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Abstract

This paper describes a probabilistic mech-

anism for the interpretation of sentence se-

quences developed for a spoken dialogue

system mounted on a robotic agent. The

mechanism receives as input a sequence of

sentences, and produces an interpretation

which integrates the interpretations of in-

dividual sentences. For our evaluation, we

collected a corpus of hypothetical requests

to a robot. Our mechanism exhibits good

performance for sentence pairs, but re-

quires further improvements for sentence

sequences.

1 Introduction

DORIS (Dialogue Oriented Roaming Interactive

System) is a spoken dialogue system under devel-

opment, which will eventually be mounted on a

household robot. The focus of our current work is

on DORIS’s language interpretation module called

Scusi?. In this paper, we consider the interpreta-

tion of a sequence of sentences.

People often utter several separate sentences to

convey their wishes, rather than producing a sin-

gle sentence that contains all the relevant informa-

tion (Zweig et al., 2008). For instance, people are

likely to say “Go to my office. Get my mug. It is

on the table.”, instead of “Get my mug on the table

in my office”. This observation, which was val-

idated in our corpus study (Section 4), motivates

the mechanism for the interpretation of a sequence

of sentences presented in this paper. Our mecha-

nism extends our probabilistic process for inter-

preting single spoken utterances (Zukerman et al.,

2008) in that (1) it determines which sentences in

a sequence are related, and if so, combines them

into an integrated interpretation; and (2) it pro-

vides a formulation for estimating the probability

of an interpretation of a sentence sequence, which

supports the selection of the most probable inter-

pretation. Our evaluation demonstrates that our

mechanism performs well in understanding textual

sentence pairs of different length and level of com-

plexity, and highlights particular aspects of our al-

gorithms that require further improvements (Sec-

tion 4).

In the next section, we describe our mechanism

for interpreting a sentence sequence. In Section 3,

we present our formalism for assessing the prob-

ability of an interpretation. The performance of

our system is evaluated in Section 4, followed by

related research and concluding remarks.

2 Interpreting a Sequence of Utterances

Scusi? employs an anytime algorithm to interpret

a sequence of sentences (Algorithm 1). The algo-

rithm generates interpretations until time runs out

(in our case, until a certain number of iterations

has been executed). In Steps 1–5, Algorithm 1

processes each sentence separately according to

the interpretation process for single sentences de-

scribed in (Zukerman et al., 2008).1 Charniak’s

probabilistic parser2 is applied to generate parse

trees for each sentence in the sequence. The parser

produces up to N (= 50) parse trees for each sen-

tence, associating each parse tree with a probabil-

ity. The parse trees for each sentence are then it-

eratively considered in descending order of proba-

bility, and algorithmically mapped into Uninstan-

tiated Concept Graphs (UCGs) — a representa-

1Although DORIS is a spoken dialogue system, our cur-
rent results pertain to textual input only. Hence, we omit the
aspects of our work pertaining to spoken input.

2
ftp://ftp.cs.brown.edu/pub/nlparser/



Algorithm 1 Interpret a sentence sequence

Require: Sentences T1, . . . , Tn

{ Interpret Sentences }
1: for all sentences Ti do

2: Generate parse trees {Pi}, and UCGs {Ui}
3: Generate candidate modes {Mi}
4: For each identifier j in Ti, generate candi-

date referents {Rij}
5: end for

{ Combine UCGs }
6: while there is time do

7: Get {(U1,M1, R1), . . . , (Un,Mn, Rn)} —

a sequence of tuples (one tuple per sen-

tence)

8: Generate {UD}, a sequence of declara-

tive UCGs, by merging the declarative

UCGs in {(Ui,Mi, Ri)} as specified by

their identifier-referent pairs and modes

9: Generate {U I}, a sequence of imperative

UCGs, by merging each imperative UCG

in {(Ui,Mi, Ri)} with declarative UCGs

as specified by their identifier-referent pairs

and modes

10: Generate candidate ICG sequences {II
j } for

the sequence {U I}
11: Select the best sequence of ICGs {II∗}
12: end while

tion based on Concept Graphs (Sowa, 1984) —

one parse tree yielding one UCG (but several parse

trees may produce the same UCG). UCGs rep-

resent syntactic information, where the concepts

correspond to the words in the parent parse tree,

and the relations are derived from syntactic in-

formation in the parse tree and prepositions (Fig-

ure 1(a) illustrates UCGs UD and U I generated

from the sentences “The mug is on the table. Clean

it.”).

