selection process then determines which option to ex-
pand next. This could be the same option that was expanded
before (thereby generating another child), or a different op-
tion. During the selection process, our algorithm selects a
level to expand next, and an option within this level.
• Selecting a level – preference is given to lower levels

in the search graph by applying the following “coin-
throwing” procedure. Assign to level i (= 6 = Action
Frame) a probability of 0.5 of being selected. If level i
is not selected, set i← i− 1 and repeat this process. This
policy produces a search tree that is roughly binary, i.e.,
each level is about twice the size of the previous level. In
the future, we will investigate level-selection policies that
are sensitive to the quality of the output at each level.

• Selecting an option within a level – here we apply the
coin-throwing procedure with a probability 1

3
of select-

ing the most promising candidate. The promise of a can-
didate is a function of the probabilities of its previously
generated children moderated by their recency. That is, a
candidate that has produced good children recently is con-
sidered more promising than one that has produced good
children followed by bad ones. Further, a childless candi-
date is deemed to have the most promise. This means that
our algorithm tries to expand each option at least once.

3 Probabilistic Framework
As stated in Section 1, DORIS selects the interpretation with
the highest posterior probability in light of the given speech
wave and the conversational context. Following Miller et al.
[1996], we are looking for UnfdFrmBest such that

UnfdFrmBest = argmaxiPr(UnfdFrmi|Speech, Context)

The structures generated at each stage of the interpreta-
tion process are assigned probabilities in light of the avail-
able information, which may be evidential or causal. The
evidence comes from the user’s spoken input (speech wave),
and the cause comes from the conversational context. This
context depends on previous input:1 the Unified Frames ob-
tained from the interpretation of the user’s previous utterance,
the items identified by the vision system, and the information
that existed previously in the context (in the future, the con-
text will also be updated by the response generated by the
system in the last conversational turn). We represent these
probabilistic and temporal relations by means of a structure
inspired by Dynamic Bayesian Networks (DBNs) – a formal-
ism which incorporates temporal reasoning into a Bayesian
Network [Dean and Wellman, 1991; Dagum et al., 1992].

Figure 4 depicts two time slices of such a DBN. The arrows
in the DBN represent the direction of causality in the con-
ceptual model, and the direction of the calculations depends
on the observed evidence. That is, the message intended by
the user (which is hopefully the interpretation inferred by the
system) causes the speech wave produced by the user, which
in turn provides evidence for inferring the interpretation in
question. Thus, the interpretation, i.e., the Unified Frame,
is influenced evidentially by “upwards” propagation from the
speech wave, but it is also affected causally by “downwards”
propagation from the contextual information. In addition, the
context at time t + 1 depends on the context at time t, the
Unified Frames obtained at time t, and the output of the vi-
sion system at time t. These influences, depicted with thick,
grey arrows in Figure 4, are calculated algorithmically (rather
than probabilistically). In principle, the context and vision

1At present we consider only speech and vision, and we assume
that the system and the user can see the same things.

10

Text Parse
Tree

Parse
Frame Frame

Feature Action
Frame

Text Parse
Tree

Parse
Frame Frame

Feature Action
Frame

Wavet
Speech Unified

Frame

Unified
Frame Vision t+1Camera

Camerat

tContext

Vision

Context t+1

Wavet+1
Speech

Time slice t:

Time slice t+1:

Figure 4: Two time slices of a DBN depicting causal and evidential influences during the interpretation process

also affect the other structures in the DBN (these effects are
depicted with grey, dashed links in Figure 4). For example,
we are likely to use a personal pronoun or a definite article to
refer to a recently discussed object, and a demonstrative pro-
noun to refer to an object in our line of vision. However, these
influences are not considered in the current implementation.

3.1 Calculating the probabilities of interpretations

We approximate belief propagation for each time slice of our
DBN as follows.

Evidence only. This part of our calculation is similar to that
described in [Miller et al., 1996]. Equation 1 propagates ev-
idence through the front of the DBN (up to Action Frame).

Pr(ActnFrm|Speech) = (1)
∑

Txt,PrsTr,

PrsFrm,FtrFrm

Pr(ActnFrm,FtrFrm,ParseFrm,ParseTr,Text|Speech)

By assuming conditional independence between each stage
and all but its directly preceding stage (e.g., a Feature Frame
depends only on the Parse Frames from which it is generated),
we obtain Equation 2.

Pr(ActnFrm|Speech) = (2)

∑

Txt,PrsTr,

PrsFrm,FtrFrm

{

Pr(ActnFrm|FtrFrm)× Pr(FtrFrm|ParseFrm)
×Pr(ParseFrm|ParseTr)× Pr(ParseTr|Text)
×Pr(Text|Speech)

}

The probabilities in Equation 2 are obtained as follows.
Pr(Text|Speech) is calculated from a score returned by the
ASR. Pr(ParseTr|Text) is returned by the probabilistic parser.
In the current implementation, the rest of the probabilities in
Equation 2 depend only on the number of alternatives gener-
ated from the “parent” structure. In the future, we will take
into account corpus-based information [Miller et al., 1996],
and consider the influence of the conversational context.

Cause and Evidence. The probability of a Unified Frame
in light of causal and evidential information is given by Equa-
tion 3 (given a Unified Frame, we assume conditional inde-

pendence between an Action Frame and the Context).
∑

ActnFrm

Pr(UnfdFrm|ActnFrm, Context) = (3)

α
∑

ActnFrm

{Pr(ActnFrm|UnfdFrm)× Pr(UnfdFrm|Context)}

where α is a normalizing constant.
We rewrite the first factor to reflect how probabilities are

obtained from the interpretation process, yielding
∑

ActnFrm

Pr(UnfdFrm|ActnFrm, Context) = (4)

β
∑

ActnFrm

{

Pr(ActnFrm)× Pr(UnfdFrm|ActnFrm)
×Pr(UnfdFrm|Context)

}

where β is a normalizing constant.
The probabilities in Equation 4 are obtained as follows.

• Pr(ActnFrm) =
∑

Spch Pr(ActnFrm|Speech)Pr(Speech).
Since there is only one speech wave with Pr(Speech) = 1,
Pr(ActnFrm) = Pr(ActnFrm|Speech).

• To calculate Pr(UnfdFrm|ActnFrm), at present we make a
simplifying assumption whereby we assume conditional
independence between each element in UnfdFrm and the
other elements in UnfdFrm, given the corresponding ele-
ment in ActnFrm. This assumption yields

Pr(UnfdFrm|ActnFrm) = (5)
n

∏

i=1

Pr(element i in UnfdFrm|element i in ActnFrm)

where n is the number of elements in a frame.
This assumption does not hold in cases where the value of
one element in a frame influences the value of other ele-
ments, e.g., “Give Sarah her book”. However, in many
cases it is acceptable, since when generating an inter-
pretation, our system propagates the constraints between
the elements in a frame (Section 4). For instance, the
constraints [Patient:MOVABLE Y,NATURE thing] in
ActionFrame1 in Figure 3(b) are propagated to the Pa-
tient. As a result, each element in the Action Frame con-
tains all the information required to determine the extent

11

ORIGINAL: get the cup
ASR OUTPUT: Total

get/-5 the/-2 cup/2 -5
debt/-6 the/-5 cup/2 -9
get/-6 their/-6 cup/2 -10
get/-5 it/-2 there/-5 cup/2 -10
get/-5 the/-5 cop/0 -10

. . .

Figure 5: Sample output of ViaVoice

to which it matches a candidate entity from the domain
(and calculate the probability of the match to the corre-
sponding element in the Unified Frame).

• Similarly, to calculate Pr(UnfdFrm|Context) we as-
sume conditional independence between each element in
UnfdFrm and the other elements in UnfdFrm, given the
value of the corresponding element in Context.

Pr(UnfdFrm|Context) = (6)
n

∏

i=1

Pr(element i in UnfdFrm|element i in Context)

Our calculation of the probability of a domain entity in
the Unified Frame, e.g., MUG05, from the context is based
on the salience (i.e., level of activation) of this entity. The
technique described in [Zukerman et al., 2003] calculates
salience from the previous references to an entity, the pre-
vious times it was seen, and its similarity to other men-
tioned or seen entities. We propose to adapt this technique
to also take into account visual salience.

4 The Stages of the Interpretation Process

In this section, we flesh out some of the detail for each stage
of the interpretation process outlined in Section 2.

4.1 Recognize spoken utterances⇒ Text

We employ ViaVoice (http://www-306.ibm.com/
software/voice/viavoice/) as the speech recognition
component. ViaVoice takes as input a speech wave uttered
by a user, and generates several alternative word sequences,
where each word has a score between -100 and +100 that
indicates ViaVoice’s certainty. Figure 5 illustrates the output
generated by ViaVoice for the sentence “Get the cup”. As
seen in this Figure, the ASR is rather uncertain about its
output, as the best word sequence has a total score of -5.

4.2 Parse word sequences⇒ Parse Tree

The word sequences generated by ViaVoice are parsed using
Charniak’s probabilistic parser (ftp://ftp.cs.brown.
edu/pub/nlparser/). For each word sequence, the parser
produces a set of parse trees ranked according to their prob-
ability. Figure 6 shows the five top parse trees generated by
Charniak’s parser for the word sequence “get the cup”, to-
gether with the negative log of their probability.2

2We use negative logs of probabilities, rather than probabilities,
to make the calculations more tractable. Note that the higher the
probability, the lower its negative log.

ASR OUTPUT: get the cup
PARSER OUTPUT: -log Pr
(S1 (S (VP (VB get) 28.4608

(NP (DT the) (NN cup)))))
(S1 (VP (VB get) 29.2191

(NP (DT the) (NN cup))))
(S1 (S (VP (VB get) 31.7986

(S (NP (DT the) (NN cup))))))
(S1 (S (VP (VBP get) 32.0519

(NP (DT the) (NN cup)))))
(S1 (VP (VB get) 33.2125

(S (NP (DT the) (NN cup)))))
. . .

Figure 6: Sample output of Charniak’s probabilistic parser

4.3 Sub-categorize the verb⇒ Parse Frame
This stage takes as input a Parse Tree, and generates a small
set of Parse Frames with pointers to sub-trees of the Parse
Tree. This is done by applying the following procedure.

• Determine the main verb in the Parse Tree, and ex-
tract from a lexicon the sub-categorization patterns for
this verb. Each sub-categorization pattern has a set of
semantic-category assignments that fit the pattern. For in-
stance, the patterns for the verb “get” are {[NP PP],[NP
NP],[NP]}, and the semantic-category assignments for
[NP NP] are: [Patient=NP1; Recipient=NP2] and
[Patient=NP2; Recipient=NP1].3

• Retain only the verb sub-category patterns that match the
dependencies in the VP sub-tree. Create a Parse Frame
for each semantic-category assignment in the retained pat-
terns, and store a pointer from assignment to the appro-
priate sub-tree in the Parse Tree. For instance, the request
“Get NP[Sarah] NP[a mug]” yields two Parse Frames for
the sub-category pattern [NP NP] with the following val-
ues for Patient and Recipient:
. . . Patient=NP[a mug];Recipient=NP[Sarah]
. . . Patient=NP[Sarah];Recipient=NP[a mug]

At present, our rules for selecting semantic-category as-
signments are rather coarse, and do not use syntactic in-
formation (e.g., about the preposition in a PP) to discredit
(reduce the probability of) invalid alternatives. As a result,
such alternatives are retained longer than strictly neces-
sary, and are identified only in the last step of the inter-
pretation process (using feature-unification and semantic-
constraint propagation, Section 4.6). This is an effi-
ciency issue, which we intend to address in the near future
by considering more precise rules for making semantic-
category assignments.

4.4 Extract semantic features⇒ Feature frame
This stage receives as input a Parse Frame, and generates a
Feature Frame containing a set of features derived from the
sub-trees in the Parse Frame. The process for obtaining fea-
tures distinguishes between entities and actions as follows.

• Entities – Our system examines the sub-tree pointed
to by the Patient and Recipient in a Parse Frame in or-
der to extract features from the structures attached to

3In the current implementation, the lexicon contains 50 verbs,
and the patterns are composed of NPs and PPs only. Additional
detail will be added in the near future.

12

the head noun in this sub-tree. We distinguish be-
tween specific features that are important in our do-
main and generic features. The specific features,
which include whether the noun is definite, as well as
colour and size, are recorded separately in the Fea-
ture Frame. The generic features are treated as words
and placed in a generic category. For example, the
NP “DT[the] ADJP[old green] mug” has the features
{DEFINITE Y,COLOUR green,GENERIC [old]}.

• Actions – In contrast to entities, all the structures in a VP
that have not been matched with semantic sub-categories
are attached to the Action (verb) as generic features.

This process yields a many-to-one mapping, as several
Parse Frames may produce the same Feature Frame. For in-
stance, the sentence “Get NP[the big red ball]” yields several
Parse Frames, two of which have the following Patients:
P1: NP[DT the][ADJP[JJ big][JJ red]][NNS ball]
P2: NP[DT the] [JJ big][JJ red] [NNS ball]
Both of these patients yield the following Patient component,
and hence a single Feature Frame:
[Patient:ball,DEFINITE Y,COLOR red,SIZE big]

4.5 Propose domain actions and constraints⇒
Action Frame

This stage receives as input a Feature Frame, and returns
one or more Action Frames. For each action and sub-
categorization pattern in the FeatureFrame, we extract one or
more domain actions from a verb lexicon (which at present
contains 50 entries, most with several senses, mapped to
31 domain actions). These actions are associated with
constraints for the elements in the resultant Action Frame.
For example, the verb “find” yields the domain actions
locate inform and fetch deliver, which have the
following constraints for the Patient:
locate inform:[Patient:MOVABLE N]
locate inform:[Patient:NATURE person]
fetch deliver:[Patient:MOVABLE Y,NATURE thing]

locate inform finds non-movable entities or people, and
then informs the person who made the request of their
whereabouts, e.g., “find the kitchen” and “find Ingrid”; while
fetch deliver finds and retrieves movable objects, e.g.,
“find a cup”. Each domain action yields an Action Frame
whose elements include assigned constraints. We distinguish
between three types of constraints on the basis of how they
are processed.

• Constraints for non-action elements, e.g., the Patient must
be movable. These constraints are propagated to the ele-
ments in question in order to match them with entities in
the domain (Section 4.6).

• Constraints for the action, e.g., the action must be done
quickly. These constraints will be used by a planner when
determining a response (the planner will be implemented
in the near future).

• Constraints relating to implied information, i.e., informa-
tion that has been omitted by the speaker, and must be
filled in to support the generation of a Unified Frame from
the Action Frame, e.g., the Recipient must be the speaker.

This process yields mainly a one-to-many mapping. That
is, a Feature Frame normally produces several Action Frames.

4.6 Unify Action Frames with domain entities⇒
Unified Frame

This stage receives as input an Action Frame and contextual
information, and returns one or more Unified Frames, where
the head nouns in the Action Frame have been replaced with
objects in the physical world. The current implementation
represents 27 entities in the physical world, which are as-
sumed to be correctly recognized with certainty (our architec-
ture provides a representation of uncertainty regarding visual
identification of real-world objects, but we have not yet in-
corporated this uncertainty into our probabilistic framework).

As seen in Section 3, the probability of each Unified
Frame, which is calculated using Equation 4, depends on the
salience of its physical objects according to the context, how
well these objects match the constraints and features in the
given Action Frame, and the probability of the Action Frame.
In this section, we focus on the second component.

Each head noun in the Action Frame is compared with the
objects in the real world. The better the match between a
physical object and the constraints and features of the head
noun, the higher the probability that this object was intended
by the head noun. Unified Frames are then constructed from
combinations of high-probability objects. As seen in Equa-
tion 5, the probability of a Unified Frame given an Action
Frame is the product of the probabilities of these objects.

The calculation of the goodness of a match depends on
the constraints and the type of the features under consider-
ation. Features with many values, such as COLOUR and SIZE,
yield a wide range of probabilities, while constraints, such as
NATURE person, yield extreme probability values. For ex-
ample, if the head noun of the Patient of an Action Frame had
the features [CALLED cup,COLOUR blue], and the phys-
ical world had several cups, of which CUP01 is blue and
CUP05 is aqua, the system would produce several Unified
Frames, of which one would have [Patient CUP01] and
another [Patient CUP05]. The probability of the CUP01
interpretation would be higher than that of the CUP05 inter-
pretation, the probabilities of interpretations with red and yel-
low cups would be much lower, and the probability of an in-
terpretation with a blue lamp would be close to zero.

5 Results
In this section, we describe preliminary results obtained by
DORIS for a virtual domain that consists of 27 domain entities
(things, people and locations) and 31 domain actions.

In our experiments, we imposed no restrictions on the num-
ber of expansions performed by the interpretation stages (the
off-the-shelf systems, ViaVoice and Charniak’s parser, have
their own internal limits). The number of alternatives gener-
ated by these stages is determined by our anytime algorithm
(Section 2.1).

We ran 11 simple commands which were variants of “cook
the pizza”, “feed the cat”, “find Ingrid”, “get the blue cup”,
“find the cup” and “open the cupboard”. For all inputs, ex-
cept “cook the pizza”, the top-ranked interpretation was plau-
sible. Ambiguities arose when a few domain objects matched
the input and were equally salient, e.g., “feed the cat” yields
equiprobable interpretations where cat0 or cat1 are to be
fed. “Cook the pizza” was problematic because none of the
options generated by ViaVoice were correct: the top-ranked

13

option was “look for pizza”, and the option that was closest
to the spoken input, viz “cook for pizza”, had a much lower
score.

The last four stages of the interpretation process (without
ViaVoice and Charniak’s parser) took less than 1 second in to-
tal to generate each of the top-ranked interpretations; the av-
erage time for producing the top-ranked interpretation (over
11 runs) was 0.15 seconds. These times are consistent for
the top five interpretations generated for all inputs except for
“cook the pizza”, where the correct interpretation (ranked
fourth) was found in 4.54 seconds (this is because the “cook
for pizza” ViaVoice output was inspected late, in accordance
with its ranking).

Let us now consider three examples that illustrate the
effect of constraints on the domain action and domain
entity in an interpretation, and the influence of conver-
sational context on the preferred interpretation. The
inputs for these examples are: “find Ingrid”, “find the
cup” and “open the cupboard” (spoken by Michael). As
shown in Section 4.5, the verb “find” can be mapped to
locate inform, which requires non-movable entities or
people, and fetch deliver, which requires movable ob-
jects. The most probable Unified Frame for “find Ingrid” was
UF1={Act:locate inform,Pat:ingrid,Rec:michael}
with − log Pr(UF1) = 70.9926. For “find the cup”, DORIS
generated two best Unified Frames, which correspond to the
two cups known to DORIS:
UF2 ={Act:fetch deliver,Pat:cup0,Rec:michael}
UF3 ={Act:fetch deliver,Pat:cup1,Rec:michael}
with − log Pr(UFi) = 73.4494 for i = 2, 3.

To illustrate the influence of the conversational context on
the preferred interpretation, we repeated the “find the cup”
request in a context that had been manually modified to sim-
ulate a recent mention of cup0 (cup0 was five times more
salient than cup1). This led to an increase in the probabil-
ity of the cup0 interpretation to − log Pr(UF2) = 71.1274,
thereby making it the preferred interpretation, while the prob-
ability of the cup1 interpretation remained unchanged.4

A similar outcome was obtained for the “open the cup-
board” example. The option preferred by ViaVoice, “open
the cabinet”, yielded the winning interpretation when both
the cupboard and the cabinet were equally salient. When the
cupboard became more salient than the cabinet, then “open
the cupboard” won. Table 1 shows several outputs produced
by ViaVoice for this example (left-hand side), together with
the processing stage where the interpretation was discredited
(its probability was reduced), and the reason for this out-
come. Both “open the cup” and “open the couplet” failed
when building a Unified Frame – the former due to a con-
straint failure (cups are not “openable”), and the latter be-
cause DORIS does not know about “couplet” domain objects.
“Plan the cupboard” failed a bit earlier, during Action Frame
construction, because DORIS has no domain action for “plan”.
Clearly, these last two failures would not have occurred if
ViaVoice and the parser used only the restricted vocabulary
corresponding to the domain actions and entities known to

4If we generated a complete set of interpretations, their probabil-
ities would be normalized, and the probability of the cup1 interpre-
tation would go down. However, the generation of an exhaustive set
of interpretations is generally not feasible.

Table 1: Processing stages for “open the cupboard”

ViaVoice output Stage where discredited (Reason)
in the cupboard Sub-categorize verb (no verb)
pin the cupboard —
plan the cupboard Gen. action frame (no domain action)
open the cabinet —
open the cupboard —
open the cup Gen. unified frame (constraint failed)
open the couplet Gen. unified frame (no domain object)

DORIS (an approach adopted in [Matsui et al., 1999]). How-
ever, this vocabulary mismatch gives DORIS the potential to
learn new domain actions and objects.

6 Related Research
We have extended the maximum posterior probability ap-
proach generally used for speech recognition [McTear, 2002;
Young, 2002] to all the stages of the spoken language under-
standing process. Such an extension was also performed by
[Miller et al., 1996; He and Young, 2003] for the interpre-
tation of utterances from the ATIS corpus. However, both
Miller et al. and He and Young used a semantic grammar
for parsing, while we use syntactic information and general
semantic information for as long as possible, incorporating
domain-related information only in the later stages of the in-
terpretation process. Knight et al. [2001] compared the per-
formance of a grammar-based dialogue system with that of
a system based on a statistical language model and a robust
phrase-spotting grammar. Their results show that the lat-
ter perform better for relatively unconstrained utterances by
users who are not familiar with the system. This finding sup-
ports our general approach, which relies on a statistical lan-
guage model.

As done by several researchers in spoken language systems
in general, and robot-based systems in particular (e.g., [Mat-
sui et al., 1999; Rayner et al., 2000; Lemon et al., 2002;
Bos et al., 2003]), we also take into account expectations
from contextual information during language interpretation.
Matsui et al. used contextual information to constrain the al-
ternatives considered by the ASR early in the interpretation
process. This allows their system to process expected utter-
ances efficiently, but makes it difficult to interpret unexpected
utterances. Rayner et al. used contextual information to pro-
duce different interpretations from contextually available can-
didates, and to resolve anaphora and ellipsis. Our architecture
resembles that described in [Rayner et al., 2000] in its succes-
sively deeper levels of representation, and its consideration of
several options at each level. However, we provide a proba-
bilistic framework for the selection of interpretations, while
their selection process is based on diagnostic messages pro-
duced during the interpretation process. Lemon et al. used a
Bayesian Network (BN) that takes into account activity and
recency as well as the user’s and the system’s previous di-
alogue move for anaphora resolution. However, this BN is
not integrated with the rest of their language processing sys-
tem. Finally, Bos et al. developed a dialogue system for a
mobile robot called Godot, which like DORIS, understands
natural descriptions, such as “the kitchen”, and takes context
into account. However, unlike DORIS, Godot’s language in-

14

terpretation process uses a logic-based framework, and em-
ploys formal proofs for conflict resolution.

The probabilistic formalism presented in this paper uses
a DBN-like structure to integrate context-based expectations
with alternatives obtained from spoken utterances. Further,
our formalism is designed to incorporate information from
other channels, e.g., touch and vision, into the interpretation
process, and to enable the interpretations obtained from dif-
ferent channels to influence each other. Our work resem-
bles that of Horvitz and Paek [1999; 2000] in these two re-
spects. However, Horvitz and Paek focus on higher level
informational goals than those addressed in this paper, us-
ing a single output produced by a parser as linguistic evi-
dence for their goal recognition system. Further, they con-
sult additional information channels, e.g., vision, only after
the spoken input has yielded insufficient information, while
our approach considers all channels in tandem. Finally, our
probabilistic approach supports the future integration of our
language interpretation system into a utility-based decision
procedure, such as that described in [Horvitz and Paek, 1999;
Paek and Horvitz, 2000].

7 Conclusion
We have offered (1) a probabilistic formalism for the selec-
tion of the interpretation with the highest posterior probabil-
ity, and (2) a multi-layered interpretation process that takes
into account alternatives derived from a user’s utterance and
expectations obtained from the context. Our probabilistic for-
mulation and our interpretation process support the integra-
tion of sensory and spoken input. Further, our interpretation
process employs general syntactic information and semantic
information for as long as possible, incorporating domain-
related information only in its final stages.

Acknowledgments
This research was supported in part by the ARC Centre for
Perceptive and Intelligent Machines in Complex Environ-
ments. The authors thank Eugene Charniak for his modifi-
cations to his probabilistic parser, and Charles Prosser for his
assistance in extracting multiple texts from ViaVoice.

References
[Bos et al., 2003] J. Bos, E. Klein, and T. Oka. Meaningful

conversation with a mobile robot. In EACL10 – Proceed-
ings of the 10th Conference of the European Chapter of
the Association for Computational Linguistics, pages 71–
74, Budapest, Hungary, 2003.

[Dagum et al., 1992] P. Dagum, A. Galper, and E. Horvitz.
Dynamic network models for forecasting. In UAI92 – Pro-
ceedings of the Eighth Conference on Uncertainty in Artifi-
cial Intelligence, pages 41–48, Stanford, California, 1992.

[Dean and Boddy, 1988] T. Dean and M.S. Boddy. An anal-
ysis of time-dependent planning. In AAAI-88 – Proceed-
ings of the Seventh National Conference on Artificial In-
telligence, pages 49–54, St. Paul, Minnesota, 1988.

[Dean and Wellman, 1991] T. Dean and M.P. Wellman.
Planning and control. Morgan Kaufmann Publishers, San
Mateo, California, 1991.

[George and Zukerman, 2004] S. George and I. Zukerman.
An anytime algorithm for interpreting arguments. In PRI-
CAI2004 – Proceedings of the Eighth Pacific Rim Inter-
national Conference on Artificial Intelligence, pages 311–
321, Auckland, New Zealand, 2004.

[He and Young, 2003] Y. He and S. Young. A data-driven
spoken language understanding system. In ASRU’03 –
Proceedings of the IEEE Automatic Speech Recognition
and Understanding Workshop, St. Thomas, US Virgin Is-
lands, 2003.

[Horvitz and Paek, 1999] E. Horvitz and T. Paek. A com-
putational architecture for conversation. In UM99 – Pro-
ceedings of the Seventh International Conference on User
Modeling, pages 201–210, Banff, Canada, 1999.

[Knight et al., 2001] S. Knight, G. Gorrell, M. Rayner,
D. Milward, R. Koeling, and I. Lewin. Comparing
grammar-based and robust approaces to speech under-
standing: A case study. In Proceedings of Eurospeech
2001, Aalborg, Denmark, 2001.

[Lemon et al., 2002] O. Lemon, P. Parikh, and S. Peters.
Probabilistic dialogue modeling. In SIGDIAL02 – Pro-
ceedings of the Third SIGdial Workshop on Discourse
and Dialogue, pages 125–128, Philadelphia, Pennsylva-
nia, 2002.

[Matsui et al., 1999] T. Matsui, H. Asoh, J. Fry, Y. Moto-
mura, F. Asano, T. Kurita, I. Hara, and N. Otsu. Integrated
natural spoken dialogue system of Jijo-2 mobile robot for
office services. In AAAI99 – Proceedings of the Sixteenth
National Conference on Artificial Intelligence, pages 621–
627, Orlando, Florida, 1999.

[McTear, 2002] M.F. McTear. Spoken dialogue technology:
Enabling the conversational user interface. ACM Comput-
ing Surveys, 34(1):90–169, 2002.

[Miller et al., 1996] S. Miller, D. Stallard, R. Bobrow, and
R. Schwartz. A fully statistical approach to natural lan-
guage interfaces. In ACL96 – Proceedings of the 34th Con-
ference of the Association for Computational Linguistics,
pages 55–61, Santa Cruz, California, 1996.

[Paek and Horvitz, 2000] T. Paek and E. Horvitz. Conversa-
tion as action under uncertainty. In UAI-2000 – Proceed-
ings of the Sixteenth Annual Conference on Uncertainty in
Artificial Intelligence, pages 455–464, Stanford, Califor-
nia, 2000.

[Rayner et al., 2000] M. Rayner, B.A. Hockey, and F. James.
A compact architecture for dialogue management based on
scripts and meta-outputs. In Proceedings of the Sixth Con-
ference on Applied Natural Language Processing, pages
112–118, Seattle, Washington, 2000.

[Young, 2002] S. Young. Talking to machines (statistically
speaking). In ICSLP’02 – Proceedings of the Seventh In-
ternational Conference on Spoken Language Processing,
pages 113–120, Denver, Colorado, 2002.

[Zukerman et al., 2003] I. Zukerman, S. George, and
M. George. Incorporating a user model into an infor-
mation theoretic framework for argument interpretation.
In UM03 – Proceedings of the Ninth International Con-
ference on User Modeling, pages 106–116, Johnstown,
Pennsylvania, 2003.

15

Planning clarification questions to resolve ambiguous references to objects

Jeremy L Wyatt
Intelligent Robotics Laboratory

School of Computer Science
University of Birmingham

Birmingham, UK, B15 2TT
jeremy.wyatt@britishlibrary.net

Abstract

Our aim is to design robots that can have task di-
rected conversations with humans about objects in
a table top scene. One of the pre-requisites is that
the robot is able to correctly identify the object to
which another speaker refers. This is not trivial as
human references to objects are often ambiguous,
and rely on contextual information from the scene,
the task, or the dialogue to resolve the reference.
This paper describes work in progress on building
a robot system able to plan the content of clarify-
ing questions that when answered provide the robot
with enough information to resolve ambiguous ref-
erences. It describes an algorithm that models the
degree of uncertainty about the binding of a ref-
erent using a probability distribution. We use the
visual salience of the object as a way to generate
the prior distribution over candidate objects, which
we call the belief state. Then we generate action
models, for the effects of various clarifying ques-
tions, on the fly. Finally we evaluate the mean re-
duction in the entropy of the resulting belief states.
The method can be seen as a form of prior-posterior
analysis, or as one step look ahead in an informa-
tion state Markov decision process. We are cur-
rently implementing the algorithm in a robot and
discuss the issues we have encountered to date.

1 Introduction
Human-robot communication is an increasingly active field
[Roy et al., 2004; Sidneret al., 2004; Sidner and Dzikovska,
2004; Oateset al., 2000], with many challenging problems.
One of the most basic abilities for a robot capable of convers-
ing with a human about objects in a scene is the ability to bind
the references made by a speaker to objects in the world. One
of the problems of human dialogue is that references to ob-
jects are often linguistically underspecified. Because of this
the robot may need to incorporate other information to re-
solve the reference. An example is the case below:

• H: “What is to the left of the red cup?”

• R: “Is it the large red cup?”

• H: “Yes.”

Figure 1: A scene with three red mugs, and two other objects.

• R: “There is a green ball to the left of that cup.”

Here the tutor has asked the robot about the identity of an
object with a particular relationship to another object (a red
cup) in the scene. First of all the question makes a reference
to a red object, and indirectly (through the spatial relationship
to this object) to the object of interest. Answering the ques-
tion requires that the robot is capable of decoding this indirect
reference, i.e. figuring out which object is the one to the left
of the red cup. Here the reference involves an ambiguous
reference to another object (a red cup) which is being used
as a landmark. If the reference to the red cup is ambiguous
(here there are two cups with significant areas of red, each
with an object to their left), then the robot must take an ac-
tion to resolve this ambiguity. This could involve checking to
see if the human is pointing at the object, or it could involve
asking a clarifying question as in the dialogue above. Where
there are several possible clarifying actions we will require
a system for generating clarifying questions and for deciding
which one is most appropriate. In addition the system should
be able to incorporate information from either language or
vision.

In this paper we shall suppose that we have a vision sys-
tem that is capable of producing a list of the objects in the
scene, and their approximate positions on the ground plane.
We will also assume that it is possible from these to generate a

16

scene graph, which we have already been able to do for small
numbers of simple objects[Kruijff and Kelleher, 2005]. It is
important to note that while this is possible for a very limited
number of fixed objects, it is not possible for a wide variety
of objects, or for cluttered or complex scenes. To make a real
robot system scale, further mechanisms are necessary, partic-
ularly an attentional system. We return to this issue briefly in
the final section. The rest of the paper is structured as follows.
In section 2 we introduce a running example, in section 3 we
describe the kind of clarifying actions we can take to resolve
ambiguity. In section 4 we describe how we generate action
models for the dialogue moves on the fly, and then in section 5
we describe the various metrics we use to evaluate them.

2 An example problem
Suppose that we have a vision system that is capable of build-
ing a list of objects together with their attributes. The at-
tributes we can reasonably expect to get from our existing
vision system are as follows:

Object :category
:colour
:projective relations
:proximity relations
:position in image plane
:position on ground plane

In order to extract the proximity relations we use a potential
field model to capture the notion of nearness between objects
[Kruijff and Kelleher, 2005]. Using this model we can extract
the qualitative relationshipnearfrom the geometric locations
of the objects in a way that is contextually sensitive. In Fig-
ure 2, for example we might say that objecto8 is nearo2, but
this will depend on how far away the objects are, their relative
size, and where other objects are relative to them. To model
projective relationships, such asleft of, right of, behindand
in front of we create simple tessellations of the space centred
on the objects themselves. At the moment we only extract
the relationships for the robot’s own frame of reference, but
given a geometric model it is possible to extend this to other
frames of reference, i.e. speaker or object based.

We also have a discourse context, which consists of an
information state and some additional structures. These are
based around a set of logical forms, each of which represents
the content of an utterance. Each logical form will contain
one or more discourse referents. These include referents that
are variables which can be bound to physical objects in the
scene. A significant part of the task of integrating the visual
and linguistically derived representations is to decide which
object to bind to which discourse referent. We use a couple
of running examples. In the first suppose the human utters
the question:‘‘What colour is the mug?’’ where
there are objects arranged on the table as shown in Figure 2.

To answer this question the discourse manager needs to
create a goal. This goal is to reach an information state where
the human agent believes the mug to have a certain colour,
and where that belief is correct. To satisfy this goal the robot
will have to make an utterance stating the colour of the mug.
In order to do this it needs to bind the referent to a physical

X

o1

o2

o3

o4

o5

o6
o7

o8

Figure 2: An overhead map of some objects on the table.
Large circles represent mugs, the small circle represents a
ball, the cross represents an object that has not been identi-
fied.

object. In this example there is a significant degree of referen-
tial ambiguity. In the second example, let’s assume the same
layout of objects on the table, but that the human instead says
‘‘Pick up the mug’’ .

Let’s also assume that when the discourse manager re-
alises that a reference is ambiguous it makes a call to res-
olution routineresolve(discoursereferent, discoursecontext,
scenegraph) which will plan and make an utterance to re-
solve the reference. We will now consider the actions that
this procedure might consider.

3 Asking clarifying questions to resolve
references

What are the different actions that the robot could take in
order to resolve the reference above? In the first example
(where we are asked for the colour of the mug) we will
need a representation that captures the rule that it is not sen-
sible to ask a question of the form‘‘Is it the red
mug?’’ . Obviously, in the second example (‘‘Pick up
the mug.’’) this question is fine. We don’t discuss this
problem further in this paper. Reasonable things the robot
can do for example 1 include:

• Checking to see if the speaker is pointing at the object.

• Asking whether it is on the left or the right of the scene.

• Asking if it is at the back or the front of the scene.

• Asking if it has some projective or promixal relation-
ship to some other object not in the set of objects that
can be bound, e.g.‘‘Is it next to the red
ball?’’

• Asking the human to point at the mug.

• Asking the human the general question‘‘Which mug
is it?’’ .

17

• Asking a question about which mug it is by referring to a
mug using one of a number of other attributes e.g.‘‘Is
it the big mug?’’ .

Reasonable things I can do for example 2 include all of the
above, and questions about colour:

• ‘‘Is it the red mug?’’

• ‘‘What colour is the mug?’’

• ‘‘Is it the green mug next to the red
ball?’’

• ‘‘Which mug is it?’’

In the following sections we consider the effects of ques-
tions about the attributes or relations of an object, of gen-
eral questions (“which one is it?”), and of questions involv-
ing referring expressions. What we ideally want is a model
of selection that while not enforcing the sorts of utterances
that humans make, settles upon those utterances for good rea-
sons. As an example we want a model that will typically
not ask questions such as “Is it blue?”, as this is not a nat-
ural response, but would prefer questions such as “Is it the
blue mug?” or “Which mug is it?”. We want this preference
to arise out of sensible criteria (such as the cognitive load,
or the expected gain in information), rather than by exclud-
ing certain classes of question from consideration. The ques-
tion we should prefer will depend on the degree of ambiguity
in the reference. Systems such as Ripley[Roy et al., 2004]
use a simple catch all strategy of asking “Which one is it?”
whenever confronted with referential ambiguity. While such
a strategy is quite effective humans use a wider range of ex-
pressions dependent on context and the degree of uncertainty.
We want to be able to produce qualitatively similar behaviour
from our model.

Our first problem is representing the degree of uncertainty
about the reference, and using this to incorporate existing in-
formation from modalities other than language, e.g. vision.
The objects in the set of possible referents have varying de-
grees of visual salience, large objects in the foreground are
highly salient, whereas small objects in the background are
not. There is a simple algorithm that lets us calculate the vi-
sual salience for an object in terms of its size on the image
plane, and how central it is in the current view[Kelleher and
van Genabith, 2004]. In that system the visual salience alone
is used to resolve references to objects that have not previ-
ously appeared in the dialogue, but which appear in the visual
scene. We extend this, by assuming that picking the most vi-
sually salient object that satisfies the reference may not be
enough. In addition we want a mechanism that allows us to
measure the degree of ambiguity after taking the salience into
account. We propose that having obtained these saliences we
normalise them and interpret them as probabilities in a prior:

pi = Pr(d1 = oi) =
salience(oi)∑

j∈D(d1)
salience(oj)

(1)

whereD(d1) is the distractor set for the discourse referentd1.
We will refer to a probability distribution over the elements
in the distractor set as a belief distribution. Let’s denote the
belief distribution as follows:

B(d1) = {(o1, p1) . . . (oi, pi) . . . (o7, p7)} (2)

wherepi is the likelihood that the discourse referent binds to
objectoi. The prior belief distributionB′ is simply the dis-
tractor set augmented by the prior probability of each binding.
We will sometimes refer to a belief distribution as a state. The
distractor set itself is simply the set of objects in the object
list (from the visual information) that match the properties of
the discourse referent. Our discourse referent has a set of at-
tributes and relations garnered from the utterance. We obtain
this set by parsing with a combinatorial categorial grammar
designed for talking about objects and their spatial relation-
ships. For the utterance “Pick up the mug.” the attributes of
the discourse referent can be simply represented in the same
form as our object list supporting our scene graph.

d1 :category=mug

So initially our distractor set is:

D(d1) = {o1, o2, o3, o4, o5, o6, o7} (3)

If D(d1) had a single element then we would wantresolve
to terminate and return the only possible binding. If the set is
empty, then we must return with that fact and look for a candi-
date object elsewhere. If there are several possible bindings,
then we must ask clarifying questions to gain information in
order to resolve the reference. Let’s denote asking a ques-
tion asask(x,q) wherex is the agent asked andq is the
question. For each question that we can ask we will assume
that we can build an action model on the fly that effectively
generates a set of possible new information states, in that it
generates a set of possible new distractor sets after the ques-
tion is answered.

4 Generating action models for dialogue
moves on the fly

There are many algorithms for generating referring expres-
sions that take an object and a distractor set for which we
have a set of relations and properties and calculate an expres-
sion that will refer uniquely to that object if possible. So if we
want to generate a question of the form‘‘is d1 = o1?’’
then we can call such an algorithm to generate a referring
expression foro1. In our algorithm we will, as part of the
planning process, internally generate a referring expression
for every object in the distractor set. We will therefore also
assume that we are able to generate a call to an algorithm
for generating referring expressions from the scene graph,
generate reference(scene graph) . A reasonable
algorithm that requires a scene graph and given this efficiently
handles referring expressions involving properties and spatial
relations is that of[Krahmeret al., 2003]. These referring
expressions will be the basis of questions of the form‘‘Is
it the ... ?’’ .

Of course until we’ve called the algorithm we may not have
any idea as to whether it is possible to generate such a re-
ferring expression given the information we have. Consider
distinguishing between the two blue mugs on the left of Fig-
ure 2. Suppose that there is nothing in the scene graph that

18

enables us to generate a referring expression that uniquely
identifies either of the two objects. If it is not possible to gen-
erate an unambiguous referring expression for an object then
the least ambiguous referring expression can be returned, and
a question can be considered which will ask about whether
the attributes of the object match those returned (e.g. if we no
information about spatial relations in the graph we could ask
“Is it green?”.)

Once we have a method to generate possible questions, we
must be able to model their effects and then evaluate them.
Consider example 2: “Pick up the mug”. We may want to
consider asking the clarification questions:

• ‘‘Is it the green mug on the left?’’

• ‘‘What colour is the mug?’’

• ‘‘Is it on the left’’

• ‘‘Is it blue?’’

Each one of these will move us to a new belief distribution
B′′ (or equivalently hereB|a, q). All we need in our action
model is a way of stating the likelihood of ending up in a
particular state. This is simple. Suppose we have the situation
in example 2,‘‘Pick up the mug.’’ , and we have a
uniform prior over the candidate objects. If we ask‘‘Is it
blue?’’ then, if p′

i is the prior for objectoi then a trivial
Bayes update gives the posterior:

p′′
i|q,a ∝ pa|q,i p′

i (4)

Whereq is the question, anda is the answer. The only thing
we need to know in advance ispa|q,i, the likelihood of the
answer to the questionq (‘‘Is it blue?’’) given that
objectoi is the correct binding. This is given by the attributes
and relations of the objects as given in the scene graph. If
an attribute has the value referred to in the question, or the
relation asked about holds, the probability of receiving an an-
swer confirming that attribute or relation, is 1. In our simple
case of the question‘‘Is it blue?’’ , pyes|q,i = 1 for
any blue object, andpno|q,i = 1 for any non-blue object . In
general, however, what we actually need for the action model
is to use these probabilities to estimate the likelihood of mak-
ing the transition to the posterior belief distribution given by
answera to questionq, conditioned over the possible objects.
For this we usepa|q,B′ :

pa|q,B′ =
∑
i∈D

pa|q,ip
′
i (5)

Which is simply the likelihood given the distributionB′

that the answer toq will be a. This is why we are generating
the action model on the fly, becausepa|q will depend on the
situation (B). We also have to normalise over all the possible
hypotheses (objects). So if we assume a uniform prior over
the distractor set, ask‘‘Is it blue?’’ and get back the
answer‘‘Yes’’ the posterior will be:

B(d1)|blue?, yes = {(o2,
1
3
), (o3,

1
3
), (o4,

1
3
)} (6)

Note that by taking this approach we are making the as-
sumption that the only possible answers to our questions are

ones that are relevant and do not take into account any con-
versational implicature of the question asked. We will later
incorporate the effects of a human taking into account the
conversational implicature. We can therefore build a sim-
ple probability tree giving the transitions between the belief
distributions given the questions I can ask. Let’s assume
the questions are:q1 = ‘‘Is it on the left?’’ ,
q2 = ‘‘Is it blue?’’ , q3 = ‘‘What colour is
it?’’ :

q2

q3

{1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

yes

no

{1/2, 0, 1/2, 0, 0, 0}

{0, 1/4, 0, 1/4, 1/4, 1/4}

{0, 1/3, 1/3, 1/3, 0, 0}

{1/3, 0, 0, 0, 1/3, 1/3}

red

blue

green

{0, 1/3, 1/3, 1/3, 0, 0}

{0, 0, 0, 0, 1, 0}

{1/2, 0, 0, 0, 0, 1/2}

q1
P(yes|q1) = 1/3

P(no|q1) = 2/3

Figure 3: One step action models for three actions.

