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Abstract

Collaboration plays a critical role when a team is striv-
ing for goals that are difficult to achieve by an individ-
ual. In previous work, we defined the ETAPP (Environment-
Task-Agents-Policy-Protocol) framework, which describes
the collaboration of a team of agents. According to this
framework, team members propose agents to perform a
task, and the team applies a voting policy to choose an agent
for the task. In this paper, we expand on three parameters of
this framework. We model team members that have variable
proposal making attitudes, and team members whose per-
formance exhibits different levels of stability. We then con-
sider two new voting policies for group decision-making,
and use a simulation-based evaluation to investigate the in-
teraction between the different types of team members and
the voting policies. Our results show that our previousop-
timistic voting policy, which chooses the agent that seems
to have the best performance, yields an unstable task per-
formance for teams where even a few agents do not make
the best possible proposal. In contrast, our new voting poli-
cies yield a stable task performance.

1. Introduction

In many multi-agent collaboration scenarios, the agents
involved have different opinions about how to perform a
task and who should perform it. Voting policies are meth-
ods that elicit the opinions of individuals in order to make
group decisions. However, agents may not always be reli-
able when they propose agents for a task, thus compromis-
ing the performance of the group.

In this paper, we investigate the influence of unreliable
agents on team performance under theETAPPframework.
This framework expresses the collaboration of a team of
agents in terms of five operating parameters: Environment,
Task, Agents, Policy and Protocol [1]. An important aspect
of this framework is that agents coordinate their activities by
means of a group decision procedure. Specifically, agents
decide which agent should perform a task by applying an
optimistic voting policy, which selects the proposal for the
agent that is deemed to have the best performance. This pol-
icy was applied under the simplistic assumption that agents

always make proposals in a reliable manner with the best in-
tention for the group. However, decisions made under this
assumption could lead to bad team performance when some
agents exhibit unreliable proposal-making behaviour.

To investigate the impact of such behaviour, we extend
the ETAPP framework by considering the following types
of unreliable agents, which can make proposals that are not
beneficial for a team.

• Selfish. If the agent considers a task to be onerous, it
proposes other less qualified agents for the task; or al-
ternatively, if a task is of benefit to the agent, it may
propose itself, while disregarding more qualified candi-
dates.

• Lazy. The agent knowingly uses less information than
is available when it proposes agents for a task.

• Corrupt . The agent attempts to undermine the collabo-
ration when it proposes agents for a task.

• Conservative. The agent does not use the most recent
information to update its opinion of team members, thus
proposing agents on the basis of obsolete information.

This extension requires voting policies that cope with
proposals made by unreliable agents. In this paper, we con-
sider majority voting, where the agent preferred by most
team members is chosen, andweighted-observation voting,
where a proposal for an agent who has been previously seen
performing a task is weighed higher than a proposal for an
agent that was not observed in action before.

An additional extension considered in this research con-
sists of building models of agents that exhibit a non-
deterministic performance. That is, each time an agent per-
forms a task, its level of performance may change due to
the influence of factors that are not explicit. This exten-
sion requires a probabilistic representation of an agent’s
task-related capabilities, such as mean level of per-
formance and stability; a procedure for building agent
models from a sequence of observations; and a representa-
tion of an observer’sobservation capacity(which is similar
to attention span), i.e., how many observations can the ob-
server remember.

We assess the influence of these factors on task perfor-
mance by means of a simulation where we vary the stabil-
ity of agents and their observation capacity, and the type



and quality of the proposals made by agents (by consider-
ing teams composed of reliable agents and selfish, lazy, cor-
rupt or conservative agents), and apply different policies for
selecting agents for a task.

Section 2 outlines the ETAPP framework and dis-
cusses the extensions where we model agents with a
non-deterministic performance and unreliable agents,
and consider new voting policies. Our evaluation is de-
scribed in Section 3. In Section 4, we consider related
research, followed by our conclusions.