Our algorithm requires sentence mode (declar-

ative, imperative or interrogative3), and resolved

references to determine how to combine the sen-

tences in a sequence. Sentence mode is obtained

using a classifier trained on part of our corpus

(Section 2.2). The probability distribution for the

referents of each identifier is obtained from the

corpus and from rules derived from (Lappin and

Leass, 1994; Ng et al., 2005) (Section 2.3).

At this point, for each sentence Ti in a sequence,

we have a list of UCGs, a list of modes, and lists

3Interrogatives are treated as imperatives at present, so in
the remainder of the paper we do not mention interrogatives.

clean0

mug03

table01

On

Patient

on

mug

DEF

DEF

table

I
1

{U       , R="the table"}
1

clean0

table02

Patient

object

clean

it

IU

object

clean

DEFtable

clean

object

on

mug DEF

table DEF

DU

I
1

{U       , R="the mug"}
2

I
1
}

1
I{ I

1
}

2
I{

DECLARATIVE

      

The mug is on the table. Clean it.
IMPERATIVE

       (b) Merged UCGs       (c) Candidate ICGs(a) Declarative and
      imperative UCGs

Figure 1: Combining two sentences

of referents (one list for each identifier in the sen-

tence). In Step 7, Algorithm 1 generates a tu-

ple (Ui,Mi, Ri) for each sentence Ti by selecting

from these lists a UCG, a mode and a referent for

each identifier (yielding a list of identifier-referent

pairs). Each element in each (U,M,R) tuple is it-

eratively selected by traversing the appropriate list

in descending order of probability. For instance,

given sentences T1, T2, T3, the top UCG for T1 is

picked first, together with the top mode and the

top identifier-referent pairs for that sentence (like-

wise for T2 and T3); next the second-top UCG is

chosen for T1, but the other elements remain the

same; and so on.

Once the (U,M,R) tuples have been deter-

mined, the UCGs for the declarative sentences

are merged in the order they were given (Step 8).

This is done by first merging a pair of declara-

tive UCGs, then merging the resultant UCG with

the next declarative UCG, and so on. The idea is

that if the declarative sentences have co-referents,

then the information about these co-referents can

be combined into one representation. For exam-

ple, consider the sequence “The mug is on the ta-

ble. It is blue. Find it. The mug is near the phone.

Bring it to me.” Some of the UCG sequences ob-

tained from the declarative sentences (first, second

and fourth) are:

{UD
1 }1={mug(CLR blue)-

(on-table & near-phone)}
{UD

1 }2={mug-(on-table(CLR blue) &

near-phone)}
{UD

1 , UD
2 }3={mug(CLR blue)-on-table,

mug-near-phone}.4

4The different notations are because colour (and size) are
properties of objects, while prepositions indicate relations.



The first two sequences contain one declarative

merged UCG, and the third contains two UCGs.

In Step 9, Algorithm 1 considers a UCG for

each imperative sentence in turn, and merges it

with declarative UCGs (which may have resulted

from a merger), as specified by the modes and

identifier-referent pairs of the sentences in ques-

tion. For example, consider the sentence sequence

“Find my mug. It is in my office. Bring it.” One of

the (U,M,R)-tuple sequences for this instruction

set is

{(find-obj-mug-owner-me, imperative, NIL),

(it1-in-office-owner-me, declarative, it1-mug),

(bring-obj-it2, imperative, it2-mug)}.