We may want to consider how to model the effects of multi-
modal actions, e.g. pointing at an object while speaking about
it. We will return to this question later. For now, we look at
how we decide that, given the action models, we prefer one
dialogue move action over another.

5 Evaluating belief distributions

There are a number of criteria we intuitively want to include
in our evaluation of a dialogue move and its effects. First we
simply want to evaluate the likely degree of ambiguity that
remains, clearly our main priority should be to remove the
ambiguity altogether if possible. Second, we want a model
that will take into account the costs for the other speaker of
understanding our clarifying action, and also the likely cost
to ourselves of understanding their response.

With respect to the first there are two simple ways we can
evaluate distributions over belief distributions. First we can
use the entropy of the distribution, and second we can use the
expected error rate for the Bayes classifier according to the
distribution. In the second we are essentially imagining what
our likelihood would be of getting it wrong if we were forced
to pick an object. If we have a general distribution then we
can calculate the two measures as follows:

19

Figure 4: A simple scene. The mug on the left is green, the
mug next to the ball is blue, the mug to the right of that is
green.

Pr(error|q) =
∑
a∈A

pa|q,B(1− max
k∈B|a

{p′′
k|a,q}) (7)

E[Entropy|q] =
∑
a∈A

pa|q,B

∑
i∈B|a

{p′′
i|a,q log2 p′′

i|a,q} (8)

Note that both of these actually calculate the expected
value of the belief distributions that could result from a ques-
tion q, each of which is weighted by the probability of giving
the answera that induces the new state. The inner part is the
value of the new belief distributionB|a itself. If we use the
expected error rate we obtain very little distinction between
most questions. Indeed if we start with a uniform prior as
above we can quickly show that all questions withN = |A|
possible answers (where the answers are always relevant) will
be equally ranked, and that questions are more preferable the
larger N is. The error rate is rather insensitive to the type of
question asked even if the prior over the distractor set is non-
uniform. It transpires that the entropy makes it rather easier
to distinguish between the effects of questions in reducing the
ambiguity. Of course, we would expect an effective question
to reduce the ambiguity, and hence the entropy to near zero.

To take into account the cost of understanding the utter-
ances in the planned dialogue we can use the costs that are
typically used in the algorithms for generating referring ex-
pressions. Imagine the scene in Figure 4, in which the robot
has been given the instruction‘‘Pick up the mug’’ .
The complete scene graph is given in Figure 5.

It can be clearly seen that we can attach costs to the arcs in
the scene graph, and it is precisely these that are used to cal-
culate the ranked costs of possible referring expressions when
generating the possible questions. Classically object type is
given the lowest cost, followed by absolute attributes, rela-
tive attributes, proximal and then projective relations[Dale
and Reiter, 1995; Krahmeret al., 2003]. We use these costs,
which are generated for the best referring expression for each
object, to rate the difficulty to the listener of interpreting the
robot’s question. We refer to this as a cognitive load model.
The full table of loads is:

The total load imposed by an utterance is simply the
sum of the loads involved, e.g."Is it the green
mug to the right of the ball?" carries a load

Figure 5: A simple scene graph for the scene in Figure 4. The
arcs are labelled with the corresponding attributes and rela-
tions, and their associated costs in brackets. Arcs of the same
colour are attributes of the same type, and carry the same
costs. Not all labels and costs have been included.

Reference by Example Load
Type mug 0
Absolute attribute red 1
Proximal relation near 2
Projective relation left of 3

of 3 + 1 = 4. We assume that questions that make no ref-
erences, e.g."Which mug is it?" carry a load of zero.
This load is the costC1 in Tables 1– 4.

Finally we estimate the expected cost to the robot of pro-
cessing the response. This depends on whether we model the
listener’s ability to take account of the implication that the
robot has not understood the reference, and is seeking an an-
swer to resolve the reference. We refer to the two types of
speaker as helpful and unhelpful. Costs, or loads,C2 are the
expected costs of interpreting the relevant response.

Table 1: Multi-objective evaluation of three questions for a
simple scene. We assume an unhelpful speaker, and a prior of
0.5, 0.25,0.25.

Question Evaluation
E[H|q, a] C1 C2

Is it the mug to the left of the ball? 0.5 3 0
Which mug is it? 0 0 2.5
Is it green? 0.69 1 0

Table 2: Multi-objective evaluation of three questions for the
same scene, but with a prior of0.8, 0.1, 0.1.

Question Evaluation
E[H|q, a] C1 C2

Is it the mug to the left of the ball? 0.2 3 0
Which mug is it? 0 0 2.8
Is it green? 0.45 1 0

The resulting cost estimates for the case of the scene in
Figure 4 above are shown in Table 1. In this case we start with

20

Table 3: Evaluation of the same questions where we assume
a helpful speaker, and a prior of 0.5, 0.25,0.25.

Question Evaluation
E[H|q, a] C1 C2

Is it the mug to the left of the ball? 0 3 1
Which mug is it? 0 0 2.5
Is it green? 0.69 1 .25

Table 4: Evaluation of the same questions, with a helpful
speaker and a prior of0.8, 0.1, 0.1.

Question Evaluation
E[H|q, a] C1 C2

Is it the mug to the left of the ball? 0 3 0.4
Which mug is it? 0 0 2.8
Is it green? 0.45 1 0.1

a prior distribution over the distractor set of 0.5 for the mug
on the left, and 0.25 for the other two mugs. We assume a non
helpful speaker. In this case the speaker will provide a literal
answer to a question, without giving additional information
on the basis of inferring that the robot wishes to know the
object in question. In other words the human doesn’t give
helpful answers, like"No, it’s the blue one." to
the question"Is it green?" .

For the questionq1: "Is it the mug to the
left of the ball?" we need to generate the possible
answers, and estimate their different costs. In summary these
costs are: the uncertainty remaining after the question and
the answer, the load on the human listener of interpreting the
question, and the load on the robot of interpreting the answer.
Note that we will not calculate an overall combined cost, but
merely rank the costs from most to least important. The en-
tropy given a question is the sum of the likelihoods of each
answer by the entropy remaining after that answer has been
made, as given in Equation 8.

We can see the likelihoods of the answers, and the re-
sulting belief distributions after the answers in Figure 6. If
the answer toq1 is "Yes" , then the posterior belief dis-
tribution is (1, 0, 0) the entropy of which is 0. If the an-
swer is"No" the belief distribution is(0, 1/2, 1/2), the en-
tropy of which is 1. So the expected entropy forq1 is
H|q = 0.5× 0 + 0.5× 1 = 0.5. We can calculate the ex-
pected entropy for the other questions in the same way.

We now need to calculate the expected load of the an-
swer. If the speaker is unhelpful most of the answers are
a simple "Yes" , or "No" and they carry a cost of 0.
In this case only answers to a question likeq2: "Which
mug is it?" will include a referring expression, and
thus carry a load. We simply imagine the referring ex-
pressions the robot would choose if it were the speaker,
and weight their associated costs by the prior. If the an-
swers are: "It’s the mug on the left of the
ball." ; "It’s the mug on the right of the
ball." and "It’s the blue mug." , the expected
load isC2 = 0.5× 3 + 0.25× 3 + 0.25× 1 = 2.5.

Of course, if the speaker is helpful, things will be differ-

q2

q3

q1

{1/2, 1/4,1/4}
{1, 0, 0}

{0, 1, 0}

{0, 0, 1}

{2/3, 0, 1/3}

{0, 1, 0}

P("yes"|q1) = 1/2

P("no"|q1) = 1/2

P("o1"|q2) = 1/2

P("o2"|q2) = 1/4

P("o3"|q2) = 1/4

P("yes"|q1) = 3/4

P("no"|q1) = 1/4

{1, 0, 0}

{0, 1/2, 1/2}

Figure 6: One step model of the three questions for the scene
in Figure 4 and the prior(0.5, 0.25, 0.25). Note that here, an
answer of “o1” is simply a shorthand for a referring expres-
sion to objecto1.

ent, as shown in Table 3. Under this assumption we can as-
sume that the entropy will usually be zero, since if from our
clarifying question the speaker can infer our intent they will
make an appropriate referring expression. This causes the
expected entropy to be 0 for all questions and outcomes ex-
cept that of answering‘‘Yes’’ to the question‘‘Is it
green?’’ . We assume here that the human would not give
additional information since the intention of the speaker is
marginally more ambiguous. If the answer always involves
a referring expression however, such as that generated by a
helpful speaker, then the expected load of processing the an-
swer rises. This would giveq1 a new expected load for the
replies toq1 of C2 = 0.5× 0 + 0.25× 1 + 0.25× 3 = 1.

Finally we can see from Table 1 that different orderings of
the different types of costs will induce different preferences
among the questions. In the unhelpful speaker model, if we
wish first to reduce entropy below some threshold (say 0.3),
then reduce the cognitive load on ourselves, and then reduce
the load on the other speaker we will preferq2: "Which
mug is it?" . If, however, the prior belief distribution
changes enough so that we are more confident that the object
is o1 then we will ask"Is it the mug to the left
of the ball?" . This is shown in Table 2, where the costs
are calculated for the same problem, but with a prior belief
distribution of(0.8, 0.1, 0.1). The general point here is that

21

the prior becomes more certain about a specific object it be-
comes more appealing to ask the question based on the ref-
erence to that likely object. This depends on the cost of that
reference. Here the cost of a reference to the likely object is
high, so that the total costs always exceed those for asking the
general question‘‘Which mug is it?’’ .

In the case of a helpful speaker (Tables 3 and 4) we have
to decide whether we prefer to lower the load on the robot or
the person. An argument for lowering the load on the robot
(i.e. preferring questions with a lowC2 to those with a low
C1) is that the time taken for the robot to process an utterance
by reference to the visual scene will be significantly higher
than for the human. Thus to improve speed of response we
will typically prefer the specific question involving a referring
expression. It is also worth noting that the model will never
prefer attribute based questions, such as"Is it blue?" .

Despite this argument it is not entirely clear whether for
smooth robot-human dialogue a rational robot should always
prefer the higher costs to be placed on a human because of
their greater cognitive ability, or whether some other ranking
or weighting of the objectives will produce the right mix of
behaviour. The flexibility of the cost model is considerable
however, so it should not be too challenging to tune it for a
reasonable qualitative match with human performance.

6 Discussion and Work in Progress

There is a long history of work on question answering sys-
tems, many of which are concerned with similar issues. In
[Fleming and Cohen, 2001] a related cost model for reason-
ing about the benefits of different dialogue strategies, includ-
ing clarification dialogues is proposed. Clarification ques-
tion planning is also carried out in[Raskutti and Zuker-
man, 1997], although there the types of uncertainty involve
more structured entities, such as more complex discourse re-
lations. There are also similarities with recent probabilistic
approaches to dialogue management[Goddeau and Pineau,
2000; Royet al., 2000]. In those approaches the problem is
also posed as either a Markov decision process (MDP), or a
partially observable MDP. Our approach should be viewed as
myopic planning over an information state MDP, which is,
for our purposes, a simplified way of looking at a POMDP.
Here the true underlying state of the system is the actual ob-
ject to which the human has referred. We also remove all
learning from the problem, while retaining a more complex
(multi-objective) cost function. Finally there are also some
connections to the work on incremental production of refer-
ences to objects. There is strong empirical evidence[Pech-
mann, 1989] that humans, particularly adults, tend to over-
specify references. Pechmann argues that this is due to the
incremental nature of speech production. Although referring
expressions could be generated incrementally in our system,
it does not attempt to be cognitively plausible in that we plan
and take into account the precise nature of the references be-
fore we have made them. In this sense, our model is not cog-
nitively plausible, although there are opportunities to explore
the real impact of visual processing and visual attention in
our robot system. Finally we note that because of the chal-
lenges of visual processing to obtain object location the sens-

ing problems addressed here are rather different from those
of the “Put-that-there” systems of the 1970s[Bolt, 1980]. In-
deed the problem of integrating spatial reasoning with lan-
guageand vision in robotics in a scalable way for natural
scenes is still well beyond the state of the art.

We currently have an almost complete communication sys-
tem that is capable of parsing utterances about objects in a
scene, as well as vision routines able to determine the pose
of simple objects on a table top, and determine their visual
salience. We are currently implementing the planning algo-
rithm described in this paper. There are important issues that
crop up when placing such a system in a robot. The most
prominent of these is the need for an attentional system that
is capable of deciding which parts of the image and scene to
process in order to generate a partial scene graph. Generation
of a complete scene graph is not feasible for either humans or
robots for complex everyday scenes. This will therefore re-
quire a mechanism for deciding what processing to do. This
is an extremely interesting question because we believe that it
might provide a much more satisfactory model of the cogni-
tive load of different referring expressions than merely ranked
costs. In addition there is the opportunity for a robot system
to estimate its own costs in terms of the processing times and
loads for different operations.

We could ask why we would want to put such effort into
generating a variety of responses when a general question
will do. Indeed why do we really expect references to be
commonly underspecified . The answer is that they may not
be once context is taken into account, but a robot may well be
incapable of spotting and processing all the relevant cues in
time, e.g. pointing gestures, or eye fixations. Conversational
robots are likely to need a fall back resolution mechanism that
reduces the costs for both speakers by attempting to focus at-
tention whenever possible. We believe that such an approach
might both provide an interesting account of human reference
resolution, as well as making human-robot dialogue more ro-
bust. We plan to present initial results from the robot system
at the workshop.

Our plans include incorporating action models for watch-
ing and making pointing actions. The filters for these are
typically probability distributions expressing the observer’s
uncertainty about the location to which the arm is pointing.
We anticipate that with an appropriate model of pointing that
extension to multi-modal actions should be possible.

Acknowledgments
The author would like to acknowledge the work of Geert-Jan
Kruijff, and John Kelleher for the design and implementation
of the communication system on which this work is based.
He would also like to thank the anonymous reviewers for their
useful suggestions.

References
[Bolt, 1980] Richard A. Bolt. ”Put that there”: Voice and

gesture at the graphics interface. InProceedings of the 7th
annual conference on computer graphics and interactive
techniques, pages 262–270, 1980.

22

[Dale and Reiter, 1995] Robert Dale and Ehud Reiter. Com-
putational interpretations of the Gricean maxims in the
generation of referring expressions.Cognitive Science,
19(2):233–263, 1995.

[Fleming and Cohen, 2001] Michael Fleming and Robin Co-
hen. Dialogue as decision making under uncertainty: The
case of mixed-initiative AI systems. InProceedings of
NAACL-2001 Adaptation in Dialogue Systems Workshop,
2001.

[Goddeau and Pineau, 2000] D. Goddeau and J. Pineau. Fast
reinforcement learning of dialog strategies. InIEEE
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2000.

[Kelleher and van Genabith, 2004] J. Kelleher and J. van
Genabith. Visual salience and reference resolution in sim-
ulated 3d environments.Artificial Intelligence Review,
21(3):253–267, 2004.

[Krahmeret al., 2003] E. Krahmer, E.S. van Erk, and A. Ver-
leg. Graph based generation of referring expressions.
Computational Linguistics, 29(1), 2003.

[Kruijff and Kelleher, 2005] G.J. Kruijff and J.D. Kelleher.
A context-dependent model of proximity and regions. In
to appear in Proceedings of the IJCAI-05, 2005.

[Oateset al., 2000] Tim Oates, Zachary Eyler-Walker, and
Paul R. Cohen. Toward natural language interfaces for
robotic agents: Grounding linguistic meaning in sensors.
In In Proceedings of The Fourth International Conference
on Autonomous Agents., pages 227–228, 2000.

[Pechmann, 1989] Thomas Pechmann. Incremental speech
production and referential overspecification.Linguistics,
27(1):89:110, 1989.

[Raskutti and Zukerman, 1997] Bhavani Raskutti and Ingrid
Zukerman. Generating queries and replies during informa-
tion seeking interactions.IJCHS, 47(6):689–734, 1997.

[Royet al., 2000] N. Roy, J. Pineau, and S. Thrun. Spoken
dialog management using probabilistic reasoning. InACL,
2000.

[Royet al., 2004] Deb Roy, Kai-Yuh Hsiao, and Nikolaos
Mavridis. Mental imagery for a conversational robot.
IEEE Transactions on Systems, Man, and Cybernetics,
34(3):1374–1383, 2004.

[Sidner and Dzikovska, 2004] C. Sidner and M. Dzikovska.
A first experiment in engagement for human-robot inter-
action in hosting activities. Technical Report 2003-134,
Mitsubishi Electric Research Labs, December 2004.

[Sidneret al., 2004] C. Sidner, C. Lee, C. Kidd, and N. Lesh.
Exploration in engagement for humans and robots. Tech-
nical Report 2004-048, Mitsubishi Electric Research Labs,
June 2004.

23

Assessing the Impact of Adaptive Generation
in the COMIC Multimodal Dialogue System

Mary Ellen Foster and Michael White
Institute for Communicating and Collaborative Systems

School of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW United Kingdom

{M.E.Foster,Michael.White}@ed.ac.uk

Abstract

We describe how information from the dialogue
history and the user model is incorporated into the
output-planning process of the COMIC multimodal
dialogue system, and present the results of experi-
ments analysing the impact of both of these factors
on the generated descriptions. The results of the
experiments confirm and extend previous results by
showing that both forms of adaptation make a per-
ceptible difference in the generated speech. They
also point to ways in which the system output can
be improved to take further advantage of these in-
formation sources; in particular, they indicate the
importance of concessions to negative preferences
to the perceptibility of user-model tailoring.

1 Introduction
In this paper, we describe how information from the dia-
logue history and the user model is used to adapt the output-
planning process of the COMIC multimodal dialogue system,
and present the results of experiments analysing the impact of
both of these factors on the generated descriptions.

COMIC1 (COnversational Multimodal Interaction with
Computers) is an EU IST 5th Framework project combin-
ing fundamental research on human-human interaction with
advanced technology development for multimodal conversa-
tional systems. The multimodal dialogue system built as part
of the project adds a dialogue interface to a CAD-like applica-
tion used in sales situations to help clients redesign their bath-
rooms. The input to the system includes speech, handwriting,
and pen gestures; the output combines synthesised speech, an
animated talking head, deictic gestures at on-screen objects,
and direct control of the underlying application.

There are four main phases in the full COMIC system.
First, the user specifies the blueprint of their own bathroom,
using a combination of speech input, pen-gesture recognition
and handwriting recognition. Next, the user chooses a lay-
out for the sanitary ware in the room. After that, the sys-
tem guides the user in browsing through a range of tiling
options for the bathroom. Finally, the user is given a three-
dimensional virtual tour of the finished bathroom.

1http://www.hcrc.ed.ac.uk/comic/

We will concentrate on the third phase of the interaction,
where the system helps the user to explore the space of tiling
options. The metaphor for this part of the system is one of
guided browsing, and the goal is for the user to develop a
better understanding of the range of possibilities and to have
a clearer idea of the features that they like and dislike. The
next step is for the user to work with a human sales consultant
to fine-tune the exact tiling solution to use in their new room.

The rest of this paper is arranged as follows. In Section 2,
we describe how adaptive output was generated and evalu-
ated in several previous systems, and compare them with the
COMIC system. In Section 3, we then give details of how
adaptive output is created in COMIC using information from
the dialogue history and the user model. Then, in Section 4,
we describe experiments designed to assess the individual
impact on the generated output of each of these knowledge
sources. Finally, in Section 5, we summarise the results of the
evaluations, and make recommendations for adaptive genera-
tion in future systems of this type.

2 Evaluating Adaptive Output
The approach we took to adaptive output in COMIC was in-
spired by the approaches taken in the GEA[Carenini, 2000],
M-PIRO [Isard et al., 2003], and MATCH [Walker et al.,
2002] systems. In this section, we review the types of adapta-
tion employed in each of these systems, and describe how
the impact of the adaptation was assessed. At the end of
the section, we compare and contrast the types of adapta-
tion in COMIC with those in the earlier systems, and give
an overview of the evaluation reported in this paper.

The GEA system was designed to generate evaluative argu-
ments tailored to user preferences in the domain of real estate,
in the context of a graphical data-exploration environment.
When generating a description of an option, the user prefer-
ences influenced the features that were included, the ordering
of those features, and the use of scalar adjectives and adverbs
in the text. A task-based evaluation of the generated argu-
ments[Carenini and Moore, 2001] took the following form.
While the subjects were using the data-exploration system,
a new house was added to the options. A subject was in-
formed about this new house in one of three ways: in some
cases, they were just notified that there was a new house, with
no description. In other cases, they were given a textual de-
scription of the new option; the description was either tailored

24

“ [Look at screen]THIS DESIGN [circling gesture]uses tiles from SPHINX TILES’s HE-
LENUS series. As you can see, there areGEOMETRIC SHAPESon theDECORATIVE tiles.
It is in theMODERN style.”

Figure 1: COMIC interface and sample output

to their preferences, or not tailored at all. The effectiveness
of the three presentation strategies was assessed by examin-
ing the user’s behaviour after the presentation of the new op-
tion. The authors found that tailored descriptions were sig-
nificantly more effective than both non-tailored descriptions
and no descriptions, while non-tailored descriptions were not
any better than no descriptions.

The M-PIRO system generates dynamic descriptions of
museum artifacts, with the goal of instructing the user. In
the evaluation described by[Karasimos and Isard, 2004],
subjects read a series of textual descriptions of artifacts that
were generated either with or without sophisticated text struc-
turing. There were two forms of text structuring, which
were either both enabled or both disabled together: combin-
ing semantically-related propositions into complex sentences
(aggregation), and using common attributes to make links
between the current object and any previously-seen objects
(comparison). In this study, the subjects performed signif-
icantly better on a factual recall task when the descriptions
they had read included aggregation and comparison; they also
gave higher subjective scores to the generated texts that used
these structuring techniques.

The MATCH system generates multimodal descriptions
and comparisons of restaurants in New York City, tailored
to the user’s preferences. The user preferences control the
restaurants that are recommended to the user, as well as the
features of the selected restaurants that are included in the
output. [Walker et al., 2004] evaluated the user tailoring by
directly asking subjects to judge the quality of the generated
output. Subjects were presented with a series of responses
to user requests that were tailored either to the subject’s own
preferences or to the preferences of some other user; the re-
sponses were presented in text first and then in speech. They
found that subjects significantly preferred descriptions tai-
lored to their own user model, with similar results for both

speech and text.
In COMIC, output is adapted both to the user preferences

(as in GEA and MATCH) and to the dialogue history (like
M-PIRO). The primary output format in COMIC is synthe-
sised speech, like MATCH and unlike GEA and M-PIRO. The
guided-browsing task—in which the system helps the user ex-
plore and understand a space with which they are initially
unfamiliar—is most similar to the task of M-PIRO; in GEA
and MATCH, the role of the system is more one of helping
the user to find a relevant option in a space with which they
are already familiar. For this paper, we chose to assess di-
rectly whether the adaptations were perceptible to users, as
in MATCH; we leave for future work questions of whether
the adaptation has an impact on on task performance and user
satisfaction.

3 Output Planning in COMIC
Figure 1 shows the interface for the guided-browsing phase
of the COMIC system, along with a typical example of the
output generated in this phase (where small capitals indicate
pitch accents in the speech). The output combines the follow-
ing modalities:

• Synthesised speech, generated using the OpenCCG sur-
face realiser[White, 2004; 2005a; 2005b] and synthe-
sised using a custom Festival 2 voice[Clarket al., 2004]
with support for APML prosodic markup[de Caroliset
al., 2004].

• Facial expressions and gaze shifts of the talking head.

• Deictic gestures at objects on the bathroom-application
screen, using a simulated mouse pointer.

All of the information about tile designs in the COMIC sys-
tem is stored in an ontology, which is linked to the dialogue
history and the user model. The dialogue manager makes use

25

of these resources to choose the next set of designs to de-
scribe to the user, while the presentation planner uses them
to select and structure the content of the descriptions that are
generated.

3.1 Information and Knowledge Sources

Ontology Information about the available tile designs is
stored in an ontology represented in DAML+OIL.2 The on-
tology contains catalogue information including the manufac-
turer and series name, style, colours, and decoration, as well
as any canned descriptive text associated with each design.

Dialogue History For each design in the ontology, the di-
alogue history keeps track of whether it has been mentioned
in the dialogue. It also records the properties of each design
that have been described to the user; note that a property may
be described directly (e.g.,this design is classic) or indirectly
(e.g.,here are some classic designswhen pointing to several
designs). The dialogue history also stores the identity of the
last design that was described.

User Model As in [Carenini, 2000; Walkeret al., 2002;
Moore et al., 2004], user preferences are represented in
COMIC using a model based on multi-attribute decision the-
ory. Multi-attribute decision models are based on the notion
that, if anything is valued, it is valued for multiple reasons.
The value of a particular design for a user is computed as the
weighted sum of its value on a number of primitive features;
to create a specific user’s model, we must therefore set the
weights of the attributes and the evaluation function for each
individual attribute.

The tile-design user model in COMIC is made up of four
features: style, colour, designer, and decoration. These fea-
tures are represented in a one-level tree. The evaluation func-
tion for each of these features assigns a score between 0 and
1 to every possible value of that attribute. A score of 0.5 rep-
resents a neutral evaluation; scores above or below that value
indicate that the user respectively likes or dislikes that value,
with the distance from 0.5 corresponding to the strength of
that preference. For the colour and decoration attributes,
which may have multiple values on a design, the score is com-
puted by combining the individual attribute values.

The user-model manager supports two types of queries. It
can produce an overall evaluation of a set of designs, to help
the dialogue manager to choose options that are relevant to
the user; it can also produce a detailed evaluation of a single
design with scores on each individual attribute, to help the
presentation planner create descriptions focussing on the op-
tions that are most important for that user. The detailed eval-
uation of a design is created by retrieving its features from
the ontology and computing the evaluation of each feature;
the overall evaluation is the weighted sum of the individual
evaluations.

There are two ways that a user model can be defined in
COMIC. One possibility is that a complete model is created

2http://www.w3.org/TR/daml+oil-reference

and stored offline, before the dialogue begins, and is then se-
lected and loaded at the start of the interaction. The other pos-
sibility is that the dialogue begins with a neutral user model,
which then gets updated during the course of the interaction
to take into account emerging preferences. In the current sys-
tem, this is implemented by increasing the score for attribute
values that the user specifically requests. For example, if the
user asks for designs with blue tiles, the score for the colour
blue is increased in the model for the remainder of the dia-
logue. There is no support in the current COMIC system for
dynamically decreasing scores during the interaction, or for
explicitly discussing the user model as part of the dialogue.

3.2 Planning Adaptive Output
When browsing through tile designs, the user may request
designs with a particular feature—for example,Show me de-
signs with blue tiles. To choose the next set of tile designs to
present in response to such a user request, the dialogue man-
ager selects all designs from the ontology that meet the user’s
criterion, and then uses the dialogue-history and user-model
information to rank these designs, favouring those that have
not been seen before and those with higher overall scores in
the user model.

The dialogue manager then sends a message to the presen-
tation planner that it should describe a particular design to
the user. This message contains only a high-level request to
describe a particular design, optionally including any features
that must be included in the description for dialogue-flow rea-
sons; it is up to the presentation planner to flesh out such a
specification into a full description.

The presentation planner selects and structures content
from the ontology to meet the dialogue-manager specifica-
tion, and then creates a logical form for each sentence in
the turn. The logical forms are then sent to the OpenCCG
surface realiser, which produces prosodically-annotated text
that is sent to the Festival speech synthesiser. Festival cre-
ates the waveform for the synthetic speech and returns the
timing information for the words and phonemes in the text.
This timing information from Festival is then used to set the
schedule for output in the other modalities (talking-head be-
haviours, gestures at objects on the screen). When a com-
plete schedule has been prepared for all of the output chan-
nels, the presentation planner starts the output. Full de-
tails of this process are given in[Foster and White, 2004;
Foster, 2005].

The presentation planner has three main decisions to make
when creating the content of a design description: choosing
the features of the design to include, structuring the selected
content appropriately, and choosing the eventual surface form
of the resulting text. Information from the dialogue history
and user model influences all of these decisions, as follows.

The maximum length of a description is normally three
facts about the design being described. The presentation plan-
ner always includes any features specifically requested by the
dialogue manager; it then chooses the rest of the content (up
to the maximum length) based on information from the user
model and dialogue history, as follows. First, it includes all
features that have not been previously mentioned and that
have a non-neutral evaluation in the user model, in decreas-

26

<!--
"Once again it is modern, but here the tiles
are from the Carioca collection by Aparici."
-->
<messages>

<msg type="same-different">
<slot name="same">

<msg type="prop-has-val"
same-as-last="true" prop="has_style">

<slot name="object" value="Tileset4"/>
<slot name="value" value="modern"/>

</msg>
</slot>
<slot name="different">

<msg type="prop-has-val"
same-as-last="false"
prop="has_designer-series">

<slot name="object" value="Tileset4"/>
<slot name="designer" value="Aparici"/>
<slot name="series" value="Carioca"/>

</msg>
</slot>

</msg>
</messages>

Figure 2: Combined text-planning messages

ing priority of user-model score, breaking ties arbitrarily. If
there is still space in the description, it then includes any other
features that have not previously been mentioned, again in an
arbitrary order. Finally, the planner may choose to include
a feature with a positive evaluation even if it has previously
been described, if it is needed to offset an otherwise entirely
negative description. If the result of this process is that no
features are selected (because all of the features of the design
have already been described), the planner chooses the most
highly-ranked previously-mentioned feature to include.

Once the content of a description has been selected, user-
model and dialogue-history information is also used to help
create an overall structure for the description. When ordering
the messages, for example, features with a positive evaluation
are generally put earlier in the description. The contextual
information is also used to combine adjacent messages into
complex sentences where possible. We can combine a feature
that is common between the current design and the previous
one with one that differs between the two; Figure 2 shows the
text planner’s internal XML representation of two messages
that have been combined in this way. A feature with a high
user-model evaluation can be combined with one with a lower
evaluation in a similar way.

Finally, the user model and dialogue history also impact the
surface form of the description. For example, if a description
is to include a fact that we have already told the user, we
signal this repetition with words such asas I said beforeor
as I mentioned earlier. If two facts have been combined to
make a comparison with the previous design as in Figure 2,
we use a structure such asOnce again X, but here Y. If we are
mentioning a property that we know the user does not like, we
add words such asthoughor althoughto the sentence.

4 Experiments

We conducted two studies to assess the effectiveness of the
adaptive generation described above, looking separately at
the impact on the generated output of each of the two knowl-
edge sources; we did not address the dialogue manager’s se-
lection of designs to describe. Like[Walkeret al., 2004], we
used an “overhearer” paradigm in which the subjects watched
and listened to recorded interactions between the system and
a user and judged the quality of those interactions.

As pointed out by[Whittaker and Walker, 2005], an over-
hearer evaluation provides several advantages for evaluating
multimodal dialogue systems. It allows judgements to be
gathered during the course of a dialogue rather than at the
end, and allows multiple alternative dialogue strategies to be
compared in the same dialogue context. It also avoids any
possible problems with speech recognition and language un-
derstanding, and allows the evaluation to be run on computers
not powerful enough to support the full system. However, it
does have the disadvantage that it measures only perception,
rather than behaviour change, task performance, or user sat-
isfaction; in Section 5, we discuss how these factors could be
assessed.

The interactions were all synthesised in advance, and were
presented to the subjects using a modified version of the
COMIC system that was able to play back scripted output.
User input was provided by playing recordings of a user mak-
ing requests to the system. This allowed us to ensure that ev-
ery subject saw and heard exactly the same version of each
system turn. The output modules in these experiments were
the speech synthesiser and an output-only emulator of the
bathroom-design application able to display tile designs and
animate pointer gestures; the talking head and full bathroom
application were not used.

In both experiments, the basic structure was as follows.
Subjects saw and heard two possible versions of a short inter-
action between a user and the COMIC system. Subjects were
then asked to choose which version was better, based on see-
ing and hearing the presentation. They were then shown the
transcripts of both versions of the interaction (in a format sim-
ilar to Figure 3), and were asked again to choose between the
versions. Even though written text is not an output modality
of COMIC, we chose to present the transcripts in order to as-
sess whether there were aspects of the adaptation that would
have had an effect, but that were missed due to intelligibility
issues with the synthesised speech.

Note that our experiment design differs somewhat from
that used by[Walker et al., 2004]: the MATCH subjects
judged all of the outputs first using text, and then judged
them all again in speech, and answered Likert-scale ques-
tions to assess the quality of each output individually. We
presented the speech first because speech is the primary
modality for the COMIC system; the text presentation was
shown afterwards to allow the modalities to be compared.
We chose to do a forced-choice study instead of using Lik-
ert scales because, for a transient medium like speech, di-
rect judgements are difficult to make consistently, especially
when the differences are subtle (cf.[Baker et al., 2004;
Rocha, 2004]).

27

(1) a. User: Tell me about this design[click on Lollipop]
b. COMIC: Here is a family design. Its tiles are from the Lollipop collection by Agrob Buchtal. The colours are blue and green.
c. User: What about this one[click on Asterix]
d. COMIC: Herewe haveanotherdesignin the family style. Its tiles are from the Asterix collection by Villeroy and Boch. It

has comic motifs on the decorative tiles.

(2) a. User: Tell me about this design[click on Lollipop]
b. COMIC: This design is in the family style. The tiles are from the Lollipop collection by Agrob Buchtal. The tiles have a blue

and green colour scheme.
c. User: What about this one[click on Asterix]
d. COMIC: This designis in the family style. Its tiles are from the Asterix collection by Villeroy and Boch. As you can see,

there are comic motifs on the decorative tiles.

Figure 3:Also-class dialogue with dialogue history enabled (1) and disabled (2)

All trials
0

10

20

30

40

50

60

70

80

90

100

110

Hist-S Non-S Hist-T Non-T

(a) Choices by presentation modality

Also Repeat Said-before
0

4

8

12

16

20

24

28

32

36

40

Hist-S Non-S Hist-T Non-T

(b) Choices by dialogue class

Figure 4: Graphs of dialogue-history results

The two experiments were run consecutively in the same
session. Subjects were recruited through an email to the In-
formatics departmental student mailing list, and were com-
pensated for their participation in the experiment. There were
25 subjects (20 male, 5 female) for the dialogue-history eval-
uation; due to technical difficulties, only 23 of those subjects
were able to complete the user-model study as well. The full
study took approximately half an hour to complete.

4.1 Dialogue-History Study
Materials and Presentation We created a set of six short
dialogues between COMIC and the user, using a neutral user
model. Each dialogue had two system turns. The tile de-
signs used in each dialogue were selected arbitrarily, except
in those cases where it was necessary that the designs selected
have some factor in common. We generated two versions of
each dialogue: one in which the second system turn made use
of the context provided by the first turn, and one in which it
did not.

The set consists of two dialogues in each of the following
three classes, representing the three different ways in which
the dialogue history can affect the generated output:

Also COMIC makes links between features in the current de-

scription and those in the preceding description.

Repeat Whenever possible, COMIC avoids repeating infor-
mation that it has already said about a design.

Said-before When COMIC does repeat previously-
mentioned information—for example, because there
is nothing new to say about a design—it signals the
repetition.

Figure 3 shows both versions of one of the dialogues that
was generated in classAlso: (1) makes use of the dialogue
history, while (2) does not. The primary dialogue-history-
based difference between the two versions is highlighted; all
of the other surface differences occur because they were inde-
pendently generated by the full COMIC presentation planner,
which incorporates variation into its planning process.

All 25 subjects in this experiment were shown the same
six dialogues, each in an individually randomised order; the
order of versions within each dialogue was counterbalanced
randomly so that they saw the dialogue-history version first
in three trials, and second in the other three. Subjects were
instructed to pay attention to how the system responded to the
user’s requests and how it kept track of what had already been
said in the conversation. After they had seen both versions

28

(3) (target)Here is a family design.As you cansee,thetiles havea blueandgreencolourscheme. It has floral motifs and artwork on
the decorative tiles.

(4) (other)Here is a family design. Its tiles are from the Lollipop collection by Agrob Buchtal.Althoughthe tiles havea bluecolour
scheme,it doesalsofeaturegreen.

(5) (neutral)This design is in the family style. It uses tiles from Agrob Buchtal’s Lollipop series. There are artwork and floral motifs
on the decorative tiles.

Figure 5: Output generated for three different user models

of each complete dialogue, subjects were asked the following
question:Which conversation had a more natural sequence of
turns?They chose initially based on the speech presentation,
and then chose again after reading the transcripts.

Results and Discussion In general, the subjects chose the
versions generated with the dialogue history enabled more
often than those with it disabled, in both text and speech, as
shown in Figure 4(a). Both differences are significant at the
p < 0.001 level in a binomial test. Figure 4(b) divides the
counts by dialogue class. To analyse statistical significance
in this post-hoc analysis of the divided counts, we modified
the requiredp value using a Bonferroni correction for mul-
tiple comparisons; the required significance value to achieve
p < 0.05 overall isp < 0.017 on each individual test. All of
the differences were significant at this level except forSaid-
before in speech andRepeat in text (p' 0.16 and 0.06, re-
spectively).

There was little overall difference between the choices
made across the modalities; that they were not equal is proba-
bly due to intelligibility issues with the speech. For example,
on theAlso-class dialogue shown in Figure 3, preferences
were essentially at chance when subjects chose on the basis
of the speech (12–13;p ' 0.65). However, when subjects
were able to read the text, there was a trend3 for the dialogue-
history version (18–7;p' 0.02). As highlighted in the figure,
the primary difference between the two versions is the single
use of the wordanother; this was evidently difficult to pick
up based on the speech, but was noticed often when subjects
were able to read the transcripts. Adaptations with more ob-
vious surface impacts—e.g., sayingas I said beforeto signal
a repetition, or describing multiple common properties of two
designs—were perceived at a similar rate in text and speech.

4.2 User-Model Study
Materials and Presentation For this part of the experi-
ment, four random user models were generated. Each model
was generated by selecting three feature values that the user
liked—which were given an evaluation of 0.8—and five val-
ues that the user disliked—which were given an evaluation
of 0.2. All other values were given the default evaluation of
0.5. Note that the feature weights were equal in all four user
models. One of the random models is shown in Figure 6.

For each model, an individual dialogue with the system
was then created. Each dialogue started with the system’s de-

3The necessary Bonferroni adjusted value forp < 0.05 overall
significance isp < 0.0083 on each of the six individual instances.

Feature Likes Dislikes

Colour blue, beige pink
Style modern, classic
Decoration floral motifs geometric shapes
Designer Porcelaingres

Figure 6: Sample user model

fault selection of designs, and consisted of eight user requests
and system responses. The user requests were selected to be
plausible for the target user model, and the dialogue-manager
also made its choices based on that target model. Four addi-
tional versions were then generated of each system output in
each dialogue: one version based on the preferences of each
of the other three random models, as well as a version based
on a neutral user model (all evaluations 0.5). Figure 5 shows
three versions of a system turn: (3) is generated based on the
user model in Figure 6, (4) reflects the preferences of one of
the other user models, while (5) is based on a neutral model.

Subjects were assigned to one of the four target user mod-
els in rotation. The target model was shown on screen
throughout the study, in a window similar to Figure 6. Sub-
jects were asked to read through the user preferences be-
fore beginning, and to keep them in mind when making their
choices. Two versions of each system turn in the dialogue
were played—the version generated for the target model, and
one of the other versions. The target model version was com-
pared with versions for each of the other models twice, in an
individually randomly-chosen order; the order within the tri-
als was counterbalanced so that the target model version was
seen first in four trials and second in the other four.

After seeing and hearing both versions of each system
turn, a subject was asked the following question:Which
COMIC output was more appropriate for this user?As in
the dialogue-history study, subjects chose first on the basis of
the speech presentation, and then again after reading the text.

Results and Discussion As shown in Figure 7(a), the over-
all results were similar to those in the dialogue-history evalu-
ation: subjects generally chose the presentation generated for
the target model over the one generated for the other model,
using both speech and text. These preferences were both sig-
nificant atp < 0.001.

In the MATCH evaluation[Walker et al., 2004], the tri-
als were subdivided based on the distance between the target
model and the other model. However, the distance measure
used there was based on the difference between the feature

29

All trials
0

10

20

30

40

50

60

70

80

90

100

110

120

Target-S Other-S Target-T Other-T

(a) Choices by presentation modality

Conflict No conflict
0

10

20

30

40

50

60

70

80

90

100

Target-S Other-S Target-T Other-T

(b) Choices by trial type

Figure 7: Graphs of user-model results

weights, and is therefore not applicable to the current study
in which the weights were the same in all the models. Instead,
we divided the trials based on conflicting use of explicit con-
cessions to negative preferences in the two descriptions. For
example, the highlighted sentence in (4) has the concession
although the tiles have a blue colour scheme, as if the user
disliked the colour blue; in contrast, (3) has no such conces-
sion. This resulted in the following two categories of trials:

Conflict There was at least one conflicting concession across
the two versions.

No conflict There were no concessions at all, or the conces-
sions were the same in both versions.

Note that, due to the way the user models were selected, the
majority of trials fell into theConflict class. Figure 7(b)
shows the counts for each of these classes. There is a very
significant preference for the target description (p< 0.00001)
in theConflict class, but there is no significant preference ei-
ther way in theNo conflict class; the results are similar in
both modalities.

The positive preferences do have an effect on the content
that is selected for a description and the order in which it is
presented: features that the user likes will always be included
in the description, and are generally placed nearer the begin-
ning (e.g., compare the content selection in descriptions (3)
and (5) in Figure 5). However, this effect was not noticed by
the subjects in this study, perhaps because they were basing
their judgements on a random user model instead of their own
preferences.

5 Conclusions and Future Work

These studies together demonstrate that the types of adapta-
tion employed in the COMIC presentation planner do have
a perceptible positive effect on the system output. Our re-
sults confirm and extend the results of previous studies, and
point to ways in which the interaction could be improved to
take better advantage of the information stored in the dialogue
history and user model.

The results for the dialogue-history tailoring show that it
does have a perceptible effect in all cases. This both confirms
and refines the results of the M-PIRO study, which presented
the output in text and did not examine the effects of aggrega-
tion and comparison independently. We also found that with
spoken output, dialogue-history adaptations that affect only
the surface form may occasionally be missed if the synthetic
speech is difficult to understand. However, when the text can
be read, such adaptations are perceptible, so with improved
speech synthesis they should also have a perceptible effect.