2. The ETAPP Framework

The ETAPP[1] framework is designed for a decentral-
ized setting, where agents in a group act autonomously to
collaborate with their teammates. Our framework provides
an explicit representation of five operating parameters of a
collaboration:Environment, Task, Agents, PolicyandProto-
col. TheTaskgiven to the group is to be performed in the
Environment, and thePolicy and Protocol are procedures
agreed upon by all the agents in the group, but performed
autonomously (this is similar to abiding by certain rules in
order to belong to a society). Central to theETAPPframe-
work is the idea that the real capabilities of the agents in
a team are not known to the team members. Hence, indi-
vidual agents employ models of collaborators’ capabilities
in order to estimate the contributions of team members to
a task. TheAgentscomponent stores these models and the
mechanisms to reason about them.

The elements of the ETAPP framework are outlined be-
low (for more details see [1], but note that theAgentscom-
ponent has been substantially modified since that publica-
tion). Our extensions are described later in this section.
An EnvironmentE is a state space described by predicates,
which represent properties of objects and relations between
objects. A state in the environment describes the values of
these predicates at a particular step in a collaboration.
A Task T is represented by a tuple with three elements
< ECT , EFT ,MST >.
• ECT specifies theEvaluation Criteriarelevant to task
T , e.g., speed, quality or profit. The value for each cri-
terion ranges between 0 and 1, where 0 corresponds to
the worst possible performance and 1 corresponds to the
optimal performance.

• EFT denotes theEvaluation Functionfor the task,
which specifies the weights assigned to the Evalu-
ation Criteria (i.e., their relative importance to the
task), and the way in which the values for these crite-
ria are combined. For instance, the Evaluation Func-
tion EFT = max

∑n
i=1 eciwi specifies that the task

should maximize a linear combination ofn Evalua-
tion Criteria, wherewi for i = 1, . . . , n are the weights
assigned to these criteria. These weights range be-
tween 0 and 1, where 0 indicates no impact of a

criterion on task performance, and 1 indicates a maxi-
mum impact.

• MST denotes a set ofMileStones for the task:
MST = {ms0, . . . ,msm}, where ms0 represents
the initial state of the task (and is satisfied by de-
fault) andmsm represents the goal state. Each mile-
stone is reached by performing an action.

A team of Agents A comprises agents{A1, . . . , Am},
wherem is the number of agents inA. Individual agents and
groups of agents haveInternal Resources (IR), which rep-
resent the task-related capabilities of an agent or group. In-
dividual agents also haveModeling Resources (MR), which
represent the ability of an agent to model agents and rea-
son about them.

The IR of an agent or group of agents represents how
well they can perform an action in terms of the Evalua-
tion Criteria of the task. The values forIR range between
0 and 1, with 0 indicating the worst performance and 1
the best. For instance, if the Evaluation Criteria of a task
are time and quality, and one of the actions in the envi-
ronment isdrive, thenIRAi(drive) represents the driving
performance of agentAi in terms of time and quality, i.e.,
IRAi(drive) = {Perftime

Ai
(drive), Perfqual

Ai
(drive)}. These ca-

pabilities arenot directly observable (only the resultant be-
haviour can be observed). Hence, they cannot be used to
propose agents for tasks (but they are necessary to simu-
late agent performance, Section 3).

TheMRof an agent comprise itsModels (M)of the Inter-
nal Resources of agents and groups of agents, theResource
Limits (RL)of the agent in question, and itsReasoning Ap-
paratus (RA).

• MAi are the models maintained by agentAi to estimate
IRAj

for j = 1, . . . ,m, andIRÃ, whereÃ is a sub-
set of the agents inA (agentAi can model the perfor-
mance of different subsets of agents).Ai’s estimation of
the capabilities of agents in the team (including its own
capabilities) may differ from their actual performance,
in particular if agentAi has never observed the team in
action. This estimation may be updated as agentAi ob-
serves the real performance of the agents in the team.

• The RL of an agent pertain to the amount of mem-
ory available to store models of agents and groups, the
agent’s ability to update these models and generate pro-
posals, and its ability to send and receive proposals (an
agent that has become disconnected cannot send propos-
als, even if it can generate them).