After merging the first two UCGs (imperative-

declarative), and then the second and third UCGs

(declarative-imperative), we obtain the imperative

UCG sequence{U I
1,U

I
2 }:

U I
1=find-obj-mug-(owner-me &

in-office-owner-me)

U I
2=bring-obj-mug-(in-office-owner-me).

This process enables Scusi? to iteratively merge

ever-expanding UCGs with subsequent UCGs,

eventually yielding UCG sequences which contain

detailed UCGs that specify an action or object. A

limitation of this merging process is that the infor-

mation about the objects specified in an impera-

tive UCG is not aggregated with the information

about these objects in other imperative UCGs, and

this sometimes can cause the merged imperative

UCGs to be under-specified. This limitation will

be addressed in the immediate future.

After a sequence of imperative UCGs has been

generated, candidate Instantiated Concept Graphs

(ICGs) are proposed for each imperative UCG,

and the most probable ICG sequence is selected

(Steps 10–11 of Algorithm 1). We focus on im-

perative UCGs because they contain the actions

that the robot is required to perform; these actions

incorporate relevant information from declarative

UCGs. ICGs are generated by nominating dif-

ferent instantiated concepts and relations from the

system’s knowledge base as potential realizations

for each concept and relation in a UCG (Zukerman

et al., 2008); each UCG can generate many ICGs.

Since this paper focuses on the generation of UCG

sequences, the generation of ICGs will not be dis-

cussed further.

2.1 Merging UCGs

Given tuples (Ui,Mi, Ri) and (Uj ,Mj , Rj) where

j > i, pronouns and one-anaphora in Uj are re-

placed with their referent in Ui on the basis of the

set of identifier-referent pairs in Rj (if there is no

referent in Ui for an identifier in Uj , the identifier

is left untouched). Ui and Uj are then merged into

a UCG Um by first finding a node n that is com-

mon to Ui and Uj , and then copying the sub-tree of

Uj whose root is n into a copy of Ui. If more than

one node can be merged, the node (head noun) that

is highest in the Uj structure is used. If one UCG

is declarative and the other imperative, we swap

them if necessary, so that Ui is imperative and Uj

declarative.

For instance, given the sentences “The mug is

on the table. Clean it.” in Figure 1, Step 4 of

Algorithm 1 produces the identifier-referent pairs

{(it, mug), (it, table)}, yielding two intermedi-

ate UCGs for the imperative sentence: (1) clean-

object-mug, and (2) clean-object-table. The first

UCG is merged with a UCG for the declarative

sentence using mug as root node, and the second

UCG is merged using table as root node. This

results in merged UCG sequences (of length 1)

corresponding to “Clean the table” and “Clean the

mug on the table” ({U I
1 }1 and {U I

1 }2 respectively

in Figure 1(b), which in turn produce ICG se-

quences {II
1}1 and {II

1}2 in Figure 1(c), among

others).

2.2 Determining modes

We use the MaxEnt classifier5 to determine the

mode of a sentence. The input features to the clas-

sifier (obtained from the highest probability parse

tree for this sentence) are: (1) top parse-tree node;

(2) position and type of the top level phrases under

the top parse-tree node, e.g., (0, NP), (1, VP), (2,

PP); (3) top phrases under the top parse-tree node

reduced to a regular expression, e.g., VP-NP+ to

represent, say, VP NP NP; (4) top VP head – the

head word of the first top level VP; (5) top NP head

– the head word of the first top level NP; (6) first

three tokens in the sentence; and (7) last token in

the sentence. Using leave-one-out cross valida-

tion, this classifier has an accuracy of 97.8% on

the test data — a 30% improvement over the ma-

jority class (imperative) baseline.

