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Abstract

We present a corpus-based approach for the automation
of help-desk responses to users’ email requests. Au-
tomation is performed on the basis of the similarity be-
tween a request and previous requests, which affects
both the content included in a response and the strategy
used to produce it. The latter is the focus of this pa-
per, which introduces a meta-learning mechanism that
selects between different information-gathering strate-
gies, such as document retrieval and multi-document
summarization. Our results show that this mechanism
outperforms a random strategy-selection policy, and
performs competitively with a gold baseline that always
selects the best strategy.

Introduction
The help-desk domain offers interesting challenges to re-
sponse automation in that on one hand, responses are gener-
alized to fit standard solutions, and on the other hand, they
are tailored to the initiating request in order to meet specific
customer needs. For example, the first sentence of the re-
sponse in the left panel of Figure 1 is tailored to the user’s
request, and the remainder is generic. This means that re-
sponses sent to different customers contain varying degrees
of overlap. Thus, generating a response for a new request
may involve re-using an existing response in its entirety,
putting together parts of responses that match individual
components of the request, or composing a completely new
response. This suggests that different strategies may be suit-
able for generating a response, depending on the content of
the initiating request, and how well it matches previous re-
quests. However, existing corpus-based approaches to help-
desk response generation have considered only single strate-
gies in isolation, e.g., (Carmel, Shtalhaim, & Soffer 2000;
Berger & Mittal 2000).

In our previous work, we investigated several corpus-
based response-generation methods separately. This was a
good way of analyzing the strengths and weaknesses of each
method, but it did not yield a fully automated solution to the
problem. Here, we follow up on this previous work by in-
vestigating a way to integrate these methods within a unified
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system. Specifically, we consider a meta-learning mecha-
nism that decides on the most suitable response-generation
method for a particular request on the basis of (1) the simi-
larity between this request and previous requests, and (2) the
previous performance of the methods in question.

The rest of the paper is organized as follows. In the next
section, we describe our domain and corpus, and present our
response-generation strategies. We then introduce our meta-
learning mechanism, followed by our evaluation. In the last
two sections, we discuss related work and present conclud-
ing remarks.

Response-generation Methods
Our work is based on a corpus of email dialogues between
customers and help-desk operators at Hewlett-Packard. The
complete corpus consists of 30,000 email dialogues, but to
focus our work we used a sub-corpus of 6,659 two-turn dia-
logues where the answers were reasonably concise (15 lines
at most). These dialogues deal with a variety of customer
requests, which include requests for technical assistance,
inquiries about products, and queries about how to return
faulty products or parts.

In previous work, we showed that features of our corpus
suggest different response-generation methods (Zukerman
& Marom 2006). A key observation we made from our cor-
pus was that requests containing precise information, such as
product names or part specifications, sometimes elicit help-
ful, precise answers referring to this information, while other
times they elicit answers that do not refer to the query terms,
but contain generic information (e.g., referring customers to
another help group). The examples in the left and center
panels in Figure 1 illustrate the first situation, while the ex-
ample in the right panel illustrates the second situation. This
observation suggests two main strategies for generating re-
sponses: retrieval and prediction. Retrieval returns an in-
formation item by matching its terms to query terms (Salton
& McGill 1983). In contrast, prediction uses correlations
between features of requests and responses to select an in-
formation item. The example in the right panel of Figure 1
illustrates a request-response pair where the terms in the re-
sponse do not match any of the terms in the request, but a
few of the terms in the request are predictive of the response
(terms such as “firewall”, “CP-2W” and “network” indicate
that the query is network-related and should be redirected).



There is an internal battery
inside this ipaq which I be-
lieve has to be sent in, in
order to have it replaced.
The model is i3650, serial#
4G12DW36K9RK. �����

Do I need Compaq driver
software for my armada 1500
docking station? This in or-
der to be able to re-install win
98?

Is there a way to disable the
NAT firewall on the CP-2W
so I don’t get a private ip
address through the wireless
network?