• The RA consists of the processes required by proto-
col P, which enable an agent to act in an environ-
ment and interact with collaborators. These processes
are: (1) proposing agents for an action (selecting agents
from a list of candidates); (2) communicating this pro-
posal to other agents; (3) applying a policyPA to select a



proposal from the communicated proposals; and (4) up-
datingM based on the observed performance of the se-
lected agent(s).

A Policy PA is a joint policy (adopted by all the agents
in the team) for making group decisions about assigning
agents to activities. Each agent proposes one or more agents
for an action (according to its modelsM and itsRA). Upon
receiving all the proposals, each agent usesPA for select-
ing one proposal.

A ProtocolP is a process that is followed by all the agents
in the group to coordinate their interaction. According to
this protocol, all agents generate a proposal and communi-
cate it to the other agents. Next, each agent appliesPA to
select a proposal, observes the performance of the selected
agent(s), and updates its models accordingly. It is worth not-
ing that even though all agents follow the same protocol,
the manner in which individual steps are performed is de-
termined by the agents’RA.

2.1. Extension of ETAPP

In this paper, we extend the ETAPP framework along
three agent-modeling dimensions – Internal Resources, Re-
source Limits and Reasoning Apparatus, with particular
emphasis on the proposal-generation procedure of unreli-
able agents, and the voting policies that deal with the pro-
posals made by these agents.

Internal Resources. In the original framework we as-
sumed that agents’ performance is deterministic and in-
variant. Thus,IRAi(action) is a single number between 0
and 1. However, in realistic settings, agents exhibit vari-
able performance (e.g., they could be having a bad day).
We represent such a performance by means of a trun-
cated normal distribution, where the mean represents
the ability of an agent, and the standard deviation repre-
sents its stability (truncation is required so that we don’t
exceed the [0,1] thresholds). As stated above, these val-
ues are not observable, but they are the basis from which
the observed performance of an agent is obtained dur-
ing simulations.

Resource Limits. Originally, due to the deterministic per-
formance of agents, a single observation of an agent’s per-
formance yielded an accurate model of its ability. How-
ever, this is clearly not the case if the performance is non-
deterministic. In order to cope with this situation, we in-
cludeObservation Capacity (OC)in our model of the Re-
source Limits of agents. This parameter, which is similar
to attention span [9], specifies how many observations of
the performance of each agent or group can be stored by an
agent in its memory. When this limit is exceeded, the ob-
server agent retains a window of the lastK observations
(forgetting the initial ones).

Reasoning Apparatus. The variable performance of agents
demands the implementation of a new model-updating pro-
cedure. As for Resource Limits, our previous single-update
method is unlikely to yield accurate results. We therefore
propose a simple procedure whereby an agent re-calculates
the mean and standard deviation of the observed perfor-
mance of an agent or group every time they perform an ac-
tion. Notice, however, that the results obtained by this pro-
cedure are moderated by the observation capacity of the ob-
serving agent. That is, if the observing agent can remember
only the lastK observations of an agent’s performance, then
the mean and standard deviation is calculated from these ob-
servations.

The attitude of an agent influences its proposal-making
procedure and its model-updating procedure. We define
four types of unreliable agents in the context of theseRA
processes as follows.

• A selfishagent proposes itself with a high performance
when it expects a positive reward for a task.1

• A lazy agent does not maintain models of team mem-
bers, thus it randomly selects an agent when making a
proposal, and attributes to it a random performance.

• A corrupt agent proposes a random agent, attributing to
it a high level of performance, in order to undermine the
collaboration.

• A conservativeagent does not observe the behaviour of
the team members, and hence does not update its mod-
els, using only the initial models of collaborators when
it makes proposals.

Policy. In previous work, we implemented anoptimistic
voting policy, where the agent with the most promising per-
formance was chosen for a task. This policy is adequate
when the agents that make proposals are reliable. How-
ever, since unreliable agents can now make proposals, we
consider two additional policies:majority and weighted-
observation. According to the majority policy, the agent
that receives the most votes is chosen. In contrast, the
weighted-observation policy gives more weight to propos-
als for agents that have some “credibility”. That is, a pro-
posal for an agent who has been previously seen perform-
ing a task is weighed higher than a proposal for an agent that
was not observed in action before. This weight is propor-
tional to the number of times the observed agent has been
seen in action. For example, if agentA1 has just performed
a task, whileA2 has never performed a task, the votes of the
agents that preferA1 are weighed higher (×2) than the votes
of the agents that preferA2. As above, this policy is moder-
ated by the observation capacity of the observing agents.