2.3 Resolving references

Scusi? handles pronouns, one-anaphora and NP

identifiers (e.g., “the book”). At present, we con-

sider only precise matches between NP identifiers

5
http://homepages.inf.ed.ac.uk/

s0450736/maxent_toolkit.html



and referents, e.g., “the cup” does not match “the

dish”. In the future, we will incorporate similar-

ity scores based on WordNet, e.g., Leacock and

Chodorow’s (1998) scores for approximate lexical

matches; such matches occurred in 4% of our cor-

pus (Section 4).

To reduce the complexity of reference reso-

lution across a sequence of sentences, and the

amount of data required to reliably estimate prob-

abilities (Section 3), we separate our problem into

two parts: (1) identifying the sentence being re-

ferred to, and (2) determining the referent within

that sentence.

Identifying a sentence. Most referents in our

corpus appear in the current, previous or first sen-

tence in a sequence, with a few referents appear-

ing in other sentences (Section 4). Hence, we

have chosen the sentence classes {current, previ-
ous, first, other}. The probability of referring to

a sentence of a particular class from a sentence

in position i is estimated from our corpus, where

i = 1, . . . , 5, > 5 (there are only 13 sequences

with more than 5 sentences). We estimate this dis-

tribution for each leave-one-out cross-validation

fold in our evaluation (Section 4).

Determining a referent. We use heuristics

based on those described in (Lappin and Leass,

1994) to classify pronouns (an example of a non-

pronoun usage is “It is ModalAdjective that S”),

and heuristics based on the results obtained in (Ng

et al., 2005) to classify one-anaphora (an exam-

ple of a high-performing feature pattern is “one as

head-noun with NN or CD as Part-of-speech and

no attached of PP”). If a term is classified as a pro-

noun or one-anaphor, then a list of potential ref-

erents is constructed using the head nouns in the

target sentence. We use the values in (Lappin and

Leass, 1994) to assign a score to each anaphor-

referent pair according to the grammatical role of

the referent in the target UCG (obtained from the

highest probability parse tree that is a parent of this

UCG). These scores are then converted to proba-

bilities using a linear mapping function.

3 Estimating the Probability of a Merged

Interpretation

We now present our formulation for estimating the

probability of a sequence of UCGs, which sup-

ports the selection of the most probable sequence.

One sentence. The probability of a UCG gener-

ated from a sentence T is estimated as described

in (Zukerman et al., 2008), resulting in

Pr(U |T ) ∝
∑

P Pr(P |T )·Pr(U |P ) (1)

where T , P and U denote text, parse tree and UCG

respectively. The summation is taken over all pos-

sible parse trees from the text to the UCG, be-

cause a UCG can have more than one ancestor. As

mentioned above, the parser returns an estimate of

Pr(P |T ); and Pr(U |P ) = 1, since the process of

generating a UCG from a parse tree is determinis-

tic.

A sentence sequence. The probability of an in-

terpretation of a sequence of sentences T1, . . . , Tn

is

Pr(U1, . . . , Um|T1, . . . , Tn) =

Pr(U1, . . .,Un,M1, . . .,Mn,R1, . . .,Rn|T1, . . .,Tn)

where m is the number of UCGs in a merged se-

quence.

By making judicious conditional independence

assumptions, and incorporating parse trees into the

formulation, we obtain

Pr(U1, . . . , Um|T1, . . . , Tn) =
n∏

i=1

Pr(Ui|Ti)·Pr(Mi|Pi, Ti)·Pr(Ri|P1, . . . , Pi)

This formulation is independent of the num-

ber of UCGs in a merged sequence generated

by Algorithm 1, thereby supporting the compari-

son of UCG sequences of different lengths (pro-

duced when different numbers of mergers are per-

formed).

Pr(Ui|Ti) is calculated using Equation 1, and

Pr(Mi|Pi, Ti) is obtained as described in Sec-

tion 2.2 (recall that the input features to the clas-

sifier depend on the parse tree and the sentence).

In principle, Pr(Mi|Pi, Ti) and Pr(Ri|P1, . . . , Pi)
could be obtained by summing over all parse trees,

as done in Equation 1. However, at present we use

the highest-probability parse tree to simplify our

calculations.