When the output is tailored according to a user model, sub-
jects generally chose the target versions, using both speech
and text; this is in line with the results of the GEA and
MATCH evaluations. The results of this study demonstrate
that the effect of the user-tailored generation in COMIC is
only noticeable when there are conflicting concessions to
negative preferences in the two versions. Such concessions
are also included in the output of GEA, but not in that of
MATCH. In general, our subjects could not tell the differ-
ence between a description intended to be positive and one
intended to be neutral; this may be partly due to the fact that
the subjects in our study were basing their judgements on
a randomly-generated user model, rather than on their own
preferences as in GEA and MATCH. Note that the positive
preferences are also used by the dialogue manager to select
designs that are likely to be relevant to the user; the effect
of this selection was not studied here, but the results of the
MATCH evaluation suggest that it would also be perceptible.

While these studies demonstrate that users are able to no-
tice the adaptive generation in COMIC, we have not yet
shown that the adaptation has any effect on interactions with
the full COMIC system. In future work, we hope to exam-
ine this question, using measures such as subjective user-
satisfaction scores, objective measures of dialogue quality,
and scores on a factual recall task, as in[White et al., 2005].
COMIC could support such an evaluation of the dialogue-
history adaptations in its current form; however, a full evalu-
ation of the user-model adaptations would require some mod-
ifications to the COMIC system.

30

To get a true picture of the impact of the user tailoring,
the system would have to respond based on the user’s actual
preferences. In GEA and MATCH, the user model is obtained
before the interaction begins, by filling in a form. Note that
the domains of these systems—real estate and restaurants,
respectively—are ones where users can be expected to have a
clear idea of their likes and dislikes before using the system.
In contrast, with COMIC, it is not realistic to gather a full user
model before the interaction begins, as the purpose of guided
browsing is to help users become familiar with the range of
available options. Thus, the most natural way to gather pref-
erences would be through the course of the interaction. In the
current system, the model is optionally updated by increasing
the score for explicitly-requested features; however, there is
no way to query or modify the user model that is updated in
this way, and the system does not learn any negative prefer-
ences.

The system could take more initiative in inferring a user’s
preferences based on their browsing behaviour, possibly us-
ing the work of[Carberryet al., 1999] as a basis. For exam-
ple, if the user has rejected a series of proposed tile designs
that all have green tiles, the system could hypothesise that the
user does not like the colour green, and update the model ac-
cordingly. Instead of directly updating the user model based
on these hypothesis, with no feedback, the system could also
ask a confirmation question such asIt appears that you don’t
like green much.This would give the user the opportunity
to confirm or reject the system’s beliefs about their prefer-
ences, and should help avoid getting “painted into a corner”
prematurely. In the future, we hope to explore extended user-
modelling and interaction capabilities in this way, and to as-
sess the effect of the adaptively-generated output on user in-
teractions with the system.

Acknowledgements
This work was supported by the COMIC project (IST-2001-
32311). We thank Johanna Moore, Jon Oberlander, John Lee,
Andrea Setzer, Roberta Catizone, and the other members of
COMIC for helpful discussions, and the anonymous review-
ers for their useful comments on the first draft of this paper.

References
[Bakeret al., 2004] R. Baker, R.A.J. Clark, and M. White.

Synthesizing contextually appropriate intonation in lim-
ited domains. InProceedings of 5th ISCA workshop on
speech synthesis, 2004.

[Carberryet al., 1999] S. Carberry, J. Chu-Carroll, and
S. Elzer. Constructing and utilizing a model of user pref-
erences in collaborative consultation dialogues.Computa-
tional Intelligence, 15:185–217, August 1999.

[Carenini and Moore, 2001] G. Carenini and J. Moore. An
empirical study of the influence of user tailoring on eval-
uative argument effectiveness. InProceedings of IJCAI
2001, 2001.

[Carenini, 2000] G. Carenini. Generating and Evaluating
Evaluative Arguments. PhD thesis, Intelligent Systems
Program, University of Pittsburgh, 2000.

[de Caroliset al., 2004] B. de Carolis, C. Pelachaud,
I. Poggi, and M. Steedman. APML, a mark-up language
for believable behaviour generation. In H. Prendinger,
editor, Life-like Characters, Tools, Affective Functions
and Applications, pages 65–85. Springer, 2004.

[Clarket al., 2004] R.A.J. Clark, K. Richmond, and S. King.
Festival 2 – build your own general purpose unit selection
speech synthesiser. InProceedings of 5th ISCA workshop
on speech synthesis, 2004.

[Foster and White, 2004] M.E. Foster and M. White. Tech-
niques for text planning with XSLT. InProceedings of
NLPXML 2004, 2004.

[Foster, 2005] M.E. Foster. Interleaved planning and output
in the COMIC fission module. InProceedings of ACL
2005 Workshop on Software, 2005.

[Isardet al., 2003] A. Isard, J. Oberlander, I. Androtsopou-
los, and C. Matheson. Speaking the users’ languages.
IEEE Intelligent Systems, 18(1):40–45, 2003.

[Karasimos and Isard, 2004] A. Karasimos and A. Isard.
Multi-lingual evaluation of a natural language generation
system. InProceedings of LREC 2004, 2004.

[Mooreet al., 2004] J. Moore, M.E. Foster, O. Lemon, and
M. White. Generating tailored, comparative descriptions
in spoken dialogue. InProceedings of FLAIRS 2004, 2004.

[Rocha, 2004] N.F. Rocha. Evaluating automatic assignment
of prosodic structure for speech synthesis. Master’s thesis,
Department of Theoretical and Applied Linguistics, Uni-
versity of Edinburgh, 2004.

[Walkeret al., 2002] M.A. Walker, S. Whittaker, A. Stent,
P. Maloor, J.D. Moore, M. Johnston, and G. Vasireddy.
Speech-plans: Generating evaluative responses in spoken
dialogue. InProceedings of INLG 2002, 2002.

[Walkeret al., 2004] M.A. Walker, S.J. Whittaker, A. Stent,
P. Maloor, J. Moore, M. Johnston, and G. Vasireddy.
Generation and evaluation of user tailored responses in
multimodal dialogue.Cognitive Science, 28(5):811–840,
September–October 2004.

[Whiteet al., 2005] M. White, M.E. Foster, J. Oberlander,
and A. Brown. Using facial feedback to enhance turn-
taking in a multimodal dialogue system. InProceedings
of HCI International 2005, 2005. To appear.

[White, 2004] M. White. Reining in CCG chart realization.
In Proceedings of INLG 2004, 2004.

[White, 2005a] M. White. Designing an extensible API for
integrating language modeling and realization. InPro-
ceedings of ACL 2005 Workshop on Software, 2005.

[White, 2005b] M. White. Efficient realization of coordinate
structures in Combinatory Categorial Grammar.Research
on Language and Computation, 2005. To appear.

[Whittaker and Walker, 2005] S. Whittaker and M. Walker.
Evaluating dialogue strategies. In W. Minker, D. Bühler,
and L. Dybkjær, editors,Spoken Multimodal Human-
Computer Dialogue in Mobile Environments. Kluwer Aca-
demic Publishers, 2005.

31

User Evaluation of a Conversational Recommender System

Pontus Wärnestål
Department of Computer Science
Linköping University, SWEDEN

ponjo@ida.liu.se

Abstract

Conversational recommender systems (CRSs) ap-
proach user preference acquisition from a conversa-
tional point of view, where preferences are captured
and put to use in the course of on-going natural lan-
guage dialogue. The approach is motivated by its
aim to make interaction efficient and natural, to ac-
quire preferences from the user in a context when
she is motivated to give them, as well as to facilitate
exploration of the domain and the development of
the user’s preferences. A CRS’s dialogue strategy
to achieve these aspects of the interaction is cru-
cial for its performance and usability. This paper
reports on a user satisfaction evaluation ofACORN,
which is a CRS in the movie domain. The results
of the study indicate a high user satisfaction with
the interaction from nine usability aspects, and that
ACORN’s dialogue strategy is suitable for efficient
interaction and user preference modeling, and fa-
cilitates domain exploration.

1 Introduction
Recommender systems produce personalized recommenda-
tions of potentially useful items from a large space of possible
options (see[Montaneret al., 2003] for a recent overview).
To accomplish this, the system needs a model of the user’s
preferences in the chosen domain, and a recommendation en-
gine that uses the user preference model to predict domain
items.

The design of systems aiming at user-adaptive functional-
ity based on user modeling rests on three steps: (1) initial-
ization, (2) update, and (3) usage of the user model to gener-
ate adaptive functionality[Wu, 2002]. The initialization step
consists of user preference acquisition in order to construct
a correct and sufficient preference model[Burke, 2002]. The
update part is a more long-term maintenance of the preference
model in order to keep it up-to-date with the user’s prefer-
ences. It involves keeping track of purchased items, changed
ratings of items or attributes, and more. User feedback on
recommended items is one common way to update the model.
After being initialized, the user preference model is put to use
by an engine based on one or a combination of several recom-
mendation algorithms.

There are several types of recommendation algorithms
available. The two most commonly used today arecollab-
orative and content-basedfiltering. Collaborative (or soci-
ological) filtering [Hananiet al., 2001] depends on a user-
item matrix where a population of users’ ratings of domain
items (e.g. books, movies, web pages, etc.) are clustered into
“neighborhoods”. Users belonging to the same neighborhood
thus have similar preferences, and items are recommended to
them on the basis that they are relevant to other users in the
same neighborhood. In content-based systems, items are de-
fined by properties (e.g. actors, director and genre for movie
items), and recommended based on matching item properties
to users’ preference model contents.

While collaborative filtering represents a major strategy
for recommending items and is capable of performing cross-
property recommendations, it is not fool-proof. Sometimes
users may want recommendations based not only on previ-
ous ratings, but rather on explicitly defined rules. This calls
for combining different prediction techniques into hybrid en-
gines[Burke, 2002], as well as employing an interaction tech-
nique that allows users to state such preferences in a natural
and efficient way. Point-and-click information-providing sys-
tems often fall short in this context. For example, the Inter-
net Movie Database1 (IMDB) search engine provides aPower
Searchmode where users can formulate refined queries using
standard GUI widgets. ThePower Searchuser interface con-
sists of 17 text fields, 20 choice boxes, 6 check boxes, and
requires vertical scrolling before a query can be submitted.
Despite this complex interface, users are limited in several
ways; e.g. only two genres may be combined and there is
very limited support for negations. Quantifications and nega-
tions are generally hard to capture in graphical user inter-
faces, but easy to express in natural language[Cohen, 1992;
Androutsopouloset al., 1995].

A Conversational Recommender System(CRS) utilizes
natural language dialogue between the user and the system
where user preferences are initialized, continuously updated,
and put to use in order to calculate and present personal-
ized item recommendations. One underlying motivation for
the conversational approach is that it aims to exploit situa-
tions where the user has a high motivation to provide prefer-
ence data. This can be contrasted to the “standard approach”,

1http://us.imdb.com

32

where preference acquisition burdens the user at initialization
time and results in a delayed benefit for the user[Careniniet
al., 2003]. This delayed benefit is known as the new-user
cold-start problem and is a crucial problem for recommender
system performance.

Conversational interaction also seems promising for per-
sonalized recommender systems since on-going dialogue
may enhance the robustness of the interaction as progress
can be made through negotiation[Zadroznyet al., 2000].
This also ties into anexploratory interaction aspect: users
can learn about new items and concepts in the domain in an
incremental fashion throughout the negotiation dialogue and
explore the domain, and as a result, evolve their own prefer-
ences within it.

The conversational approach is exemplified with the
FINDME assisted browsing framework, which is applicable
in domains too complex for users to articulate fully speci-
fied queries[Burke et al., 1997]. In such situations, incre-
mental refinement in a dialogue fashion is suitable. When
faced with a retrieved item in the FINDME framework, the
user may articulate some critique of the item. The critique
signals what attributes are important for a specific user, and
updates the preference model accordingly. Dialogue context
can also be utilized to model preference strength depending
on the conversational circumstance in which a preference oc-
curs[Carberryet al., 1999]. A recent approach allows users
of the ADAPTIVE PLACE ADVISOR system to derive prefer-
ences from on-going spoken interaction by gradually narrow-
ing down choices with partial item descriptions[Thompsonet
al., 2004]. Users are aided in their understanding of the do-
main and their preferences by thinking about questions in the
dialogue. The ADAPTIVE PLACE ADVISOR utilizes dialogue
moves to modify the current query and the user preference
model.

Since CRSs rely heavily on dialogue and incremental mod-
ification of queries and preference models, a system’sdia-
logue strategyto initialize, update, and use the preference
model in the interaction is crucial for the system’s perfor-
mance and usability. The work presented here reports on a
user satisfaction evaluation of the CRSACORN2 that employs
a dialogue strategy covering these aspects. An experiment
with twenty users that carry out tasks in a pre-given scenario
usingACORN has been conducted, and by analyzing the dia-
logue sessions and users’ responses to a questionnaire, nine
aspects of user satisfaction are assessed.

2 ACORN
ACORN is a text-based dialogue system built specifically to
implement and evaluate a recommendation dialogue strategy
in the movie domain. Figure 1 shows an excerpt of a dialogue
with ACORN, and illustrates some key points of its dialogue
strategy:

• System-driven preference acquisition: the system’s
agenda is to interview the user for her movie prefer-
ences. User responses are utilized to gather preference
data that can be used in future recommendations (e.g.
utterances A2 and A4 in Figure 1).

2Adaptive COnversational RecommeNder

• User-driven information requests: at any time the user
is allowed to take initiative and issue information re-
quests, and let the user retrieve desired pieces of in-
formation about items in the domain as in utterances
U5 and U8. In effect, this drives the dialogue forward,
shown in utterances A5-U5-A6-U6 (since Sean Connery
appears on the actor list in A6).

• Recommendations in a dialogue context: the recom-
mendations are presented and properly motivated in a
personalized manner within the on-going dialogue (e.g.
A8).

A1: How may I be of service?
U1: I feel like watching a comedy
A2: OK. Can you tell me one of your favorite actors or ac-

tresses?
U2: I think Brad Pitt is good
A3: I see. Have you seen the movieSnatch (2000)?
U3: Yes
A4: What do you think about that movie?
U4: It is great
A5: Do you want another recommendation?
U5: Who is acting in the movie Entrapment?
A6: Entrapment (1999)has the following cast. (ACORN dis-

plays a list of actors:Sean Connery, Catherine Zeta-
Jones, ...).

U6: Can you recommend a drama withSean Connery?
A7: OK. Have you seenFinding Forrester (2000)?
U7: No
A8: Finding Forrester (2000)is a drama starringSean Con-

nery.
U8: Who else is starring in it?

Figure 1: Recommendation dialogue about movies between
theACORN system (A) and a user (U). The dialogue has been
translated from Swedish.

The user interface (see Figure 2) consists of a chat-style
panel where the dialogue betweenACORN and the user takes
place and a text field where the user types her input. To the
right of the chat panel is a result presentation panel where
movie information and other pieces of domain information is
displayed.

ACORN’s architecture is phase-based[Degerstedt and Jo-
hansson, 2003] and builds on theMOLINC toolkit3. The
main components ofACORN are: adialogue manager(in-
cluding the recommendation dialogue strategy and a standard
information-providing dialogue system), adomain knowl-
edge manager(including a basic content-based recommen-
dation engine and a movie database), and apreference man-
ager.

2.1 Dialogue Management
ACORN’s dialogue capabilities are divided into two initiative
types: system-driven preference acquisition and recommen-
dations, and user-driven information requests. The dialogue
behavior is based on an empirical investigation of human-
human recommendation dialogues, and has been adapted to

3Available at http://nlpfarm.sourceforge.net/.

33

Figure 2: TheACORN user interface.

human-computer dialogues by the process of dialogue distill-
ing [Larssonet al., 2000]. Dialogue-specific modules include
a state graph describing the preference acquisition and recom-
mendation strategy (see Figure 3); a phase graph[Degerstedt
and Johansson, 2003] describing information-providing func-
tionality, and that facilitates local focus shifts and anaphora;
and standard linguistic resources such as a lexicon and a
grammar for the interpreting module.

Preference Acquisition and Recommendations
The preference acquisition takes place as a series of ques-
tions to the user, much like an interview guide. User re-
sponses are captured, and the interpretations are used to de-
cide what question to issue next. The strategy consists of
sixteen dialogue states depicted in Figure 3. Each state (ex-
cept for the square nodes) corresponds to a specific prefer-
ence and recommendation question or statement. TheRe-
cEnginenode is the interface to the back-end recommenda-
tion engine which is described below. AllACORN’s utter-
ances in Figure 1 except A6 are examples of individual dia-
logue states in the model. Transitions between states depend
on the interpreted user utterance. A more detailed descrip-
tion of the dialogue strategy and its implementation is found
elsewhere[Wärnest̊al, 2005; Johansson, 2004].

Information Requests
While the preference acquisition and recommendation part of
ACORN dialogues are system-driven, users can take initiative
and ask for domain information at any time in the dialogue.
The turn U5-A6 in Figure 1 are examples of user-initiated
information requests.

This information-providing part of the dialogue manager
consists of a phase-based component consisting of four
phases that operate on a data structure holding information
on interpretation, dialogue move, task, and generated output.
The phase graph can be accessed from each of the above men-
tioned preference dialogue states, allowing the user to issue
information requests at any time in the dialogue.

The Linguistic Analysis phase uses a parser module that
produces a task representation of the user utterance. In
thePragmatic Interpretation phase a refined interpretation

Figure 3: ACORN’s recommendation dialogue strategy.
Rounded nodes correspond to system utterances, square
nodes to system actions. Solid transitions correspond to inter-
preted user utterances, and dashed to system logic decisions.
Some transitions have been omitted for clarity.

based on dialogue context is carried out by using a dialogue
memory to add/change information in the task representa-
tion. The Pragmatic Interpretation phase is required for sim-
ple sub-dialogue capabilities, such as asking for clarifications
or additional information, or refinements if the database re-
turns too many or no hits. TheTask Handling phase executes
the task by retrieving information from the database. The re-
sult set is transformed to suitable output in theGeneration
phase with slot-filling templates.

Whenever an information request has been addressed by
ACORN, the preference and recommendation dialogue con-
tinues to gather preferences and provide recommendations,
until a new information request is detected. For more details
see[Johansson, 2004].

Responses to information requests are resolved without the
preference model and recommendation engine filtering. Fur-
thermore, information requests are not modeled in the prefer-
ence model. This means that users are free to ask for any kind
of movie information without having to worry about how or
if their information requests affect future recommendations.

2.2 Domain Knowledge and Recommendation
Engine

ACORN derives information and recommendations from a
local copy of IMDB that covers information about 230,000
movie titles. The searchable features are currently limited to
actor, character, director, genre, and plot information for each
movie.

34

The recommendation engine is a basic content-based mod-
ule that calculates recommendations on actor, genre, and di-
rector preferences. A more sophisticated recommendation
engine utilizing e.g. collaborative filtering for cross-property
recommendations in addition to the current content-based
component would be desired[Swearingen and Sinha, 2002],
but for the purpose of this study the mechanisms described
above are deemed sufficient. A collaborative filtering ap-
proach relies on item (in this case movie title) ratings. This
is supported by the dialogue strategy and could thus be used
with a hybrid recommendation engine without modification.
The current engine does keep track of movie ratings from the
IMDB data set (February 2005) in order to return the highest
ranked movie in the community that matches the current user
preference model, but it does not maintain a user-item matrix
required for collaborative filtering.

The engine’s output after a request from the dialogue strat-
egy can be of three types: (1) the highest ranked movie ti-
tle based on content-based predictions of the user preference
model; (2) a message indicating that the current recommen-
dation base has been exhausted (i.e., there are no more movies
matching the user’s criteria); or (3) a message indicating that
more information is needed in order to perform a recommen-
dation. These messages are shown in Figure 3 as dashed
transitions leading from theRecEnginenode. TheRecEngine
node can thus be seen as a guard before entering theSeenTitle
node that actually recommends a movie to the user.

For example; in the excerpt shown in Figure 1, the recom-
mendation in A3 is based on a genre and an actor. Since the
matching movieSnatch (2000)has the highest ranking and
has not previously been recommended to the user, it is sug-
gested.

2.3 Preference Management
A user’s preference model is constructed during the dialogue
interaction and consists of instances of genres, actors, direc-
tors, and titles that have occurred in the dialogue(s). Users
may provide both positive and negative preferences. The pos-
itive preferences correspond to the matching set the system
tries to retrieve from the database (e.g. comedies starring
Brad Pitt in Figure 1). Negative preferences (if existing) act
as filters to the matching set. Seemingly conflicting prefer-
ences such as utterance U2 in Figure 4 thus affect the dia-
logue flow. The current recommendation base is “comedies”,
and the only actor preference we have detected so far isBrad
Pitt. However, all comedies withBrad Pitt has gained a low
rating, so the recommendation engine signals that the cur-
rent recommendation base has beenexhausted(see Figure 4),
prompting the transition to theRelaxRecBasedialogue state
in Figure 3 that asks for more preferences (A5). Future rec-
ommendations may thus include movies starringBrad Pitt, so
long as they are not comedies.

3 Experimental Design
The study was designed to test the following nine aspects of
user satisfaction withACORN:

• Task ease: How well the user feel that a particular task
can be carried out with the system.

A1: How may I be of service?
U1: I would like a drama
A2: OK. Can you tell me one of your favorite actors or ac-

tresses?
U2: I like Brad Pittbut I can’t stand his comedies
A3: I see. Have you seen the movieFight Club (1999)?
U3: No
A4: Fight Club (1999)is a drama starringBrad Pitt.
U4: Can you recommend a comedy?
A5: OK. Are there any other actor or actress you prefer?

Figure 4: Dialogue excerpt showing preference updates in
ACORN. The dialogue has been translated from Swedish.

• Adaptation: How well the system adapts to an individual
user’s preferences.

• System response time and pace: How fast the system
responds, and whether the interaction pace feels satis-
factory for the user.

• Domain coverage: Measures whether there are enough
items in the domain to solve a task, and whether there is
enough information about each item.

• Interpretation performance: The user’s experience of
how well the system understands her input.

• Generation performance: How well the system performs
when generating linguistic responses (phrase choice,
clarity, and verbosity).

• Expected behavior: Measures how intuitive and natu-
ral the dialogue interaction is, in terms of initiative and
grounding etc.

• Entertainment value: Assesses how entertaining and in-
teresting it is to engage in a dialogue with the system.

• Future use: Whether it is likely that the user will use the
system in the future or not.

These factors are assessed by analyzing (a) dialogues from
the user sessions, and (b) a post-study questionnaire filled out
by the each of the participants.

The questions are inspired by thePARADISE dialogue sys-
tem evaluation framework[Litman and Pan, 1999, page 59].
The PARADISE framework is for evaluating spoken dialogue
systems, with a focus on task-oriented systems[Walker et
al., 1997]. In this study the set of user satisfaction aspects—
and corresponding questions in the questionnaire—were en-
hanced in order to address e.g. entertainment value and adap-
tation assessment.

3.1 Participants
Twenty participants of varying age, gender, and background
were recruited as users. None of them had any special knowl-
edge of dialogue systems, but were all proficient computer
users. They were not paid.

3.2 Procedure
Each participant received a quick tutorial explaining rudimen-
tary facts aboutACORN (e.g. it being a movie information and
recommendation system, that the interaction is typed, and that

35

the language of interaction is Swedish, etc.). Next, the partic-
ipant was presented with a short scenario consisting of three
sub-tasks (see Appendix A). The tasks ranged from strict
(tasks 1 and 3) to a bit more open-ended (task 2) in order
to ensure that the sessions are comparable (cf.[Walkeret al.,
1997]), but at the same time allow for some variety in the so-
lutions. In addition to the comparable quality, strict tasks are
also a way to determine efficiency (i.e. that a specific task
is resolved), since users have no reason to persist in artificial
constructed open-ended tasks and may settle for almost any-
thing if there is no “real” or personal motivation. During the
dialogue session, the participants noted their solutions/results
of each task on a protocol. After completing the scenario,
they were asked to fill out the questionnaire. The question-
naire consists of 23 questions regarding user attitudes towards
task solution, system performance, and dialogue interaction.
Response values are encoded on an ordinal scale of 1–4 cor-
responding to the statementsI strongly disagree(1), I some-
what disagree(2), I somewhat agree(3), andI strongly agree
(4). The sessions were also logged during the interaction and
time-stamped and saved on file.

4 Results

The study yielded two kinds of data. First, the dialogue logs
constitute data for a dialogue corpus analysis. Second, the
questionnaire responses provides data for a user satisfaction
analysis.

4.1 Dialogue Corpus Analysis

Session logs of the interactions resulted in a corpus with a to-
tal of 226 complete turns, and a total elapsed time of 4 hours
(mean 12 minutes per dialogue). The corpus was annotated
manually with the number of system interpretation failures,
and the number of system restarts. Furthermore, each dia-
logue was compared to an “optimal” scenario solution which
represent the shortest number of turns that are required to
solve all sub-tasks in the scenario. The scenario can be com-
pleted in seven turns, which is the “key” to an efficient dia-
logue. However, since the scenario can be resolved in a va-
riety of ways, an additional turn or two may still feel both
optimal and natural for a particular user. All twenty subjects
accomplished all tasks in the scenario. The average number
of turns for completing the tasks is 11.3, and 10 subjects ac-
complished the scenario within the optimal range (7–9 turns,
depending on their strategy, and personal choice in the open-
ended task).

Dialogues longer than 7–9 turns are the result of (i) system
interpretation failures (due to a variety of factors, such as lack
of linguistic coverage on the system’s part, or on uncoopera-
tive behavior or misspellings on the user’s part, etc.), (ii) do-
main exploration (e.g. asking for more recommendations, or
additional information not required by the scenario), or (iii)
miscellaneous turn types, such as clarification sub-dialogues
due to too many database hits, etc.

Table 1 shows some interesting aspects of the data, which
will be discussed below.

User TRN FAL EXP MSC SAT
01 14 6 0 1 2.5
02 7 0 0 0 3.1
03 9 1 1 0 2.7
04 14 0 2 5 3.2
05 9 1 0 1 3.3
06 12 1 0 4 3.2
07 15 0 5 3 3.3
08 17 1 5 4 2.7
09 17 0 6 4 3.2
10 7 0 0 0 3.3
11 7 0 0 0 2.9
12 7 0 0 0 2.9
13 7 0 0 0 3.3
14 8 0 0 1 3.0
15 23 7 1 8 2.6
16 10 0 0 3 2.8
17 9 2 0 0 3.0
18 9 0 1 1 3.0
19 12 2 2 1 2.8
20 13 3 3 0 3.0

Total 226 24 26 36 N/A
Mean 11.3 1.2 1.3 1.8 3.0

Table 1: Total number of dialogue turns (TRN), number of
interpretation failure turns (FAL), domain exploring turns
(EXP), miscellaneous turns (MSC), and mean user satisfac-
tion over the nine categories from the questionnaire (SAT).

Interpretation failure turns (FAL) are defined as turns
that were not successfully parsed by the system, i.e. not cov-
ered byACORN’s linguistic resources. The total interpretation
failure rate for the complete corpus is 1.2 turns per dialogue,
with twelve completely error-free dialogues.

Domain exploring turns (EXP) are requests that are “not
necessary” in order to complete scenarios. Examples include
asking for plot information even though no task in the sce-
nario requires that kind of information, or asking for more
recommendations than required. Nine of the users used one
or more turns for such additional domain exploring. The dia-
logue excerpt in Figure 5 is an example of when the user asks
for more information and recommendations than required by
the scenario.

Miscellaneous turns (MSC) include a variety of turns, and
have deliberately been merged together for the purpose of
this analysis since they are not in focus here. These turns
include e.g. sub-dialogue clarifications when the database re-
turns none or too many hits. Another example of turns in this
category arises due to the constructed and artificial nature of
the scenario: A user may for example not like the actor Adam
Sandler, and may dislike his comedies even more; and this has
an impact on the dialogue of Task 3 (see Appendix A), since
users may respond negatively to the resulting recommenda-
tion. This causesACORN to spend turns trying to find out
what is wrong with its preference model of the user. This phe-

36

Figure 6: User satisfaction based on the subjects’ own assessment split into nine categories based on the post-study ques-
tionnaire. Response values are:I strongly disagree(1), I somewhat disagree(2), I somewhat agree(3), andI strongly agree
(4).

U1: please recommend a drama withSean Connery
A1: Have you seen the movieAction of the Tiger (1957)?
U2: no
A2: Action of the Tiger (1957)is a drama starringSean Con-

nery. Do you want another recommendation?
U3: yes please
A3: Have you seen the movieAnderson Tapes, The (1971)?
U4: what is it about?
A4: Here is the plot forAnderson Tapes, The (1971). Have

you seen it?
U5: no
A5: Anderson Tapes, The (1971)is a drama starringSean

Connery. Do you want another recommendation?
U6: yes a comedy withAdam Sandler

Figure 5: Excerpt where the user deviates from the scenario
requirements in order to explore the domain. The turns U3-
A5 are clearly outside the scope of the scenario since it only
requires one recommendation based on the attributes in U1,
and no additional information requests such as U4. The dia-
logue has been translated from Swedish.

nomenon would not arise in “real” situations because users
disliking Adam Sandler’s comedies would not ask for such
recommendations.

User satisfaction (SAT) is a metric that consists of mean
values of the questionnaire responses (graded 1–4) for each
of the nine aspects. The mean values should naturally be in-
terpreted with care, since the questionnaire provides an or-
dinal scale. However, they are still useful indicators for the
upcoming user satisfaction analysis.

4.2 User Satisfaction Analysis
The 23 questionnaire items were grouped into the nine cate-
gories, and the responses were weighed together. For exam-
ple, for the category Adaptation users responded to the fol-
lowing questionnaire:

1. ACORN’s responses were relevant and helped me solve
the tasks.

2. ACORN’s recommendations were effective and matched
the preferences I had put in.

3. ACORN adapted continuously to my preferences.

Figure 6 shows the results of each of the nine user satisfaction
categories for all twenty users.

It is noteworthy that nine out of twenty users engage in do-
main exploration dialogues. This should be considered rather
high, since the users werenot instructed or even encour-
aged to engage in such dialogues. Domain Coverage (mean
score 3.9) and Entertainment Value (3.7) are the two highest-
ranking aspects, and users engaging in exploration turns give
the highest entertainment value ratings.

In the higher range we also find Expected Behavior (3.6),
Generation Performance (3.5) and Future Use (3.5). Adap-

37

tation (3.2) is slightly lower, and could be affected by that
the given scenario contains tasks that do not fit certain users,
such as the given choice of actors and genres in task 3. An-
other important factor to consider is that adaptation typically
requires more long-term use than just one session.

System Response Time (2.0) is significantly lower than the
other rankings and is due to the slow response-time because
of the large database.

5 Discussion
The study shows thatACORN’s dialogue strategy allows for
efficientdialogues, since all users accomplished the scenario,
and that several even completed the tasks within the optimal
number of turns. This capability may be seen as a prerequisite
for CRSs, not to say for dialogue systems in general.

The low interpretation error rate would suggest that the
user satisfaction rates are indeed measuring the desired as-
pects, without them being influenced by a general dissatisfac-
tion with interpretation performance of the system.

One interesting observation is that the dialogue interaction
has anentertainingquality. The number of domain exploring
initiatives suggests that users finds the interaction interesting
enough to deviate from the scenario, and engage in the dia-
logue out of personal interest. Exploratory behavior seems to
happen towards the middle or end of the dialogue sessions,
which indicate that such behavior is not only an attempt to
familiarize with the system. Users engaging in exploration
turns also give the highest Entertainment Value ratings. This
suggests that exploring the large domain space is an enter-
taining feature of interacting withACORN. The questionnaire
analysis shows that this is one of the most high-ranked sat-
isfaction aspects. It is thus clear that dialogues longer than
the “optimal efficiency” may still have a high user satisfac-
tion value attached. This is especially true in exploratory di-
alogues where it is a quality in itself for the user to be able
to learn more about the domain than initially planned. Ob-
viously, this comes with the domain and the purpose of the
system. Exploring the movie domain and receiving person-
alized recommendations is different from finding train table
information as quickly as possible.

As pointed out in Section 1, previous research suggests that
an important reason for investigating and developing CRSs is
that they allow the system to capture user preferences when
users are as motivated as possible to give them. One promis-
ing way to achieve this is to employ a dialogue strategy with
entertaining dialogues that encourage domain exploration but
still allows for efficient handling of user tasks.

An interesting fact is that the users’ opinion on Interpreta-
tion Performance according to the questionnaire seems rather
low compared to the factual number of interpretation failures
(FAL rates in Table 1). When examining these dialogues in
detail it seems that users that encountered an interpretation
failure in thebeginningof their session, did not readACORN’s
responses as carefully in the remainder of the session. An ex-
ample of this is found in Figure 7 where utterance U1 was
not understood byACORN, resulting in the help message A1.
After the additional help message the user does not seem to
care much aboutACORN’s prompts, and fails to realize that

her request has been addressed correctly. This stresses the

U1: I want to know aboutBrad Pitt
A1: To be able to provide recommendations I need to know

about your movie preferences. Say for example: “I
would like a drama”.

U2: a movie starringBrad Pitt
A2: Ok. I need more information in order to give you a rec-

ommendation. You can for example provide a genre
you’re interested in.

U3: comedy
A3: Have you seen the movieSnatch (2000)?
U4: I want a comedy starringBrad Pitt, can you do that?

Figure 7: Excerpt showing a user’s failure to realize that a
correct recommendation has been given. (The recommended
movie Snatch (2000)is a comedy starringBrad Pitt, which
is what the user asked for). The dialogue has been translated
from Swedish.

importance of interpretation performance since a lack thereof
takes away the feeling of interacting with a competent conver-
sational partner, and this causes the user to pay less attention
to the system’s utterances and dialogue.

Another possible explanation for this behavior is con-
cerned withwhento issue explanations. Objective explana-
tions of recommendations serve two key points in the interac-
tion: to provide transparency of the system logic, and inspire
trust between the user and system[Swearingen and Sinha,
2002]. In the original human-human corpus—on which
ACORN’s dialogue strategy is based (see section 2.1)— utter-
ance sequences such as A7-U7-A8 in Figure 1) are standard.
That is, the recommender provides an explanation of the rec-
ommendation only if the respondent hasnot seen the recom-
mended title (compare to A3-U3-A4 in Figure 1). However,
providing the explanation of the recommendation afterwards
seems not to be suitable for the dialogue in Figure 7. Here, it
would perhaps be better if the explanation thatSnatch (2000)
is in fact a comedy starringBrad Pitt could be provided as
part of utterance A3. A future version ofACORN’s dialogue
strategy could thus present recommendation explanations ear-
lier; or better yet provideadaptiverecommendation explana-
tions that depends on e.g. the number of previous successful
transactions and recommendations.

6 Summary and Future Work
The results of the study indicate a high user satisfaction with
the interaction from nine usability aspects, and thatACORN’s
dialogue strategy is suitable for both efficient interaction and
domain exploration.ACORN not only suggests recommenda-
tions but also provides means to explore the domain in an in-
formation retrieval dialogue at any point in the conversation.
Entertainment value is one of the highest-ranking aspects of
the interaction, and it is suggested that this is a suitable in-
teraction quality to make use of in order to facilitate domain
exploration and preference modeling for conversational rec-
ommender systems.

Future work includes a long-term user study ofACORN,
where user preference model updates in multiple dialogue

38

sessions are tracked and used. Such a study would require a
more sophisticated recommendation engine, as well as pref-
erence manager that is able to deal with preference changes
over larger time spans. In a long-term study it would be im-
portant not to have the artificial agenda in the form of a given
scenario, but to study naturally occurring domain exploration
of the type hinted at in this study.

Acknowledgments
This research has been supported by the Swedish National
Graduate School of Language Technology (GSLT), Santa
Anna IT Research, and VINNOVA. I am grateful to my ad-
visor Arne J̈onsson for his valuable comments on previous
versions of this paper.

A Abbreviated Scenario Instructions
The scenario presented to the participants consisted of three
sub-tasks. They are presented here in an abbreviated form.

A.1 Task 1
Find out if the actorBrad Pitt has acted in any comedies.
Please mark your answer in the protocol.

A.2 Task 2
Find out what actors/actresses are starring in the movieEn-
trapment. Note the name of one of them, and askACORN to
recommend a drama starring that actor/actress. Please note
the actor/actress and recommended title in the protocol.

A.3 Task 3
Ask for a comedy starringAdam Sandler, and note the recom-
mended title in the protocol. Then find out who has directed
the movie, and note his/her name in the protocol.

References
[Androutsopouloset al., 1995] I. Androutsopoulos, G.D.

Ritchie, and P. Thanisch. Natural language interfaces to
databases–an introduction.Journal of Language Engi-
neering, 1(1):29–81, 1995.

[Burkeet al., 1997] Robin D. Burke, Kristian J. Hammond,
and Benjamin C. Young. The FindMe Approach to As-
sisted Browsing.IEEE Expert, 12(4):32–40, 1997.

[Burke, 2002] Robin D. Burke. Hybrid recommender sys-
tems: Survey and experiments.User Modeling and User-
Adapted Interaction, 12:331–370, 2002.

[Carberryet al., 1999] S. Carberry, J. Chu-Carroll, and
S Elzer. Constructing and utilizing a model of user pref-
erences in collaborative consultation dialogues.Computa-
tional Intelligence, 15(3):185–217, 1999.

[Careniniet al., 2003] Giuseppe Carenini, Jocelyin Smith,
and David Poole. Towards more conversational and collab-
orative recommender systems. InProceedings of the Inter-
national Conference of Intelligent User Interfaces, pages
12–18, Miami, Florida, USA, 2003.

[Cohen, 1992] Philip R. Cohen. The role of natural language
in a multimodal interface. InProceedings of the 5th sym-
posium on user interface software and technology, pages
143–149, 1992.

[Degerstedt and Johansson, 2003] Lars Degerstedt and Pon-
tus Johansson. Evolutionary Development of Phase-Based
Dialogue Systems. InProceedings of the 8th Scandina-
vian Conference on Artificial Intelligence, pages 59–67,
Bergen, Norway, 2003.

[Hananiet al., 2001] Uri Hanani, Bracha Shapira, and Peretz
Shoval. Information filtering: Overview of issues, research
and systems.User Modeling and User-Adapted Interac-
tion, 11:203–259, 2001.

[Johansson, 2004] Pontus Johansson. Design and develop-
ment of recommender dialogue systems. Licentiate The-
sis 1079, Link̈oping Studies in Science and Technology,
Linköping University, April 2004.

[Larssonet al., 2000] Staffan Larsson, Lena Santamarta, and
Arne J̈onsson. Using the process of distilling dialogues to
understand dialogue systems. InProceedings of the 6th In-
ternational Conference on Spoken Language Processing,
2000.

[Litman and Pan, 1999] Diane J. Litman and Shimei Pan. An
empirical evaluation of an adaptable spoken dialogue sys-
tem. InProceedings of the Seventh International Confer-
ence on User Modeling, pages 55–64, 1999.

[Montaneret al., 2003] Miquel Montaner, Beatriz Ĺopez,
and Josep Llúıs de la Rosa. A taxonomy of recom-
mender agents on the internet.Artificial Intelligence Re-
view, 19:285–330, 2003.

[Swearingen and Sinha, 2002] Kirsten Swearingen and
Rashmi Sinha. Interaction design for recommender
systems. InInteractive Systems (DIS2002), London, June
2002.

[Thompsonet al., 2004] Cynthia Thompson, Mehmet
Göker, and Pat Langley. A personalized system for
conversational recommendations.Journal of Artificial
Intelligence Research, 21:393–428, 2004.

[Walkeret al., 1997] Marilyn A. Walker, Diane J. Litman,
Candace A. Kamm, and Alicia Abella. Paradise: A frame-
work for evaluating spoken dialogue agents. InProc. 35th
Annual Meeting of the Association fot Compuational Lin-
guistics, pages 271–280, 1997.

[Wärnest̊al, 2005] Pontus Ẅarnest̊al. Modeling a dialogue
strategy for personalized movie recommendations. InPro-
ceedings of Beyond Personalization Recommender System
Workshop at IUI’05, pages 77–82, San Diego, CA, USA,
January 2005.

[Wu, 2002] Hongjing Wu. A Reference Architecture for
Adaptive Hypermedia Applications. PhD thesis, Eind-
hoven University of Technology, 2002.

[Zadroznyet al., 2000] W. Zadrozny, M. Budzikowska,
J. Chai, N. Kambhatla, S. Levesque, and N. Nicolov. Nat-
ural language dialogue for personalized interaction.Com-
munications of the ACM, 43(8):116–120, 2000.

39

GeneratingConfirmation to Distinguish PhonologicallyConfusingWord Pairs
in Spoken DialogueSystems

Kazunori Komatani Ryoji Hamabe TetsuyaOgata Hir oshiG. Okuno

GraduateSchoolof Informatics
KyotoUniversity

Yoshida-Hommachi,Sakyo, Kyoto606-8501,Japan
komatani@i.kyoto-u.ac.jp

Abstract

Theintelligibility of responsesin spokendialogue
systemsis importantfor communicatingsuccess-
fully, especiallywhen the systemsare usedvia
cellular phonesin noisy environments.We con-
trivelanguageexpressionsof systemresponsesto
avoid usersmisunderstandings,which mayoccur
whenwordpairsin asystem’svocabularyphono-
logically resembleeachother. We designedand
developeda methodto automaticallyaddclarify-
ing expressionswhen needed. Our methodcan
be appliedto variousdomainsbecauseno hand-
written rulesareneededin new domains. It ex-
ploitsmultipleknowledgesourcessuchasdictio-
nariestogetdistinctivewordsascandidatestouse
in clarifying expressions.To selectthebestone,
we introducea criterion:easein hearing.It is de-
fined as the weightedsum of the uniquenessof
the distinctive word and the differencebetween
thedistinctive andoriginal words. We evaluated
our methodby applyingit to thevocabulariesof
two systems. An experimentwith five subjects
showedthatoursystemimprovedtheintelligibil-
ity of phonologicallysimilarwords.

1 Intr oduction
Becauseof recentimprovementsin spokendialoguesystems,
we can accessinformation systemsverbally with cellular
phones[Komataniet al., 2003;Rauxand Eskenazi,2004].
Sinceno specialnew apparatusesareneededwhenthe tele-
phoneis usedasthe interface,suchinformationservicesare
expectedto beusedby variouspeople,includingtheelderly.

Communicationusingspeechinherentlyinvolvesrecogni-
tion errors. Phones,particularlycellular phones,often pick
up backgroundnoise,sospeechcommunicationmustbero-
bustin suchenvironments.Therefore,variousstudiessuchas
[HirschandPearce,2000] havefocusedonimproving speech
recognitionaccuracy in noisysituations.