The approximate cost
for replacing the battery
would be $120.00. Please
call technical support at
888-phone-number, op-
tions 3, 1. If you are a first
time caller, �����

I would recommend to install
the latest system rompaq, on
the laptop and the docking
station. Just select the model
of computer.

Unfortunately, you have
reached the incorrect eRe-
sponse queue for your unit.
Your device is supported
at the following link, or at
888-phone-number.

Figure 1: Sample request-response pairs.

Another key observation we made from our corpus is
that while there is high language variability in the requests
written by users, the responses exhibit strong regularities,
mainly due to the fact that operators are equipped with in-
house manuals containing prescribed answers. We have ob-
served that these regularities can occur at different levels of
granularity, with two particular granularities of interest: doc-
ument and sentence.

These two observations led us to posit response-
generation methods that combine the above strategies – re-
trieval and prediction – with the two levels of granularity –
document and sentence. Here we describe the most success-
ful of these methods.
� Document Retrieval (Doc-Ret). This method matches a

new request with previous request-response pairs on the
basis of the content terms in the request. Cosine similar-
ity is used to calculate a retrieval score (Salton & McGill
1983), and a request-response pair is considered accept-
able if the score exceeds a minimum threshold. The re-
sponse from the top retrieved pair is then re-used for the
new request. It is worth noting that we also tried match-
ing requests with previous requests alone, and with pre-
vious responses alone, but the request-response combina-
tion proved most successful.

� Document Prediction (Doc-Pred). This method first clus-
ters response documents, and then learns mappings be-
tween terms in the request emails and the response docu-
ment clusters. A new request is addressed by considering
the response cluster with the highest prediction score, and
if this score is higher than a confidence threshold, a rep-
resentative response document (closest to the centroid) is
selected as the response to the request.

� Sentence Prediction (Sent-Pred). This method is simi-
lar to Doc-Pred, but it starts by clustering response sen-
tences, rather than complete documents. It then pro-
duces a response for a new request by considering all the
sentence clusters that are predicted with sufficient con-
fidence, extracting a representative sentence (closest to
the centroid) from each of these clusters, and employ-
ing multi-document summarization techniques to collate
these sentences into a single response.

� Sentence Prediction-Retrieval Hybrid (Sent-Hybrid).
This method extends Sent-Pred by means of a retrieval
mechanism, which selects a sentence from each promis-
ing cluster based on how well the sentence matches the
terms in a request (rather than selecting the sentence clos-
est to the centroid). This retrieval mechanism is activated
when a representative sentence cannot be confidently se-
lected from a cluster, which happens when the cluster is
not sufficiently uniform (and hence a sentence close to the
centroid is not representative).

Confidence and Performance
The details of the implementation of the various methods
and their evaluation are presented in (Zukerman & Marom
2006; Marom & Zukerman 2007). For the purpose of this
paper it is important to point out that each of the methods
has its own confidence measure for producing a response to
a given request. The two sentence-level methods (Sent-Pred
and Sent-Hybrid) can produce partial responses, which hap-
pens when there is insufficient evidence to predict all the
sentences required for a complete response. These methods
have a high confidence in the response so long as they are
confident about each of the individual sentences. In con-
trast, the document-level methods (Doc-Ret and Doc-Pred)
either produce a complete response or do not produce any
response.

Our evaluation showed that each of the methods can con-
fidently address a substantial portion of the requests in our
corpus, ranging from 34% to 43%, while overall the meth-
ods address a combined 72%. Further analysis showed
that some requests were uniquely addressed by a specific
method, while others could be addressed by more than one
method. For the latter case, we compared the individual per-
formance of the methods in terms of the quality of the gen-
erated responses. This showed that although the document-
level methods were favoured because they produced com-
plete responses, the sentence-level methods provided a use-
ful alternative when a high-quality complete response could
not be produced.

Response quality was measured automatically, where we
performed a textual comparison between a generated re-
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Figure 2: Clusters obtained from the training set.

sponse and the response provided by a help-desk operator
for the request in question. This involved using the preci-
sion, recall and F-score metrics from Information Retrieval
(Salton & McGill 1983). Precision measures how correct a
generated response is (what proportion of its content terms
appear in the operator’s response), while recall measures
how complete it is (what proportion of the content terms in
the operator’s response appear in the generated response).
F-score is the harmonic mean of precision and recall, which
thus provides an overall indication of how correct and com-
plete a response is. We validated the automatic evaluation
with a small user study (Marom & Zukerman 2007).