1 In future research, we will consider agents that propose other agents
when they expect a negative reward for a task.



2.2. Example – Surf Rescue Scenario

In this section, we present an example that illustrates
the ETAPP framework in the context of the Surf Rescue
(SR) scenario used in our simulation-based evaluation (Sec-
tion 3). In this scenario, the environmentE consists of the
beachand theocean, and the task is to rescue a distressed
person (DP) in the shortest time possible. This means that
the set of evaluation criteria isECT = {ectime}, and the
evaluation function isEFT = max{ectime} (recall that the
best performance has value 1, e.g., a short time has a high
score). The milestones in this scenario are

MST = {ms0,ms1}, where

· ms0 = at(loc(A), beach) ∧ at(loc(DP ), ocean),
· ms1 = at(loc(DP ), beach) ∧ at(loc(A), beach).

In other words,ms0 represents the initial state, where the
group of agents is located at the beach and the distressed
person is in the ocean, andms1 represents the goal state,
where the distressed person is brought back to the beach.

In this example, we have three lifesavers
A = {A1, A2, A3} at the beach. The task consists of
performing one action – to rescue the distressed per-
son. The values for theIR of A1, A2 andA3 for this action
areIRA1(rescue) = 0.5 (STDV=0.4),IRA2(rescue) = 0.8
(STDV=0.3), and IRA3(rescue) = 0.3 (STDV=0.2).
That is, agentA1 has a medium performance and is un-
stable, A2 has a high performance and is a bit more
stable, andA3 has a low performance and high stabil-
ity.

For clarity of exposition, we assume that only agentsA1

and A2 can select agents for a rescue. These two agents
(which are both observers and lifesavers) maintain mod-
els of lifesaver agentsA1, A2 andA3 (MA1(A1),MA1(A2)
and MA1(A3), and MA2(A1),MA2(A2) and MA2(A3)),
and generate proposals involving the lifesaver agents. The
models are initialized randomly (i.e., each agent has ana
priori , random opinion of the other agents). BothA1 andA2

store the last three observations made of the performance of
the lifesavers (OC=3), and apply the majority policy for se-
lecting a lifesaver for a rescue. This policy chooses the life-
saver that most agents voted for (in the event of a tie, the
top agent in an ordered list of agents is selected).

Table 1 illustrates the assignment of agents to a sequence
of rescues under the majority voting policy (the values ob-
tained after each rescue are boldfaced). The first column
shows the time of the rescue; the second column lists the ob-
server agents; the third and fourth columns show the agent
proposed by each observer agent and the agent selected by
the majority voting policy, respectively. Columns 5-7 con-
tain the observed performance of the lifesaver agents; and
columns 8-10 contain the models resulting from these ob-
servations (we have listed only the mean of the observed
performance).

The first two rows in Table 1 (corresponding to timeT0)
contain the initial conditions of the collaboration. Columns
8-10 contain the initial values of the models maintained by
A1 andA2 for the Internal Resources (rescue performance)
of A1, A2 andA3. These initial values, which arenot con-
sistent with the real performance of the agents in question,
are also recorded as the first “observed” performance ofA1,
A2 andA3. This is done to model a behaviour whereby an
agent’s initial “opinion” of the members of its team can be
influenced, but not instantly replaced, by observations of
their performance.

According to the models maintained byA1 andA2, A3

has the best performance. Hence,A3 is selected by bothA1

andA2 when a rescue is announced at timeT1. However, as
expected from theIR of A3, the agent’s actual performance
(0.4 at timeT1, Column 7) is poorer than that anticipated by
the observer agents. Both agents observe this performance,
and update their models accordingly (Column 10).