In additionto speechrecognitionerrors,whichcorrespond
to thesystemmishearingtheuser, thepossibilityof theuser
mishearingspeechshouldalsobeconsidered.Although the
quality of text-to-speech(TTS) systemshas improved, the

controlof intonationremainsa problem.Automaticallygen-
erating appropriateintonationsand accentsfor individual
propernounsis nearlyimpossible.Therefore,theexpressions
asystemusesshouldbeintelligible sothattheusereasilyun-
derstandsthem,especiallywhenTTS systemsareused.

Wedevelopedamethodof automaticallyaddingappropri-
ateexpressionsto systemresponsesthatmakeshearingcon-
tentwordsincludingpropernounseasier. Weaimedto reduce
usersmishearingandto improvethecertaintyof speechcom-
munications,evenin noisysituations.

To clarify aconfusingspelling,Englishspeakersoftenuse
thephoneticcode,e.g.,“A for alpha”,“B for boy”, and“C for
Charlie”. Becausewethink thatthephoneticcodeis not intu-
itive enough,we alsousedwordsor expressionsthatexplain
largerunitsthanphonesto indicatedifferencesbetweencon-
fusing words. We usedmultiple knowledgesources(dictio-
naries)to automaticallyobtaincandidatewordsto be added
to confirmationsasclarifying expressions.

Criteriaareneededto selectthebestclarifying expression
amongcandidates.We definethe easein hearingthe clar-
ifying expressionusing two criteria: the uniquenessof the
clarifying expressionandits differencefrom theoriginal ex-
pression. By comparingweightedsumsof the two criteria
for eachcandidate,thebestclarifying expressionis selected
and spoken to users. The candidatesare automaticallyex-
tractedfrom knowledgesourcesthataregenerallyused,and
thebestcandidateis automaticallyselected.This meansthat
our methoddoesnot dependon a specificdomain,so it can
beappliedto otherdomainswithoutnew generationrules.

2 Designof SystemResponsesto Avoid User
Misunderstanding

2.1 Misunderstanding Causedby Phonologically
Similar Words

In communicationsusingspeechmedia,speechrecognition
errorscannotbeavoided.To successfullycommunicate,user
mishearingof the system’s responsesmust be avoided, as
mustsystemrecognitionerrors. In particular, errorsin com-
municatingcontentwordsare fatal in spoken dialoguesys-
temsbecausesuchwordsareusedaskeywordsfor queries.
To avoid sucherrors,many systemsrequireconfirmationof
contentwords[Hazenet al., 2000]. Theconfirmation,how-
ever, maynot beunderstoodwhenphonologicallyconfusing

40

S1:
�

Pleasetell meyourcurrentbusstop,destination,or
specificbusroute.

U1: FromKinkaku-ji (�����) temple.
S2: Did yousay“from Kinkaku-ji (�����) temple”?
U2: ??? (The usercannotdiscernwhetherthe system

saidKinkaku-jior Ginkaku-ji.)

Figure1: Exampledialoguefrom conventionalsystem.

S1: Pleasetell meyourcurrentbusstop,destination,or
specificbusroute.

U1: FromKinkaku-ji (�����) temple.
S2: I amnot surewhetheryou saidKinkaku-ji (�����

) templeor Ginkaku-ji(�����) temple.Doeswhat
yousaidbegin with thecharacter“kin (�)”, which
meansgold in English?

U2: Yes.

Figure2: Exampledialoguefrom oursystem.

wordsareused.In suchcases,humanscandistinguishsuch
words by focusingon the confusingpart and adjustingthe
intonation,accent,speed,etc.For thesystems,automatically
givingpropernounstheproperintonationandaccentis nearly
impossible,just as non-native speakershave difficulty pro-
nouncingunknown propernounscorrectly. Therefore,intel-
ligible languageexpressionsof theconfirmationsareneeded
aswell aspreciseTTS enginesto correctlytransmitthesys-
temresponses.

Our goalwasto prevent themishearingof contentwords
in spokendialoguesystems.Whenthecontentwordsin con-
firmationresponsesarephonologicallyconfusing,oursystem
automaticallyaddsexpressionsto clarify thewords.Thesys-
temautomaticallyextractsphonologicallysimilar word pairs
from thevocabulary andgeneratesclarifying expressionsby
using multiple knowledgesources. Clarifying expressions
makeconfirmationsintelligible,but mayalsomakedialogues
lengthy. Whatwordswill beaddedto theclarifying expres-
sionscanbecontrolledby settinga thresholdto thephonetic
distancebetweenconfusingwords.

An exampledialoguefrom aconventionalsystemis shown
in Figure 1, and one from our systemis shown in Figure
2. Becausephonologicallyconfusingwordsare in the sys-
tems’vocabulariessuchasKinkaku-jiandGinkaku-ji, which
arenamesof temples,the confirmation“Did you say from
Kinkaku-ji temple?”in Figure1 maysoundsimilar to “from
Ginkaku-jitemple”,especiallywhenthequalityof theTTSis
low or is listenedto in a noisyenvironment. Therefore,our
systemgeneratesa confirmationthat containsan expression
thatclarifiesthedifferencebetweenphonologicallyconfusing
words(e.g.,“Doeswhatyousaidbegin with thecharacterkin
(�), whichmeansgold in English?”in Figure2).

2.2 GeneratingConfirmation without Dependence
on Domains

Our goalis to generatethekind of confirmationdescribedin
the previoussubsectionwithout dependenceon any specific
domain. That is, we do not manuallydescriberulesfor in-
dividual wordsin a system’s vocabulary, but exploit existing
knowledgesourcessuchasdictionaries. This enablesus to
automaticallyapplyourmethodto varioussystems.

Specifically, oursystemextractswordpairsthatarephono-
logically similar from a system’s vocabulary. It also auto-
maticallyobtainscandidatesfor clarifying expressionsfrom
dictionariesto distinguishthe pairs. As a unit to explain
thedifferencebetweenconfusingpairs,we adoptedChinese
characters1 becausewe think a larger unit than a phoneis
moreintuitive. We exploit existing dictionariesthat explain
the unit, suchas a set of words consistingof several Chi-
nesecharacters,a Japanese-Englishdictionary, a dictionary
describingreadingsof Chinesecharacters,andthe Japanese
phoneticcode2. Noneof thesedictionarieswereconstructed
by handfor our systembut generallyused. The systemau-
tomaticallyselectsthebestcandidateexpressionbasedon its
intelligibility . Thus,theclarifying expressionsaregenerated
automatically.

2.3 Intelligibility of SystemResponses
Weassumethattheintelligibility of systemresponsesconsists
of two factors:difficulty andeasein hearing.

The difficulty indicates whether users understandthe
meaninginstantlyuponhearinganexpression.Therefore,the
intelligibility of a systemresponseis improvedwhenanex-
pressionwith low difficulty is used.We definethedifficulty
of an expressionby thedifficulty of its words. We incorpo-
ratedthe difficulty by usingdictionariesin which difficulty
rankingsaregiven.

The easein hearingindicateswhetherthe expressionis
confusing. Therefore, it is defined by consideringboth
whetherthe expressionis generallysimilar to otherexpres-
sionsandhow theresponsechangedphonologicallyfrom the
original confusingresponseby addingtheclarifying expres-
sion.Wedefinetheformerastheuniquenessandthelatteras
thedifferenceof a clarifying expression.Theeasein hearing
is definedby theweightedsumof thetwo criteria.

3 GeneratingClarifying Expressionsfor
PhonologicallySimilar Words

Wedescribeourmethodfor generatingclarifying expressions
by obtainingdistinctive wordsfrom dictionaries.Confusing
word pairsareautomaticallyextractedfrom the systemvo-
cabulary and are distinguishedusing the distinctive words.
Theprocedureis listedbelow anddepictedin Figure3.

1. We definethe phoneticdistancebetweentwo words.
By calculatingthedistancefor all thecombinationsin

1BecauseChinesecharactersareideograms,Japanesepeopleof-
tentell thedifferencebetweentwo wordsusingthemeaningsof the
characters.

2TheJapanesephoneticcodedescribeseachJapanesesyllable.

41

System vocabulary

......

Extracting pairs
of phonologically

similar words

Obtaining
distinctive words

Selecting
best candidate

Sets of words w/ Chinese chars.
Japanese-English dictionary
Readings of Chinese chars.
Japanese phonetic code

Existing dictionaries

Clarifying expressions

............

......

Confirmation
templates

Figure3: Flow to generateclarifying expressions.

thesystem’s vocabulary3, phonologicallysimilar word
pairsareextracted.

2. Distinctive words that include different spelling or
phonesbetweenthephonologicallysimilarpairareob-
tainedfor eachpair from dictionaries. The wordsare
candidatesfor usein clarifying expressions.

3. The bestcandidateamongthe distinctive wordsis se-
lected. An expressionof confirmationis generatedby
applying the candidateto templatesfor responsesen-
tences.

We describethedetailsof eachstepin the following sec-
tions.

3.1 Extracting Pairs of PhonologicallySimilar
Words from SystemVocabulary

We describeour methodof extractingphonologicallysimilar
wordpairsfrom atargetsystem’svocabulary. First,wedefine
the phoneticdistancebetweenwords,which representshow
phonologicallysimilar two wordsare.Two wordsarephono-
logically similar, that is, confusing,if they have morecom-
monphonemesandlessdifferentphonemes.Furthermore,in
Japanese,becausewordsarepronouncedby following adefi-
niterhythmcalledmora4, two wordshaving thesamenumber
of moraetendto beconfusing.

Consideringthesecharacteristics,we define a phonetic
distance,	�

��
��
��������� , between� and��� asfollows:

	�
���
�������� � ��� �
���
��
����� � �
!#" ��$&%�'(��) ��)��*) � �)
�,+.-�� � (1)

where) ��) denotesthenumberof phonemesin word � . The

3Although the cost to computethe distancebetweenall word
pairsis high, it canbedonebeforehand.

4A mora usually consistof a consonantand a vowel. Since
Japaneseis amora-timedlanguage,therhythmof Japaneseplacesa
beaton eachmorain words,which is calledmoraisochronism.

Table1: Examplesof phonologicallysimilarwordpairs.
kyotofuritsumogakko (/1032.4656798)
(Kyotoprefecturalschoolfor theblind) 0.34kyotofuritsurogakko (/1032.46:6798)
(Kyotoprefecturalschoolfor thedeaf)
rakusaikoko mae(;3<6=983>)
(In front of Rakusaihighschool) 0.36rakusuikoko mae(;9?.=983>)
(In front of Rakusuihighschool)
kinkaku-jimichi (�����A@)
(Kinkaku-ji templeroad) 0.37ginkaku-jimichi (�B���A@)
(Ginkaku-ji templeroad)

numerator, �
���
��
����� � � , denotesthe edit distance5 between
the phonemesequences� and � � . The edit distanceis cal-
culatedusingDP matching[Navarro, 2001]. In calculating
anedit distance,a costis introducedfor eachinsertion,dele-
tion,andsubstitutionto reflectthemorastructure.Here,CED is
asetof vowels,chokedsounds,andsyllabicnasals,and C(F is
a setof consonantsandsemi-vowels. If editedphonemesbe-
long to CED , thecostis doubledbecausethenumberof morae
is changed.

Thesystemextractsword pairswhosephoneticdistances
arelow asphonologicallysimilar words. Examplesof such
word pairs in the Kyoto City Bus Information Systemare
shown in Table1.

3.2 Obtaining Candidatesfor Clarifying
Expressions

We describehow to obtain distinctive words as candidates
for clarifying expressionsto distinguishphonologicallysim-
ilar word pairs,which wasdescribedin theprevioussection.
Wefocusondifferencesof phonesor spellingdifferencesbe-
tweenthe pairs. The systemobtainsdistinctive words that
includethedifferentspellingor phonesfrom multipleknowl-
edgesources.We usedfour theknowledgesourcesdescribed
later.

First, the systemextractscharacters,which are Chinese
charactershere,or phonesthatarenotcommonbetweencon-
fusing word pairs. Hereafter, the first characteror phone
extracted is denotedas <char> or <phone> 6. Their
positionsin confusingwords are denotedas <charLoc>
and<phoneLoc> representedusingcommoncharacters(or
phones)beforethe difference.An exampleis shown below
for rakusaikoko mae(;A<9=G8A>) andrakusuikoko mae(;?.=983>).

<char> � “ < ”, “ ? ”
<phone> � “sa”, “su”

<charLoc> � “after thecharacterraku(;)”
<phoneLoc> � “after thephonesraku”

(2)

Whenthe differenceis at the beginning (or end)of a word,
we use<charLoc> = <phoneLoc> = “at the beginning”

5The edit distanceof two strings, HJI and HJK , is definedas the
minimumnumberof mutationsto changeHJI into HJK , whereamuta-
tion is asubstitution,insertion,or deletion.

6Phonesin Japanesecorrespondto theJapanesesyllabary.

42

Table2: Specificationsof JC1.
difficulty # words example
A1 (low) 2,337 L6M (objection)
A2 2,618 N6O (main)
B 4,892 PRQ (admonition)
C 8,989 S6T (hospitality)
F (high) 16,239 U.V (unconstitutionality)

W�X
(sign), �ZY (Friday), [9\ (air),?.Y^] (Wednesday),L9M (objection),...

Figure4: Examplesof pairsof Chinesecharacters.

Chinesecharacter nativeJapanesereadings_
(out) soto,hazusu,hoka`

(sound) oto,nea
(voice) koe, kowab
(read) yomu

Figure5: Examplesof Japanesereadingsof Chinesecharac-
ters.

(or “at theend”).
The systemobtains distinctive words from knowledge

sourcesas candidatesthat contain the different spelling or
phones.We will describefour methodscorrespondingto the
knowledgesourcesused.

Method UsingWords Consistingof Several Chinese
Characters
The systemuseswords consistingof several Chinesechar-
actersincluding differencesin spelling. We useda dictio-
nary, JC1[Sato,2004], in which the difficulty rankingsare
given. The specificationsof JC1are listed in Table2. We
usedwordshaving thelowestdifficulty to improvetheintelli-
gibility of expressions.This dictionaryincludes2,337words
with the lowestdifficulty, part of which is shown in Figure
4. Thetemplateto generateexpressionsof confirmationis as
follows:

“Doesthecharacter<char> in <ccpair> fol-
low <charLoc>?”

Here,<ccpair> denotesa word in thedictionary. Inappro-
priatewordsareremovedfrom thecandidates;for example,
whenawordextractedfrom thedictionaryis apartof its orig-
inal confusingwordpairs,etc.

Method UsingReadingsof ChineseCharacters
We usedJapanesereadingsof Chinesecharactersto explain
confusingwords.We adoptedJapanesereadingsif thetarget
ChinesecharacterhadotherJapanesereadings.Examplesof
the setof readingsareshown in Figure5. The templateto
generateclarifying expressionsof confirmationis asfollows:

“Doesthecharacterreadas<reading> follow
<charLoc>?”

Here,<reading> denotesanotherreadingof thetargetChi-
nesecharacter.

Chinesecharacter Englishtranslationc
raind

yellowe
stonef
bridge

Figure6: Examplesof translationsof Chinesecharacters.

phone descriptionword
sa sakura (cherryblossom)
shi shimbun (newspaper)
fu fujisan (Mt. Fuji)

Figure7: Partof Japanesephoneticcode.

Method UsingEnglish Translation of ChineseCharacters
We usedEnglish translationof a Chinesecharacterwhen
a single Chinesecharacterhad a meaningby itself. If a
Japanese-Englishdictionaryhasan index entry thatconsists
of a single Chinesecharacter, we assumethe entry has a
meaningitself, andit is usedwith its Englishtranslation.We
obtained148singleChinesecharactersandtheir translations,
afterlimiting themto thosewith thelowestdifficulty. Exam-
plesof thesetof singleChinesecharactersandtheir transla-
tionsareshown in Figure6. Thetemplateto generateexpres-
sionsof confirmationis asfollows:

“Does the character<char>, which means
<trans> in English,follow <charLoc>?”

Here,<trans> denotesa translationof a targetcharacter.

Method Basedon PhoneticCode
We alsousedthe Japanesephoneticcodeto explain phones
at thebeginningsof differences.A partof thetableis shown
in Figure7. We useda word in the tableasa distinctive one
to explain a phone.The templateto generateexpressionsof
confirmationis asfollows:

“Does the phone<phone> of <descword>
follow <phoneLoc>?”

Here,<descword> denotesa word describinga phonein
theJapanesephoneticcode.

3.3 SelectingBestCandidatesfor Clarifying
Expressions

We describehow to selectthe most intelligible expressions
from candidates.As describedin Section2.3, intelligibil-
ity dependson both the difficulty of wordsand the easein
hearing. To reducethe difficulty, we only usedwordshav-
ing the lowestdifficulty rankingswhenobtainingcandidates
from dictionaries,asdescribedin theprevioussection.

Theeasein hearingis definedby theuniquenessof thedis-
tinctive word in the clarifying expressionandthe difference
betweenthedistinctive andoriginal words. Here,we define
theuniqueness,gih , andthedifference,�jh , of distinctiveword� h .

The uniqueness,g h , representshow words are included
that are phonologicallysimilar to word � h in the system’s

43

Table3: Averagenumberof candidatesand percentageof times
thatat leastonecandidatewasobtainedfrom sources(bussystem).

average percentageof timescandidatewasobtained
candidates I II III IV

3.9 44% 46% 13% 100%

I usingwordswith severalChinesecharacters
II usingreadingsof Chinesecharacters

III usingtranslationof Chinesecharacters
IV usingphoneticcode

Table4: Distributionof subjectivelabelsof clarifyingexpres-
sions(bussystem).

A B C
labelsfor all obtainedcandidates 113 102 13

labelsfor selectedcandidates 49 9 0

knowledgesources,suchassetsof wordsconsistingof sev-
eral Chinesecharacters,a Japanese-Englishdictionary, and
the Japanesephoneticcode. The userwill not confusethe
word with otherswhenfew similar wordsarein the knowl-
edgesources.

Theuniqueness,gih , of word ��h is definedasfollows:

g h � -k
l
mon D 	�
���
���� h �qp� m ���

where	�

��
��
� h �qp� m � denotesthephoneticdistancedefinedin
Section3.1. Wordshaving the r smallest	�

��
���� h �qp� m � in all
knowledgesourcesaredenotedas p� m . That is, g,h is defined
astheaverageof the

k
smallestphoneticdistancesof words.

Here,weset
k �s-Jt .

The differencerepresentshow a distinctive word to be
usedin a clarifying expressiondiffersfrom theoriginal one.
Theclarifying expressionis neededwhentheoriginalexpres-
sion is phonologicallyconfusing. Therefore,it may still be
confusingif the distinctive word is similar to the original
one. The differencerepresentsthe intelligibility whenorig-
inal wordsarepresented.

Thedefinitionof thedifference,� h , of distinctive word � h
is asfollows. Here,��uwvyx{z and ��|�}jvy~�� denotethewordswith
moreandlessphonemesof theoriginalword, � , anddistinc-
tive word � h . Thenumberof phonemesof ��u�v�x{z and��|�}jvy~��
are

k u and
k | . The difference,� h , is definedas the mini-

mumof thephoneticdistancebetween� |�}jvy~�� andall partial
phonemesequencesin � u�v�x{z whoselengthsare

k | :
� h � $&%�'moni�#������� l�����l���� 	�

��
��
��uwvyx{z��wr�+Z-�

�r�+ k |J������|�}�vy~y�y���{�

where�&�wr�
�
�r � � denotesapartialsequencein ��u�v�x{z from ther -th phonemeto the r � -th phoneme.
Usingtheabove two criteria,we assumethatthemorein-

telligible candidateshavelargervaluesof uniquenessanddif-
ference.We definea scorerepresentingthe intelligibility of
theclarifying expressionincludingdistinctiveword � h asthe
weightedsumof theuniquenessandthedifference.Thesys-
temcomparesthescoresandselectsthecandidatethathasthe
largestone. �j���y�

� �
� h ���^� D�� g h +R� F � � h

Table5: Averagenumberof candidatesandpercentageof timesthat
at leastonecandidatewasobtainedfrom sources(hotelsystem).

average percentageof timescandidatewasobtained
candidates I II III IV

3.3 40% 48% 15% 96%

Table6: Distributionof subjectivelabelsof clarifyingexpres-
sions(hotelsystem).

A B C
labelsfor all obtainedcandidates 102 60 9

labelsfor selectedcandidates 47 5 0

We settheweightsas �ADE�^¡ and � F �¢- afterexamining
variousvaluesin a preliminaryexperiment7.

4 Experimental Evaluation
4.1 Implementation into Existing Systems
We appliedour methodto the vocabulary of theKyoto City
Bus InformationSystem[Komataniet al., 2003]. The vo-
cabulary includesthenamesof busstops,busroutenumbers,
andnamesof famousplacesorpublicfacilitiesnearbusstops.
Thevocabularysizeis 1,574.

Table3 shows theaveragenumberof candidatespercon-
fusingpairandthepercentageof timesthatat leastonecandi-
datewasobtainedfromknowledgesources,whenourmethod
wasappliedto thevocabularyof thebussystem.Candidates
for clarifying expressionswerenot alwaysobtainedbecause
eachknowledgesourcemay not a word including different
charactersor phonesbetweenconfusingword pairs. The
methodusingthe phoneticcodecangeneratecandidatesfor
all wordsbecauseit focuseson phonesanddistinctive words
arepreparedfor all phonesin theJapanesephoneticcode.As
aresult,onaverage,3.9candidateswereobtainedperconfus-
ing pair from theknowledgesources.

Weevaluatedwhetherthegeneratedclarifyingexpressions
wereintelligible or not. We gave labelssubjectively for each
expression:from A (intelligible) to C (unintelligible). The
distributionsof thesubjectivelabelsfor candidateexpressions
andthoseof the selectedexpressionswith maximumscores
areshown in Table4. This table indicatesthat expressions
with bettersubjective labelsweremostlychosen.

We also appliedour methodto anothersystem: a hotel
searchsystem[Komataniet al., 2001]. The vocabulary in-
cludes865names:thoseof wider areasthanthebussystem
uses,facilitiesof hotels,etc. In thisdomain,candidateswere
generatedfrom eachknowledgesource,and3.3 weregener-
atedon averageasshown in Table5. Theselectionmodule
alsofunctionswell without modifications,asshown in Table
6.

4.2 Listening Experiment for Generated
Confirmations

We alsoevaluatedwhethergeneratedconfirmationsactually
improvedtheeasein hearingthedifferencebetweenphono-

7Althoughwe setthevaluesbasedon thebussystem’s vocabu-
lary, it workedwell in thehotelsystemdescribedlater.

44

Table7: Resultsof conventionalconfirmation.
Subject Correct Incorrect Cannotdiscern

A 21 0 34
B 38 8 9
C 23 1 31
D 25 0 30
E 32 0 23

Average 27.8(51%) 1.8(3%) 25.4(46%)

Table8: Resultsof confirmationusingclarifyingexpressions.
Subject Total Correct Incorrect Cannotdiscern

A 34 26 0 8
B 9 5 2 2
C 31 14 3 14
D 30 21 0 9
E 23 22 1 0

Average 25.4 17.6(69%) 1.2(5%) 6.6(26%)

logically confusingword pairs. Theprocedureof our exper-
iment is as follows. Here, we denoteeachphonologically
similarwordpairas�

�y�
� D and�

�y�
�*F . First,a userwasdis-

played�
�y�
�£D astext. Second,he/shelistenedto thefollow-

ing confirmationgeneratedby a TTS system,andanswered
“yes”, “no”, or “I cannottell”.

I amnot surewhetheryou said�
�y�
� D or �

�y�
��F .

Did you say¤ ?

where¤ waseither�
�y�
��D or �

�y�
� F , determinedat random.

Then, if his/heranswerwas“I cannottell”, he/shealso lis-
tenedto thefollowing confirmationgeneratedby a TTS sys-
tem,andansweredsimilarly:

I amnot surewhetheryou said�
�y�
�£D or �

�y�
� F .

(confirmationwith clarifying expressionsfor ¤)

He/Shecouldlistento eachconfirmationup to threetimes.
Weaddedbackgroundnoiseto theTTSsound,becausewe

assumethat the systemwill be usedin noisy environments.
Thevolumeof noisewassetto equalthatof theTTS sound,
andwe usedbackgroundnoisesfrom shoppingmalls. Five
subjectslistenedto 55 confusingword pairs that had been
automaticallyextractedfrom thebusandhotelsystemvocab-
ularies.

The resultsof the first confirmationfor confusingword
pairs“Did you say ¤ ?” areshown in Table7. Almost half
thewordpairscouldnotbediscernedalthoughuserswereal-
lowedto listenupto threetimes.Wordpairsthatcouldnotbe
discernedin thefirst confirmationwereconfirmedagainus-
ing theclarifyingexpressions.Theresultsarein Table8 show
that69%of theword pairsthatcouldnot bediscernedin the
first confirmationbecamediscernibleusingtheconfirmations
with clarifying expressions.That is, our methodimproved
the intelligibility of confirmationsfor phonologicallysimi-
lar wordpairsthatcouldnotbediscernedusingconventional
confirmations.However, 26%of thewordpairsstill remained
unintelligibleaftertheconfirmationsusingclarifying expres-
sions.Oneof thereasonsfor this is thatthedistinctivewords
usedin theclarifyingexpressionssemanticallyhadnothingto
dowith thecontext andcouldnotbeexpectedby users.

5 Conclusion
We describeda methodof generatingclarifying expressions
to preventconfusionbetweenphonologicallyconfusingword
pairs in systemvocabularies. A framework of our method
can be appliedto variousdomainsbecauseconfusingpairs
areextractedautomaticallyandcandidatesfor clarifying ex-
pressionsareautomaticallygeneratedandselected.There-
fore, we cangenerateclarifying expressionswithout prepar-
ing themfor eachdomain. We experimentallyverified that
clarifying expressionscouldimprove listenerabilitiesto dis-
criminatebetweenphonologicallysimilarwords.

Becauseour target languagewas Japanese,we adopted
Chinesecharactersasunits andgeneratedclarifying expres-
sions to explain them. If appropriatemorphemescan be
definedfor otherlanguages,phonologicallyconfusingword
pairscan be distinguishedby preparingknowledgesources
includingthemorphemes.This would behelpful evenwhen
userscannotaccuratelyspellwords.

The intelligibility of clarifying expressionsalsodepends
onusercharacteristicsandthecontext. Thedistinctivewords
maybeunrelatedto thecontexts. Theintelligibility will im-
prove further if suchwords weremore familiar, which de-
pendson individual users.Confirmationsfor the remaining
31%of wordsthatcouldnot bediscernedin our experiment
wouldbemoreintelligible if clarifying expressionsweregen-
eratedadaptively for individualusers.

References
[Hazenetal., 2000] T. J. Hazen,T. Burianek,J. Polifroni,

andS. Seneff. Integratingrecognitionconfidencescoring
with languageunderstandinganddialoguemodeling. In
Proc. ICSLP, 2000.

[HirschandPearce,2000] H.-G. HirschandD. Pearce.The
AURORA experimentalframework for the performance
evaluationof speechrecognitionundernoisy conditions.
In Proceedingsof theISCAITRWASR, 2000.

[Komatanietal., 2001] K. Komatani, K. Tanaka,
H. Kashima, and T. Kawahara. Domain-independent
spokendialogueplatformusingkey-phrasespottingbased
on combinedlanguagemodel. In Proc. EUROSPEECH,
pages1319–1322,2001.

[Komatanietal., 2003] K. Komatani,S.Ueno,T. Kawahara,
andH. G. Okuno.Flexible guidancegenerationusinguser
model in spoken dialoguesystems.In Proc. ACL, pages
256–263,2003.

[Navarro,2001] G. Navarro. A guidedtour to approximate
string matching. ACM ComputingSurveys, 33(1):31–88,
2001.

[RauxandEskenazi,2004] A. RauxandM. Eskenazi.Non-
native users in the let’s go!! spoken dialogue sys-
tem: Dealing with linguistic mismatch. In Proc. of
HLT/NAACL, 2004.

[Sato,2004] S. Sato. Identifying spelling variations of
Japanesewords(in Japanese).In IPSJSIGTechnical Re-
port, 2004-NL-161,pages97–104,2004.

45

Towards a Decent Recognition Rate for the Automatic Classification of a
Multidimensional Dialogue Act Tagset

Stephan Lesch and Thomas Kleinbauer and Jan Alexandersson∗

DFKI GmbH
Stuhlsatzenhausweg 3, D-66123 Saarbücken
{lesch,kleiba,janal}@dfki.de

Abstract
In this paper, we present some thoughts and exam-
inations on statistical dialogue act annotation using
multidimensional dialogue act labels, based on the
ICSI meeting corpus and the associated MRDA tag
set. We show some statistics of this corpus, and
preliminary results of a statistical tagger for the dia-
logue act labels, together with a proposal for a more
realistic interpretation of these results.

1 Introduction
A crucial capability of automatic speech processing systems
is to determine the type of an utterance – question or state-
ment or backchannel, etc. A common way to formalise this
kind of information is to compile a categorisation of dialogue
acts [Austin, 1962; Searle, 1969] into a set of tags that meets
best the requirements of the underlying task. With such a
tagset it is possible to annotate a corpus of sample dialogues
which can then be used as training material for a statistical
classifier.

The ICSI1 meeting recorder project [Dhillon et al., 2004],
has developed a corpus containing roughly 72 hours of
recordings of actual meetings. The corpus is fully annotated
with a multidimensional tagset, which we will refer to as the
MRDA tagset in this paper. A dialogue act in the MRDA set
consists of a general tag, e.g. statement (s) and up to seven
special tags that provide additional facets. For example, the
label qyˆrt stands for yes-no question with rising tone.

A straight-forward way to use the MRDA tagset for auto-
matic recognition would be to treat each possible label as a
monolithic unit, i.e. ignore the underlying multidimensional
structure and instead understand a label merely as a string of
characters. Then, after choosing a set of features and train-
ing the classifier, one can evaluate the quality of the classifier
using traditional metrics like e.g. recall and precision.

Such a view, however, implies discarding useful structural
information for both the classification process as well as for
the evaluation. It is clear for instance that the dialogue acts
qy and qyˆrt are related. Therefore, if a qyˆrt-utterance

∗The research presented here is funded by the EU under the grant
FP6-506811 (AMI).

1International Computer Science Institute at Berkeley, CA

is misclassified, it makes a difference if it was classified as
qy or as s - the latter did not even get the general tag correct.
This effect is not reflected by traditional recall and precision
measures where a classification is either correct or incorrect.
Conversely, one expects an informed classifier which utilises
the multidimensional properties of the MRDA tagset to yield
better recognition rates than one that does not.

To verify this hypothesis, we take a closer look at the ICSI
corpus. An initial investigation shows that only 82 labels oc-
cur more than 100 times and that the vast majority of the to-
tal 2050 labels occur just a few times (see figure 1). Conse-
quently, it is very hard to use these rare acts for classification.

rank dialogue act count percent
1 s 25684 23.03
2 b 14467 12.97
3 fh 6160 5.52
4 sˆbk 5674 5.08
5 sˆaa 4626 4.15
...

...
...

29 b.% 511 0.46
30 % 460 0.41
...

...
...

42 h 263 0.24
...

...
...

50 h|s 193 0.17
...

...
...

83 sˆm 100 0.09
...

...
...

1057 qyˆbuˆcsˆdˆrt 2 0.000018
1058 sˆarˆbd|% 1 0.000009

...
...

...
2049 qyˆqˆcsˆdˆrt 1 0.000009
2050 s:sˆbk|sˆrt 1 0.000009

Table 1: An excerpt from the dialogue act frequencies for the
ICSI meeting corpus (Version 040317).

We have made some preliminary classification experiments
and trained a maximum entropy classifier using 20000 utter-

46

ances from the corpus and different variations of the tagset.
This classifier was tested on a set of 14512 different utter-
ances. We achieved 51.3% correct classifications. However, a
more detailed analysis of the classification results reveals that
there are another 20.2% of classifications which are assigned
a less specific label, i.e., the correct general tag, but some spe-
cial tags are missing. Additionally, 3.6% of the classifications
are too specific, i.e., some special tags were assigned which
are not present in the human annotation. Another 5.8% were
“neighbours”, which means they share a common supertype
(for instance, the general tag) with the correct label.

We conclude that there is on the one hand room for im-
provements of the classification and the metric for evaluation
could be developed to account for the “almost-hits”.

The paper is organised as follows: the next section de-
scribes the MRDA tagset and a simplification thereof—the
MALTUS tagset. In section 3, we discuss some of the charac-
teristics of the ICSI meeting corpus and show how a classifier
improves as the amount of training data increases. Section 4
details the measures used for the evaluation of classifiers and
proposes a new measure. The next section describes the clas-
sification experiments. Finally, in section 6 we conclude the
paper and provide some future directions.

2 Multidimensional Tagsets
The labels of a dialog act tagset are not necessarily multidi-
mensional. The Verbmobil System, for example [Alexander-
sson et al., 1998], used a small set of roughly 30 tags tai-
lored to its particular application, the automatic translation of
telephone negotiations. Examples of the Verbmobil tags are
greet, bye, introduce, request, suggest.

Multidimensional tagsets, on the other hand, allow to an-
notate several aspects of an utterance. The DAMSL2 tagset,
for instance, defines four aspects: the communicative status,
the information level and the forward and backward looking
function of the utterance. A variant of the DAMSL tagset,
the SWBD tagset [Daniel Jurafsky, 1997], was used for an-
notation in the Switchboard project; the SWBD tagset, in
turn, served as the basis for the MRDA tagset [Popescu-Belis,
2003].

2.1 The MRDA Tagset
The “Meeting Recorder Dialogue Act” tagset was used to an-
notate the ICSI meeting corpus.3 Labels consist of a general
tag, which may be followed by one or several special tags and
a disruption mark, or of a disruption mark only. The general
form is
(<general tag>(ˆ<special tag>)?) (.<disruption mark>)?

with the following tags:

• General tags are statement (s), questions
(qy/qw/qr/qrr/qo/qh), backchannel (b) and floor
management (fg/fh/h).

• There are 40 special tags describing backchannels, posi-
tive, negative or uncertain responses, restatements (repe-

2Dialogue Act Markup on Several Layers, [Allen and Core,
1997]

3See http://www.icsi.berkeley.edu/Speech/mr/

titions or corrections), politeness mechanisms and other
functions.

• Disruption forms are “interrupted by other speaker”
(%−) and “abandoned by speaker” (%−−). Two other
tags, “indecipherable” (%) and “non-speech” (x), are in-
cluded in this group.

Furthermore, there are two kinds of compound labels.
Some utterances consist of two closely adjoining parts which
constitute two DAs: e.g., a floor grabber followed by a state-
ment can be annotated by a compound label fg|s. The other
case is quoted speech, where labels are combined using a
colon (e.g. s:s).

2.2 The MALTUS Tagset
MALTUS, introduced in [Popescu-Belis, 2003], is an attempt
to abstract from the MRDA tagset in order to reduce the huge
number of possible labels. Several groups of MRDA tags
were grouped into one MALTUS tag, and some MRDA tags
were dropped altogether. An utterance is marked either as un-
interpretable (U), or with one general tag (tier 1 tag, T1) and
zero to five special tags (tier 2 tags, T2). Also, a disruption
mark (D) may be appended. The general form of a MALTUS
label is

(U | T1 ˆ T2)? (.D)?
with the following tags:
• tier 1 tags are statement (S), questions (Q), backchannel

(B) and floor holder (H).
• tier 2 tags are response types (RP/RN/RU) attention

(AT), actions (DO), restated information in corrections
or repetitions (RIC/RIR) and politeness (PO).

3 Some Corpus Characteristics
The experiments presented are based on the the ICSI meeting
corpus [Janin et al., 2003], a collection of 75 meetings of
roughly one hour each.

The corpus is available as text files. Each line describes
one utterance: the transcribed text, the start and end times of
the utterance, the time alignments of each word in the tran-
scription, the DA label, the channel name and (optionally)
adjacency pair annotation. However, the files do not contain
syntactical or semantic information, POS tags or any phono-
logical features.

The MRDA tagset theoretically allows up to several mil-
lion different labels, but only some thousand of them actually
occur in the corpus: the 04/03/17 version of the corpus con-
tains 112027 utterances with 2050 different DA labels. Some
of these labels are compound labels of the form a|b; we split
these utterances and obtain 118694 utterances with 1256 dif-
ferent labels. Some utterances are explicitly marked as non-
labelled (z), and some are not labelled at all; these utterances
and their successors are ignored, leaving 116097 utterances
from which we take the training and testing material.

3.1 Distribution of general categories over the
ICSI corpus

When we map the MRDA labels to the five basic categories
(statements, questions, backchannels, floor management and

47

s h

sˆm sˆbk sˆrt sˆaa h|s

s:sˆbk

s:sˆbk | sˆrt

b qy fh %

b.% qyˆbu qyˆcs qyˆd qyˆrt

qyˆbuˆcs qyˆbuˆd qyˆbu ˆrt qyˆcsˆd qyˆcsˆrt qyˆdˆrt

qyˆbuˆcsˆd qyˆbuˆcsˆrt qyˆbuˆdˆrt qyˆcsˆdˆrt

qyˆbuˆcsˆdˆrt

Figure 1: The lattice formed by the MRDA labels shown in table 1. Labels are ordered by the subset relation. Compound labels,
i. e., , two labels combined with “|” or “:”, are daughters of the two separate labels. Note that only the parts of the compound
labels | were used in the classification experiments.

disruptions) in what we call “classmap 1”, we see that the
frequencies of these categories are very unevenly distributed
- statements make up more than half of the material (See ta-
ble 2). Note the descending order in the number of training
examples for statements, backchannels, floor managements
and questions, and how this order is reflected in the recall
for these classes in a five-way classification experiment using
classmap 1, see figure 4.

Category gen. tag % classm.1 %
Statement 76073 64.09 66640 56.14
Backchannel 15178 12.79 14624 12.32
Floor 12276 10.34 12235 10.31
Question 8522 7.17 7374 6.21
Disruption 4113 3.47 15289 12.88
Z(nonlabeled) 2442 2.06 2442 2.06
X(nonspeech) 90 0.08 90 0.08
Σ 118694 100% 118694 100%

Table 2: Distribution of the main classes over the corpus.

3.2 Words and bigrams
We counted the number of words and bigrams over excerpts
from the corpus with different sizes (with 8-fold averaging,
using raw words without stemming). The logarithmic plot
(see figure 2) shows that the numbers of word and bigram
features keep increasing with the number of utterances exam-
ined. There is also a constant relation between the number of
words and the number of utterance-initial words—there are
about five to eight times as many words as initial words. A
similar relation holds between bigrams and utterance-initial
bigrams.

3.3 How much training data do we need for a
classifier?

With the specification of a new (MRDA-like) tagset for a cor-
pus of meetings in mind, we were also interested in how much

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 16 64 256 1024 4096 16384 65536 262144

nu
m

be
r o

f f
ea

tu
re

s

number of utterances

numbers of word/bigram features

words
initial words
final words

bigrams
initial bigrams
final bigrams

Figure 2: The number of words and bigrams for different
numbers of utterances

hand-annotated training material is needed to obtain “decent”
classification using a statistical model. We found that the
learning curve begins to flatten out at roughly 10000 utter-
ances, but keeps rising with more training data. This obser-
vation (see figure 3) holds for the full set of MRDA labels, as
well as when we map them to MALTUS labels, or to the five
basic classes (using the “classmap 1”).

4 A New Metric for the Evaluation of
Classification Results

Usually, classification tasks are evaluated using the precision
and recall metrics:

Precision(l) :=
correct(l)

tagged(l)

Recall(l) :=
correct(l)

occurs(l)

where occurs(l) is the number of times the label l occurs
in the human annotation of the test corpus, tagged(l) is

48

 20

 30

 40

 50

 60

 70

 80

 90

 0 20000 40000 60000 80000 100000 120000

re
ca

ll

number of training utterances

 Classmap 1
 MALTUS

 MRDA
 20

 30

 40

 50

 60

 70

 80

 90

 16 64 256 1024 4096 16384 65536 262144

re
ca

ll

number of training utterances

 Classmap 1
 MALTUS

 MRDA

Figure 3: Recall (percent) for MRDA and MALTUS labels, and MRDA mapped with classmap 1, with different sizes of the
training set. (linear and log scale, using 4-fold cross-validation, 2-fold for MRDA with 101584 training utterances)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20000 40000 60000 80000 100000 120000

re
ca

ll

number of training utterances

 S
 B
 F
 D
 Q

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16 64 256 1024 4096 16384 65536 262144

re
ca

ll

number of training utterances

 S
 B
 F
 D
 Q

Figure 4: Recall (percent) for statements, questions, floors, backchannels and disruptions (classmap 1, linear and log scale,
4-fold cross-validation)

the number of times it was assigned by the classifier, and
correct(l) is the number of times it was correctly assigned.

The recall values given in the experiments are the total re-
call over all labels:

Recall :=

∑

l correct(l)
∑

l occurs(l)

However, these are binary metrics which do not consider the
case that the assigned label is incorrect, but very similar to the
correct label. For instance, the label sˆrt marks a statement
with rising tone; we can hardly recognise this properly as we
do not use phonological features. However, many such utter-
ances will be tagged as s (statement). By defining a similar-
ity metric between dialogue acts, we can include such cases
in the evaluation of the classifier.

One way to define such a similarity metric is to order the
labels in a hierarchy according to the sets of tags which make
up the labels. For MRDA labels, this means we have several
hierarchies with a general tag at the top (see fig. 1). Using

such hierarchies, we can check if the “true” label and the clas-
sifier output have a least upper bound (lub). If there is one,
there is at least some relationship between the labels. As we
found in our experiments, in most cases where the lub exists,
the classifier output is underspecific, i.e., some special tags
are missing. Using this concept, we define a distance metric
between two labels DAT (a true label) and DAC(a classified
label):

SCORRE(x, y) :=

{

1 − δT
+δC

2×depth
if DAlub exists

0 otherwise
(1)

minPath(x, y) := shortest path between x and y (2)

δC := |minPath(DAC ,DAlub)| (3)

δT := |minPath(DAT ,DAlub)| (4)
For our experiments with MRDA and MALTUS labels, we
set depth to 5 (with the current ordering of the labels in the
ICSI corpus as shown in figure 1, the maximum distance be-
tween a lub and a label is 5); thus the denominator is 10, and

49

a SCORRE of 0.9 means that the shortest path between two
labels in the hierarchy has length 1.