In this paper, we extend our previous work by devel-
oping a process which can automatically select one of the
response-generation methods to address a new request. The
individual confidence measures are not comparable to each
other (e.g., the retrieval score in Doc-Ret is different to the
prediction probability in Doc-Pred), and so we cannot sim-
ply pick the method with highest confidence. However,
the performances of the different methods are comparable.
Therefore, we would like to establish a link between con-
fidence and performance. In other words, we need a meta-
level process that can predict the performance of a method
from its confidence, based on previous experience.

Meta-learning
The aim of the meta-learning component is to be able to
predict which of the different methods performs best in han-
dling an unseen request, given their individual levels of con-
fidence. Following Lekakos and Giaglis (2007), one ap-
proach is supervised learning, where a winning method is
selected for each case in the training set, the training case is
labelled accordingly, and the system is then trained to pre-
dict a winner for unseen cases. In our situation, there is not
always one single winner (two methods can perform simi-
larly well for a given request), and there are different ways
to pick winners (for example, based on F-score or precision).
Therefore, such an approach would require the utilization of
subjective heuristics for creating labels, which would signif-
icantly influence what is being learned.

Instead, we take an unsupervised approach that finds pat-
terns in the data (confidence values coupled with perfor-
mance scores), and then attempts to fit unseen data to these
patterns in order to make a decision. Heuristics are still
needed to make this decision, but they are applied by users of
the system (i.e., the organization running the help-desk) only
after the learning is complete (discussed below). These users
need to make subjective decisions, such as what is a good
performance and whether multiple methods are equally suit-
able. The advantages of an unsupervised approach are firstly
that the effort required in setting these subjective criteria is
reduced, and secondly, any future changes in these criteria
will not require re-training the system.

Training
We train the system by clustering the “experiences” of the
methods in addressing requests, where each experience is
characterized by the confidence value of each method and its
subsequent performance, reflected by precision and recall.
To this effect, we use the clustering program Snob, which
performs mixture modelling coupled with model selection
based on the Minimum Message Length criterion (Wallace
2005).1 The program decides what is the best clustering of
the data, taking into account the statistical distribution of the
data. To illustrate what we get from the clustering, consider
Figure 2(a), which shows the clusters produced by Snob.
The figure is a projection of the centroids of these clus-
ters onto the three most significant dimensions discovered
by Principal Component Analysis (PCA).2 The top part of
Figure 2(b) is discussed in the Testing section. The bottom
part of Figure 2(b) shows the (unprojected) centroid values
(confidence and (precision,recall)) for three of the clusters.
These clusters were chosen because they illustrate three dif-
ferent situations of interest.

Single winner: Cluster 8 shows the case where a single
strategy is clearly preferred. In this case the winner is

1We prefer this program because one does not need to specify
the number of clusters a-priori.

2These dimensions account for 95% of the variation in the data.



Doc-Ret: its precision and recall values in this cluster are
0.91 and 0.76, respectively.

No winner: Cluster 11 shows a case where none of the
methods do well. They all result in precision and recall
values of 0.

Multiple winners: In Cluster 16, both Doc-Pred and Sent-
Pred are competitive, exhibiting precision and recall val-
ues of (0.90, 0.89) and (0.97, 0.78), respectively. A deci-
sion between the two methods will depend on whether we
have a preference for precision or recall, as we will see
below.

Testing
We test the system with a set of unseen requests, which
we feed to each of the response-generation methods. Each
method produces a confidence value for each request. We
do not know in advance how each method will perform —
this information is missing, and we predict it on the basis
of the clusters obtained from the training set. Our predic-
tion of how well the different methods perform on an unseen
case are based on (1) how well the unseen case fits each of
the clusters, and (2) the average performance values in each
cluster as indicated by its centroid.