Now, when a new rescue must be performed (at timeT2),
agentA1 proposesA3, as it is still the best according to its
models, but agentA2 proposesA1. As indicated above, ac-
cording to our tie-breaking rule, the first agent in the ordered
list of agents is chosen. This isA1, as it appears in the list
beforeA3. However,A1 does not perform well in the res-
cue (0.3 at timeT2, Column 5), which significantly lowers
MA2(A1) to 0.45 (Column 8). As a result,A3 is once more
the top choice of both observer agents for the next rescue (at
timeT3). But A3 performs quite badly (0.2 at timeT3, Col-
umn 7), thereby further lowering its expected performance
according to the models maintained by the observers (Col-
umn 10).

At this stage, the bad performance of bothA1 andA3

has yielded models with low mean values for these agents.
Hence, for the next rescue,A2 is chosen by both observer
agents (at timeT4). This is a high-performing agent that has
been under-estimated by both observers. Its good perfor-
mance (0.8 at timeT4, Column 6) raises the expected value
in the models maintained by both observers (Column 9).
As a result,A2, who is now clearly preferred by both ob-
servers, is chosen for the rescue at timeT5, rendering once
more a good performance (0.7 at timeT5, Column 6).

At this point, the models maintained by the observer
agents are closer to theIR of the lifesavers than the ini-
tial (random) models. Since both observer agents have an
observation capacity of three observations, the next time a
rescue is performed, the initial value will be dropped, which
will further increase the accuracy of the models.

3. Simulation-Based Evaluation
We evaluated our extensions of the ETAPP frame-

work by means of simulation experiments which assess
the impact of the following parameters on task perfor-
mance: (1) Internal Resources, (2) Observation Capacity,
(3) Agent Proposal Making Behaviour, and (4) Vot-



Time Observer Proposed Selected Observed performance of Models
agent agent agent A1 A2 A3 M(A1) M(A2) M(A3)

T0 A1 0.3 0.4 0.5 0.3 0.4 0.5
A2 0.6 0.5 0.7 0.6 0.5 0.7

T1 A1 A3 A3 0.3 0.4 0.50.4 0.3 0.4 0.45
A2 A3 0.6 0.5 0.70.4 0.6 0.5 0.55

T2 A1 A3 A1 0.30.3 0.4 0.5 0.4 0.3 0.4 0.45
A2 A1 0.60.3 0.5 0.7 0.4 0.45 0.5 0.55

T3 A1 A3 A3 0.3 0.3 0.4 0.5 0.40.2 0.3 0.4 0.37
A2 A3 0.6 0.3 0.5 0.7 0.40.2 0.45 0.5 0.43

T4 A1 A2 A2 0.3 0.3 0.40.8 0.5 0.4 0.2 0.3 0.6 0.37
A2 A2 0.6 0.3 0.50.8 0.7 0.4 0.2 0.45 0.65 0.43

T5 A1 A2 A2 0.3 0.3 0.4 0.80.7 0.5 0.4 0.2 0.3 0.63 0.37
A2 A2 0.6 0.3 0.5 0.80.7 0.7 0.4 0.2 0.45 0.67 0.43

Table 1. Sample agent assignment to a sequence of rescues.

ing Policy. The same model-updating procedure was
used in all our experiments (whenOC=1, this proce-
dure reverts to that used in our original framework). Our
simulation is based on the Surf Rescue (SR) scenario intro-
duced in Section 2.2, where the task is to rescue a person
in distress. However, in our simulation the team of life-
savers is composed of five agents.

3.1. Simulation parameters

The parameters corresponding to our extensions were
varied as follows

• Internal Resources – We defined five teams of agents
with different degrees of stability:Invariant, Stable,
Medium, UnstableandMixed. The agents in Invariant
teams exhibit the same performance in all the rescues.
Agents in Stable teams exhibit low performance vari-
ability (the standard deviation of their performance dis-
tribution ranges between 0 and 0.2). The standard de-
viation for the performance of agents in Medium teams
ranges between 0.2 and 0.8, and for agents in Unsta-
ble teams between 0.8 and 1. The Mixed team includes
a mixture of stable, medium and unstable agents. The
mean of the performance distribution is randomly ini-
tialized for the agents in all types of teams.2

• Observation capacity –We varied theOCof the agents
between 1 and 8. WhenOC=i, agents retain the lasti ob-
servations made, and whenOC=1, their observation ca-
pacity is as for the original ETAPP framework.