For a test of a classifier with n utterances, true labels DAT
i

and classified labels DAC
i , we define

SCORRACY =

∑n

i=1
SCORRE(DAT

i , DAC
i)

n

We motivate SCORRE by its similarity to fScore between
two multi-dimensional labels (see also [Lesch et al., 2005]).
Considering labels as sets of tags (e.g. sˆrt as {s, rt}) allows
us to define precision and recall for a true label DAT and a
classified label DAC by using their intersection. Let

DAI := DAT ∩ DAC (5)
δC := |DAC | − |DAI | (6)

δT := |DAT | − |DAI | (7)

For the normal labels in fig. 1, DAI is equivalent to DAlub ,
and the set-differences δT and δC are equivalent to the dis-
tances defined in (3) and (4). Now we can define precision,
recall and fScore for a pair of labels DAT and DAC :

precision :=
|DAI |

|DAC |
= 1 −

δC

|DAC |

recall :=
|DAI |

|DAT |
= 1 −

δT

|DAT |

fScore :=
2 ∗ precision ∗ recall

precision + recall

= 1 −
δT + δC

|DAT | + |DAC |

Note the denominators: the distances are normalised to
the sizes of the true and the classified labels. Conversely,
SCORRE simply normalises to a constant chosen to ensure
that it always yields a value between 1 and 0. Consequently,
precision, recall and fScore determine which fraction of the
output of a classifier is correct, while SCORRE and SCOR-
RACY tell us how much it deviates from the ground truth.

In the following example, testing a classifier on 14512 ut-
terances has resulted in 7823 correct and 4038 approximately
correct classifications:

utterances
∑

Scorre avg.
correct 7823 53.9% 7823 100%
approx.correct 4038 27.8% 3542.3 88%
all 14512 100% 11365.3 70%

Since each correct classification contributes 1 to the total
SCORRE, and incorrect classifications do not contribute at
all, the 4038 approximately correct classifications contribute
3542.3, or 88% on average, i. e., the average distance to the
correct label in these cases is 1.

It is clear that this metric is highly dependent on the hier-
archy of labels. Measuring the difference between labels by
the length of the minimal path between them implies that we
consider the edges in the hierarchy as representing equal dif-
ferences between the content of labels. Without this assump-
tion, one might introduce weights for the edges and define δC

and δT as the sum of the weights on the cheapest path.

5 Classification Experiments
In this section, we report some classification experiments
with the complex MRDA/MALTUS labels (that is, without
regard to the internal structure of the labels), using an off-
the-shelf maximum entropy classifier package for Java.4

A maxent model is trained from a set of examples, which
consist of the features of an input utterance and its DA
label (the class of the input). The resulting model maps
(feature, label) pairs to weights indicating how strongly the
presence of feature predicts label.

We used the following features:
• word features: the words occurring in the utterance, the

initial and final words, and the initial words of the fol-
lowing utterance

• word bigrams: the bigrams occurring in the utterance,
and the utterance-initial/final bigrams

• the length of the utterance
• temporal relation features indicating whether there is a

pause, no pause or an overlap between the current utter-
ance and the preceding/following one

• features indicating whether the current utterance is the
beginning, or ending, or in the middle of a speaker turn

• the DA label of the preceding utterance
Note that some of these features are forward-looking. We

would not want to use such features in a dialogue system
which is required to react to a user’s input; in a meeting-
processing application, however, we can expect to be able
to use at least the immediate context of an utterance. Note
that we did not use any phonological features. Features, like
stemming and part-of-speech information would be desirable.

We ran a series of classification experiments using the orig-
inal MRDA labels, mapping the MRDA labels to MALTUS
labels, and finally mapping the MRDA labels to the five cat-
egories “statement”, “question”, “backchannel”, “floor man-
agement” and “disruptions” (the “classmap 1”).

With MRDA and MALTUS labels, we find that only the
most frequent labels occur frequently enough to be recog-
nised reliably, or to have a significant influence on testing
results.

Out of the 1256 MRDA labels, there are only 80 which oc-
cur more than 100 times. However, these 80 labels make up
111496 of all 118694 utterances (94%). There are 265 which
occur 10 times or more. This means that about 80% of the
labels occur only one to nine times; these labels are almost
never correctly recognised. Table 3 shows results of one clas-
sification experiment: by simply using the labels as-is, we get
approximately 51% correct classifications, and another 29%
approximate classifications.

With MALTUS labels, we have significantly less labels
(81), and their distribution over the corpus is less uneven:
there are 23 labels which occur more than 100 times, and 42
which occur more than 10 times. When we train a classifier
for these labels, we see that mostly those which occur more

4The Maximum Entropy Classifier by the
Stanford NLP Department, available from
nlp.stanford.edu/downloads/classifier.shtml

50

than 100 times are reliably recognised. Table 3 shows the re-
sults using the same training/testing set, but with the labels
mapped to MALTUS labels. We can see that more utterances
are correctly classified (67.1%) than with MRDA labels, and
the sum of correct and approximately correct classifications
is higher as well. (83.2%).

[Clark and Popescu-Belis, 2004] reports a similar clas-
sification experiment without disruption marks and with a
slightly different version of the MALTUS tag set and different
features, achieving 73.2% accuracy.

event type MRDA MALTUS
correct 51.0% 67.1%
overspecific 3.6% 2.7%
underspecific 19.2% 11.2%
neighbour 5.9% 2.1%
approx.correct 28.8% 16.1%
total 79.8% 83.2%

Table 3: Classification results using 20000 utterances as train-
ing material and 14512 for testing, 4-fold cross-validation

The maximum generalisation of the tagset which can still
be considered useful is to map all labels to one out of five
classes: statements, questions, backchannels, floor manage-
ment and disruptions. (Actually, there is a sixth class, “X”
for non-speech noises. However, it is very rare.) We tried
two variants of such a mapping:

• One variant (the “classmap 1”) comes with the docu-
mentation to the ICSI meeting corpus: this mapping
prefers disruptions in some cases - for instance, a dis-
rupted statement is mapped to D, not S. In this case, we
only get a recall of 78.7%. A similar result—77.9%—
was reported in [Clark and Popescu-Belis, 2004].

• By mapping each label to one of the five classes accord-
ing to its general tag, we have more instances of state-
ments. The most frequent class which is recognised very
well, with a recall of 91%. This leads to an increase of
the total recall to 83.8%.

• For a four-way classification experiment—
discriminating utterances between statements, ques-
tions, backchannels and floor management, and ignoring
disruptions—[Clark and Popescu-Belis, 2004] reports
84.9% correct classifications.

5.1 An algorithm for the Reduction of the Tagset
The uneven distribution of class frequencies has some disad-
vantages when we choose to model monolithic labels. The
size of the model, and the time required to train it, are rather
large, although most of the classes are almost never recog-
nised. Therefore, we used the following approach to reduce
the set of classes.

We define the entropy of a set of DA labels and an anno-
tated corpus as

H := −
∑

l∈labels

p(l)log2p(l)

p(l) :=
number of occurrences of l

corpus size

and for a mother-daughter pair of DAs (m, d), the loss in en-
tropy when d is mapped to m:

∆H(m, d) := p(m)log2p(m) + p(d)log2p(d)

−(p(m) + p(d))log2(p(m) + p(d))

Then we find the pair (m, d) in the current set which min-
imises ∆H , and map all occurrences of d to m. This step is
repeated until the set is reduced to a given size.

This method differs from simply choosing the n most fre-
quent classes in that it considers collapses the selected pair
(m, d) to m, no matter which one has the higher frequency
(for instance, the label qyˆrt occurs 1022 times, qy only
368 times). Also, the limitation to mother-daughter pairs
means that the labels at the top of a hierarchy (e.g. qy) are
never removed.

The most frequent classification error is that an instance of
a more specific label (e.g., sˆbk) is assigned a less specific
label (s), which is counted as an approximately correct clas-
sification. When this pair is collapsed to the less specific one,
the same classification would be considered correct. This is
what happens when we go from MRDA to MALTUS labels,
or even to the 5-way-mapping: we can see a shift from ap-
proximately correct to correct classifications, while the sum
remains the same or improves slightly (in the range between
80% and 85%).

#das correct approx total SCORRACY
16 81.5% 0.0% 81.5% 82%
20 73.4% 8.2% 81.4% 81%
25 63.5% 17.7% 81.2% 79%
50 53.4% 27.1% 80.5% 77%
60 52.3% 28.0% 80.3% 77%
70 51.8% 28.4% 80.2% 77%
80 51.6% 28.6% 80.2% 77%
90 51.4% 28.7% 80.1% 76%

100 51.4% 28.8% 80.2% 76%
150 51.3% 28.8% 80.1% 76%
200 51.1% 29.0% 80.1% 76%
300 51.0% 29.1% 80.1% 76%
400 51.0% 28.9% 79.9% 76%
500 51.0% 29.0% 80.0% 76%
750 51.0% 29.0% 80.0% 76%

Table 4: Results (4-fold cross-validation) when the set of
MRDA labels is simplified using the entropy-based mapping.

When we use the entropy-based method to define map-
pings to smaller subsets of the MRDA or MALTUS labels,
we observe a similar effect; it only becomes visible when we
reduce the set of labels to a very small size (e.g. 25 MRDA
or 10 MALTUS labels). We also observe a small improve-
ment in the SCORRE metric. We ascribe this to the uneven
distribution of the the labels over the corpus. Therefore, this
way of shrinking the set of labels does not seem very useful
in improving the classification accuracy; however, it signif-
icantly reduces the time needed to train a classifier, and the
space occupied by the model.

51

#das correct approx total SCORRACY
10 71.5% 11.9% 83.4% 82%
20 67.2% 16.1% 83.3% 81%
30 67.1% 16.2% 83.3% 81%
40 67.1% 16.2% 83.3% 81%
50 67.1% 16.1% 83.2% 81%
60 67.1% 16.1% 83.2% 81%
70 67.1% 16.1% 83.2% 81%
81 67.1% 16.1% 83.2% 81%

Table 5: Results (4-fold cross-validation) after mapping
MRDA labels to MALTUS labels, and then simplifying us-
ing the entropy method. 81 is the full set of labels.

6 Discussion and Outlook
We have discussed the task of dialogue act classification for
a multidimensional tag set. In particular, we have focussed
on the MRDA tag set and the ICSI meeting corpus. We in-
troduced a novel forgiving evaluation metric which utilises a
hierarchical view of the tag set. The intuition behind SCORRE
is that not hitting the correct tag can be viewed as more or less
wrong. We thus depart from the monolithic view of classifi-
cation results which has been used up until now, e.g., [Rei-
thinger and Klesen, 1997; Stolcke et al., 2000].

We also presented a method to gradually reduce the tag
set. We showed that, for our classifier, the overall recognition
rate does not change much unless the initial set of labels is
reduced drastically, to 50 for the MRDA set, or 10 for MAL-
TUS).

Future work includes the following topics:

Examining confusion matrices

In our classification experiments based merely on transcrip-
tions of the ICSI meetings, there are some dialogue acts
that are often mixed up. In the confusion matrix (table 6),
we have highlighted three such dialogue acts: sˆaa (state-
ment and accept), sˆbk (statement and acknowledgement)
and b (backchannel). These acts are among the most fre-
quently confused ones, and have been shown before to be
hard to distinguish, e.g., [Reithinger and Klesen, 1997]. This
is partly because they share much of their vocabulary (“u-
huh”, “yeah”, “right”, “okay”, “absolutely”...). To a degree,
they can be distinguished by their acoustic and temporal prop-
erties. For instance, accepts and acknowledgements usually
occur after another speaker has completed a phrase or utter-
ance, while backchannels can occur in the middle of a phrase
of another speaker.

When we find such a pair or group of easily confused la-
bels, we should, on the one hand, try to compare the defi-
nitions of these labels, or the tags in them, in order to find
new features which we can extract from our training data and
which help discriminating between the labels. On the other
hand, collapsing these acts would possibly enhance the qual-
ity of the classification as well, whereas such a decision has
to be taken according to the requirements from the consumers
of the classification.

Classifying aspects separately
In the experiments reported, we train a single classifier for
complex labels which are actually combinations of tags rep-
resenting different aspects of an utterance. This way, most of
the rare combinations are nearly impossible to recognise.

A different approach would be to use several separate clas-
sifiers, one for each aspect of an utterance. For MRDA labels,
we might use one classifier to decide on the general class of
an utterance (statement, question, etc.), additional classifiers
for groups of tags (e.g., to determine the type of a question),
and binary classifiers to check for the presence of indepen-
dent properties (e.g. rising tone). Using separate classifiers
for the different aspects, we might be able to recognise rare
combinations of tags more reliably; in particular, it would en-
able us to recognise combinations which did not occur in the
training material.

On the other hand, however, we would lose information
about correlations between tags which is included “for free”
in a single classifier for the complex labels. In [Clark and
Popescu-Belis, 2004], a single classifier for complex MAL-
TUS labels (which reached an accuracy of 73.2%) was com-
pared to a combination of classifiers, which reached only
70.5%.

Feature analysis
The results in [Clark and Popescu-Belis, 2004] were obtained
by using roughly the same kinds of features as in this article—
words, bigrams and features indicating the previous dialogue
act and temporal overlap between utterances. Especially for
words and bigrams, further research is necessary, as their
number is almost unlimited. It may prove worthwhile to fur-
ther investigate to which degree different features add to the
overall recognition result. Not only is the memory needed to
store these features reduced, the same argument also applies
to the time needed to train the classifier. One preliminary re-
sult is that ignoring words and bigrams with low frequencies
(< 10) has almost no influence on the classification results.

Adding features
The features we use currently are those which are easy to ob-
tain from the transcriptions available to us; however, they are
suboptimal for recognising certain types of utterances. As
fig. 4 shows, questions are the type with the worst recall,
and we expect an improvement if phonological features were
included. Also, we would like to include part-of-speech in-
formation.

Improving the modelling
Although our classifier evaluation takes similarities between
labels into account, the maxent classifier package does not.
The training procedure classifies the training data according
to the current feature weights and adjusts the weights to min-
imise an error function. This function is based on the number
of incorrect classifications and does not recognise partly cor-
rect ones. We are going to research whether the quality of the
models can be improved by using an error function which is
aware of similarities between labels.

52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Sum
1 qr 1 6 . 1 1 . . . 9
2 sˆaa . 338 . . 24 . . 4 40 62 12 494 . . 974
3 qo 1 . . . 1
4 % . 2 . . 2 . . 11 3 53 . . 30 1 2 . 3 3 2 . 112
5 sˆbk . 89 . . 412 . . 1 36 42 . . . 1 . . 15 287 . . 883
6 qh 1 4 . . . 26 . 5 5 . 9 . 50
7 x 7 . 2 1 2 . . 12
8 fh . 7 . . 3 . . 659 41 40 . 11 31 3 23 2 1 57 . . 878
9 fg . 70 . . 28 . . 72 105 16 . 1 14 3 . . . 21 . . 330
10 s 1 54 . . 29 3 . 7 7 6148 . 104 12 . 4 1 37 37 9 57 6510
11 qoˆrt 1 1
12 s.%– 1 1 . 340 . 102 2 . 1 1 3 . . 3 454
13 %- 1 . . 26 6 109 . 12 140 . 8 2 7 2 3 . 316
14 h 18 10 1 . . . 19 . . . 2 . . 50
15 %– . 1 26 3 59 . 23 39 . 29 4 184
16 qrr 13 . . 3 . . 16 1 . 1 . 34
17 qy 2 5 . . 4 . . . 1 245 . 10 1 . . 1 245 47 1 2 564
18 b . 78 . . 89 . . 2 . 26 8 2189 1 . 2393
19 qw 47 . 4 1 . . . 2 2 97 . 153
20 sˆdf 447 . 9 3 . 1 144 604

Sums 6 644 . . 592 7 . 827 252 7688 . 284 274 27 67 27 344 3143 124 206
x=y 1 338 . . 412 4 . 659 105 6148 . 102 140 19 29 16 245 2189 97 144
x6=y 5 306 . . 180 3 . 168 147 1540 . 182 134 8 38 11 99 954 27 62

Table 6: A confusion table for 20 MRDA tags. The labels in the rows are the correct labels, those in the columns are the
classifier outputs. E.g., line 2 column 18 (494) means that sˆaa was misclassified as b 494 times—more often than it was
correctly recognised.

References
[Alexandersson et al., 1998] Jan Alexandersson, Bianka

Buschbeck-Wolf, Tsutomu Fujinami, Michael Kipp,
Stephan Koch, Elisabeth Maier, Norbert Reithinger,
Birte Schmitz, and Melanie Siegel. Dialogue Acts in
VERBMOBIL-2 – Second Edition. Verbmobil-Report
226, DFKI Saarbrücken, Universität Stuttgart, Technische
Universität Berlin, Universität des Saarlandes, 1998.

[Allen and Core, 1997] James Allen and Marc Core. Draft
of DAMSL: Dialog Act Markup in Several Layers.
http://www.cs.rochester.edu/research/
cisd/ resources/ damsl/
RevisbedManual/ RevisedManual.html,
1997.

[Austin, 1962] J. L. Austin. How to do Things with Words.
Oxford University Press, 1962.

[Clark and Popescu-Belis, 2004] A. Clark and A. Popescu-
Belis. Multi-level dialogue act tags. In Proceedings of
SIGDIAL ’04 (5 th SIGDIAL Workshop on Discourse and
Dialog), Cambridge, MA., 2004.

[Daniel Jurafsky, 1997] Debra Biasca Daniel Jurafsky, Eliz-
abeth Shriberg. Switchboard swbd-damsl shallow-
discourse-function annotation (coders manual, draft 13).
Technical report, University of Colorado, Institute of Cog-
nitive Science, feb 1997. http:// www.colorado.edu/ lin-
guistics/ faculty/ jurafsky/ pubs.html#Tech.

[Dhillon et al., 2004] Rajdip Dhillon, Sonali Bhagat, Han-
nah Carvey, and Elizabeth Shriberg. Meeting recorder
project: Dialog act labeling guide. Technical report, Inter-

national Computer Science Insitute, February 2004. ICSI
Technical Report TR-04-002.

[Janin et al., 2003] A. Janin, D. Baron, J. Edwards, D. Ellis,
D. Gelbart, N. Morgan, B. Peskin, T. Pfau, E. Shriberg,
A. Stolcke, and C. Wooters. The ICSI Meeting Corpus.
In Proceedings of ICASSP-2003, Hong Kong, Hong Kong,
2003 2003. ICASSP.

[Lesch et al., 2005] Stephan Lesch, Thomas Kleinbauer, and
Jan Alexandersson. ”a new metric for the evaluation of
dialog act classification”. In ”Proceedings of Dialor05,
the Ninth Workshop On The Semantics And Pragmatics Of
Dialogue (SEMDIAL)”, 2005.

[Popescu-Belis, 2003] Andrei Popescu-Belis. Dialogue act
tagsets for meeting understanding: an abstraction based
on the damsl, switchboard and icsi-mr tagsets. Technical
report, ISSCO/TIM/ETI, University of Geneva, September
2003. Version 1.2 (December 2004).

[Reithinger and Klesen, 1997] Norbert Reithinger and Mar-
tin Klesen. Dialogue Act Classification Using Lan-
guage Models. In Proceedings of the 5rd European
Conference on Speech Communication and Technology
(EUROSPEECH-97), pages 2235–2238, Rhodes, 1997.

[Searle, 1969] John R. Searle. Speech Acts. University Press,
Cambridge, GB, 1969.

[Stolcke et al., 2000] A. Stolcke, K. Ries, N. Coccaro,
E. Shriberg, R. Bates, D. Jurafsky, P. Taylor, R. Martin,
C. Van Ess-Dykema, and M. Meteer. Dialogue act mod-
eling for automatic tagging and recognition of conversa-
tional speech, 2000.

53

Efficient Dialogue Using a Probabilistic Nested User Model

Bryan McEleney and Gregory O’Hare
Department of Computer Science

University College Dublin
Belfield, Dublin 4

bryan.mceleney@ucd.ie

Abstract

We describe a set of dialogue simulation experi-
ments, in which a probabilistic nested user model
is employed in deciding between speech acts for
a collaborative planning task, finding that a gain
in utility can be obtained by using a probabilistic
rather than a logical model. Given a set of ordinary
dialogue plan rules, our system generates a game-
tree representation of the dialogue, using chance
nodes to represent uncertain preconditions in the
plan. Then, the game-tree is evaluated with respect
to a given user model state.

1 Introduction
It has long been recognised that generation of cooperative di-
alogue should involve some model of the hearer. In human
dialogue, economy of expression depends on prediction of
the interpretation that the hearer will make of a dialogue act,
within the context of the dialogue history and the beliefs that
support the hearer’s inferences. Instead of a reflex response,
the hearer produces a deep plan structure that fits the dia-
logue history [Carberry, 1990], and revises his beliefs based
on the preconditions, effects, and their consequences asso-
ciated with each act in the dialogue history. Then, he adds
a consistent act to the inferred plan structure. A number of
phenomena arise from this model. Appropriate referring ex-
pressions can be selected and interpreted [Heeman and Hirst,
1995]. Indirect speech acts can be planned [Allen and Per-
rault, 1980]. Extra-cooperative behaviour like correction of
misconception [McCoy, 1989] and provision of unasked-for
information or acts emerges. With different agents planning
each act, it is possible that the contributions that each makes
to the overall plan structure are founded on different beliefs
about the domain state and the applicable plan rules [Pollack,
1986].

While these phenomena are interesting, there is a problem
that has received little attention, and that is to employ plan
recognition with nested belief models to generate the short-
est possible dialogue. Using each agent’s ability to recognise
plans, the number and execution time of the dialogue acts can
be reduced. This is significant problem in online planning
in a spoken language dialogue system, as well as in offline
planning of dialogue policies. Such policies can be applied to

human-human interactions, such as deciding whether to ask
the customer ”Would you like fries with that?”, or to graphi-
cal or text-based interface design where communicative acts
must be chosen. We argue that the way forward in achieving
this is to employ a probabilistic nested belief model, rather
than a logical one, and in this paper, we show how much more
efficient such dialogues can be once a probabilistic model is
adopted.

We are currently applying our planner to the problem of
collaborative planning, in which agents negotiate over a plan
in which both of them will act. This differs from domain-
level planning in which the agents act within the object plan.
We have also applied our planner in previous work to pure
domain-level planning, in which dialogue acts were specified
as domain acts. We have used it to decide between using a
clarification subdialogue and risking plan failure, which was
a problem suggested by [Carletta, 1992], and have shown
that the choice of strategy depends on a probabilistic belief
variable. A considerable performance gain was obtained by
adapting the strategy to this probabilistic variable. We have
used it to decide whether to take the initiative in a task [McE-
leney and O’Hare, 2005], where the first agent must use a
model of a second agent to predict whether the second will
take the initiative in beginning a collaborative task. Once
again, the fact that a probabilistic model was used made a
difference to the efficiency of the dialogues. We have also
shown that the planner is capable of working with other well
known dialogue problems such as correcting misconceptions,
and in planning an indirect speech act. Each problem can be
easily specified using a nested belief model.

2 The planner
Our planner rests on an abstract, game-theoretic model of di-
alogue, in which agents decide between dialogue strategies
in pursuit of rewards, by constructing a game-tree represen-
tation of the dialogue. Dialogue is planned to the level of the
dialogue act, which is a structure with illocutionary force and
a propositional content. There is no translation between the
dialogue act and a natural language representation. Since we
have no useful data of human dialogues within a collabora-
tive planning domain, and no natural language planner, our
system uses a fixed cost estimate for each type of dialogue
act, which is adequate to characterise dialogue behaviour, if
not to obtain concrete results. The planner ignores the lim-

54

Figure 1: Plan Library

itations of human rationality, and is therefore an unrealis-
tic mechanism for modelling human behaviour, especially as
game trees can be large and difficult to construct. Instead
we work with perfect utility-maximising players. Nor do we
evaluate the planner with system-human trials since a simula-
tion provides much more detailed data about the character of
the planning problems that we are investigating. Instead, all
the results are for system-system experiments, with a view to
later evaluation in a human-system setting.

One important advantage is that our planner is easy to use
without expert knowledge of the underlying theory. In fact it
is relatively easy to specify a dialogue problem without such
knowledge by using the same hierarchical plan rules [Sacer-
doti, 1974] that are commonly used to specify dialogue plans.
The belief information is then acquired automatically from
dialogue histories, so that the system will adapt itself over
time. This is done using the planner’s belief revision compo-
nent, which updates beliefs in response to dialogue acts.

Our negotiation model is similar to the RMM of Gmytrasi-
wicz and Durfee [2001], in which game matrices are used
as the nodes in a tree structure that branches on the beliefs
of the agents. Our model differs in that we start with a given
set of plan rules, from which a game tree is constructed. It is
possible to then convert our game tree to normalised form, at
which point we would obtain an RMM structure. However,
the raw game tree is equally useful. The advantage of our
planner is that it can work from the source plan rules, not re-
quiring a game matrix to be provided. The negotiation acts
are based on value of information in that an agent computes
the change in utility of a plan as a result of obtaining a piece
of information. Our set of negotiation acts is similar to those
found in this paper.

Input to the planner is a nested belief model. Each level
of the belief model has beliefs about the domain state, about
the agent’s capabilities in terms of hierarchical plan rules, and
about plan recognition rules in terms of probability distribu-
tions over explanations for a given act in the plan structure.
Figure 1 is an illustration of a typical plan library, with the

first level of nesting on the left-hand-side, and the second
level of nesting on the right-hand-side. In this case we have
two libraries since we have two agents with different exper-
tise - one who is good at making main courses, and one who
is good at making desserts. This pair is used to initialise lev-
els one and two, levels three and four, and so on. Instead,
we could have used only one library, with which to initialise
every level, and allowed the system to adapt each level to the
statistics in the collection of dialogue histories, by using a
belief revision process. For example, if agent two were to
often make-cake, the plan rule at level two that make-dessert
decomposes to make-cake would attain a high probability of
belief, as would the belief have-eggs. In this problem, the first
agent must choose between cooking an omelette and cooking
fish. The problem is that while the omelette is preferred, it re-
quires eggs, which means that the second agent cannot make
a cake for dessert. However, if the second agent has fruit,
he can make a fruit salad instead. Therefore the first agent
would like to find out whether the second agent has fruit be-
fore making his decision, and this is the source of a negoti-
ation dialogue between the agents. This example is perhaps
the smallest domain-level plan that can be constructed. In
larger problems, agents would construct a deep game tree at
of many moves, and this would form the basis of a long ne-
gotiation dialogue which deals with many different beliefs.

The planner constructs a domain-level game tree for this
problem, illustrated in figure 2. To do this, the first agent
chooses an action. Then the first agent performs the plan
recognition process that he expects of the second agent. This
uses the third level beliefs, since the second agent is working
at level two and is trying to use beliefs about the first agent
at level three to reconstruct the first act in the plan. In plan
recognition, we use a simplifying assumption of ”focussing”,
whereby an agent will always complete one branch of a plan
before developing another one. Focussing is something that
happens in human dialogue [Grosz and Sidner, 1986] for the
very reason that it restricts the plan recognition hypotheses.
Under this assumption, the plan recogniser need only search

55

among focussed candidates to explain the dialogue history.
This means that multiple explanations can only occur when
the plan tree is full, and a parent must be added to the plan
tree to open up a sibling branch. For each act in the agent’s
repertoire, there is a probability distribution stored for a list
of candidate parents. Having performed plan recognition at
level three, the plan is expanded by adding an act to the next
open node in the plan tree, using the level two plan rules.
Suppose a third act were to be added to the plan. Then the
agent at level two would expect the agent planning at level
three to call the planer at level four to obtain a plan with two
acts. In turn, the planner at level four calls the planner at level
five. Each of the alternative plan decompositions available to
an agent produces an alternative at a choice node in the game
tree. If the plan recogniser must add a parent to a full subtree,
or if there is a precondition to an act whose satisfaction de-
pends on the belief state of the agent, a chance node is added
to the game tree, preceding the choice node.

To illustrate, consider the omelette problem. The first agent
decomposes make-dinner to make-main-course and then to
either of make-omelette or make-fish, so we end up with two
branches in the game tree at the root node (figure 2). Taking
the make-fish branch, the second agent is expected to infer the
make-main-course parent, and its parent, make-dinner, using
the beliefs at level three. These are enough parents to make an
open tree, and so make-dessert is attached. make-dessert can
be decomposed to make-cake or to make-fruit-salad. Each of
these has a precondition, and so a chance node is introduced
to the game tree. Then, a choice node is added to each of the
chance node outcomes.

Figure 2: Game Tree

2.1 Evaluation of the game tree
Once constructed, the game tree must be evaluated in the con-
text of a given belief state. Starting at the root of the tree,
the first agent’s nested belief state is taken, and the proba-
bilities of the chance nodes are found, alternating between

level one and level two as the turn passes along the length
of the dialogue. The value of a chance node is given as the
weighted sum of its children, according to the expected utility
rule. To evaluate a choice node, the remainder of the dialogue
is evaluated from the point of view of the agent acting at the
choice node. For example, the second choice node would
be evaluated at level two, with its sequence of chance nodes
being evaluated by alternating between levels two and level
three. The agent then chooses the branch with the greatest
value. Notice that evaluation of the plan tree requires a be-
lief model that is only as deep as the number of steps in the
plan. This allows infinite concepts like mutual belief to be
represented within a finite model. At each step of evaluation,
the planner’s belief revision module is invoked on the belief
model. For each dialogue act, preconditions and effects are
added to every second level of the belief model, according to
the precondition and effect rules contained in the beliefs at
the level of the evaluating agent. This is a lazy but easy ap-
proach, since the revising agent only revises his beliefs about
the other agent - he doesn’t go so far as to update his private
beliefs, and so does not have to resolve conflicts between each
agent’s beliefs. That is why every second level is updated,
rather than every level. Neither does the agent make any fur-
ther inferences or maintain the consistency of his belief set
once revisions are made. This lazy approach has worked well
for all of our example problems, but there are dialogues in
which it would be useful to make deeper inferences, such as
correction of misconception.

3 Negotiation acts

In addition to the domain level acts, which are supplied in the
planner’s input, the system has a set of built-in negotiation
speech acts, which are used to exchange information before
the domain level plan is executed. These acts result in a do-
main level plan that has a higher expected utility, through the
agent revising his beliefs. Negotiation planning is a lot like
domain-level planning, in that the negotiation acts are part of
the game tree and go through the evaluation process in the
same way. In fact the domain plan is attached at the leaves of
the negotiation plan. However, only some of the negotiation
acts can be specified using our plan rules and belief revision
mechanism. Others require special more sophisticated belief
revision operations to define them. Each is explained in turn.

3.1 ”pass”

Pass is intended to allow an agent to pass the turn in a dia-
logue without saying anything. As such it has no precondi-
tions and no effects. We have given pass a cost of 4, since in
a dialogue there is usually some short utterance or a moment
of silence before a pass can be inferred. It can be specified
using the following plan rule:

name: pass
parameter: {}
precondition: {}
effects: {}
decomposition: {}

56

3.2 ”tell”
Tell is intended to allow an agent to inform another agent
about a proposition. There is a form of tell for when the
proposition is believed, and a form for when its negation
is believed. tell-true has a precondition that the agent be-
lieves the proposition, and tell-false has a precondition that
the agent believes its negation. Using the standard belief re-
vision mechanism, the hearer performs a belief revision step
in response to tell, adopting the belief that the precondition
held for the speaker, and thus the belief is transferred. Tell
has been given a uniform cost of 10.

name: tell-true
parameter: P
precondition: bel(P)
effects: {}
decomposition: {}

name: tell-false
parameter: P
precondition: bel(not(P))
effects: {}
decomposition: {}

3.3 ”ask”
Ask has two pragmatic forms. ask-forced is representative of
requests for information, for which the hearer’s response is
always to provide it without question. ask-forced has a cost
of 10. It is represented by the following plan rules:

name: ask-pair
parameter: P
precondition: {}
effects: {}
decompostion: { ask-forced; reply(P) }

name: reply
parameter: P
precondition: {}
effects: {}
decomposition: { tell-true(P) },

{ tell-false(P) }

Ask provides another good illustration of the workings of
the planner. The speaker plans an ask-pair, decomposes it,
and produces the first act, ask-forced. This forms the single
branch of the root node of the game tree. The hearer ob-
serves the ask-forced, and realising that the ask-forced node
constitutes a full subtree, uses beliefs at level three to infer
its parent, ask-pair, which can then be expanded, using level
two beliefs, to a reply act. Then, reply is decomposed, giving
two alternatives, tell-true and tell-false. Since each of these
has a precondition which depends on the belief of the acting
agent, a chance node is inserted into the game tree. In the true
branch of this chance node, reply can be decomposed only to
tell-true, and in the false branch, only to tell false. This ask
game tree is shown in the upper branch of the tree in figure 3.

The second pragmatic form of ask is ask-auto, which al-
lows the hearer to reply only if it is rational for him. An
English example would be ”I would like to know P”. The

hearer is only required to revise his beliefs to accommodate
the fact that the speaker ”would like to know”, and then de-
cide to answer in the context of this revised model. Unfortu-
nately, there is no simple way to revise the hearer’s beliefs,
since there could be many different reasons that motivate the
speaker. For example, an agent might ask whether there is
fruit because he believes that fruit salad is a good candidate
plan, or because he prefers to paint a still life. Each explana-
tion requires revision of different beliefs. To cope with this
problem, we use a search algorithm, which searches the be-
lief space for a state in which the speaker’s asking is rational,
but is at the same time as close as possible to the current be-
lief state. The space is treated as a Euclidean space with a
dimension for each belief in the belief model. While crude,
this mechanism turns out to be effective, in that it produces
worthwhile dialogues.

3.4 ”propose”
Propose is used by agents to express their preferences over
plans, such as in ”I would choose P”. Like ask-auto, the
hearer responds by revising his beliefs, but there is the prob-
lem of many explanations that would cause the agent to pre-
fer the plan. Once again, the agent chooses the explanation
that has the smallest Euclidean distance from the current be-
lief state. This definition of propose is more useful than that
given by Gmytrasiewicz and Durfee [2001]. In their model,
the agent merely prunes the game tree. In our model, be-
liefs are updated instead, with the side effect that the desired
branch in the game tree is selected. Propose has a cost of 10.

3.5 Selection of the repertoire
We cannot claim that the set of acts produces the most effi-
cient dialogues, but it seems unlikely that there would be any
other acts as simple as these. The repertoire covers the obvi-
ous basic units of the agent’s mental state, namely his beliefs
and preferences, and covers all of the simple pragmatic defini-
tions that are possible within the bounds of the belief revision
mechanism. They also correspond well with acts seen in hu-
man collaborative planning, such as in the TRAINS [Allen,
1995] corpus, and those that appear in speech act theory and
work on communication languages in artificial multi-agent
systems. While perhaps not efficient, it is clear that they can
eventually produce the most efficient domain plan, since us-
ing tell alone on every belief will lead each agent to a perfect
model of the other.

One act that we haven’t included is request, which is to
propose as ask-forced is to ask-auto, in that it obligates the
hearer to act. However, propose is already quite powerful
in that the second agent searches the belief space from level
three upwards to accommodate the proposed plan. For re-
quest to dominate propose, request must demand revisions at
level two as well. However, this violates our assumption of
lazy belief revision in which the second agent never revises
his private beliefs. We suspect though that request would be
useful with a less lazy belief revision mechanism.

4 Experiments
We have exercised the planner on a series of dialogue prob-
lems intended for use with a kitchen-assistant-robot, who

57

must coordinate his plan with the user so that they harmo-
niously prepare a meal together. These experiments are in-
tended to show primarily that each of the negotiation acts in
the agent’s repertoire is a necessary member, in that it dom-
inates all of the others in some examples. They also charac-
terise some common decision problems seen in negotiation
dialogues, and show how these decisions are subtly depen-
dent on probabilistic values in the belief model, rather than
on logical values.

Figure 3: Game Tree in Experiment One

4.1 Experiment One

Experiment 1 demonstrates the competition of initiative be-
tween asking a question and waiting to be told, in the context
of the have-fruit problem introduced earlier. Asking is more
expensive than waiting since it involves an ask act and a re-
ply act, both of which cost 10 units. On the other hand, the
agent can pass at a cost of 4 and risk that the second agent
will decide to tell him the answer without being asked, at a
cost of 10. At a total of 14 units this costs less, but it is risky.
The planner generates the game tree in figure 3 for the dia-
logue, which for illustration is evaluated at the point [0.7,0.7]
at levels [2,4] in a belief space which represents the belief
have-fruit at levels 2, 4, 6, and so on.

The overall efficiency of each strategy is plotted in figure
4, with the level two belief along the left axis, and the level
four belief along the right axis. Notice that the belief needs to
be evaluated at both levels two and four to make the decision,
and that all three strategies of asking, waiting and proceeding

ask efficient
pass efficient
end efficient

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

level 2

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

level 4

 0

 10

 20

Figure 4: Utility of Strategies in Experiment One

directly to the domain-level plan are dominant in different re-
gions of the belief space. It is clear from examining each
strategy’s curve that a probabilistic approach must be taken
to modelling the agent’s beliefs. There are sharp decision
surfaces across which utility changes dramatically, and so an
inaccurate belief model can make a significant difference to
the performance of the system. Notice as well that there ap-
pears to be no simple rule, short of evaluating the game tree
using both levels two and four, that would be satisfactory to
solve this problem.

4.2 Experiment Two
In experiment two we introduced a second variable which
modifies the efficiency of waiting to be told. A precondition
”have-eggs” is used with the make-omelette strategy, giving
the game tree in figure 5 The result is that if the second agent
believes there are no eggs, he will not bother to tell the first
agent that he has fruit, even though the first agent privately
believes that he has eggs. This demonstrates that the rela-
tive efficiency of asking and waiting to be told can vary. In
fact, below a certain threshold, telling becomes always ineffi-
cient for the second agent. This is just a small example of the
general phenomenon of competition for negotiation between
different plans in a larger game tree. If a chance node appears
near the root, the value of each of its branches with respect
to each agent makes all the difference in deciding whether a
plan attached to those branches is worth negotiating. As a
result, agents try to either hold or decline the floor with re-
spect to negotiation topics. In this instance, the first agent
sees that his plan is more important than it is perceived, and
aggressively takes the floor by asking.

4.3 Experiment Three
Experiment three investigates the propose act, showing how
it can be more efficient than an equivalent set of tell acts, or
any other combination of acts. Propose is most useful when
it is communicating a choice that is unexpected by the other
agent, since by doing so, many beliefs can be significantly
revised using just one act.

58

Figure 5: Game Tree for Experiment Two

Figure 6: Game Tree for Experiment Three

We constructed a problem in which the second agent would
prefer to make a pavlova (figure 6). Unfortunately, he will
have to tell the first agent both that he has sugar, and that
he has fruit if the first agent is to be convinced to choose
make-fish, and leave the eggs for the pavlova. This is rela-
tively expensive. The same effect can be achieved by simply
proposing to make a pavlova. Then, the belief revision mech-
anism revises the hearer beliefs to a state in which both of the
beliefs are high enough that the proposal is accommodated.

Negotiation acts were added to the agent’s repertoire one
by one to demonstrate the utility gain offered by each. To
start, there were no negotiation acts, and so the game tree just
consisted of the domain-level tree, with a value of 100 for
make-omelette. Next, the pass and tell acts were added. This
produced the negotiation game tree in the upper part of figure
8. This tree shows the best strategy only for the agent, so that
each choice node is pruned down to only one alternative. No-
tice that in response to a pass, the second agent uses a pair of
informs in the true,true branch of the game tree. This sub-
dialogue is efficient, and since it happens in one quarter of
instances, the value for the tree is 102.5, which is a marginal
gain over the 100 obtained from the plain domain-level plan.
Next, the ask acts were added, but these were dominated by
the pass and inform combination, and so the same result of
102.5 was obtained. Next, propose was added. This pro-
duced the tree in the bottom part of figure 8, with propose
dominating instead of tell. Since the negotiation ends with
the proposal, there is a smaller cost than in the upper game
tree in figure 8. The overall cost of the dialogue turns out to
be 106, compared with 102.5 obtained without using propose.

ask dominant
auto-ask dominant

end dominant

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

level 2

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

level 4

 0

 10

Figure 7: Dominance of ask-auto over ask-forced

4.4 Experiment Four

In experiment four, we compared the two pragmatic senses
of ask, to demonstrate that both are required for efficient dia-
logue. We took the problem that was used in experiment two,
where it happened that waiting to be told was never efficient,
but asking was. Ask-auto causes the second agent to revise
his beliefs about the eggs in the search for a belief state in
which asking would be efficient for the first agent. After that,
the agent uses a tell, which is now efficient because of the
eggs revision. ask-auto therefore has a similar character to
waiting for a tell, but is a little less efficient due to the cost
of having to ask. The reason that ask-auto has an advantage
over ask-forced is that ask-auto uses the level 4 belief in mak-
ing the tell decision, whereas ask-forced only uses the level
2 belief. Figure 7 shows that both ask-forced and ask-auto
are dominant at different times, whereas waiting for a tell is

59

Figure 8: Negotiation Game Trees for Experiment 3

60

never dominant. Therefore each sense of asking is included
in the repertoire.

5 Conclusion
We have described a planner that uses game trees and a prob-
abilistic user model to produce adaptive dialogue strategies.
We described a repertoire of negotiation acts - pass, ask, tell,
and propose, each of which complements the others. The use
of a probabilistic model was shown to be important to achiev-
ing efficient dialogue, since the utility of the strategies varies
across a probabilistic belief space.

References
[Allen and Perrault, 1980] J. F. Allen and C. R. Perrault. An-

alyzing intention in utterances. Artificial Intelligence,
15:143–178, 1980.

[Allen, 1995] James F. Allen. The TRAINS project: A case
study in building a conversational planning agent. Journal
of Experimental and Theoretical AI (JETAI), 7:7–48, 1995.

[Carberry, 1990] Sandra Carberry. Plan Recognition in Nat-
ural Language Dialogue. MIT Press, 1990.

[Carletta, 1992] Jean Carletta. Planning to fail, not failing to
plan: risk-taking and recovery in task-oriented dialogue.
In Proceedings of the 14th conference on Computational
linguistics, pages 896–900. Association for Computational
Linguistics, 1992.

[Gmytrasiewicz and Durfee, 2001] Piotr J. Gmytrasiewicz
and Edmund H. Durfee. Rational communication in multi-
agent environments. Autonomous Agents and Multi-Agent
Systems, 4(3):233–272, 2001.

[Grosz and Sidner, 1986] Barbara J. Grosz and Candace L.
Sidner. Attention, intentions, and the structure of dis-
course. Comput. Linguist., 12(3):175–204, 1986.

[Heeman and Hirst, 1995] Peter A. Heeman and Graeme
Hirst. Collaborating on referring expressions. Comput.
Linguist., 21(3):351–382, 1995.

[McCoy, 1989] K. F. McCoy. Highlighting a user model to
respond to misconceptions. In A. Kobsa and W. Wahlster,
editors, User Models in Dialog Systems, pages 233–254.
Springer, Berlin, Heidelberg, 1989.

[McEleney and O’Hare, 2005] Bryan McEleney and Gre-
gory O’Hare. Decision theoretic planning for initiative
problems. In Proceedings of the 10th International Con-
ference on User Modelling, Edinburgh, Scotland, Septem-
ber 2005. Springer Verlag.

[Pollack, 1986] Martha E. Pollack. A model of plan infer-
ence that distinguishes between the beliefs of actors and
observers. In Proceedings of the 24th conference on As-
sociation for Computational Linguistics, pages 207–214.
Association for Computational Linguistics, 1986.