To estimate Pr(Ri|P1, . . . , Pi) we assume con-

ditional independence between the identifiers in a

sentence, yielding

Pr(Ri|P1, . . . , Pi) =

ki∏

j=1

Pr(Rij |P1, . . . , Pi)

where ki is the number of identifiers in sentence

i, and Rij is the referent for identifier j in sen-

tence i. As mentioned in Section 2.3, this factor is



separated into determining a sentence, and deter-

mining a referent in that sentence. We also include

in our formulation the Type of the identifier (pro-

noun, one-anaphor or NP) and sentence position i,

yielding

Pr(Rij |P1, . . . , Pi) =

Pr(Rij ref NPa in sent b, Type(Rij)|i, P1, . . . , Pi)

After additional conditionalization we obtain

Pr(Rij |P1, . . . , Pi) =

Pr(Rij ref NPa|Rij ref sent b,Type(Rij),Pi,Pb)×

Pr(Rij ref sent b|Type(Rij), i)×Pr(Type(Rij)|Pi)

As seen in Section 2.3, Pr(Type(Rij)|Pi) and

Pr(Rij ref NPa|Rij ref sent b,Type(Rij),Pi,Pb)
are estimated in a rule-based manner, and

Pr(Rij ref sent b|Type(Rij), i) is estimated from

the corpus (recall that we distinguish between

sentence classes, rather than specific sentences).

4 Evaluation

We first describe our experimental set-up, fol-

lowed by our results.

4.1 Experimental set-up

We conducted a web-based survey to collect a cor-

pus comprising multi-sentence requests. To this

effect, we presented participants with a scenario

where they are in a meeting room, and they ask

a robot to fetch something from their office. The

idea is that if people cannot see a scene, their in-

structions will be more segmented than if they can

view the scene. The participants were free to de-

cide which object to fetch, and what was in the

office. There were no restrictions on vocabulary

or grammatical form for the requests.

We collected 115 sets of instructions mostly

from different participants (a few people did the

survey more than once).6 The sentence sequences

in our corpus contain between 1 and 9 sentences,

with 74% of the sequences comprising 1 to 3 sen-

tences. Many of the sentences had grammatical

requirements which exceeded the capabilities of

our system. To be able to use these instruction

sets in our evaluation, we made systematic manual

changes to produce sentences that meet our sys-

tem’s grammatical restrictions (in the future, we

6We acknowledge the modest size of our corpus compared
to that of some publicly available corpora, e.g., ATIS. How-
ever, we must generate our own corpus since our task differs
in nature from the tasks where these large corpora are used.
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Figure 2: Our virtual environment (top view)

will relax these restrictions, as required by a de-

ployable system). Below are the main types of

changes we made.

• Indirect Speech Acts in the form of questions

were changed to imperatives. For instance,

“Can you get my tea?” was changed to “Get

my tea”.

• Conjoined verb phrases or sentences were sep-

arated into individual sentences.

• Composite verbs were simplified, e.g., “I think

I left it on” was changed to “it is on”, and out-

of-vocabulary composite nouns were replaced

by simple nouns or adjectives, e.g., “the diary

is A4 size” to “the diary is big”.

• Conditional sentences were removed.

Table 1 shows two original texts compared with

the corresponding modified texts (the changed

portions in the originals have been italicized).

Our evaluation consists of two experiments:

(1) ICGs for sentence pairs, and (2) UCGs for sen-

tence sequences.

Experiment 1. We extracted 106 sentence pairs

from our corpus — each pair containing one

declarative and one imperative sentence. To eval-

uate the ICGs, we constructed a virtual environ-

ment comprising a main office and a small office

(Figure 2). Furniture and objects were placed in

a manner compatible with what was mentioned in

the requests in our corpus; distractors were also

placed in the virtual space. In total, our environ-

ment contains 183 instantiated concepts (109 of-

fice and household objects, 43 actions and 31 re-

lations). The (x, y, z) coordinates, colour and di-

mensions of these objects were stored in a knowl-

edge base. Since we have two sentences and their

mode is known, no corpus-based information is

used for this experiment, and hence no training is

required.