• Group proposal-making behaviour – We de-
fined two parameters that affect the proposal-making
behaviour of a group of agents:Agent Proposal Mak-
ing Behaviour (APMB)and Number of Unreliable
Team members (NUT). The APMB parameter deter-
mines the type of unreliable agents in a team, i.e., self-

2 In the future, we propose to conduct experiments with high-
performing, medium-performing and low-performing teams.

ish, lazy, corrupt or conservative (Section 2.1).3 The
NUT parameter determines how many team members
exhibit the unreliable behaviour specified byAPMB.
The value ofNUT varies between 0 andm (the num-
ber of agents in the team).NUT=0 means that no
agent is unreliable (as for the original ETAPP frame-
work), andNUT=m means that all agents are unreli-
able.

• Voting policy – We experimented with the three poli-
cies mentioned in Section 2.1:optimistic, majority and
weighted observation.

In addition, we constructed two benchmark collabora-
tion settings:RAND andOMNI.
• The RAND (or random) setting defines a lower bound

benchmark, where a rescue is conducted by an agent that
has been chosen randomly from the team. In this setting,
agents do not maintain models of their collaborators’ re-
sources, do not communicate proposals, and do not up-
date models.

• The OMNI (or omniscient) setting defines an up-
per bound benchmark, where the best-performing agent
in the team is always assigned to a rescue. This set-
ting is consistent with the traditional assumption
of multi-agent systems whereby agents have accu-
rate knowledge about the performance of team mem-
bers prior to the collaboration (i.e.,MAi

(Aj) = IRAj

for i, j = 1, . . . ,m). In this setting, agents do not up-
date their models or communicate proposals, because
all agents have the same accurate models.

3.2. Methodology

We conducted two experiments as follows. In the first ex-
periment, we investigated the interaction between team sta-
bility, agent observation capacity and voting policy, and the

3 In the future, we will model teams composed of different types of un-
reliable agents.



impact of these parameters on task performance. In this ex-
periment, agents were assumed to be reliable. This assump-
tion was relaxed in our second experiment, where we inves-
tigated the impact of number and type of unreliable agents
(corrupt, lazy, conservative and selfish) and voting policy
on task performance. In this experiment, we assumed that
all agents exhibit a stable performance, and have an obser-
vation capacity ofOC = 3 (this value yields the best per-
formance for teams of stable agents, Section 3.3).

We ran one simulation for each combination of the sim-
ulation parameters in each experiment. For Experiment 1,
we performed 120 simulations (5 types of teams× 8 val-
ues forOC × 3 voting policies), and for Experiment 2 we
ran 72 simulations (4 types of unreliable agents× 6 values
for NUT× 3 voting policies). In addition, we ran one simu-
lation for each of the benchmark settings,RAND andOMNI.
Each simulation consists of ten trials, each divided into
1000 runs (we selected this number of trials and runs be-
cause it yields stable and continuous patterns of behaviour).
Each run consists of a rescue task that is repeated until con-
vergence is reached.

The IR andM for each agent are initialized at the begin-
ning of each run.IR are initialized as specified by the type
of the team (e.g., Stable or Unstable), andM are initialized
with random values. TheIR of each agent remain constant
throughout a run (the agent’s performance is drawn from the
distribution specified in theIR), while M are updated from
the observations made for each rescue in the run.

The process for reaching convergence works as follows.
At the beginning of a run, different lifesavers may be pro-
posed for a rescue task due to the discrepancy between the
models maintained by the different agents. After each res-
cue, the agents update their models based on the perfor-
mance of the chosen agent. Hence, when a rescue task is an-
nounced in the next turn, more agents are likely to propose
the same lifesaver (but not necessarily the lifesaver chosen
for the previous task). A run is terminated when the same
lifesaver is chosen inN consecutive turns (we have exper-
imented withN = 2, 3, 4, 5; the results presented in Sec-
tion 3.3 are forN =5).