The top part of Figure 2(b) shows an example of an un-
seen case, whose confidence values are most similar to those
in the centroid of Cluster 16. If the match is very strong,
we can select a method using the performance values in the
centroid (this will depend on whether there is a preference
towards precision or recall, as we will see below). However,
we may not always have a strong match between an unseen
case and a cluster. For example, the cluster closest to Clus-
ter 16 is Cluster 15 (not labelled in Figure 2(a)). It contains
similar confidence values, but its precision and recall values
for Doc-Pred and Sent-Pred are (0.76, 0.66) and (0.84, 0.67)
respectively, leading to a selection of Sent-Pred (regardless
of any preferences for precision or recall).

We implement the testing step using Snob, which is able
to accept data with missing values. It fits unseen data to
the clusters obtained from training by maximizing the like-
lihood of these data, taking into account the missing infor-
mation. Then, for each data point � we get Pr

������� �	� , the
posterior probability of each cluster

���
given the new data

point. This probability takes into account any uncertainty
that arises when similar configurations of confidence values
result in different performances. For example, for the un-
seen case in Figure 2(b), Snob may assign posterior prob-
abilities of 0.5 and 0.3 to Clusters 16 and 15, respectively
(and lower probabilities to weaker-matching clusters, such
as Cluster 8). These posterior probabilities indicate how
well an unseen case matches each of the clusters. We uti-
lize this information in two alternative ways for calculating
an overall estimate of performance: Max, which considers
only the best-matching cluster; and Weighted, which consid-
ers all clusters, weighted by their posterior probabilities.
� Max: define 
�	� , the estimated precision of method  , as
�	������� ������������ ��� �"!$#%�'&� Pr

�(�)��� �*� (1)

where � � �+�� is the precision component for method  in the
centroid of cluster � .

� Weighted: define 
�	� as
�	�,�.- � Pr
���/��� �	�102��� �3�� (2)

We perform a similar calculation for recall, and repeat for
all the methods.

In order to select a method for a given request, we need to
combine our estimates of precision and recall into an overall
estimate of performance, and then choose the method with
the best performance. The standard approach for combin-
ing precision and recall is to compute their harmonic mean
— the F-score. However, in order to accommodate differ-
ent levels of preference for precision or recall, as discussed
above, we use the following weighted F-score calculation:

F-score �54 6
Precision 7981: 6

Recall ;$<>= (3)

where 6 is a weight between 0 and 1. When 6 �@?
� A we

have the standard usage of F-score, and for values greater
than 0.5, we have a preference for a high precision. For ex-
ample, if we set 6 �B?

�CA , the precision and recall values of
Cluster 16 above (Figure 2) translate to respective F-scores
of 0.895 and 0.865 for Doc-Pred and Sent-Pred, leading to
a choice of Doc-Pred. In contrast, if we set 6 �D?

�FE'A , the
respective F-scores are 0.897 and 0.914, leading to a choice
of Sent-Pred.

Evaluation
We evaluate the meta-learning system by looking at the qual-
ity of the response generated by the selected method. As
we discussed and validated with a user study in our previ-
ous work, we believe that the main concern of an automated
help-desk system is obtaining high precision. It is better to
give partial but correct information than to misguide a user,
especially when the user is aware that the response is au-
tomated. Therefore, we focus the evaluation on precision
and F-score. The former indicates how correct a response is
without penalizing it for incomplete information, while the
latter indicates how correct and complete the response is. In
order to evaluate the learning setup presented in the previ-
ous section, we employ a 5-fold cross-validation procedure
to generate five different training and testing splits in our
corpus.

Testing scenarios
We chose testing scenarios that compare the two alternative
approaches for estimating performance (Equations 1 and 2),
as well as the effect of favouring precision when selecting
between methods via the F-score calculation (Equation 3).
We also devised some baselines to help ground our results:

1. Random: select between the methods randomly.

2. Gold50: select between the methods based on their actual
performance (as opposed to their estimated performance),
using 6 �G?

� A in Equation 3.

3. Gold75: as above, but with 6 �H?
�FE'A .

The meta-learning scenarios are:

4. Weighted50: use the weighted alternative for estimating
performance (Equation 2), with 6 ��?

� A in Equation 3.