[Sacerdoti, 1974] E.D. Sacerdoti. Planning in a hierarchy
of abstraction spaces. Artificial Intelligence, 5:115–135,
1974.

61

An Algorithm that Continuously Seeks Minimum Length Dialogs

R. Bryce Inouye and Alan W. Biermann
Duke University

Department of Computer Science�
rbi, awb � @cs.duke.edu

Abstract

We demonstratevia simulation the efficacy of a
methodologyfor continuouslyupdatinga dialog
strategy to seekthe minimum expectedlengthdi-
alog for a dialog system. The algorithm requires
that the systembe ableto calculateefficiently the
optimaldialogstrategy givena modelof theprob-
ability that thesystem’s userswill beableto com-
municatevariouspiecesof information.Wepresent
anexampleusingfixedinitiativedialogs,for which
efficient optimizationmethodsare available. Ex-
pecteddialog lengthsare calculatedfrom a user
modelwhich storesthe system’s estimationof the
probability that the userhasthe requestedknowl-
edge.Thesystemcanadaptitsbehaviorsto account
for drasticchangesin theuserresponses.

1 User Modeling and the Space of all Possible
Dialog Strategies

We examinethecasewherea dialogsysteminteractswith a
populationof usersin anunendingsequenceof dialogs.The
systemwill have theability to modify its behavior over time,
andits basisfor changewill betheresponsesfrom users.We
modeltheresponsefrom auseraseithersuccessfulor notand
computetheprobabilityof successasanongoingandchang-
ing value.If theuserpopulationis stablein its responseprob-
abilities,thesystemwill slowly convergeon theoptimumdi-
alog strategy. If the userpopulationvaries in its response
probabilities,the systemwill track thosechangesand seek
new optimums.Our measureof dialogquality is the length,
in numberof turns, of the dialog. We value short dialogs
above longonesfollowing thetraditionof many researchers.

Our approachinvolves high performancetechniquesfor
finding theoptimumdialogstrategy amongthesetof all pos-
sible such strategies that are being considered. The tech-
niquesassumethat thesystemhasestimatesof theprobabil-
ities of successfulanswersfrom the userfor eachquestion
type. Initially, our algorithmwill guessat theresponseprob-
abilities, selectthe optimum strategy from the spaceof all
strategies,andimplementthat strategy until additionalgath-
ereddataon probabilitiesindicatessomechangeis needed.
Wehavefoundsubstantialsubclassesfor whichthiscomputa-

tion canbedonein polynomialtime,andfor thosesubclasses,
we havea completesolutionto thedialoglearningproblem.

Thedialogsubclassesthatwe will examineherearefixed-
initiative dialogswith certainadditionalpropertiesthat we
will presentin this paper. We will studyonly dialogswhere
themachineleadstheinteractionandwheretheuseris asked
to answeror fail to answertherequests.We make additional
restrictionson thesesubclassesas will be explainedbelow.
We arenot discouragedwith the seeminglylimited applica-
bility of theseresultssincefixed-initiative dialogsarequite
common. We also note that underour definition of dialog
initiative, even mixed-initiative dialogsare madeup of se-
quencesandhierarchiesof fixed-initiativesegmentssowecan
oftenoptimizethosesegmentsandmakeamajorsteptowards
optimizationof general,mixed-initiativedialogs.

2 The Adaptive Algorithm

Ourmodelassumesthatthereis afinite numberof utterances
(or utterancetypes)that themachinecanoutput. Associated
with eachoutputthereis themachine’sestimate� of theprob-
ability that the usercanrespondsuccessfully. For example,
themachinemight requestthattheusergiveanidentification
number. The usermight successfullyprovide it and � will
give the machine’s estimateof the probability that this will
occur. However, the usermight not know the identification
numberor speechrecognitionerrorsmight causefailure of
thesystemto obtainit. Thesewouldbeclassedasunsuccess-
ful responsesto thequery. Thecollectionof all suchproba-
bilities � will bedenotedhereastheusermodel � . Initially,
� might befilled with ����� valuesor someestimatesselected
by the designer. After many dialogs,the systemshouldbe
ableto gatherenoughdataon theprobabilitiesof successful
responsesto make improvedestimates.

In its mostbasicform, ouralgorithmis asgivenhere.
Algorithm for seekingminimumaveragelengthdialogs.

Initialize userresponseprobabilities� .
Repeat

1. Selectstrategy 	 whichhasminimum
expecteddialoglengthfor thegiven � .

2. Executecurrentdialogusing 	 .
3. If recentuserresponsesindicatethat � is not

current,update� .

62

3 A Class of Solved Problems
We presentin [Inouye and Biermann, 2005] a model for
fixed-initiative dialogsandsolutionsto a numberof special
cases.Themodelassertsthatthemachinehastheproblemof
completingataskandits only behavior is oneof askingques-
tions ��� andreceiving answersassociatedwith them. It as-
sumesthat therearerule sets��������	�
���
�
�����
 � � ��
������ of such
questionssuchthat if all thequestionsin � aresatisfactorily
answeredby the humanuser, the task will be successfully
completed. If any questionof � fails, then � will not suc-
cessfullyachievethetask.Themodelalsoassumesthatthere
may be several or even many suchrule sets, � 	
��

 � � ��
����
andthe satisfactorycompletionof any oneof thesewill be
sufficient to solve the overall task. This model is derived
from planning-basedapproachesto dialog[LitmanandAllen,
1987] or theorem-proving approaches[Smith et al., 1995])
whereit canbe shown that for any problemstatementthere
mustexist finite setsof questionswhich, if all answeredsuc-
cessfully, will yield asuccessfulsolutionto thetop-levelgoal.
Thelatterapproachfollowsthetheoryof dialogpresentedby
GroszandSidner[1986] wherethetheoremproving machin-
ery implementsthe“intentionalstructure”thatthey describe.

A strategy for achieving the taskis to find anorderingof
thequestionsin therulesets��	�
���
�
 � � ��
�� � suchthatthetask
will besolvedif thereis a solution.An optimalstrategy will
be onewhich ordersthosequestionssuchthat the expected
lengthof thedialogswill beminimumgiventheprobabilities
thatareassociatedwith thequestions.

[Inouyeand Biermann,2005] shows solutionsto several
versionsof theproblem.Statedin very conciseterms,some
of theresultsare:

1. When thereis only one rule set � : Here the optimum
orderfor askingquestionsis to askthequestionsin order
of increasingprobabilityof success.Thusthe question
of leastprobabilityof successis askedfirst.

2. Whentherearemany rulesets,eachcontainingonly one
question:Theoptimumorderfor askingquestionsis the
questionwith highestprobability for successfirst and
then,in order, to leastprobablequestionlast.

3. Whentherearemany rule setswith thepropertythatno
two rulesetshaveaquestionin common:Thetechnique
is to computefor eachruleset � � theexpectednumber� �
of questionsaskedif therulesetfailsandtheprobability� � that the rule setwill succeed.Theoptimumstrategy
computesthevaluefor eachruleset � � thequantity � � �� ��� ����! 	"$#&%('�) andwill askquestionsfrom therulesets
in the orderof ��� from leastto greatest.The questions
within each� � mustbeasked in theorderof increasing
probabilityof success.

4. In the generalfixed-initiative case: An exact solution
canbecomputedby generatingall possibledialogstrate-
gies and evaluating the expectedlength of dialog for
each,thenselectingthestrategy thatyieldstheminimum
value.However, thenumberof possiblestrategiesis ex-
ponentialin the numberof rule setsandthe numberof
questions,makingcomputationof the optimal solution
intractablein mostcases.

We give a heuristic solution for the generalcaseand
show its effectiveness in lowering expected dialog
lengths.Themethodis to ordertherulesets� according
to rule3 above,evenif somerulesetsdohavequestions
in common. Within eachrule set, order the questions
frombeginningto endwith leastprobablequestionsfirst.

4 An Example

Next we demonstrateour algorithm on a realisticexample.
Supposea telephonecompany hasan automatedsystemto
handlerepair requests. We assumethat the strategy is to
ask a seriesof questionsthat identify the telephonewith
the problemand the time and specificcomplaintabout the
phone.We alsoassumethatsomephoneswill not work well
enoughto reporttheproblemor mayfail duringthecall. So
thereis a secondseriesof questionsto identify thecallerand
any alternative phoneavailableto thecallerwherethephone
company may contactthat person. This yields the model
��	*�+����	�	�
���	�
�
���	,��
���	$-�
���	,.���
���
*�/����
0	�
���
�
�
���
���� wherewe
assumethequestionsmightbeasfollows:
� 	�	 = “Pleasegiveyour telephonenumber.”
��	�
 = “Pleasegive theareacodeof yourphone.”
��	�� = “Pleasegiveyourbilling address.”
� 	,- = “Whendid yourproblemfirst occur?”
��	�. = “Describetheproblemyouhaveencountered.”
��
1	 = “Can you give me your billing accountcodefor your
telephone?”
�
�
 = “What is your lastname?”
��
�� = “What numbershouldwe call to discussyour prob-
lem?”

We have simulatedthe resultsof several hundredinterac-
tionsbetweenthesystemanda groupof userswhoseknowl-
edgebasescanbe characterizedby the probability that any
usermight possessa particularpieceof knowledge. Figure
1 illustratesthebasicarchitectureof thesimulator. Thebox
in theupperleft of Figure1 representsthedialogsystem.It
consistsof a knowledgebasecontainingthedialog rule sets
thattell how to accomplishthedialogtask,a usermodelthat
stores� , which is thesystem’s estimatesof theprobabilities
that an arbitrary userwill be able to answera given ques-
tion successfully, andan optimizationroutinethat takesthe
usermodelandthedialogrule setsandproducestheoptimal
dialog strategy with respectto the usermodel as described
in Section3. A dialog strategy specifiescompletelywhich
questionthe systemshouldask the userat any point in the
dialog.

Thebox in theupperright of Figure1 representsthesimu-
latedusergenerator. It consistsof a randomnumbergenera-
tor andaknowledgedistributionfunction 2 thattakesasinput
a questionandreturnsthe actualprobability that a userwill
be able to successfullyanswerthe question. Note that the
usermodel is system’s estimateof the knowledgedistribu-
tion function.Thesimulatedusergeneratorcreatessimulated
usersby producinga knowledgebasefor the user. It uses
therandomnumbergeneratorandtheknowledgedistribution
function to determinefor eachpossiblequestionif the user
will successfullyanswerthatquestion.

63

To simulatea dialog,thesimulatortakesa dialogstrategy
providedby thesystemandasimulateduser. Thedialogstrat-
egy (whichcanberepresentedasatree)indicateswhichques-
tion shouldbeaskedfirst. Thesimulatorchecksto seeif the
usercananswerthe questionsuccessfully, and the result is
reportedto thesystem.Thedialogstrategy is consultedagain
to seewhat questionshouldbe asked basedon the previous
response,andtheprocessrepeatsuntil thedialog terminates
in eithersuccessor failure.

The simulator employs the following loop as its basic
controlstructure:

1. Calculatetheoptimaldialogstrategy with respectto the
currentusermodel.

2. Checkto seeif theknowledgedistributionfunction 2 has
changed.

3. Createa new simulateduseraccordingto 2 .
4. Calculatetheresultsof a dialogbetweenthesystemfol-

lowing theoptimalstrategy andthesimulateduser.

5. Usethe resultsof the dialog to updatethe usermodel.
Specifically, for each question ��� revise its associ-
ated estimatedprobability � � of successas follows:
� � � (numberof times ��� hasbeensuccessfullyanswered
in recenthistory)/(numberof times ��� hasbeenaskedin
recenthistory)

6. Repeat.

Notethatoncethesimulateduserandthedialogstrategy have
beengenerated,theresultingdialogis deterministic.

If theusermodelandtheknowledgedistribution function
are the same,then the systemis guaranteedto producethe
optimal dialog strategy. However, in general,thereis some
error in theusermodel. We have chosento characterizethe
errorusinga root meansquaredifference:

� ������� � � '����	�
��� ! 2 ! �)&% � �)
 �
As the error in the usermodeldecreases,the quality of the
computedoptimal solutionincreases.This computationen-
ablesusto observetheimprovementof theusermodelduring
a simulation. However, our computederror doesnot affect
theoperationof thedialogsystemor thesimulation.

The simulatorthentakesthe resultsof the interaction,as
observedby thesystem,andupdatesthesystem’susermodel.
Theupdatedusermodelis thenusedto recalculateanew op-
timal strategy for the system,andthe processrepeatsitself.
(We do not know what the bestplan is for how often to re-
computetheoptimalstrategy. In our simulation,it waseasy
to recomputetheoptimumafterevery simulateddialog. But
in othersituations,the systemmight staywith the currently
selectedstrategy until a criterion is met to seeka new opti-
mum.)

We presentthe resultsof onerun of our simulation. Our
simulatorimplementsthe algorithmsdescribedin section3
in its dialog strategy optimizer. The dialog scenariocon-
sistsof two rule sets,��	 �+����	�	�
���	�
�
���	���
���	,-�
���	,.�� and ��
 �
����
0	�
���
�
�
���
���� . Theinitial usermodelfor thesystemassigns

Figure1: Thedialogsimulator.

a valueof 0.5 to eachquestion.Theinitial knowledgedistri-
bution function 2 , which characterizesuserresponsesbut is
not known to thesystem,hasthevalue ����
 for �
1	 and � � ���
for all otherquestions.

If this problemwerehandledby conventionalmeans,all
eightquestionswould beaskedfor eachdialog. We show in
this examplewhat improvementsarepossiblewith an adap-
tive system.In fact, the averagenumberof questionsasked
changesduringthesimulationandendsafterseveralhundred
dialogsjust above threequestionsper dialog. Specifically,
our systemasksquestionsfrom oneof ��	 or ��
 until it suc-
ceedsor fails. If it succeeds,the dialog haltsandif it fails,
thesystemproceedsto theotherrule set, � 	 or �
 . With our
automaticsystemselectingwhichrulesetto chooseandwhat
orderof thequestionsshouldbeaskedwithin a rule set,sub-
stantialadditionalimprovementscanbeachieved.Thegraph
of Figure2 showstheresults.

The initial optimumversionof the dialog baseduponthe
first probability estimateshas the systemasking questions
from �
 initially. The initial averagelengthof dialogswas
about5.2questionsasshown by point S1in Figure2.

After nine dialogs,the systemhasmadeenoughobserva-
tions to realizeits initial guessat probabilities(all are 0.5)
areincorrectandit changesstrategy (point C1). Thesystem
beginsaskingquestionsfrom ��	 first. Theroot-mean-square
of thedistancebetweentheinternallystoredprobabilitiesand
theactualprobabilitiesbeingusedin thesimulationis given
by theroot-mean-squarecurve.

After 100 dialogs,we assumethat a new telephoneprob-
lem hasarisenwhich callerscannotsuccessfullyexplain to
ourspeechrecognitionsystem.Suddenlytheactualprobabil-
ity of successfulanswersto ��	,. falls from 0.98 to 0.4. The

64

0

1

2

3

4

5

6

7

8

1 101 201

Simulated dialog number

N
u

m
b

er
 o

f
q

u
es

ti
o

n
s

Expected Length Of Dialog
Minimum Expected Length of Dialog
Root Mean Square Error x 10

C1
(q11,q12,q13,q14,q15)(q21,q22,q23)

S1

S2

C2
(q15,q12,q13,q14,q11)(q21,q22,q23)

S3

C3
(q21,q22,q23)(q15,q12,q13,q14,q11)

Figure2: Resultsof a simulation. Thesolid line tracestheexpecteddialog lengthgiventheknowledgedistribution function
2 andthe system’s dialog strategy at the time. The heavy dottedline representsthe expectedvalueof the dialog lengthfor

theoptimaldialogstrategy given 2 . Thelower dottedline tracesthevalueof � � � �
� � ! 2 ! �)&% � �)
 , theRMS error in theuser

model,multiplied by 10 to emphasizethescaleof thechanges.Theoptimaldialogstrategy learnedby thesystemis indicated
at pointsC1, C2, andC3. Rulesetsaregroupedby parentheses;thesystemasksquestionsin theorderin which they appear,
but if a questionfails, causinga rule setto fail, thesequenceskipstherestof thequestionsin therule setandcontinuesat the
beginningof thenext ruleset,if oneis available.

65

systemencountersa changein usersuccessprobabilitiesat
point S2 andhasenoughupdatedsuccessstatisticsat point
C2to alterits strategy again.Hereit moves � 	,. to thefront of
its � 	 seriesof questions.Theaveragelengthof dialogshas
now droppedto 3.4questions.Theaveragerootmeansquare
distancefrom the internalprobabilitiesandthe actualexter-
nal oneshasjumpedup again. The systemgathersdataand
slowly decreasesthis disparity.

Thenwe assume,after dialog200, thataccountcodesare
suddenlymucheasierfor callersto access(point S3). (Per-
hapsthey areprintedin redon thenew bills.) Theprobabil-
ity for ��
0	 increasesfrom 0.2 to 0.7. Theexpectedlengthof
thesystem’s dialoguesjumpsto over 4 questionsperdialog.
However, thesystemadaptsagain(pointC3)moving �
 back
to the first set and giving an expecteddialog length of 3.2
questionsperdialog.

Thesimulationshows thesystemundera varietyof realis-
tic situationsanddemonstrateshow it canchangeits strategy
to minimizeexpecteddialoglength.In theworkshoppresen-
tation,wewill giveaseriesof muchmoreambitiousexamples
andshow thepowerof ouralgorithmin thesecases.

5 Discussion
Othershave built learningsystemsfor dialog. Oneexample
is theNJFunsystem[Singhetal., 2002;Litmanetal., 2000].
In this system,theauthorsdesignedanMDP staterepresen-
tationfor theirdialogenvironmentandthesystemlearnedthe
preferredtransitionsin thestatediagramthatwerecorrelated
with successfulinteractions. This systemsubstantiallyim-
provedits dialogsuccessrateafteraseriesof subjectsusedit.
Oursystemsolvesasmallerclassof problemsthantheNJFun
groupsincethey allow their designersto do detailedspecifi-
cationsof the statesand the possibletransitions. We solve
only part of thenarrow fixed-initiative class,but our system
completelyself-organizesfor optimalbehavior, asmeasured
by dialoglength,duringaseriesof dialogs.

The POMDPis anattractive modelsincespeechrecogni-
tion can lead to seriouserrorsin perceptionof the stateof
thedialog.Thismodelhasbeenadoptedby Roy, Pineau,and
Thrun[2000] andit canbeusedto achievelearning.Theirap-
proachwasto representuserintentionasthestateof thesys-
temandspeechrecognitionwasusedto partiallyobservethis
state. In anapplicationto nursinghomerobot control, their
systemachieved significant improved performancethrough
learning.A difficulty with thisapproachcomesfrom thehigh
costof finding optimumPOMDPsolutionsandapproxima-
tion schemesareusuallypartof themethodology. Again,our
systemdoesnot requireasmuchdesigneffort, but it solvesa
narrowerclassof problemsoptimally.

Our useof simulateddialog systemusersto evaluatethe
performanceof our algorithm follows the work of others
who have usedsimulationtechniquesto avoid thehigh costs
of obtainingactualhuman-computerdialogs. Guinn [1996]
relies upon simulatedusersin his study of the effects of
varying the initiative taking strategies of a dialog system,
andusesthe techniqueof assigningknowledgeaccordingto
a suppliedprobability distribution. Chung[2004] employs
simulatedusersto aid systemdevelopmentandtrain speech

recognitionandunderstandingcomponents,andusesproba-
bilities to characterizenot only the knowledge,but the be-
havior of the simulateduser, as the systemis designedto
supportmixed-initiative interactions. Scheffler and Young
[2001] simulateusersusing a similar data structure,con-
sistingof an attribute-valuestructurethat keepstrack of the
fields that must be instantiatedto achieve a goal. Another
approachto simulatedusergeneration[Levin et al., 2000;
Levin and Pieraccini, 1997; Levin et al., 1998] doesnot
modelknowledgeexplicitly, but insteadusesutterance-level
bigramsto determinewhatresponsestheuserwill make.

6 Next Steps
The dialog modelwe usein this papersupportscalculation
of optimal dialog strategies for dialog scenarioswith more
complexity thanthesimpleexamplepresentedin this paper.
We arestudyingdialogswhich aresubstantiallymorecom-
plicatedthantheonedescribedhere.Also, thecurrentmodel
considersonly the setof fixed initiative dialogs. We define
dialog initiative in sucha way asto allow us to decompose
mixedinitiative dialogsinto a sequenceor hierarchyof fixed
initiative dialogs,which canbe optimizedindividually, and
thencombinedto produceanoptimizedmixedinitiative dia-
log strategy.

Another possibleline of inquiry involves learningto de-
cidewhento recalculatea dialogstrategy. If thesystemhas
a goodusermodel,the dialog strategy will not changevery
often, and thus doesnot have to be recomputedafter each
dialog. Our exampledemonstratesthat our methodis capa-
bleof adaptingto changesin theuserenvironmentsimplyby
trackingchangesin the usermodel. The methodwe usein
theexperimentsreportedin thispapercandetectchangesthat
occurover time. We would like to be ableto detectsudden
shifts in the userenvironment,correspondingto the occur-
renceof someexternalevent,thatwould causethesystemto
have to changestrategy suddenly.

Acknowledgments
The authorsgratefully acknowledge the ongoing financial
supportby SAIC of our work on spoken languagesystems.
This project has also beensupportedby National Science
FoundationGrant0121211andDefenseAdvancedresearch
ProjectsAgency GrantN66001-01-1-8941.

References
[Chung,2004] GraceChung. Developinga flexible spoken

dialog systemusingsimulation. In Proceedingsof ACL
’04, Barcelona,Spain,July2004.

[GroszandSidner, 1986] BarbaraJ. Groszand CandaceL.
Sidner. Attention, intentions,and the structureof dis-
course.ComputationalLinguistics, 12(3):175–204,1986.

[Guinn,1996] Curry I. Guinn. Mechanismsfor mixed-
initiativehuman-computercollaborativediscourse.In Pro-
ceedingsof ACL96, pages278–285,SantaCruz,CA, 1996.

[InouyeandBiermann,2005] R. Bryce InouyeandAlan W.
Biermann. Minimizing the length of fixed initiative di-
alogs.submittedfor publication, 2005.

66

[Levin andPieraccini,1997] EstherLevin andRobertoPier-
accini. A stochastic model for learning dialogue
strategies. In Proceedingsof the European Confer-
ence on Speech Communicationand Technology, EU-
ROSPEECH97., 1997.

[Levin et al., 1998] Esther Levin, Roberto Pieraccini, and
WielandEckert. Usingmarkov decisionprocessfor learn-
ing dialoguestrategies. In Proc. ICASSP, 1998.

[Levin et al., 2000] Esther Levin, Roberto Pieraccini, and
WielandEckert. A stochasticmodel of human-machine
interactionfor learningdialog strategies. IEEE Transac-
tions on Speech and Audio Processing, 8(1):11–23,Jan-
uary2000.

[LitmanandAllen, 1987] Diane J. Litman and JamesF.
Allen. A planrecognitionmodelfor subdialoguesin con-
versations.CognitiveScience, 11(2):163–200,1987.

[Litmanet al., 2000] Diane Litman, Michael S. Kearns,
SatinderB.Singh,andMarilyn A.Walker. Automaticop-
timizationof dialoguemanagement.In Proc.of COLING
2000, 2000.

[Roy et al., 2000] NicholasRoy, JoellePineau,and Sebas-
tian Thrun. Spokendialogmanagementusingprobabilis-
tic reasoning.In TheProceedingsof the Associationfor
ComputationalLinguistics, 2000.

[Scheffler andYoung,2001] K. Scheffler and S. Young.
Corpus-baseddialoguesimulationfor automaticstrategy
learningandevaluation,2001.

[Singhet al., 2002] SatinderSingh,DianeLitman, Michael
Kearns,andMarilyn Walker. Optimizing dialogueman-
agementwith reinforcementlearning: Experimentswith
the njfun system. Journal of Artificial IntelligenceRe-
search, 16:105–133,2002.

[Smithet al., 1995] RonnieW. Smith,D. RichardHipp, and
Alan W. Biermann. An architecturefor voicedialogsys-
temsbasedon prolog-styletheoremproving. Computa-
tional Linguistics, 21(3):281–320,1995.

67

Hybrid Reinforcement/Supervised Learning for
Dialogue Policies from COMMUNICATOR data

James Henderson and Oliver Lemon and Kallirroi Georgila
School of Informatics

University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, United Kingdom

james.henderson@ed.ac.uk

Abstract

We proposea methodfor learningdialogueman-
agementpoliciesfrom a fixeddataset.Themethod
is designedfor use with “Information StateUp-
date” (ISU)-baseddialoguesystems,which repre-
sent the stateof a dialogueas a large set of fea-
tures, resulting in a very large statespaceand a
very large policy space. To addressthe problem
that any fixed datasetwill only provide informa-
tion aboutsmall portionsof thesestateandpolicy
spaces,weproposeahybridmodelwhichcombines
reinforcementlearning(RL) with supervisedlearn-
ing. Thereinforcementlearningis usedto optimise
ameasureof dialoguereward,while thesupervised
learningis usedto restrict the learntpolicy to the
portionof thespacefor whichwehavedata.Linear
functionapproximationis usedto handlethe large
statespaceefficiently. We trainedthis model on
a subsetof theCOMMUNICATOR corpus,to which
we haveaddedannotationsfor useractionsandIn-
formationStates. When testedwith a usersimu-
lation trainedon thesamedata,our modeloutper-
formsall thesystemsin theCOMMUNICATOR data
(it scores37%higherthanthebestCOMMUNICA-
TOR system). All of theseadvanceswill improve
techniquesfor bootstrappingandautomaticoptimi-
sationof dialoguemanagementpoliciesfrom lim-
ited initial datasets.

1 Introduction

We investigateusinga fixedcorpusof dialoguesto automat-
ically optimisedialoguesystemswhich have rich represen-
tationsof dialoguecontext. The“Information StateUpdate”
(ISU) approachto dialogue[LarssonandTraum,2000] em-
ployssuchrepresentationsof dialoguecontext for flexible di-
aloguemanagement,and the questionarisesas to whether
dialoguemanagementpoliciescanbelearnt[Levin andPier-
accini,1997] for suchsystems.We focuson learningwith a
fixedcorpusof dialoguesbecausedialoguecorporaarevery
expensive to produce,andit is oftennot practicalto produce
new dialoguesduring the courseof learning. Even if dia-
loguescanbeautomaticallygeneratedwith simulatedusers,

trainingon simulateddialoguesdoesnot replacetheneedto
fully exploit therealdata.

Previous work on learningdialoguemanagementpolicies
hasfocusedon small statespacesandsmall setsof actions
to choosebetween[Singh et al., 2002; Levin et al., 2000;
Scheffler andYoung,2002]. They usereinforcementlearn-
ing (RL) to find a policy which optimisesa reward function
overdialogues.In thispaperweaddresstheambitioustaskof
learningto choosebetweena relatively largenumberof ac-
tions (70 in our experiments),with a very large statespace
(over 10

���

statesare theoreticallypossible),given a fairly
small corpusof dialogues(697 in our experiments).We use
linearfunctionapproximationto handlethelargestatespace,
but thisdoesnotaddressthedifficulty of searchingfor anop-
timal policy in thehugespaceof possiblepolicies.

Given the hugepolicy space,any fixed datasetwill only
provide informationabouta small portion of this space.To
addressthis problem,we proposea hybrid learningmodel
whichcombinesreinforcementlearning(RL) with supervised
learning. RL is usedto optimisea measureof dialoguere-
ward,while supervisedlearningis usedto restrict the learnt
policy to the portion of the spacefor which we have data.
When trainedon a subsetof the COMMUNICATOR corpus
[Walker et al., 2001a;2002] and testedwith a usersimula-
tion trainedon thesamedata,this modeloutperformsall the
systemsin theCOMMUNICATOR data.Whentherelative im-
portanceof the RL componentand the supervisedlearning
componentareadjusted,we currentlyfind that a purely su-
pervisedmodelperformsthe best. However, for a rangeof
degreesof influenceof RL, thehybrid systemstill performs
betterthanthe COMMUNICATOR systems.In this paper, we
first discusstheannotationswehaveaddedto theCOMMUNI-
CATOR data,thenpresenttheproposedlearningmethod,and
thenpresentour evaluationmethodandtheresults.

2 Automatic Annotation of the
COMMUNICATOR Data

The COMMUNICATOR corpora(2000[Walker et al., 2001a]
and 2001 [Walker et al., 2002]) consistof human-machine
dialogues(approx2300dialoguesin total). Theusersalways
try to book a flight, but they may also try to selecta hotel
or car-rental. The dialoguesareprimarily “slot-filling” dia-
logues,with someinformationbeingpresentedto theuseraf-

68

ter thesystemthinksit hasfilled therelevantslots.Thesecor-
porahavebeenpreviouslyannotatedusingtheDATE scheme,
for eachsystemutterance’s ConversationalDomain,Speech
Act, andTask[Walker etal., 2001b].

Weusedahand-craftedautomaticsystemto assignSpeech
Acts andTasksto theuserutterances,andto computeinfor-
mationstatesfor eachpoint in the dialogue(i.e. after every
utterance).The systemis implementedusingDIPPER[Bos
etal., 2003] andOAA [CheyerandMartin, 2001], usingsev-
eralOAA agents(see[Georgilaetal., 2005] for moredetails).
An exampleof someof the typesof information recorded
in an information stateis shown in figure 1. The stateis
intendedto recordall the information about the preceding
portionof thedialoguewhich is relevantto makingdialogue
managementdecisions,includingfilled slots,confirmed(i.e.
grounded)slots,andpreviousspeechacts.

For theexperimentsreportedin this paper, we useda pre-
liminary versionof theannotation,which included4 of the8
systemsin the2001corpus.This subsetconsistsof 97 users,
697dialogues,and51,309total states.The fact that thean-
notationwasdoneautomaticallymeansthat someerrorsare
inevitable, particularly in this preliminary version. But we
believethatthis hasanequaleffectonour performancemea-
suresfor both the COMMUNICATOR systemsandour learnt
systems,soit doesnotaffectour conclusions.

3 Using the Data for Reinforcement Learning
We usetheannotatedCOMMUNICATOR datato train a Rein-
forcementLearningsystem.In RL, theobjective of thesys-
temis to maximisetherewardit getsduringthecourseof the
dialogue.Rewardsaredefinedto reflecthow well a dialogue
went,soby maximisingthetotal rewardthesystemoptimises
thequalityof dialogues.Thedifficulty is that,at any point in
thedialogue,thesystemcannotbesurewhatwill happenin
the remainderof thedialogue,andthuscannotbesurewhat
effect its actionswill have on the total reward at the endof
the dialogue. Thusthe systemmustchoosean actionbased
on theaveragerewardit hasobservedbeforewhenit hasper-
formedthat actionin statessimilar to the currentone. This
averageis theexpectedfuturereward.

Thecorecomponentof any RL systemis theestimationof
theexpectedfuturereward(theQ-function).Givenastateand
anactionthatcouldbetakenin thatstate,1 theQ-functiontells
uswhattotal reward,onaverage,wecanexpectbetweentak-
ing thatactionandtheendof thedialogue.Oncewehavethis
function,theoptimaldialoguemanagementpolicy reducesto
simplychoosingtheactionwhichmaximisestheexpectedfu-
turerewardfor thecurrentstate.

Theactionswhichthereinforcementlearningsystemneeds
to choosebetweenaredefinedin termsof theDATE scheme
[Walker andPassonneau,2001] systemannotationsfor Con-
versationalDomain, SpeechAct and Task. Each possi-
ble triple of values for thesethree featuresis considered
a different action. In addition, there are releaseturn and

1The expected future reward also depends on the dialogue man-
agement policy which the system will use in the future. This self-
referential nature of RL is the topic of much RL research, and will
be discussed more below.

enddialogueactions. Therearea total of 70 actionswhich
occurin thedata.

3.1 Defining DialogueReward
To apply RL to the COMMUNICATOR data,we first have to
definea mapping� �������	� from a dialogue

�
anda positionin

that dialogue
�

to a reward value. This reward function is
computedusingthe reward level of annotationin the COM-
MUNICATOR data,which wasextractedfrom userquestion-
nairesandtaskcompletionmeasures.For all statesotherthan
the final state,we provide a reward of -1. This encodesthe
ideathat,all otherthingsbeingequal,shortdialoguesarebet-
ter than long ones. For the final statewe provide a reward
which is thesumof therewardsfor eachfeaturein thereward
annotation.“Actual TaskCompletion”and“PerceivedTask
Completion”arebothworth a rewardof 100if they arenon-
zero,and0 otherwise. The remainingreward featureshave
valuesrangingfrom 1 to 5 in the annotation.Their reward
is their value(minusone)timestheweightshown in table1.
Therelative valuesof theselaterweightswasdeterminedby
theempiricalanalysisreportedin [Walker etal., 2001a].

Actual TaskCompletion 100
PerceivedTaskCompletion 100
TaskEase 9
ComprehensionEase 7
SystembehavedasExpected 8
FutureUse 9

Table1: The weightsusedto computea dialogue’s final re-
wardvalue.Thefirst two features’weightsaremultiplied by
0 or 1, andtherestaremultipliedby valuesfrom 0 to 4.

3.2 Estimating the ExpectedFutur eReward
Given this definitionof reward,we want to find anestimate
 ����
������

of theexpectedfuturereward,which is theexpected
value(“ ����� ”) of the total rewardbetweentakingaction

�
in

state
��

until theendof thedialogue.
 ����
�������� ��� � ���
 � ��� ��!"�$# ��
%��� �
Given that the numberof possiblefuture statesequences
(
�
'&)(�$*$*�*

) is exponentialin the lengthof thesequences,it is
not surprisingthatestimatingtheexpectedrewardover these
sequencescanbeverydifficult.

The ISU framework is significantly different from the
frameworks usedin previous work on reinforcementlearn-
ing for dialoguemanagement,in that thenumberof possible
statesis extremelylarge. Having a largenumberof statesis
a morerealisticscenariofor a practical,flexible, andgeneric
dialoguesystems,but it alsomakesmany RL approachesin-
tractable.In particular, with a largenumberof statesit is not
possibleto learnestimatesof theexpectedfuture reward for
eachstate,unlesswecanexploit commonalitiesbetweendif-
ferentstates.Thefeature-basednatureof ISU staterepresen-
tationsexpressesexactly thesecommonalitiesbetweenstates
throughthefeaturesthatthestatesshare.Thereareanumber

69

STATE 13
DIALOGUE LEVEL
Turn: user
Speaker: user
ConvDomain: [about_task]
SpeechAct: [provide_info]
AsrInput: <date_time> october three first late morning</date_time>
TransInput: <date_time> october thirty first late morning</date_time>

TASK LEVEL
Task: [depart_time]
FilledSlotValue: [late morning]
FilledSlot: [depart_time]
CommonGround: [dest_city]

LOW LEVEL
WordErrorRate: 20.00

HISTORY LEVEL
SpeechActsHist: [], opening_closing,[], opening_closing, instruction, request_info,

[provide_info], implicit_confirm, request_info, [provide_info], implicit_confirm,
request_info, [provide_info]

TasksHist: [], meta_greeting_goodbye, [], meta_greeting_goodbye, meta_instruct, orig_city,
[orig_city], orig_city, dest_city, [dest_city], dest_city, depart_arrive_date, [depart_time]

FilledSlotsHist: [], [], [orig_city], [dest_city], [depart_time]
FilledSlotsValuesHist: [], [], [hartford connecticut], [orlando florida], [late morning]
GroundedSlotsHist: [], [], [], [orig_city], [dest_city]

Figure1: Examplefieldsfrom anInformationStateannotation.Userinformationis in squarebrackets.

of techniquesthat could be usedfor RL with feature-based
representationsof states,but the simplestandmostefficient
is linearfunctionapproximation.

Weuselinearfunctionapproximationto mapfrom avector
of realvaluedfeatures� ��� � for thestate

�
to a vectorof esti-

mates

 ��� �%���

for each
�
. Thetrainedparametersof thelinear

functionarea vectorof weights ��� for eachaction
�
. Given

weightstrainedon a givendataset,anestimate

data

��� �����
of

the expectedfuture reward given a state
�

and an action
�

is the inner productof the statevector � ��� � andthe weight
vector ��� 2.

data

��� ������� � ��� ��� ��� � �
 �
%��� � �	�

Theweights��� arelearntfrom data,but themapping� ��� �

from statesto vectorsmust be specifiedbeforehand.Each
value �
 ��� � in thesevectorsrepresentsa possiblecommonal-
ity betweenstates,so it is throughthedefinitionof � ��� � that
we control thenotionof commonalitywhich will beusedby
thelinearfunctionapproximation.Thedefinitionof � ����� we
arecurrentlyusingis astraightforwardmappingfrom feature-
valuepairsin the informationstate

�
to valuesin the vector

� ��� � .
Thestatevectormapping� ��� � is computedusingthefirst

four levels of our annotationof the COMMUNICATOR data.
Wewentthroughtheseannotationsandidentifiedthefeatures
whichwe considerrelevantfor dialoguemanagement.These
featureswereof threetypes.For featureswhichtakenumbers

2We will use the notation
���
 to denote the inner product be-
tween vectors
 and
 (i.e. “xtranspose times y”).

asvalues,weusedasimplefunctionto mapthesenumbersto
arealnumberbetween0 and1, with theabsenceof any value
beingmappedto 0. For featureswhichcanhavearbitrarytext
as their values,we used1 to representthe presenceof text
and0 to representno value. Theremainingfeaturesall have
eithera finite setof possiblevalues,or a list of suchvalues.
Featureswith a list valuearefirst convertedto a list of pairs
consistingof the featureandeachvalue. For every possible
feature-valuepair, we definean elementof the vector � ��� �
which is 1 if thatfeature-valuepair is presentin thestateand
0 if it is not. Theseform thevastmajority of our features.In
total thereare291features.

To train the weightsof the linear approximation,we em-
ployed a standardRL learning method called SARSA(�)
[SuttonandBarto,1998]. Oneadvantageof usinglinearfunc-
tion approximationis that the learningmethodcanbe kept
fairly simple,while still incorporatingdomainknowledgein
the designof the mappingto featurevectors. One areaof
future researchis to investigatemorecomplicatedmappings
to featurevectors� ����� . This would bring us into thecurrent
researchtopic of kernel-basedmethods.Kernelsareusedto
compensatefor the over-simplicity of linear functions,and
canbeusedto expressmorecomplicatednotionsof common-
ality betweenstates[Shawe-TaylorandCristianini,2004].

3.3 Applying RL to a Fixed Dataset
Weinitially triedusingtheestimateof expectedfuturereward

data

��� �����
discussedin theprevioussectionto defineour di-

aloguepolicy. Thedialoguepolicy simplyselectedtheaction�
with thehighest

data

��� �����
giventhestate

�
. However, we

foundthat this policy wasvery differentfrom thepolicy ob-

70

served in the COMMUNICATOR data,almostnever choosing
thesameactionaswasin thedata.Thissimplymeansthatthe
actionswhichhavebeenlearntto havethebestfuturerewards
arenot theonesthatweretypically chosenby the COMMU-
NICATOR systemsin thosestates.Suchactionswould then
lead to statesunlike anything observed in the data,making
the estimatesfor thesestateshighly unreliable. In addition,
the future reward dependson the policy the systemusesin
the future,so if thepolicy is differentfrom thatobserved in
thedata,thentheestimate

data

��� �����
is notevenrelevant.

The solutionto theseproblemswhich is typically usedin
RL researchis to generatenew dataas learningprogresses
and the policy changes. The RL systemcan thus explore
thespaceof possiblepoliciesandstates,generatingnew data
which is relevantto eachexploredpolicy andits states.Such
policy explorationis oftenconsideredanintegral partof RL.
In future research,we intendto performthis explorationby
runningeachpolicy with a usersimulation(as in [Scheffler
andYoung,2002]) trainedon the COMMUNICATOR dataset,
but first we needa solutionto theproblemof applyingRL to
a fixed setof data. Suchpolicy explorationis only feasible
with simulateddialoguesgeneratedthroughinteractionwith
a simulateduser, becausegeneratingreal datawith human
usersis veryexpensive. But a simulateduseris not thesame
asahumanuser, soit is importantto learnasmuchaspossible
from thefixedsetof datawe have from humanusers.In ad-
dition, thehugepolicy spacemakesevenpolicy exploration
with simulatedusersintractable,unlesswe caninitialise the
systemwith agoodpolicy andconstraintheexploration.This
alsorequireslearningasmuchaspossiblefrom thefixedset
of dataavailablebeforeexploration.

There have been some proposalsfor learning a policy
which is differentfrom thatusedto generatethedata(called
off-policy learning),but thesemethodshave beenfound not
to work well with linearfunctionapproximation[Suttonand
Barto,1998]. They alsodo not solve theproblemof straying
from theregionof statespacewhichhasbeenobservedin the
data.

3.4 A Hybrid Approachto RL
To addresstheaboveproblems,we have investigateda novel
hybrid approachwhich combinesRL with supervisedlearn-
ing. The supervisedlearning is usedto model the policy
which thesystemsin thedataactuallyuse,which we model
asa probabilisticpolicy � data

��� �����
.

� data

��� ����� ��� ��� # ���
In other words, � data

��� �����
is an estimateof the probability

that a randomsystemselectedfrom thosewhich generated
thedatawould chooseaction

�
giventhatit is in state

�
. The

function � data

��� �����
is computedwith linearfunctionapprox-

imation, just like

data

��� �%���
, exceptthat a normalisedexpo-

nentialfunctionis usedsothat theresultis a probabilitydis-
tributionoveractions

�
.

� data

��� �%�"� � ����� � � ��� � � �	�� �
 ��� ����� � � ��� � � � �� � �
As with theQ-function,theuseof linearfunctionapproxima-
tion meansthatwehaveestimatesfor

� ��� # � �
evenfor states

�

whichhaveneveroccurredin thedata,basedonsimilarstates
whichdid occur.

Thehybrid approachwe have investigatedis basedon the
assumptionthat we can’t model the expectedfuture reward
for statesin theunobservedportionof thestatespace.Thus
wesimplyspecifyafixedrewardfor theseunobservedstates.
By settingthis fixed reward to a low value, it amountsto a
penalty for strayingfrom the observed portion of the state
space. The expectedfuture reward is then the averagebe-
tweenthe fixed reward
 for the caseswhereperforming

�
in

�
leadsto an unobserved stateand the expectedreward

data

��� �����
for the caseswhereit leadsto an observedstate.

Formally, this averageis a mixture of the fixed reward

for unobserved stateswith the

data

��� �����
estimatefor ob-

servedstates,wherethemixturecoefficient is theprobability�
observed

��� �����
thatperforming

�
in
�

will leadto anobserved
state.