Original Get my book “The Wizard of Oz” from my office. It’s green and yellow. It has a picture

of a dog and a girl on it. It’s in my desk drawer on the right side of my desk, the second

drawer down. If it’s not there, it’s somewhere on my shelves that are on the left side of my

office as you face the window.

Modified Get my book from my office. It’s green. It’s in my drawer on the right of my desk.

Original DORIS, I left my mug in my office and I want a coffee. Can you go into my office and get

my mug. It is on top of the cabinet that is on the left side of my desk.

Modified My mug is in my office. Go into my office. Get my mug. It is on top of the cabinet on the

left of my desk.

Table 1: Original and modified text

Experiment 2. Since UCGs contain only syn-

tactic information, no additional setup was re-

quired. However, for this experiment we need to

train our mode classifier (Section 2.2), and esti-

mate the probability distribution of referring to a

particular sentence in a sequence (Section 2.3).

Owing to the small size of our corpus, we use

leave-one-out cross validation.

For both experiments, Scusi? was set to gener-

ate up to 300 sub-interpretations (including parse

trees, UCGs and ICGs) for each sentence in the

test-set; on average, it took less than 1 second

to go from a text to a UCG. An interpretation

was deemed successful if it correctly represented

the speaker’s intention, which was represented by

an imperative Gold ICG for the first experiment,

and a sequence of imperative Gold UCGs for the

second experiment. These Gold interpretations

were manually constructed by the authors through

consensus-based annotation (Ang et al., 2002). As

mentioned in Section 2, we evaluated only imper-

ative ICGs and UCGs, as they contain the actions

the robot is expected to perform.

4.2 Results

Table 2 summarizes our results. Column 1 shows

the type of outcome being evaluated (ICGs in Ex-

periment 1, and UCG sequences and individual

UCGs in Experiment 2). The next two columns

display how many sentences had Gold interpreta-

tions whose probability was among the top-1 and

top-3 probabilities. The average rank of the Gold

interpretation appears in Column 4 (“not found”

Gold interpretations are excluded from this rank).

The rank of an interpretation is its position in a

list sorted in descending order of probability (start-

ing from position 0), such that all equiprobable in-

terpretations have the same position. Columns 5

and 6 respectively show the median and 75%-ile

rank of the Gold interpretation. The number of

Gold interpretations that were not found appears in

Column 7, and the total number of requests/UCGs

is shown in the last column.

Experiment 1. As seen in the first row of Ta-

ble 2, the Gold ICG was top ranked in 75.5% of

the cases, and top-3 ranked in 85.8%. The aver-

age rank of 2.17 is mainly due to 7 outliers, which

together with the “not-found” Gold ICG, are due

to PP-attachment issues, e.g., for the sentence pair

“Fetch my phone from my desk. It is near the key-

board.”, the top parses and resultant UCGs have

“near the keyboard” attached to “the desk” (in-

stead of “the phone”). Nonetheless, the top-ranked

interpretation correctly identified the intended ob-

ject and action in 5 of these 7 cases. Median

and 75%-ile results confirm that most of the Gold

ICGs are top ranked.

Experiment 2. As seen in the second row of Ta-

ble 2, the Gold UCG sequence was top ranked for

51.3% of the requests, and top-3 ranked for 53.0%

of the requests. The third row shows that 62.4%

of the individual Gold UCGs were top-ranked,

and 65.4% were top-3 ranked. This indicates that

when Scusi? cannot fully interpret a request, it

can often generate a partially correct interpreta-

tion. As for Experiment 1, the average rank of

3.14 for the Gold UCG sequences is due to out-

liers, several of which were ranked above 30. The

median and 75%-ile results show that when Scusi?

generates the correct interpretation, it tends to be

highly ranked.