Table 1: Averaged results (standard deviation in brackets).
All cases Cases with estimated precision

� ?
� �

F-score Ave Precision Ave F-score Ave Precision (Ave) Coverage
Random 0.376 (0.33) 0.558 (0.37) 0.696 (0.25) 0.955 (0.06) 37.6%
Gold50 0.548 (0.30) 0.725 (0.26) 0.732 (0.26) 0.934 (0.06) 53.0%
Gold75 0.537 (0.29) 0.781 (0.25) 0.689 (0.26) 0.952 (0.06) 60.6%
Weighted50 0.512 (0.30) 0.727 (0.27) 0.649 (0.29) 0.874 (0.18) 57.1%
Weighted75 0.499 (0.28) 0.776 (0.26) 0.626 (0.27) 0.919 (0.16) 57.1%
Max50 0.507 (0.31) 0.704 (0.28) 0.648 (0.30) 0.844 (0.22) 56.7%
Max75 0.498 (0.28) 0.768 (0.27) 0.629 (0.27) 0.911 (0.17) 56.7%

5. Weighted75: as above, but with 6 �H?
�FE'A .

6. Max50: use the argmax alternative for estimating perfor-
mance (Equation 1), with 6 �H?

�CA .

7. Max75: as above, but with 6 ��?
�CE A .

Further, as we saw from Cluster 11 in Figure 2, the es-
timated performance can be very low for all the methods.
Therefore, we repeat the above testing scenarios under a
more practical setting, where the system has the choice not
to select any methods if the estimated performance is poor.
We envisage that a practical system would behave in this
manner, in the sense that a request for which none of the ex-
isting methods can produce a response will be passed to an
operator. As mentioned above, we consider precision to be
an important practical criterion, and so the repeated tests are
carried out by considering only cases where the estimated
precision is above 0.8. For these tests we also report on cov-
erage: the percentage of cases where this condition is met.
Note that the baselines do not have an estimated precision
because they do not use the meta-learning system. However,
for completeness, we repeat the tests for them as well, with
a threshold on the real precision.

Results
Table 1 shows the results averaged over all the cases in
the corpus (with standard deviation in brackets). The left-
hand side corresponds to the setting where the system al-
ways selects a method. As expected, the Random baseline
has the worst performance. The Gold baselines outperform
their corresponding meta-learning counterparts, but the dif-
ferences in precision are not statistically significant between
the Gold and the Weighted scenarios (using a t-test with a
1% significance level). Comparing the Weighted and Max
scenarios, the former is superior, but this is only statisti-
cally significant for the difference in precision values be-
tween Weighted50 and Max50. Comparing the results when
methods are selected based on a standard F-score calculation
versus a precision-favouring calculation ( 6 � ?

�CA versus6 � ?
�CE A in Equation 3), precision is significantly higher

for the latter in all testing scenarios, as expected. Although
this is at the expense of a reduced F-score, this reduction is
not as pronounced as the increase in precision.

The right-hand side of Table 1 shows the results when we
restrict the system to select a method only when the esti-
mated precision is

� ?
� � . We see that the meta-learning sce-

narios cover a proportion of the requests that is comparable

to the Gold baselines (approximately 57%), and that all the
results are substantially improved. As expected, all the pre-
cision values are high, and also more consistent than before
(lower standard deviation). This result is more impressive
for the meta-learning scenarios, as their selection between
methods is based on estimated precision, as opposed to the
baselines, whose selections are based on actual precision,
which is not available in practice. Comparing the Weighted
and the Max meta-learning methods, there are no significant
differences in F-score, but Weighted outperforms Max on
precision (though the difference between Weighted75 and
Max75 produces a p-value of 0.035, which is not significant
at the 1% level). Comparing 6 �B?

� A versus 6 � ?
�FE'A , for

both Weighted and Max the increase in precision is larger
than the reduction in F-score (all differences are significant
at the 1% level).

Summary

We summarize the results as follows.
� The meta-learning system significantly outperforms the

random selection baseline, and is competitive with the
gold baseline.