���

 � � � ��� ���	��# � � �%� ��

data

��� �%�����
observed

��� �������
 ������� observed

��� �������
Becausethisestimateof theexpectedfuturerewardis only

neededfor choosingthe next action given the currentstate�
, we only needto estimatea function which discriminates

betweendifferentactionsin the sameway as this estimate.
To derive sucha discriminantfunction,we first approximate�

observed

��� �����
in termsof the probability distribution in the

data
� ��� �����

andthesizeof thedataset� , undertheassump-
tion that the numberof possiblestate-actionpairs is much
largerthanthesizeof thedataset(so

� ��� �%��� ��� �
).

�
observed

��� ����������� ������� ��� �%�"�������� ��� ����� � � � data

��� �%����� ��� � �
Giventhis approximation,thediscriminantfunctionneedsto
ordertwo actions

� (�����
in thesamewayastheaboveestimate

of theexpectedfuturereward.

data

��� ��� (�� � data

��� ��� (���� ��� � � �
 ����� � data

��� �%��($��� ����� � �
�

data

��� ������� � data

��� ��������� ��� � � �
 ����� � data

��� �%������� ��� � � �
if andonly if

� data

��� ��� (���

data

��� �%� (���
 � � � data

��� �%�������

data

��� ����� ���
 �
We call this discriminantfunction

hybrid

��� �����
.

hybrid

��� ������� � data

��� �������

data

��� �������
 �
We usethis

hybrid

��� �����
function to choosetheactionsfor

our hybrid policy. By adjustingthevalueof theunobserved
statepenalty
 , we canadjusttheextentto which this model
follows thesupervisedpolicy definedby � data

��� �����
or there-

inforcementlearningpolicy definedby

data

��� �����
. In partic-

ular, if
 is very low, thenmaximising

hybrid

��� �%�"�
is equiva-

lent to maximising� data

��� �����
.

4 Experimental Results
We evaluatethe trained dialoguemanagementpolicies by
runningthemagainsttrainedusersimulations.Both thepoli-
ciesandtheusersimulationsweretrainedusingtheannotated
COMMUNICATOR datafor the ATT, BBN, CMU, and SRI

71

systems. We compareour resultsagainstthe performance
of thesesamefour systems,usingan evaluationmetric dis-
cussedbelow. The informationstatesfor the simulateddia-
logueswerecomputedwith the samerulesusedto compute
theinformationstatesfor theannotateddata.

4.1 The TestingSetup
For theseexperiments,we restrictour attentionto userswho
only want single-leg flight bookings. This meansthereare
only 4 essentialslotsto befilled: origin city, destinationcity,
departuredate,anddeparturetime. To achieve this restric-
tion, we first selectedall thoseCOMMUNICATOR dialogues
which did not containtrip continuations.3 This subsetcon-
tained79 BBN dialogues,132CMU dialogues,258ATT di-
alogues,and 174 SRI dialogues. This subsetwas usedfor
evaluatingthe systemsandfor training theusermodel. The
systemmodelwastrainedonthefull setof dialogues,sinceit
shouldnot know theuser’sgoalsin advance.

Theusermodelwastrainedin thesameway asthesuper-
visedcomponentof thehybridsystemdiscussedabove,using
linear function approximationanda normalisedexponential
output function. The stateswhich precedeuseractionsare
input asvectorsof featuresvery similar to thoseusedfor the
systembut tailoredto theneedsof a usermodel. Theoutput
of themodelis a probabilitydistribution over actions,which
consistof SpeechAct, Task pairs. The usersimulationse-
lectsan actionrandomlyaccordingto this distribution. We
alsotraineda usermodelbasedon n-gramsof userandsys-
temactions,whichproducedsimilar resultsin our testing.

When we first testedthe hybrid policy, we found that it
neverclosedthedialogue.Wethink thatthis is dueto thesys-
tem action (annotatedin DATE) “meta greetinggoodbye”,
which is usedboth as the first actionandas the last action
of a dialogue. The hybrid policy expectsthis action to be
chosenbeforeit will closethedialogue,but thesystemnever
choosesthis actionat the endof a dialoguebecauseit is so
stronglyassociatedwith thebeginningof thedialogue.This
is an exampleof the limitations of linear function approxi-
mation,whichwe planto addressby splitting this actioninto
two actions,onefor “greeting”andonefor “goodbye”. In the
meantime,we have augmentedthehybrid policy with a rule
whichclosesthedialogueafterthesystemchoosestheaction
“offer”, to offer the usera flight. We have alsoaddedrules
which closethe dialogueafter 100 states(i.e. total of user
andsystemactions),andwhich releasetheturn if thesystem
hasdone10actionsin a row without releasingtheturn.

4.2 The Evaluation Metric
To evaluatethesuccessof a dialogue,we take thefinal state
of thedialogueanduseit to computea scoringfunction. We
wantthescoringfunctionto besimilar to therewardwecom-
putefrom thequalitymeasuresprovidedwith theCOMMUNI-
CATOR data,but becausewe do not have thesequality mea-
suresfor the simulateddialogues,we cannotusethe exact

3There are only 54 dialogues which contain continuations. Ex-
cluding these dialogues does not harm the evaluation of the COM-
MUNICATOR systems, since their average score is actually lower
than that for the non-continuation dialogues (20.9).

samereward function. When we comparethe hybrid pol-
icy againsttheCOMMUNICATOR systems,weapplythesame
scoringfunctionto bothtypesof dialoguessothatwe have a
comparableevaluationmetricfor both.

Becausecurrentlywe areonly consideringuserswhoonly
want single-leg flight bookings, the scoring function only
looksat thefour slotsrelevantto thesebookings:origin city,
destinationcity, departuredate,anddeparturetime. We give
25 pointsfor eachslot which is filled, plusanother25 points
for eachslotwhich is alsoconfirmed(i.e.grounded).Wealso
deduct1 point for eachactionperformedby the system,to
penaliselongerdialogues.Thusthemaximumpossiblescore
is 198 (i.e. 200 minus2 systemactions:askfor all the user
informationin oneturn,andthenoffer a flight).

The motivation behindthis evaluationmetric is that con-
firmed slots are more likely to be correct than slots which
are just filled. If we view the scoreas proportionalto the
probability thata slot is filled correctly, thenthis scoringas-
sumesthat confirmedslotsaretwice aslikely to be correct.
Whencombiningthescoresfor differentslots,we do not try
to model the all-or-nothingnatureof the COMMUNICATOR
task-completionqualitymeasures,but insteadsumthescores
for the individual slots. This summakesour scoringsystem
valuepartial completionsmorehighly, but inspectionof the
distributionsof scoresindicatesthat this differencedoesnot
favour eitherthehybridpolicy or theoriginal COMMUNICA-
TOR systems.

Although this evaluationmetric could reflect the relative
quality of individual dialoguesmore accurately, we believe
it providesa goodmeasureof the relative quality of differ-
ent systems. First, the exact samemetric is appliedto ev-
ery system.Additional informationwhich we have for some
systems,but notall, suchastheCOMMUNICATOR userques-
tionnaires,is not used. Second,the systemsare being run
againstapproximatelyequivalentusers.Theusersimulation
is trainedon exactly thesameuseractionswhich areusedto
evaluatethe COMMUNICATOR systems,so the usersimula-
tionsmimic exactly theseusers.In particular, thesimulation
is able to mimic the effectsof a speechrecognitionerrors,
sinceit is just as likely as the real usersto disagreewith a
confirmationor provide a new value for a previously filled
slot. Thenatureof thesimulationmodelmaymakeit system-
atically differentfrom real usersin someway, but we know
of no argumentfor why this would biasour resultsin favour
of onesystemor another.

4.3 ComparisonsBetweenSystems
We have run experimentsto answertwo questions.First, in
our hybrid policy, what is the bestbalancebetweenthe su-
pervisedpolicy andthe reinforcementlearningpolicy? Sec-
ond, how well doesthe hybrid policy performcomparedto
theCOMMUNICATOR systemsthatit wastrainedon?

We trainedmodelsof both

data

��� �%���
and � data

��� �����
, and

thenusedthemin hybrid policieswith variousvaluesfor the
unobservedstatepenalty
 . For both functions,we trained
them for 100 iterationsthroughthe training data,at which
point therewaslittle changein thetrainingerror. Duringtest-
ing, eachhybrid policy was run for 1000dialoguesagainst
thelinearfunctionapproximationusermodel.Thefinal state

72

 total filled grounded length
score slots slots penalty

-1000 114.2 89.1 47.4 -22.2
0 101.3 69.5 51.6 -19.7

40 100.6 69.9 51.9 -21.1
80 96.0 67.0 49.4 -20.4

vsNgram:
80 105.7 68.8 57.2 -20.3

Table2: Theaveragescoresfor differentvaluesof theunob-
servablestatereward
 , andthe threecomponentsof these
scores.

for eachoneof thesedialogueswasthenfedthroughthescor-
ing function andaveragedacrossdialogues.The resultsare
shown in table2. Thevaluesfor
 werechosenbasedon the
averagenumberof decisionsperdialoguewhich werediffer-
entfrom thatwhich thepurelysupervisedpolicy wouldpick,
which were0 (
 � � � �����

), 1 (
 � �
), 2 (
 ��� �

), and5
(
 ��� �

), respectively.
Table2 alsoshowssomeresultsfor runningthehybridsys-

tem againsta usersimulationbasedon n-gramsof actions
(“vs Ngram”). This usermodelseemsto beeasierto interact
with than the linear usermodel. In particular, the resulting
dialoguesarebetterin termsof grounding.

To evaluatehow well thehybridpolicy performscompared
to theCOMMUNICATOR systems,weextractedthefinal states
from all thenon-continuationdialoguesandfedthemthrough
thescoringfunction.Theaveragescoresareshown in tables3
and4, alongwith thebestperforminghybrid policy andthe
scoresaveragedoverall systems’dialogues.

Table3 shows theresultscomputedfrom thecompletedi-
alogues.Theseresultsshow a clearadvantagefor thehybrid
policy over the COMMUNICATOR systems.The hybrid pol-
icy fills moreslotsanddoesit in fewer steps. Becausethe
numberof stepsis doubtlessaffectedby the hybrid policy’s
built-in strategy of stoppingthedialogueafter thefirst flight
offer, we alsoevaluatedthe performanceof the COMMUNI-
CATOR systemsif we alsostoppedthesedialoguesafter the
first flight offer, shown in table4. TheCOMMUNICATOR sys-
temsdo betterwhenstoppedat the first flight offer, but the
orderingof thesystemsis thesame.They dobetteron length,
but worseongrounding,andaboutthesameonfilled slots.

4.4 Discussionof Results
Theseresultsprovide clear answersto both our questions,
for this corpusand this approachto dialoguemanagement.
First, the more the systemrelies on the policy determined
with supervisedlearning,thebetterit does.Second,thelearnt
policiesperformbetterthanany of theCOMMUNICATOR sys-
tems.

Theresultsin table2 show a cleartrendwherebythemore
thesystemstickswith thesupervisedpolicy, thebetterit does.
In otherwords, the bestthe hybrid policy cando is simply
mimic thetypical behaviour it observesin thesystemsin the
data.This is asurprisingresult,in thatwewereexpectingre-
inforcementlearningto provide someimprovementover the
supervisedpolicy, providedthehybrid policy wasn’t too dif-

System total filled grounded length
score slots slots penalty

hybridRL/SL 114.2 89.1 47.4 -22.2
BBN 67.5 77.2 59.2 -68.9
CMU 49.7 60.2 47.4 -57.9
ATT 39.5 55.6 33.1 -49.3
SRI 21.0 52.4 0.0 -31.4
combinedCOMM 40.0 58.4 30.3 -48.6

Table3: Theaveragescoresfor thedifferentsystems,andthe
threecomponentsof thesescores.

System total filled grounded length
score slots slots penalty

hybridRL/SL 114.2 89.1 47.4 -22.2
BBN 83.2 74.1 24.1 -15.0
CMU 63.9 55.1 26.9 -18.1
ATT 55.3 55.8 24.4 -25.0
SRI 27.8 52.2 0.0 -24.4
combinedCOMM 53.0 56.9 18.3 -22.2

Table4: Theaveragescoresafter thefirst flight offer for the
differentsystems,andthethreecomponentsof thesescores.

ferent from the supervisedpolicy. This may reflect the fact
thatRL is harderthansupervisedlearning,or thattheamount
of dataweareusingisn’t enoughto trainanRL systemeffec-
tively for sucha complicateddialoguemanagementtask.We
arecurrentlyproducingbetterqualityannotations,for thefull
setof COMMUNICATOR systems,which shouldimprove the
estimatesfor the RL componentof the hybrid system. An-
otherapproachwould be to only usethe RL componentfor
specifictypesof decisions(therebysimplifying thedialogue
managementtaskfor RL). For example,theresultsin table2
suggestthat reinforcementlearningimprovesgrounding,but
perhapsendsthedialoguebeforeall theslotsarefilled.

It is worth noting that, even though the best systemis
purelysupervised,thehybridpolicieswhichdousesomeRL
alsodoquitewell. Thiscanbeseenby comparingtheirscores
to the resultsfor the COMMUNICATOR systemsin tables3
and4. This performanceis achieveddespitetheextremedif-
ficulty of ourstateandpolicy spaces,asindicatedby thevery
badperformanceweobservedwhenweinitially triedapurely
RL system.Therefore,weconcludethatthishybridapproach
would allow the fruitful useof RL in many situationswhere
RL would otherwisebe inappropriatedueto the complexity
of thetaskor theamountof dataavailable.Weanticipatethat
evenfor ourverycomplex task,RL canbemadebeneficialby
increasingthe amountof datathroughsimulateddialogues,
whichwe intendto do in futurework.

Tables3 and4 show a clearadvantageof the learntpolicy
“hybrid RL/SL” overall theCOMMUNICATOR systems.This
result is perhapssurprising,sincethe learntpolicy shown is
thepurelysupervisedversion,whichsimplymimicsthetypi-
cal behaviour of thesesamesystems.Onelikely explanation
is that the hybrid policy representsa kind of multi-version
system,wheredecisionsaremadebasedonwhatthemajority

73

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

S
co

re

Dialog Rank

Hybrid RL
COMMUNICATOR

Figure2: Comparingslot scoresfor the TALK learntpolicy
(“Hybrid RL”) versusthe COMMUNICATOR systems(disre-
gardingpenaltiesfor dialoguelength)

of systemswould do. Multi-versionsystemsarewell known
to performbetterthanany onesystemalone,becausethemis-
takestendto bedifferentacrossthedifferentsystems.

For a more detailedcomparisonof the systems,figure 2
plots the scores(ignoring length) for the averageCOMMU-
NICATOR dialoguesversusthe learntpolicy’s simulateddia-
logues,asa functionof their rank. Becausethe COMMUNI-
CATOR systemsdobetterwhenstoppedafterthefirst flight of-
fer, weusetheseresultsfor theseplots. In figure2, thelength
of eachbar reflectshow many dialoguesachieved the asso-
ciatedscorefor the numberof filled and/orgroundedslots.
Noneof thedialoguesactuallygetthemaximumscoreof 200
(all slotsfilled andgrounded),but verymany of thelearntpol-
icy dialoguesscore175,comparedto very few of the COM-
MUNICATOR dialoguesreachingthatscore.

5 Conclusion
The learntpolicy scores37%higherthanthebestCOMMU-
NICATOR systemwhich we examined(114.2 versus83.2).
Theseareextremelypromisingresultsfor a learntpolicy with
70 actions,over 10

���

possiblestates,and very few hand-
codedpolicy decisions.They indicatethatlinearfunctionap-
proximationis aviableapproachto theverylargestatespaces
producedby the ISU framework. They alsoshow that this
methodfor combining supervisedlearning with reinforce-
ment learningis effective at learningpolicies in extremely
largepolicy spaces,evenwith the limited amountof datain
any fixeddataset.In thecaseof only usingsupervisedlearn-
ing, the linear function approximationis able to merge the
policiesof thesystemsin theCOMMUNICATOR dataandper-
form betterthanany oneof thesesystemsalone. Currently,
addingreinforcementlearningto this modeldegradesperfor-
manceslightly, but still doesbetterthanany of theCOMMU-
NICATOR systems.Furtherimprovementshouldbepossible
by tailoring therepresentationof statesandactionsbasedon
ourexperiencesofar.

The next step is to better exploit the advantagesof re-
inforcementlearning. One promisingapproachis to apply
RL while runningthe learntpolicy againstsimulatedusers,
therebyallowing RL to explorepartsof thepolicy andstate
spaceswhich arenot includedin theCOMMUNICATOR data.
The hybrid policy we have learnton the COMMUNICATOR

datais a goodstartingpoint for this exploration. Also, the
supervisedcomponentwithin thehybrid systemcanbeused
to constrainthe rangeof policieswhich needto beexplored
whentrainingtheRL component.All of theseadvanceswill
improve techniquesfor bootstrappingandautomaticoptimi-
sationof dialoguemanagementpolicies from limited initial
datasets.

Acknowledgements
Thiswork is fundedby theECundertheFP6project“TALK:
Talk and Look, Tools for Ambient Linguistic Knowledge”.
We thankJohannaMoorefor proposingtheuseof theCOM-
MUNICATOR datasetfor this work.

References
[Bosetal., 2003] JohanBos, Ewan Klein, Oliver Lemon,

andTetsushiOka. DIPPER:DescriptionandFormalisa-
tion of anInformation-StateUpdateDialogueSystemAr-
chitecture.In 4thSIGdialWorkshoponDiscourseandDi-
alogue, pages115–124,Sapporo,2003.

[CheyerandMartin, 2001] AdamCheyerandDavid Martin.
The Open Agent Architecture. Journal of Autonomous
AgentsandMulti-AgentSystems, 4(1/2):143–148,2001.

[Georgila et al., 2005] Kallirroi Georgila, Oliver Lemon,
and JamesHenderson. Automatic annotationof COM-
MUNICATOR dialoguedatafor learningdialoguestrate-
gies and user simulations. In Ninth Workshopon the
Semanticsand Pragmaticsof Dialogue(SEMDIAL),DI-
ALOR’05, 2005.

[LarssonandTraum,2000] Staffan Larsson and David
Traum. Information stateand dialoguemanagementin
the TRINDI Dialogue Move Engine Toolkit. Natural
LanguageEngineering, 6(3-4):323–340,2000.

[Levin andPieraccini,1997] E. Levin andR. Pieraccini. A
stochasticmodelof computer-humaninteractionfor learn-
ing dialoguestrategies. In Proceedingsof Eurospeech,
pages1883–1886,Rhodes,Greece,1997.

[Levin et al., 2000] E.Levin, R.Pieraccini,andW. Eckert.A
stochasticmodelof human-machineinteractionfor learn-
ing dialog strategies. IEEE Transactionson Speech and
AudioProcessing, 8(1):11–23,2000.

[Scheffler andYoung,2002] Konrad Scheffler and Steve
Young. Automaticlearningof dialoguestrategy usingdi-
aloguesimulationand reinforcementlearning. In Proc.
HLT, 2002.

[Shawe-TaylorandCristianini,2004] John Shawe-Taylor
and Nello Cristianini. Kernel Methods for Pattern
Analysis. CambridgeUniversityPress,2004.

[Singhet al., 2002] SatinderSingh,DianeLitman, Michael
Kearns,andMarilyn Walker. Optimizing dialogueman-
agementwith reinforcementlearning: Experimentswith
the NJFunsystem. Journal of Artificial IntelligenceRe-
search (JAIR), 2002.

[SuttonandBarto,1998] RichardSuttonandAndrew Barto.
ReinforcementLearning. MIT Press,1998.

74

[WalkerandPassonneau,2001] M. Walker and R. Passon-
neau. DATE: A DialogueAct TaggingSchemefor Eval-
uationof SpokenDialogueSystems.In Walker, M., Pas-
sonneauR., DATE: A DialogueAct Tagging Schemefor
Evaluationof Spoken DialogueSystems.In Proceedings
of HumanLanguage Technology Conference, SanDiego,
March, 2001., 2001.

[Walkeret al., 2001a] M Walker, J Aberdeen, J Boland,
E Bratt, J Garofolo, L Hirschman, A Le, S Lee,
S Narayanan, K Papineni, B Pellom, B Polifroni,
A Potamianos,P Prabhu,A Rudnicky, G Sanders,S Sen-
eff, D Stallard,andSWhittaker. Darpacommunicatordia-
log travelplanningsystems:Thejune2000datacollection.
In Eurospeech 2001, Aalborg, Scandinavia, 2001.

[Walkeret al., 2001b] Marilyn A. Walker, RebeccaJ. Pas-
sonneau,andJulie E. Boland. Quantitative andQualita-
tiveEvaluationof DarpaCommunicatorSpokenDialogue
Systems.In Meetingof theAssociationfor Computational
Linguistics, pages515–522,2001.

[Walkeret al., 2002] M. Walker, A. Rudnicky, R. Prasad,
J. Aberdeen,E. Bratt, J. Garofolo, H. Hastie, A. Le,
B. Pellom, A. Potamianos,R. Passonneau,S. Roukos,
G. Sanders,S. Seneff, and D. Stallard. Darpacommu-
nicator: Cross-systemresultsfor the 2001evaluation. In
ICSLP2002, 2002.

75

Abstract
This work shows how a dialogue model can be
represented as a factored Partially Observable
Markov Decision Process (POMDP). The fac-
tored representation has several benefits, such as
enabling more nuanced reward functions to be
specified. Although our dialogue model is sig-
nificantly larger than past work using POMDPs,
experiments on a small testbed problem demon-
strate that recent optimisation techniques scale
well and produce policies which outperform a
traditional fully-observable Markov Decision
Process. This work then shows how a dialogue
manager produced with a POMDP optimisation
technique may be directly compared to a hand-
crafted dialogue manager. Experiments on the
testbed problem show that automatically gener-
ated dialogue managers outperform several hand-
crafted dialogue managers, and that automati-
cally generated dialogue managers for the testbed
problem successfully adapt to changes in speech
recognition accuracy.

1 Introduction
Creating (and improving) a dialogue manager by hand is
typically an expensive and time-consuming undertaking.
Instead of expressing which actions a machine should take
in each dialogue situation, ideally a dialogue designer
would simply express the desired outcomes of a dialogue.
This specification would then be combined with a user
model using a planning and optimisation algorithm to
produce a dialogue manager. Markov Decision Processes
(MDPs) provide a principled framework for this type of
approach. The application of MDPs to the dialogue man-
agement problem is first explored by Levin and Pieraccini
[1997]. Levin et al. [2000] provide a formal treatment of
how a MDP may be applied to dialogue management, and
Singh et al. [2002] show application to real systems.
 MDPs assume the current state of the environment (i.e.,
the conversation) is known exactly and do not naturally or
precisely model “noisy” evidence from the speech recog-
niser. This limitation has prompted several dialogue man-
agement researchers to explore POMDPs, which naturally
express uncertainty in the current state. Roy et al. [2000]
compare an MDP and a POMDP version of the same spo-
ken dialogue system, and find that the POMDP version

gains more reward per unit time than the MDP version.
Further, the authors show a trend that as speech recogni-
tion accuracy degrades, the margin by which the POMDP
outperforms the MDP increases. Zhang et al. [2001] ex-
tend this work in several ways. First, the authors add
“hidden” system states to account for various types of
dialogue trouble, such as different sources of speech rec-
ognition errors. Second, the authors use Bayesian Net-
works to combine observations from a variety of sources
(e.g., parse score, acoustic confidence score, etc.)
 Looking outside the (PO)MDP framework, Paek and
Horvitz [2003] suggest using a dynamic influence dia-
gram to model user and dialogue state, and selecting ac-
tions based on “Maximum Expected [immediate] Utility.”
This proposal can be viewed as a POMDP that greedily
selects actions – i.e., which selects actions based only on
immediate reward.1 By choosing appropriate utilities, the
authors show how local grounding actions can be auto-
matically selected in a principled manner. In this work,
we are interested in POMDPs as they enable planning
over any horizon.
 In previous work which has applied POMDPs to dia-
logue management, three important issues are not ad-
dressed. First, it is unclear in these models how to esti-
mate the system dynamics in practice. For example,
Zhang et al. [2001] indicate that the system dynamics are
“handcrafted, depending a lot on the experience of the
developer.” Second, neither model includes a notion of
“dialogue state,” and as a result, the reward functions in
these models cannot capture the notion of “appropriate-
ness” of an action – for example, the relative appropriate-
ness of confirming vs. querying a slot value.2 Finally,
although handcrafted dialogue managers are often used as
a baseline comparison in dialogue system literature, the
authors do not attempt a comparison with a handcrafted
dialogue manager.
 This paper makes two contributions. First, we propose
a factored architecture for describing a POMDP-based
dialogue manager. Unlike past work applying POMDPs

1 We can express this formally as a POMDP with discount
0=γ . See section 2 for background on POMDPs.

2 Zhang et al. [2001] included unobservable states for possi-
ble causes of dialog trouble – for example, “channel errors.” By
contrast, in this work, we’re interested in the conventional sense
of “dialogue state” as viewed by the user – for example, which
items have been confirmed.

Factored Partially Observable Markov Decision Processes
for Dialogue Management

 Jason D. Williams Pascal Poupart Steve Young
 Engineering Department School of Computer Science Engineering Department
 Cambridge University University of Waterloo Cambridge University
 Cambridge, UK Ontario, Canada Cambridge, UK
 jdw30@cam.ac.uk ppoupart@cs.uwaterloo.ca sjy@eng.cam.ac.uk

76

(and MDPs) to dialogue management, our factored repre-
sentation adds a component for the state of the dialogue
from the perspective of the user, enabling dialogue de-
signers to add reward measures for the “appropriateness”
of system actions. The factored representation also cre-
ates separate distributions for the user model and the
speech recognition model, which facilitates estimating or
adapting the system dynamics from dialogue data. Al-
though the scope of our model results in a much larger
model than past POMDP work on the dialogue manage-
ment problem, we show (using a simple testbed problem)
that the recently developed Perseus algorithm [Spaan and
Vlassis, 2004] scales sufficiently to optimize our model
and finds a policy which outperforms an MDP baseline.
 Second, we show how to make direct comparisons be-
tween a hand-crafted and an automatically generated pol-
icy. We demonstrate this technique by introducing three
hand-crafted dialogue managers for the testbed problem,
and find that a dialogue manager created with an auto-
mated technique outperforms all of them.
 The paper is organised as follows. Section 2 briefly
reviews background on POMDPs. Section 3 presents the
factored architecture. Section 4 shows an example testbed
system using this architecture. Section 5 compares the
testbed system to an MDP baseline, and assesses robust-
ness in the face of changing speech recognition accuracy.
Section 6 shows how a handcrafted policy can be com-
pared to an automatically-generated policy, and makes
this comparison for the testbed problem. Section 7 con-
cludes.

2 Overview of POMDPs
Formally, a POMDP is defined as a tuple {S, Am, T, R, O,
Z}, where S is a set of states, Am is a set of actions that an
agent may take,3 T defines a transition probability

),|(massp ′ , R defines the expected (immediate, real-
valued) reward),(masr , O is a set of observations, and Z
defines an observation probability,),|(masop ′′ .
 The POMDP operates as follows. At each time-step,
the machine is in some unobserved state s . The machine
selects an action ma , receives a reward r , and transitions
to (unobserved) state s ′ , where s ′ depends only on s
and ma . The machine receives an observation o ′ which
is dependant on s ′ and ma . Although the observation
gives the system some evidence about the current state s ,
s is not known exactly, so we maintain a distribution
over states called a “belief state,” b. We write tb to indi-
cate the distribution over all states at time t, and)(sbt to
indicate the probability of being in a particular state s at
time t. The immediate reward is computed as the ex-
pected reward over belief states:

 ∑
∈

=
Ss

tmttmt asrsbab),()(),(ρ . (1)

The goal of the machine is to maximise the cumulative,
infinite-horizon, discounted reward called the return:

3 In the literature, the system action set is often written as an

un-subscripted A. In this work, we will model both machine and
user actions, and have chosen to write the machine action set as
Am for clarity.

 ∑ ∑ ∑
∞

=

∞

= ∈

=
0 0

),()(),(
t t

tm
Ss

t
t

tmt
t asrsbab γργ . (2)

where γ is a geometric discount factor, 10 ≤≤ γ . At
each time step, the next belief state)(sb ′′ can be com-
puted exactly as shown in Eq. 12 below.
 Because belief space is real-valued, an optimal infinite-
horizon policy may consist of an arbitrary partitioning of
S-dimensional space. In fact, the size of the policy space
grows exponentially with the size of the observation set
and doubly exponentially with the distance (in time-steps)
from the horizon [Kaelbling et al., 1998]. Nevertheless,
real-world problems often possess small policies of high
quality.
 In this work, we make use of a recent approximate
method called Perseus. Perseus [Spaan and Vlassis,
2004] is capable of rapidly finding good yet compact poli-
cies (when they exist). Perseus heuristically selects a
small set of representative belief points, and then itera-
tively applies value updates to just those points, instead of
all of belief space, thereby achieving a significant speed-
up. Perseus has been tested on a range of problems, and
found to outperform a variety of other methods, including
grid-based methods [Spaan and Vlassis, 2004].

3 Factored architecture
Our proposal is to formulate the Dialogue Manager of a
Spoken Dialogue System as a factored POMDP as fol-
lows.
 First, the POMDP state variable Ss ∈ is separated into
three components: (1) the user’s goal, uu Ss ∈ ; (2) the
user’s action, uu Aa ∈ ; and (3) the state of the dialogue,

dd Ss ∈ . The POMDP state s is given by the tuple
},,{ duu sas . We note that, from the machine’s perspec-

tive, all of these components are unobservable.
 The user’s goal, us , gives the current goal or intention
of the user. Examples of a complete user goal include a
travel itinerary, a request for information about a calendar,
or a product the user would like to purchase.
 The user’s action, ua , gives the user’s most recent
user’s actual action. Examples of user actions include
specifying a place the user would like to travel to, re-
sponding to a yes/no question, or a “null” response indi-
cating the user took no action.
 The state of the dialogue ds indicates any relevant dia-
logue state information from the perspective of the user.
For example, ds might indicate that a particular slot has
not yet been stated, has been stated but not grounded, or
has been grounded. ds enables a policy to make deci-
sions about the appropriateness of behaviours in a dia-
logue – for example, if there are ungrounded items, a dia-
logue designer might wish to penalise asking an open
question (vs. grounding an item).
 Note that we do not include a state component for con-
fidence associated with a particular user goal. The con-
cept of confidence is naturally captured by the distribution
of probability mass assigned to a particular user goal in
the belief state.4

4 Future work will explore how a speech recognition confi-

dence score can be incorporated in a principled way.

77

 The POMDP action mm Aa ∈ is the action the machine
takes in the dialogue. For example, machine actions
might include greeting the user, asking the user where
they want to go “to”, or confirming that the user wants to
leave “from” a specific place. The POMDP observation o
is drawn from the same set as ua , i.e., uAo ∈ . Note that
at each time step the POMDP receives a single observa-
tion, but maintains a distribution over all possible user
actions.
 To factor the model, we decompose the POMDP transi-
tion function as follows:

)4().,,,,,|(
),,,,|(

),,,|(
)3(),,,|,,(),|(

muduuud

muduuu

muduu

muduudum

aasssasp
aasssap

aasssp
aassasspassp

′′′
⋅′′

⋅′=
′′′=′

 We then assume conditional independence as follows.
The first term – which we call the user goal model – indi-
cates how the user’s goal changes (or does not change) at
each time step. We assume the user’s goal at a time step
depends only on the previous goal and the machine’s ac-
tion:
),|(),,,|(muumuduu asspaasssp ′=′ . (5)

 The second term – which we call the user action model
– indicates what actions the user is likely to take at each
time step. We assume the user’s action depends on their
(current) goal and the preceding machine action:
),|(),,,,|(muumuduuu asapaasssap ′′=′′ . (6)

 The third term – which we call the dialogue model –
indicates how the user and machine’s actions affect the
state of the conversation. We assume the current state of
the dialogue depends on the previous state of the dialogue,
the user’s action, and the machine’s action:
),,|(),,,,,|(mdudmuduuud asaspaasssasp ′′=′′′ . (7)

 In sum, our transition function is given by:

).,,|(

),|(
),|(),|(

mdud

muu

muum

asasp
asap
asspassp

′′
⋅′′
⋅′=′

 (8)

 This factored representation reduces the number of pa-
rameters required for the transition function, and allows
groups of parameters to be estimated separately. For ex-
ample, we could estimate the user action model from a
corpus by counting user dialogue acts given a machine
dialogue act and a user goal, or use a “generic” distribu-
tion and adapt it to a particular problem once data be-
comes available.5 We could then separately specify the
dialogue model using a handcrafted function such as “In-
formation State” update rules as in for example [Larsson
and Traum, 2000].
 The observation function is given by:
),,,|(),|(mudum aassopasop ′′′′=′′ . (9)

5 To appropriately cover all of the conditions, the corpus

would need to include variability in the strategy employed by the
machine – for example, using a Wizard-of-Oz framework with a
simulated ASR channel [Stuttle et al., 2004].

 The observation function accounts for the corruption
introduced by the speech recognition engine, so we as-
sume the observation depends only on the action taken by
the user:6
)|()|(),,,|(uumudu aopaopaassop =′′=′′′′ . (10)

 The observation function can be estimated from a cor-
pus or derived analytically using a phonetic confusion
matrix, language model, etc. The observation can be dis-
crete (i.e., a recognition hypothesis), or a mixture of dis-
crete and continuous (i.e., a recognition hypothesis and a
confidence score). Figure 1 shows an influence diagram
of our proposal.
 The reward function is not specified explicitly in this
proposal since it depends on the design objectives of the
target system. We note that the reward measure could
contain incentives for dialogue speed (by using a per-turn
penalty), appropriateness (through rewards conditioned on
dialogue state), and successful task completion (through
rewards conditioned on the user’s goal). Weights between
these incentives could be estimated through formalisms
like PARADISE [Walker et al., 2000], and then adapted
to the needs of a particular domain – for example, accu-
racy in performing a financial transaction is arguably
more important than accuracy when obtaining weather
information.
 Finally, we update the belief state at each time step by:

)11(),|(

)(),|(),|(

),|(

),|(),,|(),|(

),|(
),|(),,|(

),,|()('

baop

sbsaspasop

baop

baspsbaspasop

baop
baspbasop

baospsb

m

Ss
mm

m

Ss
mmm

m

mm

m

′

′′′
=

′

′′′
=

′
′′′

=

′′=′

∑

∑

∈

∈

The numerator consists of the observation function, transi-
tion matrix, and current belief state. The denominator is
independent of s ′ , and can be regarded as a normalisation
factor; hence:

 ∑
∈

′′′⋅=′′
Ss

mm sbsaspasopksb)(),|(),|()(. (12)

 Substituting equation (8) and (10) into (12) and simpli-
fying, we can write:

6 This implicitly assumes that the same recognition grammar

is always used. The model could be readily extended to enable a
system “action" which activates a particular grammar.

78

)13(.),,(

),,|(

),|(
),|()|(),,(

∑
∑
∑

∈

∈

∈

⋅′′

⋅′
⋅′′′′⋅=′′′′

uu

dd

uu

Aa
udu

Ss
mdud

Ss
muu

muuuudu

assb

asasp

assp
asapaopkassb

o

au

sd

su

am

r

o'

au'

sd'

su'

am'

r'

Timestep n Timestep n+1

Figure 1: Influence diagram for the factored model.
The dotted box indicates the composite state s is com-

prised of three components, su, sd, and au. Shading
indicates a component is unobservable. Arcs into cir-
cular chance nodes and diamond-shaped utility nodes

show influence, whereas arcs into square decision
nodes are informational (see Jensen [2001], p140).

4 Testbed spoken dialogue system
To test the ideas in our proposal, we created a simulated
dialogue management problem in the travel domain in
which the user is trying to buy a ticket to travel from one
city to another city. The machine asks the user a series of
questions, and then “submits” the ticket purchase request,
ending the dialogue. The machine may also choose to
“fail”. In the testbed problem, there are three cities,
{a,b,c}.
 The machine has 16 actions available, including greet,
ask-from/ask-to, conf-to-x/conf-from-x, submit-x-y, and
fail, where yxcbayx ≠∈ },,,{, . As above, the state space
is given by the tuple },,{ duu sas . The user’s goal uu Ss ∈
specifies the user’s desired itinerary. There are a total of
6 user goals, given by yxcbayxyxsu ≠∈∈ },,,{,),,(.
The dialogue state sd contains three components. Two of
these indicate (from the user’s perspective) whether the
from place and to place have not been specified (n), are
unconfirmed (u), or are confirmed (c). A third component
z specifies whether the current turn is the first turn (1) or
not (0). There are a total of 18 dialogue states, given by:
 }0,1{},,,{,);,,(∈∈∈ zcunyxzyxs ddddd (14)

 The user’s action uu Aa ∈ and the observation uAo ∈
are drawn from the set x, from-x, to-x, from-x-to-y, yes,
no, and null, where yxcbayx ≠∈ },,,{, .
 These state components yield a total of 1944 states, to
which we add one additional, absorbing end state. When
the machine takes the fail action or a submit-x-y action,
control transitions to this end state, and the dialogue ends.
 The initial (prior) probability of the user’s goal is dis-
tributed uniformly over the 6 user goals. In the testbed

problem the user has a fixed goal for the duration of the
dialogue, and we define the user goal model accordingly.
 We define the user action model to include a variable
set of responses – for example: the user may respond to
ask-to/ask-from with x, to-x/from-x, or from-x-to-y; the
user may respond to greet with to-y, from-x, or from-x-to-
y; the user may respond to confirm-to-x/confirm-from-x
with yes/no, x, or to/from-x; and at any point the user
might not respond (i.e., respond with null). The probabili-
ties in the user action model were chosen such that the
user usually provides cooperative but varied responses,
and sometimes doesn’t respond at all. The probabilities
were handcrafted, selected based on the authors’ experi-
ence performing usability testing with slot-filling dialogue
systems.7 In future work, we intend to estimate a user
model based on dialogue data.
 We define the dialogue model to deterministically im-
plement the notions of dialogue state above – i.e., a field
which has not been referenced by the user takes the value
n; a field which has been referenced by the user exactly
once takes the value u; and a field which has been refer-
enced by the user more than once takes the value c.
 We define the observation function to encode the prob-
ability of making a speech recognition error to be errp ,
and define the observation function as:







≠
−

=−
=

u
u

err

uerr

u aoif
A
p

aoifp
aop

1

1
)|((15)

Below we will vary errp to explore the effects of speech
recognition errors.
 The reward measure includes components for both task
completion and dialogue “appropriateness”, including: a
reward of -3 for confirming a field before it has been ref-
erenced by the user; a reward of -5 for taking the fail ac-
tion; a reward of +10 or -10 for taking the submit-x-y ac-
tion when the user’s goal is (x,y) or not, respectively; and
a reward of -1 otherwise. The reward measure reflects the
intuition that behaving inappropriately or even abandon-
ing a hopeless conversation early are both less severe than
getting the user's goal wrong. The per-turn penalty of -1
expresses the intuition that, all else being equal, short dia-
logues are better than long dialogues.

The reward measure also assigned -100 for taking the
greet action when not in the first turn of the dialogue.
This portion of the reward function effectively expresses a
design decision: the greet action may only be taken in the
first turn. A discount of 95.0=γ was used for all experi-
ments.
 The Perseus algorithm requires two parameters: num-
ber of belief points, and number of iterations. Through
experimentation, we found that 500 belief points and 30
iterations attained asymptotic performance for all values
of errp .

7 Because of space limitations, the detail of this distribution

isn’t shown here.

79

5 Testbed evaluation

5.1 Comparison with an MDP Baseline
To test whether an automated solution to the POMDP is
both feasible and worthwhile, we created an MDP-based
dialogue manager baseline, patterned on systems in the
literature (e.g., [Pietquin, 2004]). The MDP is trained and
evaluated through interaction with a model of the envi-
ronment, which is formed of the POMDP transition, ob-
servation, and reward functions. This model of the envi-
ronment takes an action from the MDP as input, and emits
an observation and a reward to the MDP as output.

The MDP state contains components for each field
which reflect whether, from the standpoint of the machine,
(a) a value has not been observed, (b) a value has been
observed but not confirmed, or (c) a value has been con-
firmed. Two additional states – dialogue-start and dia-
logue-end – which were also in the POMDP state space,
are included in the MDP state space for a total of 11 MDP
states.

An MDP state estimator maps from POMDP observa-
tion to MDP state, and from MDP action to POMDP ac-
tion. For example, given the current MDP state, the MDP
policy selects an MDP action, and the MDP state estima-
tor then maps the MDP action back to a POMDP action,
which updates the environment model. The MDP state
estimator tracks the most recent value observed for a slot,
enabling it to map from an MDP action like confirm-from
to a POMDP action like confirm-from-a or an MDP action
like submit to submit-from-a-to-b. This behaviour of the
MDP state estimator is identical to that used in the
MDP/spoken dialogue system literature (e.g., [Pietquin,
2004] and [Levin et al., 2000]).
 Because the MDP learns through experience with a
simulated environment, we selected an on-line learning
technique, Watkins Q-learning, to train the MDP baseline.
A variety of learning parameters were explored, and the
best-performing parameter set was selected: initial Q val-
ues set to 0, exploration parameter 2.0=ε , and the learn-
ing rate α set to 1/k (where k is the number of visits to
the Q(s,a) being updated.). To evaluate the resulting
MDP policy, 10,000 dialogs were simulated using the
learned policy.
 Figure 2 shows expected return for the POMDP solu-
tion, and the average return for the MDP solutions vs.

errp ranging from 0.00 to 0.65. The (negligible) error
bars show the 95% confidence interval for return assum-
ing a normal distribution. Note that return decreases con-
sistently as errp increases for all solution methods, but the
POMDP solution attains the largest return of the solutions
at all values of errp . Further, the performance gain of the
POMDP solution over the other solutions increases as

errp increases. From this result we conclude that the
POMDP solution copes with higher speech recognition
error rates better than the MDP approach, consistent with
[Roy et al., 2000].

-15

-10

-5

0

5

10

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

perr

Ex
pe

ct
ed

 o
r a

ve
ra

ge
 re

tu
rn

POMDP
MDP

Figure 2: Expected or average return of POMDP poli-
cies and MDP baseline. Error bars show 95% confi-

dence interval.

-4

-2

0

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
perr used at evaluation

A
ve

ra
ge

 re
tu

rn

Figure 3: Performance of POMDP policies vs. perr.
White bars show a policy trained using perr=0.15,
checked bars perr=0.35, and shaded bars perr=0.55.

Error bars show 95% confidence interval.

5.2 Robustness to changes in error rate
 In practice, the error rate of a spoken dialogue system
varies from user to user. Thus we were interested to see
how a POMDP solution adapts to a value of errp for
which it was not designed. Figure 3 shows average return
for three dialogue managers when executed using a differ-
ent value for errp . Error bars show 95% confidence in-
terval for true average return sampled over 10,000 dia-
logues. From this we see that the POMDP solutions are
not “brittle” – i.e., they do not fail catastrophically as errp
deviates from that used in training.