Our measure of task performance for a run is the mean
of the IR distribution for the agent on which the observers
eventually converged. For instance, in the example in Ta-
ble 1, this agent isA2, whoseIRA2(rescue) has mean 0.8
(STDV=0.3). This measure reflects the final outcome of the
combination of the parameters of the simulation for the run
in question.

3.3. Results

Experiment 1. Figure 1 depicts the average task perfor-
mance obtained with two voting policies as a function of
OC for our seven types of teams –RAND, OMNI, Invariant,
Stable, Medium, Unstable and Mixed. Figure 1(a) shows the
results obtained with the optimistic policy, and Figure 1(b)

(a) Optimistic policy (b) Majority policy

Figure 1. Average task performance obtained
with the optimistic and the majority voting
policies plotted against observation capacity
for several types of teams

shows the results for the majority policy. The results ob-
tained for the weighted-observation policy are similar to
those obtained for the majority policy.

As expected, the results for theRAND andOMNI settings
correspond to the worst and best performance respectively,
and are used as a benchmark for comparison with the other
settings. The performance for the Invariant team is slightly
worse than that for theOMNI setting. This is due to the fact
that agents in the Invariant team sometimes converge to a
local maximum, which is reached when the agents in the
team select an agent that is not the best. This happens when
the agents under-estimate the performance of the best agent
to the extent that it will never be proposed by any agent in
the group, and hence will never perform the task. These re-
sults are consistent with the results obtained for theRAND,
OMNI and default scenarios in our previous work [1].

As seen in Figure 1, the average performance obtained
for the other types of teams is generally worse than that ob-
tained for the Invariant team. This is due to the higher vari-
ability in agent performance. In fact, the more unstable the
agents in the team are, the worse the performance becomes.
We posit that the main reason for this outcome is that the
observing agents are unable to update their models reliably
when team members exhibit unstable performance.

The optimistic policy yields a substantially better perfor-
mance for the Invariant and Stable teams than the major-
ity policy, and it yields a slightly better performance for the
Medium and Mixed teams than the majority policy (signif-
icance testing will be done prior to publication). This is be-
cause if we assume that agents are honest and helpful (i.e.,
they always make the best proposal according to their mod-
els, and select the best of the proposals communicated by
team members), the optimistic policy is similar to a global
optimization, where the agent that appears to be best over-



(a) Corrupt (b) Lazy (c) Conservative (d) Selfish

Figure 2. Average task performance obtained with the optimistic, majority and weighted-observation
voting policies plotted against the number of unreliable agents which are (a) Corrupt, (b) Lazy,
(c) Conservative, and (d) Selfish.

all is selected. In contrast, the majority policy selects the
most popular agent, which may not be the best overall.

Task performance improves for Medium and Mixed
teams when agents are able to remember observations of
the performance of team members. This improvement is
larger for the optimistic voting policy than for the major-
ity policy (significance testing will be done prior to pub-
lication). Further, this improvement is achieved with only
2-3 observations for the optimistic policy, and with 4-5 ob-
servations for the majority policy. This discrepancy may
be caused by the need for additional “evidence” in or-
der to get several agents to prefer the same agent, as
required by the majority policy. The performance of Unsta-
ble teams is not affected by the voting policy or the agents’
observation capacity, as the agents in these teams ex-
hibit too much performance variation for the observer
agents to reach reliable conclusions.
Experiment 2. Figure 2 depicts the average task perfor-
mance obtained with three voting policies as a function of
NUT and our four types of proposal-making behaviours
(selfish, lazy, corrupt and conservative). Additionally, as
above, we considered theRAND, OMNI settings for com-
parison purposes.

We found that the proposal-making behaviour of a group
of agents has a significant influence on task performance.
As expected, the optimistic policy compares favourably
with the other policies when all agents are reliable. How-
ever, as soon as agents make selfish or corrupt propos-
als, the optimistic policy yields a performance that is as
bad as that obtained with a random assignment of agents,
i.e., theRAND scenario (graphs (a) and (d) in Figure 2).
A similar but less dramatic result is obtained for conser-
vative agents (Figure 2(c)). The reason for these results is
that once an agent proposes an inferior team member with
a high attributed performance, this deficient proposal gov-
erns the proposal selection process. Only for lazy agents,

which propose random agents with a random performance,
the optimistic policy yields better results than the majority
or weighted-observation policy.