� There is an overall preference for using the weighted al-
ternative to estimate performance (i.e., using Equation 2
rather than 1). This alternative is better able to handle the
uncertainty that arises when a particular configuration of
confidence values results in different performances.

� There is an overall preference for precision when select-
ing between methods, as the increase in precision is larger
than the reduction in F-score. This is largely due to the
fact that we have methods that produce partial responses
(namely Sent-Pred and Sent-Hybrid), where a precision-
favouring selection approach prefers a response that is
more precise over a response that may be more complete,
as we saw in Cluster 16 in Figure 2.

� Since the system can estimate performance prior to pro-
ducing a response, it is able to opt for a non-response
rather than risk producing a bad one. The decision of
what is a bad response should be made by the organi-
zation using the system. With the stringent criterion we
have chosen (precision

� ?
� � ), the system is able to fo-

cus on approximately 57% of the requests with a much
improved performance.



Related Research
The problem of corpus-based help-desk response automa-
tion has not received much attention to-date. When it has,
the proposed solutions have always consisted of single rather
than meta-level strategies. This is the case of eResponder
(Carmel, Shtalhaim, & Soffer 2000) which retrieves a list of
request-response pairs and ranks them for the user, similarly
to our Doc-Ret method; and of the approaches described in
(Bickel & Scheffer 2004) and (Berger & Mittal 2000), which
implement solutions similar to our Doc-Pred and Sent-Pred
methods respectively. Our work, in contrast, considers sev-
eral methods as well as a meta-level strategy to combine
them.

The combination of strategies has been successfully ex-
plored in question-answering research (Chu-Carroll et al.
2003; Rotaru & Litman 2005), and recommender systems
(Lekakos & Giaglis 2007; Burke 2002). Lekakos and Gi-
aglis divided meta-learning for recommender systems into
two major classes, “merging” and “ensemble”, each subdi-
vided into the more specific subclasses suggested by Burke
(2002). The merging category corresponds to techniques
where the individual methods affect each other in differ-
ent ways (this category encompasses Burke’s “feature com-
bination”, “cascade”, “feature augmentation” and “meta-
level” sub-categories). The ensemble category corresponds
to techniques where the predictions of the individual meth-
ods are combined to produce a final prediction (this category
encompasses Burke’s “weighted”, “switching” and “mixed”
sub-categories).

Our system falls into the ensemble category, since it com-
bines the results of the various methods into a single out-
come. More specifically, it fits into Burke’s “switching” sub-
category: selecting a single method on a case-by-case basis.
A similar approach is taken by Rotaru and Litman (2005),
but their system does not have any learning. Instead it uses
a voting approach to select the answer that is provided by
the majority of methods. Chu-Carroll et al.’s system (2003)
belongs to the merging category of approaches, where the
output from an individual method can be used as input to
a different method (this corresponds to Burke’s “cascade”
sub-category). They are able to do this because the results
of all the methods are comparable. For this reason there is
no learning in this system: at each stage of the “cascade
of methods”, the method that performs best is selected. In
contrast to these two systems, our system employs methods
that are not comparable, because each is applicable in rather
different circumstances. Therefore, we need to learn from
experience when to use each method.

Conclusion
We have presented a corpus-based approach for the automa-
tion of help-desk responses. In our approach, the content of
a suitable response to a request and the method employed
to generate this response depend on the features of the re-
quest and on past experience with the corpus (composed of
request-response email pairs).

We presented a system equipped with a meta-level com-
ponent for selecting between different response-generation
methods. These methods are able to indicate a degree of

confidence in addressing a new request, based on previous
experience. The selection process is governed by how these
degrees of confidence translate to performance. Specifi-
cally, by considering the degree of confidence of the dif-
ferent methods when addressing a request, along with their
performance in the past, we were able to implement an un-
supervised learning scheme. This approach, which avoids
the cost and subjectivity of human labeling required for su-
pervised approaches, was shown to be appropriate for our
task. Further, the practical settings that place an increased
emphasis on precision were demonstrated to be beneficial.
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