6 Comparison with a handcrafted policy

6.1 Method to evaluate a handcrafted policy
Intuitively, a policy specifies what action to take in a
given situation. In the previous section, we relied on the
representation of a POMDP policy produced by value
iteration – i.e., a value function, represented as a set of N
vectors each of dimensionality |S|. We write)(snυ to
indicate the sth component of the nth vector.
 Each vector represents the value, at all points in the
belief space, of executing some “policy tree” which starts
with an action associated with that vector. We write

An ∈)(π̂ to indicate the action associated with the nth
vector. If we assume that the policy trees have an infinite

80

horizon, then we can express the optimal policy at all
timesteps as:

 









= ∑

=

S

s
n

n
sbsb

1

)()(maxargˆ)(υππ (16)

 Thus the value-function method provides both a parti-
tioning of belief space into regions corresponding to op-
timal actions as well as the expected return of taking that
action. A second way of representing a POMDP policy is
as a “policy graph” – a finite state controller consisting of
N nodes and some number of directed arcs. Each control-
ler node is assigned a POMDP action, and we will again
write)(ˆ nπ to indicate the action associated with the nth
node. Each arc is labelled with a POMDP observation,
such that all controller nodes have exactly one outward
arc for each observation.),(onl denotes the successor
node for node n and observation o.
 A policy graph is a general and common way of repre-
senting handcrafted dialogue management policies. More
complex handcrafted policies – for example, those created
with rules – can usually be compiled into a (possibly very
large) policy graph.
 A policy graph does not make the expected return asso-
ciated with each controller node explicit. However, as
pointed out by Hansen [1998], we can find the expected
return associated with each controller node by solving this
system of linear equations in υ :

)17()())(ˆ,|())(ˆ,|(
))(ˆ,()(

),(∑∑
∈′ ∈

′′′
+=

Ss Oo
onl

n

snsopnssp
nsrs

υππγ
πυ

Solving this set of linear equations yields a set of vectors
– one vector for each controller node. To find the ex-
pected value of starting the controller in node n and belief
state b we compute:

 ∑
=

S

s
n sbs

1

)()(υ (18)

6.2 Example handcrafted policies and results
Three handcrafted policies were created, called HC1,
HC2, and HC3. All of the handcrafted policies first take
the action greet. HC1 takes the ask-from and ask-to ac-
tions to fill the from and to fields, performing no confir-
mation. If the user does not respond, it re-tries the same
action. If it receives an observation which is inconsistent
or nonsensical, it re-tries the same action. Once it fills
both fields, it takes the corresponding submit-x-y action.
A logical diagram showing HC1 is shown in Figure 4.8
 HC2 is identical to HC1 except that if the machine re-
ceives an observation which is inconsistent or nonsensi-
cal, it immediately takes the fail action. Once it fills both
fields, it takes the corresponding submit-x-y action.
 HC3 employs a similar strategy to HC1 but extends
HC1 by confirming each field as it is collected. If the user

8 A logical diagram is shown for clarity: the actual controller
uses the real values a, b, and c, instead of the variables X and Y,
resulting in a controller with 15 states.

responds with “no” to a confirmation, it re-asks the field.
If the user provides inconsistent information, it treats the
new information as “correct” and confirms the new in-
formation. If the user does not respond, or if the machine
receives any nonsensical input, it re-tries the same action.
Once it has successfully filled and confirmed both fields,
it takes the corresponding submit-x-y action.
 Figure 5 shows the expected return for the handcrafted
policies and the optimised POMDP solution. The
POMDP solution outperforms all of the handcrafted poli-
cies for all values of errp .

We inspected the POMDP solution in order to charac-
terise how it differs from the handcrafted solutions. Con-
ceptually, the POMDP policy differs from the handcrafted
policies in that it tracks conflicting evidence rather than
discarding it. For example, whereas the POMDP policy
can interpret the “best 2 of 3” observations for a given
slot, the handcrafted policies can maintain only 1 hy-
pothesis for each slot.

As an illustration, consider an environment with no un-
certainty – i.e., no speech recognition errors. In this envi-
ronment, there is no benefit to maintaining multiple hy-
potheses for a user goal, and thus we would expect a
POMDP to perform identically to a policy which does not
track multiple hypotheses for a user goal. Figure 5 dem-
onstrates this point: where 0=errp , HC1 and HC2 per-
form identically to the POMDP policy.9

It is interesting to note that HC3, which confirms all in-
puts, performs least well for all values of errp . For the
reward function we have provided in the testbed system,
requiring 2 consistent recognition results (the response to
ask and the response to confirm) gives rise to longer dia-
logs which outweigh the benefit of the increase in cer-
tainty

greet

guess
X-Y

ask
from

ask
to

ask
from

else from X
to Y

X
from X

from X to Y,
X≠Y

from X to Y

X
from X

Y, to Y
from X to Y, X≠Y

from X to Y

else else else

Figure 4: HC1 handcrafted controller

9 HC3 performs worse because it confirms each element,

lengthening the dialogue and thus reducing return.

81

-8

-6

-4

-2

0

2

4

6

8

10

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

perr

E
xp

ec
te

d
re

tu
rn

POMDP
HC1
HC2
HC3

Figure 5: Expected return vs. perr for POMDP policy

and 3 handcrafted policies.

7 Conclusion
We have proposed a factored architecture for describing
POMDPs applied to spoken dialogue management. The
factored representation is useful for two reasons – first, it
facilitates estimating or specifying the system dynamics
by reducing the number of parameters, and enabling dif-
ferent aspects of the system dynamics to be specified in-
dependently. Second, it enables incorporation of an ex-
plicit dialogue model from the user’s standpoint, which
allows a dialogue designer to add rewards for “appropri-
ate” dialogue behaviour. Further, we have shown how to
convert a handcrafted policy represented as a finite-state
controller into a value function, providing a principled
way for handcrafted policies to be compared directly with
policies produced with automated solutions. Our model is
much larger than past POMDP dialogue managers; how-
ever, using our testbed problem, we have shown that a
recent POMDP optimisation technique finds policies
which outperform both an MDP baseline and three hand-
crafted controllers over all operating conditions. Further,
the POMDP solution appears to adapt to changes in
speech recognition error rate well.
 A crucial theoretical issue is how to scale this model to
handle larger problems since the state, action, and obser-
vation sets grow exponentially with the number of con-
cepts in the problem. Although we have not used the fac-
tored representation to assist the optimisation process in
this work, it may be possible to exploit the factoring to
make the optimisation algorithms more efficient.

References
[Hansen, 1998] Eric A. Hansen. Solving POMDPs by

searching in policy space. In Uncertainty in Artificial
Intelligence, Madison, Wisconsin. 1998.

[Jensen, 2001]. Finn V. Jensen. Bayesian Networks and
Decision Graphs. New York: Springer Verlang, 2001.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman and Anthony R. Cassandra. Planning and
Acting in Partially Observable Stochastic Domains.
Artificial Intelligence, Vol. 101, 1998.

[Larsson and Traum, 2000] Staffan Larsson and David
Traum. Information state and dialogue management in
the trindi dialogue move engine toolkit. Natural
Language Engineering, 5(3–4):323–340, 2000.

[Levin et al., 2000] Esther Levin, Roberto Pieraccini, and
Wieland Eckert. A Stochastic Model of Human-
Machine Interaction for Learning Dialogue Strategies.
IEEE Transactions on Speech and Audio Processing,
Volume 8, No. 1, 11-23, 2000.

[Levin and Pieraccini, 1997] Esther Levin and Roberto
Pieraccini. A Stochastic Model of Computer-Human
Interaction For Learning Dialogue Strategies.
Eurospeech, Rhodes, Greece, 1997.

[Paek and Horvitz, 2000] Tim Paek and Eric Horvitz.
Conversation as Action Under Uncertainty. In Proc.
Uncertainty in Artificial Intelligence (UAI), Stanford,
CA, June 2000.

[Pietquin, 2004] Olivier Pietquin. A Framework for
Unsupervised Learning of Dialogue Strategies. Ph D
thesis, Faculty of Engineering, Mons, Belgium, 2004.

[Roy et al., 2000] Nicholas Roy, Joelle Pineau and
Sebastian Thrun. Spoken Dialogue Management
Using Probabilistic Reasoning. Annual meeting of the
the Association for Computational Linguistics (ACL-
2000).

[Singh et al., 2002] Satinder Singh, Diane Litman,
Michael Kearns and Marilyn Walker. Optimizing
Dialogue Management with Reinforcement Leaning:
Experiments with the NJFun System. Journal of
Artificial Intelligence, Vol. 16, 105-133, 2002.

[Spaan and Vlassis, 2004] Matthijs T. J. Spaan and Nikos
Vlassis. Perseus: randomized point-based value
iteration for POMDPs. Technical Report IAS-UVA-
04-02, Informatics Institute, University of Amsterdam,
2004.

[Stuttle et al., 2004] Matthew Stuttle, Jason D. Williams,
and Steve Young. A Framework for Wizard-of-Oz
Experiments with a Simulated ASR-Channel.
International Conferences on Spoken Language
Processing (ICSLP-2004), Jeju, South Korea, 2004.

[Walker et al., 2000] Marilyn A. Walker, Candace
Kamm, and Diane Litman. Towards Developing
General Models of Usability with PARADISE.
Natural Language Engineering, Vol. 6, No. 3, 2000.

[Zhang et al., 2001] Zhang Bo, Cai Qingsheng, Mao
Jianfeng, and Guo Baining. Planning and Acting
under Uncertainty: A New Model for Spoken Dialogue
System. Proceedings of the 17th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-01). San
Francisco, USA, 2001.

82

Reinforcement Learning Of Dialogue Strategies Using The User’s Last Dialogue
Act∗

Matthew Frampton and Oliver Lemon
HCRC, School of Informatics

Edinburgh University
s0231685@sms.ed.ac.uk,olemon@inf.ed.ac.uk

Abstract
Previous attempts at using reinforcement learning
to design dialogue strategies for spoken dialogue
systems e.g. [Singh et al., 2002; Pietquin and Re-
nals, 2002] have included only ‘low-level’ informa-
tion in state representations i.e. whether or not a slot
(e.g. destination city) has been filled and the con-
fidence score associated with any supplied value.
We explore the benefits of adding limited ‘high-
level’ contextual information, in this case the di-
alogue act of the last user utterance. A general
concern with adding more information is that the
size of the state space might increase to a degree
where learning becomes intractable. We describe
3 experiments in this paper which involve learn-
ing dialogue strategies for a flight booking dia-
logue system, and which test the potential benefits
of adding this ‘high-level’ information to the state
representation. We also explore the use of differ-
ent reward functions in learning. In the first ex-
periment, adding the high level information does
not result in a superior learned strategy. However,
the second experiment demonstrates a first simple
case in which including the ‘high-level’ informa-
tion does result in a superior learned strategy, pro-
ducing a 52% increase in average reward, and the
third scales up the problem to 4 slots. Here a reward
function that rewards only totally correct database
queries (rather than also valuing partial correctness)
is found to produce the best strategy.

1 Introduction
The idea of using Markov Decision Processes (MDPs) and re-
inforcement learning (RL) to automate the design of dialogue
strategies for dialogue systems was first proposed by [Levin
and Pieraccini, 1997]. In the experiments we describe here,
a reinforcement learning program learns a dialogue strategy
while a user simulation (incorporating a simple ASR error
simulation) converses with a dialogue manager. The domain
is flight-booking, and the aim for the dialogue manager is

∗The support of the TALK project (EC IST: 507802) is acknowl-
edged. We thank the reviewers for their comments.

to obtain the user’s flight information i.e. departure, desti-
nation, date of travel and preferred airline before making a
database query. Previous researchers, e.g. [Singh et al., 2002;
Pietquin and Renals, 2002; Scheffler and Young, 2001], have
used state representations containing only ‘low-level’ infor-
mation, i.e. whether or not a slot has been filled and the confi-
dence score associated with any supplied value. In this paper,
we therefore begin to investigate the benefits of adding ‘high-
level’ contextual information from the “Information State Up-
date” approach to dialogue management, e.g. [Larsson and
Traum, 2000], in this case the dialogue act of the last user
utterance. Experiments 1 and 2 compare the performance of
strategies learned with and without the dialogue act of the last
user utterance in the state representation. In experiment 3, we
also investigate different reward functions and issues of scal-
ability.

Section 2 introduces the representation of human-machine
dialogues as a Markov Decision Process (MDP), and the use
of reinforcement learning to then learn dialogue strategies.
Section 3 contains a description of our basic experimental
framework, and a detailed description of the reinforcement
learning component and user simulation. Section 4 describes
each of the experiments, and in section 5 we conclude and
suggest future work.

2 Dialogue as a Markov Decision Process
A human-machine dialogue can be represented as a Markov
Decision Process (MDP) in terms of states (dialogue con-
texts) and actions (dialogue moves or speech acts) if we as-
sume the Markov property. This property holds of systems
where the state st+1 of the system at time t + 1 depends ex-
clusively on the state st at the immediately preceding time t,
and on the action at taken by the system when in state st:

P (st+1|st, at, st−1, at−1, ..., s0, a0) = PT (st+1|st, at) (1)
where PT is the transition probability.

The MDP formalism can be described as follows:
1. st is the state of the system at time t. In the experiments

described in this paper, the states are dialogue context
vectors containing features that indicate whether a slot
has been filled, and the confidence score associated with
any supplied value. There may also be a feature for the
dialogue act of the last user utterance.

83

2. at is the action performed by the system or user at
time t. Actions are taken from the finite action set
A = {ai}, and in the experiments here include utter-
ances and database queries.

3. The reinforcement signal, rt is the immediate reward or
cost of having performed action at when in state st.

4. π is the system’s strategy, and is a function from states to
actions. In other words it states which (dialogue) action
to perform in any state (dialogue context). It takes a
single state as its argument: π(sj) defines which action
ai is to be performed when in state sj .

Given this representation, we are faced with the problem of
deciding which dialogue actions it is best to perform in dif-
ferent states. This we do by Reinforcement Learning (RL),
which is a method of learning by delayed reward using trial-
and-error search. These two properties appear to make RL
techniques a good fit with the problem of automatically opti-
mising dialogue strategies, because in task-oriented dialogue
often the “reward” of the dialogue (e.g. successfully booking
a flight) is not obtainable immediately, and the large space of
possible dialogues for any task makes some degree of trial-
and-error exploration necessary.

Given a state and a possible action in that state, the Q-
function describes the total reward expected between taking
that action and the end of the dialogue. Once this function is
available, the optimal dialogue strategy is simply to choose
the action which maximises the expected future reward for
each state. The Sarsa(λ) algorithm is a well understood re-
inforcement learning algorithm that can be used to learn the
Q-function - see [Sutton and Barto, 1998] for a complete de-
scription. The Sarsa(λ) algorithm updates the Q-value for
a state-action pair based on the Q-values of the state-action
pairs it leads to later in the same dialogue, as well as based
on the final rewards received.

3 The Experimental Framework
Each experiment is executed using the DIPPER dialogue
manager [Bos et al., 2003], a Reinforcement Learning pro-
gram (“RLearner” described below) producing system dia-
logue acts, and a Bayesian User Simulation, all communi-
cating using the Open Agent Architecture (OAA) [Cheyer and
Martin, 2001].

We now describe the details of the Reinforcement Learner
and Bayesian User Simulation OAA agents.

3.1 The RLearner: system actions and rewards
In a single exchange between the system (RLearner)
and simulated user, the DIPPER dialogue manager
will first call RLearner’s main solvable - doRLearn-
ing(State,PossibleActions,Reward,NextAction) - with the first
3 variables instantiated. For a non-terminal system turn,
the reward will be specified as “systemTurnPenalty”. This
represents a negative value stored internally by RLearner, and
so causes RLearner to learn strategies that do not prolong a
dialogue longer than necessary. In the experiments described
in this paper, the value of systemTurnPenalty was always
−1. RLearner will update its value estimates for actions

(Q-values) internally and provide the dialogue manager with
the next action to be taken in the 4th variable. Below is a list
of the possible system actions in experiments 2 and 3, which
include all of those in experiment 1 plus an additional ‘give
help’ action. Note that n is the number of slots.

1. An open question e.g. ‘How may I help you?’

2. Ask the value for any of slots 1...n.

3. Explicitly confirm any of slots 1...n.

4. Ask for the nth slot whilst implicitly confirming slot
value n − 11 e.g. ‘So you want to fly from Edinburgh
to where?’

5. Give help.

6. Database Query.

There are a couple of restrictions regarding which actions
can be taken in which states. Action 1 (open question) is
only possible at the start of the dialogue, and DIPPER can
only confirm non-empty slots. The dialogue manager carries
out the action in the 4th variable and then calls the user sim-
ulation’s main solvable - generateResponse(SystemPrompt,
UserResponse, ConfidenceScores, AbstractResponse) - with
only the 1st variable instantiated. The user simulation (see
section 3.3) returns a response and its abstract representation
i.e. the dialogue act, and the dialogue manager updates the
dialogue context accordingly.

This sequence of events repeats until the conclusion of the
dialogue, and the system and user simulation may have any
number of dialogues. A dialogue concludes when either the
user simulation ‘hangs-up’ (with final reward 0), or the sys-
tem makes a database query. In the case of a database query,
the dialogue manager calculates a reward, which it passes to
RLearner via the main solvable doRLearning/4. The reward
functions explored in the experiments were the following:

1. Reward Function 1 (Partial Reward): +100 for each cor-
rect slot value.

2. Reward Function 2 (All-or-nothing Reward): IF all slot
values are correct, +100, ELSE 0.

3. Reward Function 3 (Mixed Reward): IF all slot values
are correct, +100, ELSE +10 for each correct slot value.

3.2 RLearner parameters
When the RLearner agent is initialized, it is given a parameter
string which includes the following:

1. Step Parameter: α

2. Discount Factor: γ

3. Eligibility Trace Parameter: λ

4. Eligibility Trace Type: accumulating or replacing.

5. Action Selection Type: ε-greedy or softmax.

6. Action Selection Parameter: ε if e-greedy; temperature
if softmax.

7. Initial Q-values

1Where n = 1 we implicitly confirm the final slot.

84

8. Print the Q-values and learned strategy to file every X
dialogues.

9. Calculate the average reward over every Y dialogues.
10. Draw a graph of average reward against number of dia-

logues every Z dialogues.
11. System-Turn-Penalty: a negative reward

RLearner updates its Q-values using the Sarsa(λ) algo-
rithm. As stated in section 2, see [Sutton and Barto, 1998]
for a complete description of this method. The first parame-
ter is the step-parameter α which may be a value between 0
and 1, or specified as decreasing. If it is decreasing, as it is
in our experiments, then for any given Q-value update α is 1

k
where k is the number of times that the state-action pair for
which the update is being performed has been visited. The
2nd and 3rd parameters, γ and λ, may take values between 0
and 1. In the experiments here, they are always 1 and 0.9 re-
spectively. The 4th parameter specifies whether the eligibility
traces are replacing, as they are here, or accumulating. Apart
from updating Q-values, RLearner must also choose the next
action for the dialogue manager to take and the 5th paramater
specifies whether it does this by ε-greedy or softmax action
selection (in our experiments to date we have explored only
the ε-greedy case). The 6th parameter gives the value of ε
for ε-greedy action selection when training, or the tempera-
ture if using softmax. In the experiments here, ε is always 0.7,
meaning that in 30% of cases a sub-optimal action is explored
during training.

RLearner will output 1 file containing the Q-values and an-
other containing the learned policy every X dialogues (pa-
rameter 8). A Q-values file can be loaded into RLearner
and this makes it possible to continue learning from this
point, or to test the learned strategy using RLearner’s solv-
able getLearnedAction(State,Action), which given the state,
returns the action with the highest Q-value. RLearner is also
able to draw graphs of average reward over different intervals
of dialogues, and these graphs are useful for indicating when
the learned strategy has stabilised. Finally, the 11th parame-
ter is the system-turn penalty mentioned in section 3.1.

3.3 Bayesian User Simulation
Here a user simulation, rather than real users, interacts with
the dialogue system during learning. This is because thou-
sands of dialogues may be necessary to train even a sim-
ple system (here we train on up to 100,000 dialogues), and
for a proper exploration of the state-action space, the system
should sometimes take actions that are not optimal for the cur-
rent situation, making it a sadistic and time-consuming proce-
dure for any human training the system. [Eckert et al., 1997]
were the first to use a user simulation for this purpose, but it
was not goal-directed and so could produce inconsistent utter-
ances. The later simulations of [Pietquin and Renals, 2002]
and [Scheffler and Young, 2001] were goal-directed and also
incorporated an ASR error simulation. A user simulation in-
teracts with the system via intentions, which are closely re-
lated to speech acts or dialogue acts. Intentions are preferred
because they are easier to generate than word sequences and
because they allow error modelling of all parts of the sys-
tem, for example ASR error modelling and semantic errors.

The user and ASR simulations must be realistic if the learned
strategy is to be directly applicable in a real system.

Our user simulation is capable of simulating goal-directed
mixed-initiative dialogue. When the user simulation’s main
solvable generateResponse (SystemPrompt, UserResponse,
ConfidenceScores, AbstractResponse) is called with the first
variable instantiated, it first generates an abstract response
via a Bayesian Belief Network (implemented using NeticaJ
[NorsysCorp., 2002]). Figure 1 shows the structure of this
Bayesian network. We chose this structure after analysing
COMMUNICATOR data [Walker et al., 2001] and identi-
fying what seemed to be the most important factors in de-
termining the next user response. These were the last sys-
tem prompt, how many times each slot has been asked about,
whether or not the system has attempted to confirm any slot
values incorrectly, and whether the user has asked for help.
An example of an incorrect confimation caused by an ASR
error is given in the dialogue segment below:

User Simulation: I want to fly from Edinburgh.
System: So you want to fly from Eindhoven?

Whether the system has attempted to confirm any slot val-
ues incorrectly, and whether the user has asked for help is
represented by the ‘history’ node. We supplied the probabil-
ities based on an initial analysis of flight-booking dialogues,
but in future work we expect to use probabilities learned from
COMMUNICATOR data.

Prompt
System Slot

Counter

Response
Abstract

History

Figure 1: The Bayes Net used by the user simulation

The possible values for the system prompt node are the pos-
sible system actions given in section 3.1. The different possi-
ble values for the slot counter node are:

• The slot asked about in the most recent system turn has
been asked about ≤ 1 time before.

• The slot asked about in the most recent system turn has
been asked about ≥ 2 times before.

The different possible values for the history node are:

• Null: There are no outstanding incorrect system confir-
mations.

• The dialogue system has attempted to confirm slot n in-
correctly.

• The user has asked for help.

Finally, the different possible values for the abstract re-
sponse are:

85

1. Stay quiet.

2. Give the value for any of slots 1...n.

3. Give the values for all of the slots.

4. Say “no” and give the correct slot value in response to
an incorrect system confirmation.

5. Say “no”.

6. Say “yes”.

7. Ask for help.

8. End the dialogue i.e. ‘hang-up’.

Abstract responses 1, 4 and 5 are responses given in ut-
terance to an incorrect system confirmation. If the abstract
response is 1, 4, or 5, then it will include the number of the
slot which has been incorrectly confirmed. Having generated
an abstract user response via the Bayesian net, the user simu-
lation next translates this abstract response into a concrete re-
sponse (userResponse in the generateResponse solvable)
by referring to a random user goal that it selected at the begin-
ning of the dialogue. This random goal consists of values for
departure city, destination city, date of travel and preferred
airline. Hence if the abstract response is to give the value
for slot 1, and the goal departure city is ‘Edinburgh’, then the
concrete user response (userResponse) will be of the form
departure(edinburgh). The user simulation may take the
initiative by giving more than one slot value when it is asked
for only one, and may decide to close the dialogue if asked
the same question twice or more.

Next this concrete user response is subject to an ASR sim-
ulation. Our initial approach is that each word in the user
simulation’s vocabulary belongs to a cluster which contains
similar sounding words. At this stage we have built these
clusters by hand, but in future we expect to use a full ASR
error simulator – for example a stochastic acoustic confuser
whose conditional probabilities are learned from the SACTI
corpora [Williams and Young, 2004]. The larger a word’s
cluster, the lower will be its ASR confidence score, and the
greater the likelihood of an ASR error. An ASR error is sim-
ulated by substituting the word for another from the same
cluster. The 2nd variable is then instantiated with the con-
crete response which now possibly contains a simulated ASR
error, and the 3rd variable with the associated ASR confi-
dence score(s). The ASR confidence score may be either low
or high. If a filled slot has low ASR confidence and is un-
confirmed, then there is only a 55% chance that the value is
correct, while if its ASR confidence is high, then it is correct.

3.4 Discussion
The experiments here can be viewed as the first in a set of pre-
liminary experiments which all use a user simulation based
on a Bayesian net, the probabilities for which we supplied af-
ter an initial analysis of flight-booking dialogues. In future
experiments we plan to use a user simulation whose proba-
bilities are learned from COMMUNICATOR data [Walker et
al., 2001] with extended annotations for user dialogue acts
[Georgila et al., 2005]. The user and ASR simulations must
be realistic if the learned strategy is to be directly applicable

in a real system. Nevertheless, we believe the preliminary ex-
periments to be worthwhile, first of all because they are prov-
ing successful and so further motivate undertaking future ex-
periments. They also provide insights into which contextual
features it is important to include in the state representation
and why. We are also gaining useful knowledge about how
best to set the reinforcement learner’s parameters.

4 The Experiments
4.1 Experiment 1
Experiment 1 used a 2-slot dialogue system, where the 1st

slot refers to the departure city, and the 2nd to the destina-
tion city. The user simulation was designed to ‘hang-up’ if
the system confirms a slot value incorrectly and then on its
next turn, having been alerted by the user simulation, it fails
to re-ask or re-confirm this slot value. The possible system
actions and user responses included those listed in sections
3.1 and 3.3 respectively, except for giving and asking for
help. Reward function 2 (All-or-nothing Reward), described
in section 3.1, was used, since in a series of preliminary ex-
periments (not presented here), it had been found to produce
faster learning and better strategies when using ε-greedy ac-
tion selection. The experiment involved learning a strategy
without the dialogue act of the last user utterance in the state
space (i.e. variables 1-6 shown below) (call this the “base-
line” strategy), and then with the dialogue act of the last user
utterance (variables 1-7) (the DA strategy), before comparing
their relative performance.

Variables in the state-space:
1. Is the 1st slot filled?
2. Is the 2nd slot filled?

3. The ASR confidence score for the 1st slot value.
4. The ASR confidence score for the 2nd slot value.
5. Has the 1st slot value been confirmed?

6. Has the 2nd slot value been confirmed?
7. Dialogue act of the last user utterance.
Variables 1-6 are binary, and there were 10 different dia-

logue acts for the last user utterance, as listed here:

1. slot1

2. slot2
3. yes
4. no-repair(slot1)

5. no-repair(slot2)
6. no(slot1)
7. no(slot2)

8. quiet(slot1)
9. quiet(slot2)

10. hang-up

This makes a total of 26×10 = 640 states. On first encoun-
tering this problem, including the dialogue act of the last user
utterance in the state space might be expected to produce a

86

superior learned strategy, because if RLearner does not know
that the last user utterance was a rejection of an attempted
confirmation, then how can it learn to re-ask or reconfirm the
slot value under question on its next turn?

However, the results showed no real difference in perfor-
mance between the baseline and DA strategies. After 18000
dialogues, each of the learned strategies seemed to have sta-
bilised, as shown by figure 2.

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 R
ew

ar
d

Number of Dialogues (Thousands)

Experiment 1: Training

With DA of last user reply
Without DA

Figure 2: Learning in experiment 1: 2 slot system, reward
function 2 (All-or-nothing Reward), no user “help” action.

Interacting with the user simulation during testing runs, the
strategy learned with the DA-strategy then achieved an aver-
age reward-per-dialogue of 94.05 over 500 dialogues, and the
baseline, 93.80.

Analysis
Our intuition is that how a user rejects an attempted system
confirmation ought to make certain system recovery actions
more suitable than others, and then it would be beneficial to
include the dialogue act of the last user utterance in the state
space. However for the particular user simulation used in this
experiment, ‘how?’ is not important, only ‘whether?’. As a
result it is unnecessary to include the dialogue act of the last
user utterance.

To see why let us consider examples of two different types
of incorrect system confirmations. The first is where the
relevant slot has yet to be confirmed. Consider the follow-
ing state-action pair taken from the text file representing the
learned strategy after 18000 dialogues.
State: [1,1,low,low,no,no]
Action: explicitlyConfirmSlot1

If the explicit confirmation is incorrect, then the user sim-
ulation rejects it and the 5th variable does not turn to ‘no’
meaning the state stays the same. Thus the next system ac-
tion is also to explicitly confirm slot 1. The system has not
shifted its focus away from the problem 1st slot - something
which would have caused the user simulation to hang-up. The
second type of incorrect system confirmation is where the rel-
evant slot has already been confirmed. In this case, an incor-

rect confirmation will change the state. Here is an example of
two relevant state-action pairs:
State: [0,1,low,low,no,yes]
Action: implicitlyConfirmSlot2andAskSlot1

State: [0,1,low,low,no,no]
Action: implicitlyConfirmSlot2andAskSlot1

An incorrect implicit confirmation of the 2nd slot value will
be rejected by the user simulation and we will move from the
first to the second state. In this second state, RLearner has
also learned to implicitly confirm the 2nd slot whilst asking
for the 1st. Thus again, the system has not shifted its focus
away from the problem slot.

Below is a list of further general characteristics of the
learned strategies from this experiment. These characteris-
tics are also true of the learned strategies from experiments 2
and 3.

1. An open question is asked at the start of the dialogue.
2. Slot values with low ASR confidence scores are con-

firmed (implicitly or explicitly) rather than re-asked.
3. When at least 1 but not all slots are filled, an empty slot

is asked while a filled slot is implicitly confirmed.
4. Once all slots are filled, explicit is preferred to implicit

confirmation for slot values with low ASR confidence.

RLearner learns to ask an open question at the start of a
dialogue because the user simulation is more likely to reply
with > 1 slot value, so enabling a shorter dialogue. To ex-
plain characteristic 2, we must consider slots that have been
filled with low ASR confidence but are unconfirmed. The
advantage of using confirmation over re-asking comes when
the confirmation turns out be correct, which is the majority
of cases. Then the user simulation replies with ‘yes’ which
is always recognised correctly, whereas if the system re-asks
the slot value, then the user simulation replies with the value
and this has a 45% chance of being misrecognised. Charac-
teristic 3 appears because if an implicit confirmation is cor-
rect, then the system can confirm the slot and obtain a value
for an empty slot in just one turn, and this allows shorter di-
alogues. However, asking for one slot value while implic-
itly confirming another is not desirable if all slots are filled
because slot values provided by the user simulation may be
incorrectly recognised and so cause longer dialogues and/or
incorrect database queries. Hence, in these states the learned
strategy chooses explicit confirmation (characteristic 4).

4.2 Experiment 2
The aim of experiment 2 was to investigate a first simple case
in which adding the dialogue act of the last user utterance to
the state space does allow RLearner to learn a superior strat-
egy. As in experiment 1, we used a 2-slot dialogue system,
reward function 2 (All-or-nothing Reward) from section 3.1,
and the same variables for representing the state space. The
key difference was that the user simulation was now able to
ask for help, and the system was able to give help – hence the
possible user responses and system actions included all those
listed in sections 3.3 and 3.1 respectively. The user simulation
had a 20% chance of asking for help if:

87

• The system has just asked an open question (this is only
possible at the start of a dialogue).

• The system asks for slot 1 for the first time.
• The system asks for slot 2 for the first time.

The user simulation will not ask for help in any other situa-
tions, and it now closes the dialogue if it asks for help and
then is not given help in the next system turn. There are now
11 different dialogue acts for the last user utterance - the same
10 from experiment 1 listed in section 4.1, and the eleventh,
‘ask-help’. With the dialogue act of the last user utterance in
the state representation, there are now 26 × 11 = 704 states.
Again, two strategies were learned - the first including the di-
alogue act of the last user utterance in the state space, (the
“DA-strategy”), and the second lacking this information (the
baseline strategy). Learning lasted for 18000 dialogues after
which both learned strategies were stable, as shown by figure
3.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 R
ew

ar
d

Number of Dialogues (Thousands)

Experiment 2: Training

With DA of last user reply
Without DA

Figure 3: Learning in experiment 2: 2 slot system, reward
function 2 (All-or-nothing Reward), with user ‘help’ action.

The DA-strategy gave help whenever the user asked for
it, while the baseline strategy did not give help in any state.
As a result, the DA-strategy achieved an average reward-per-
dialogue of 90.55 over a 500 dialogue test run interacting with
the user simulation, and the baseline strategy had an average
reward of only 59.64 (i.e. the DA-strategy shows a 52% im-
provement). The rewards during testing are greater than in
the training graph (figure 3) since in testing the system does
not choose any sub-optimal actions (i.e. ε = 1). This ex-
periment then successfully demonstrates a first simple case in
which adding the dialogue act of the last user utterance allows
RLearner to learn a superior strategy.

4.3 Experiment 3
To explore scaling-up, together with the impact of using dif-
ferent reward functions, in experiment 3 a 4-slot dialogue sys-
tem was used, where slots 3 and 4 refer to the date of travel,
and preferred airline respectively. Each state was represented
in terms of the following variables:

1. Slot 1 confidence score.
2. Slot 2 confidence score.
3. Slot 3 confidence score.
4. Slot 4 confidence score.
5. The dialogue act of the last user utterance.
Variables 1-4 can take the values empty, low or high. If a

value for the slot has been supplied, and if its ASR confidence
score is low and it is unconfirmed, then the value for the vari-
able will be low. If it is confirmed or if its ASR confidence
score is high, then it will be high. There were 19 possible val-
ues for variable 5 (see the user simulation actions in section
3.3), and so a total of 34 × 19 = 1539 states. Strategies 1, 2,
and 3 were learned using each of the 3 reward functions listed
in section 3.2. Learning continued for 100000 dialogues, at
which stage the learned strategies were still improving, but
the one using reward function 1 (Strategy 1: Partial Reward)
at a slower rate than the 2nd and 3rd reward functions (All-or-
nothing and Mixed Rewards, Strategies 2 and 3 respectively).
This is shown in figures 4, 5, and 6.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
ew

ar
d

Number of Dialogues (Thousands)

Training Using Reward Function 1

"exp4Rew1.dat"

Figure 4: Learning in experiment 3: 4-slot system, reward
function 1 (Partial reward), with user ‘help’ action, ε-greedy
action selection, ε = 0.7

Here we can see that the general dialogue strategy learning
problem remained tractable for the 4 slot case, and that after
30000 and 100000 dialogues, with ε-greedy action selection
and ε set to 0.7, the best strategy was learned using the 2nd

reward function (All-or-nothing Reward), the 2nd best strat-
egy using the 3rd reward function (Mixed Reward), and the
worst one using the 1st reward function (Partial Reward). The
experiment was repeated twice and this result was the same
each time. The performance of the learned strategies from
the first run are summarised in tables 1 and 2 (columns rep-
resent dialogue strategies trained with the 3 different reward
functions, rows show testing of those strategies based on the
3 ways of computing reward). The numbers represent the av-
erage reward achieved per dialogue over 500 test dialogues.

When learning with reward function 1, RLearner has
learned to query the database in many more states where < 4
slots have been filled with high confidence than when learn-
ing with reward functions 2 or 3. This is apparently because it

88

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
ew

ar
d

Number of Dialogues (Thousands)

Training Using Reward Function 2

"exp4Rew2.dat"

Figure 5: Learning in experiment 3: 4-slot system, reward
function 2 (All-or-nothing Reward), with user ‘help’ action,
ε-greedy action selection, ε = 0.7

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
ew

ar
d

Number of Dialogues (Thousands)

Training Using Reward Function 3

"exp4Rew3.dat"

Figure 6: Learning in experiment 3: 4-slot system, reward
function 3 (Mixed Reward), with user ‘help’ action, ε-greedy
action selection, ε = 0.7

still receives a substantial reward for doing so: +100, +200,
or +300 rather than the maximum attainable +400. Note that
learned strategy 2 outperformed learned strategies 1 and 3 on
all performance metrics i.e. including reward functions 1 and
3.

This experiment fails to consider the fact that for a real spo-
ken dialogue system there are situations where it is preferable
to query the database with only a subset of the slots filled. For
example, the ASR may simply be unable to recognise a par-
ticular slot value, perhaps due to the user’s accent. Then it is
clearly better to query the database with the slot values that
can be obtained rather than asking for the problem slot over
and over again before the user becomes so frustrated that they
hang-up. Our next experiments, which will look at the ben-
efits of including a dialogue length feature in the state space
will consider such situations. We will investigate whether we
can learn superior strategies using softmax action selection
rather than ε-greedy.

Strategy 1 Strategy 2 Strategy 3
Reward 1 247.89 373.90 334.06
Function 2 20.12 84.42 62.74
(Testing) 3 35.65 85.30 71.90

Table 1: Testing the 3 strategies after 100000 training dia-
logues using each of the 3 reward functions, average reward
achieved per dialogue over 500 test dialogues.

Strategy 1 Strategy 2 Strategy 3
Reward 1 186.76 320.04 301.91
Function 2 -4.54 78.69 40.32
(Testing) 3 14.58 75.16 56.79

Table 2: Testing the 3 strategies after 30000 training dia-
logues using each of the 3 reward functions, average reward
achieved per dialogue over 500 test dialogues.

5 Conclusion and Future Work

We have explored reinforcement learning of full dialogue
strategies using limited “high-level” context information (the
user’s last dialogue act). Previous work (e.g. [Singh et
al., 2002; Pietquin and Renals, 2002; Scheffler and Young,
2001]) has focused on only “low-level” information such as
the filled slots. Also, previous work [Singh et al., 2002] con-
centrated only on specific strategy decisions (e.g. confirma-
tion and initiative strategies), rather than the full problem of
what system dialogue action to take next.

To summarise our results, in the first experiment, adding
the dialogue act of the last user utterance to the state space
does not produce a superior learned strategy. Since in this
case how the user simulation rejected an incorrect confirma-
tion was not important, only whether the information in the
‘low level’ state space was sufficient. The second experiment,
where the system can respond to user “help” requests, demon-
strates a first simple case in which including this ‘high-level’
information does result in a superior learned strategy (there
is a 52% improvement in average reward). The third experi-
ment then shows that we can scale up to a more commercially
realistic 4-slot problem, and that when using ε-greedy action
selection, a reward function which rewards only totally cor-
rect database queries (All-or-nothing versus Partial Rewards)
produced the best strategy.

In future work we intend to explore how strategies for dif-
ferent dialogue phenomena can be captured by adding incre-
mentally more high-level context information, while scaling
up further and maintaining tractability of learning (e.g. by
using linear function approximation techniques [Henderson
et al., 2005; Lemon et al., 2005]). For example we expect
to learn confirmation, clarification, and backtracking strate-
gies that are sensitive not only to ASR confidence scores and
the user’s last dialogue move, but also to dialogue context
features such as dialogue length, the system’s last dialogue
move, parse ambiguity, user intention recognition, the avail-
able modalities, and so on. Our next experiment will explore
more subtle confirmation strategies by adding dialogue length
as a state feature.

89

References
[Bos et al., 2003] Johan Bos, Ewan Klein, Oliver Lemon,

and Tetsushi Oka. Dipper: Description and formalisation
of an information-state update dialogue system architec-
ture. In 4th SIGdial Workshop on Discourse and Dialogue,
Sapporo, 2003.

[Cheyer and Martin, 2001] Adam Cheyer and David Martin.
The Open Agent Architecture. Journal of Autonomous
Agents and Multi-Agent Systems, 4(1/2):143–148, 2001.

[Eckert et al., 1997] Weiland Eckert, Esther Levin, and
Roberto Pieraccini. User modeling for spoken dialogue
system evaluation. In IEEE Workshop on Automatic
Speech Recognition and Understanding, 1997.

[Georgila et al., 2005] Kallirroi Georgila, Oliver Lemon,
and James Henderson. Automatic annotation of COMMU-
NICATOR dialogue data for learning dialogue strategies
and user simulations. In Ninth Workshop on the Semantics
and Pragmatics of Dialogue (SEMDIAL: DIALOR) (to ap-
pear), 2005.

[Henderson et al., 2005] James Henderson, Oliver Lemon,
and Kallirroi Georgila. Hybrid Reinforcement/Supervised
Learning for Dialogue Policies from COMMUNICATOR
data. In IJCAI workshop on Knowledge and Reasoning in
Practical Dialogue Systems, (to appear), 2005.

[Larsson and Traum, 2000] Staffan Larsson and David
Traum. Information state and dialogue management in
the TRINDI Dialogue Move Engine Toolkit. Natural
Language Engineering, 6(3-4):323–340, 2000.

[Lemon et al., 2005] Oliver Lemon, Kallirroi Georgila,
James Henderson, Malte Gabsdil, Ivan Meza-Ruiz, and
Steve Young. D4.1: Integration of Learning and Adap-
tivity with the ISU approach. Technical report, TALK
Project, 2005.

[Levin and Pieraccini, 1997] Esther Levin and Roberto Pier-
accini. A stochastic model of computer-human inter-
action for learning dialogue strategies. In Eurospeech,
Rhodes,Greece, 1997.

[NorsysCorp., 2002] NorsysCorp. Netica-J Manual. Norsys
Software Corp., 2315 Dunbar Street, Vancouver, Canada,
June 2002.

[Pietquin and Renals, 2002] Olivier Pietquin and Steve Re-
nals. ASR system modeling for automatic evaluation and
optimization of dialogue systems. In International Confer-
ence on Acoustics Speech and Signal Processing, ICASSP,
Orlando, 2002.

[Scheffler and Young, 2001] Konrad Scheffler and Steve
Young. Corpus-based dialogue simulation for automatic
strategy learning and evaluation. In NAACL-2001 Work-
shop on Adaptation in Dialogue Systems, Pittsburgh, USA,
2001.

[Singh et al., 2002] Satinder Singh, Diane Litman, Michael
Kearns, and Marilyn Walker. Optimizing dialogue man-
agement with reinforcement learning: Experiments with
the NJFun system. Journal of Artificial Intelligence Re-
search (JAIR), 2002.

[Sutton and Barto, 1998] Richard Sutton and Andrew Barto.
Reinforcement Learning. MIT Press, 1998.

[Walker et al., 2001] M Walker, J Aberdeen, J Boland,
E Bratt, J Garofolo, L Hirschman, A Le, S Lee,
S Narayanan, K Papineni, B Pellom, B Polifroni,
A Potamianos, P Prabhu, A Rudnicky, G Sanders, S Sen-
eff, D Stallard, and S Whittaker. Darpa communicator dia-
log travel planning systems: The june 2000 data collection.
In Eurospeech 2001, Aalborg, Scandinavia, 2001.

[Williams and Young, 2004] Jason Williams and Steve
Young. The SACTI-1 corpus: Guide for research users.
Technical report, University Of Cambridge, 2004.

90