For the corrupt, conservative and selfish agents, as the
value of theNUT parameter increases, the majority and
weighted-observation policies yield a more stable task per-
formance than that obtained with the optimistic policy.
In addition, one or two corrupt or lazy agents have al-
most no effect on task performance under the majority
and weighted-observation policies, but as expected, perfor-
mance deteriorates rapidly when there are four or five of
these agents.

For groups with corrupt, lazy and selfish agents, the
majority voting policy yields slightly better results than
those obtained with the weighted-observation policy. In
contrast, for groups with conservative agents, the weighted-
observation policy yields better results. This may be ex-
plained as follows. The added weight of proposals made for
previously observed agents also favours the proposals made
by agents who make observations. These agents in turn are
able to update their models, and thus make more accurate
proposals than those made by conservative agents.

4. Related Research
Several research projects have demonstrated that main-

taining models of features of collaborators can benefit dif-
ferent aspects of task performance. Such features have been
modeled in order to achieve flexible team behaviour in mil-
itary domains [8] and determine collaborators’ behaviour
based on utility functions [4].

Tambe [8] introduced a general teamwork model for
communication and behaviour (called STEAM), which en-
ables members of a team to coordinate their activities in or-
der to reach a joint goal. However, the dynamic modeling
of agents by team members is limited to a single status vari-
able for each agent (e.g., “busy” or “shut down”), as op-



posed to the capabilities and resource limits modeled in our
work. Suryadi and Gmytrasiewicz [7] and Gmytrasiewicz
and Durfee [4] investigated a decision-theoretic approach
where each agent makes decisions to maximize its own in-
dividual payoff by estimating the payoff of collaborators.
However, the information stored by agents about this pay-
off does not enable them to reason about the ability of other
agents to perform the tasks at hand, as done in the ETAPP
framework.

OurOCparameter is similar to the attentional limitations
considered in [9], and is related to the memory bounded-
ness investigated in [6]. However, both Walker [9] and Ru-
binstein [6] also considered inferential limitations, while we
consider agent-modeling limitations.

Our agents’ ability to build models of agents from obser-
vations resembles the work of Davison and Hirsh [3]. Their
model gave greater weight to more recent events than to ear-
lier events, while we achieve a similar behaviour through
our OC parameter, which specifies that only the lastK ob-
servations should be considered.

Voting has been investigated in the context of collabo-
rative filtering, where the preference of one agent is pre-
dicted by taking into account the preferences of other agents
[5]. Conitzer and Sandholm [2] have recently studied the
problem of voting manipulation. They provide a theoretical
model to make manipulation hard, but their voting protocols
are different from our optimistic, majority, and weighted-
observation policies. Further, they do not consider partic-
ular behaviours designed to manipulate voting outcomes,
such as the selfish and corrupt proposal-making behaviours
investigated in this paper.

5. Conclusion
We have extended our ETAPP collaboration framework

to model team members that exhibit variable task per-
formance and different proposal-making behaviours. We
have modeled four types of unreliable proposal-making be-
haviours, employed a probabilistic representation to model
variable task performance, and endowed observer agents
with the capability to observe team members and a proce-
dure for building agent models from observations. We then
investigated the interaction between these parameters and
three voting policies.

We evaluated our extensions by means of a simulated
rescue scenario, where we varied the agents’ proposal-
making behaviour, the performance stability of teams of
agents, the number of observations retained by observer
agents, and the policy used to allocate agents to tasks. Our
results show that performance variability has a significant
impact on task performance, and that when agents are re-
liable, it is enough to make a few observations to improve
task performance for stable, mixed and medium teams. Fur-
ther, the task performance obtained by applying the opti-
mistic selection policy is at least as good as that obtained

with the majority policy. In contrast, when agents are unre-
liable, the majority and weighted-observation policies yield
the most stable performance for all proposal-making be-
haviours, while the optimistic policy produces an unstable
task performance, even when only a few agents are unreli-
able.
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