Unlike Experiment 1, in Experiment 2 there is

little difference between the top-1 and top-3 re-

sults. A possible explanation is that in Experi-

ment 1, the top-ranked UCG may yield several

probable ICGs, such that the Gold ICG is not top

ranked — a phenomenon that is not observable at

the UCG stage.

Even though Experiment 2 reaches only the



Table 2: Scusi?’s interpretation performance

# Gold interps. with prob. in Average Median 75%-ile Not Total

top 1 top 3 rank rank rank found #

ICGs 80 (75.5%) 91 (85.8%) 2.17 0 0 1 (0.9%) 106 reqs.

UCG seqs. 59 (51.3%) 61 (53.0%) 3.14 0 1 36 (31.3%) 115 reqs.

UCGs 146 (62.4%) 153 (65.4%) NA NA NA 55 (23.5%) 234 UCGs

UCG stage, Scusi?’s performance for this exper-

iment is worse than for Experiment 1, as there

are more grounds for uncertainty. Table 2 shows

that 31.3% of Gold UCG sequences and 23.5% of

Gold UCGs were not found. Most of these cases

(as well as the poorly ranked UCG sequences

and UCGs) were due to (1) imperatives with

object specifications (19 sequences), (2) wrong

anaphora resolution (6 sequences), and (3) wrong

PP-attachment (6 sequences). In the near future,

we will refine the merging process to address the

first problem. The second problem occurs mainly

when there are multiple anaphoric references in a

sequence. We propose to include this factor in our

estimation of the probability of referring to a sen-

tence. We intend to alleviate the PP-attachment

problem, which also occurred in Experiment 1,

by interleaving semantic and pragmatic interpreta-

tion of prepositional phrases as done in (Brick and

Scheutz, 2007). The expectation is that this will

improve the rank of candidates which are pragmat-

ically more plausible.

5 Related Research

This research extends our mechanism for inter-

preting stand-alone utterances (Zukerman et al.,

2008) to the interpretation of sentence sequences.

Our approach may be viewed as an information

state approach (Larsson and Traum, 2000; Becker

et al., 2006), in the sense that sentences may up-

date different informational aspects of other sen-

tences, without requiring a particular “legal” set of

dialogue acts. However, unlike these information

state approaches, ours is probabilistic.

Several researchers have investigated proba-

bilistic approaches to the interpretation of spo-

ken utterances in dialogue systems, e.g., (Pfleger

et al., 2003; Higashinaka et al., 2003; He and

Young, 2003; Gorniak and Roy, 2005; Hüwel and

Wrede, 2006). Pfleger et al. (2003) and Hüwel

and Wrede (2006) employ modality fusion to com-

bine hypotheses from different analyzers (linguis-

tic, visual and gesture), and apply a scoring mech-

anism to rank the resultant hypotheses. They dis-

ambiguate referring expressions by choosing the

first object that satisfies a ‘differentiation crite-

rion’, hence their system does not handle situa-

tions where more than one object satisfies this cri-

terion. He and Young (2003) and Gorniak and

Roy (2005) use Hidden Markov Models for the

ASR stage. However, these systems do not han-

dle utterance sequences. Like Scusi?, the system

developed by Higashinaka et al. (2003) maintains

multiple interpretations, but with respect to dia-

logue acts, rather than the propositional content of

sentences. All the above systems employ seman-

tic grammars, while Scusi? uses generic, statisti-

cal tools, and incorporates semantic- and domain-

related information only in the final stage of the

interpretation process. This approach is supported

by the findings reported in (Knight et al., 2001) for

relatively unconstrained utterances by users unfa-

miliar with the system, such as those expected by

DORIS.

Our mechanism is also well suited for process-

ing replies to clarification questions (Horvitz and

Paek, 2000; Bohus and Rudnicky, 2005), since a

reply can be considered an additional sentence to

be incorporated into top-ranked UCG sequences.

Further, our probabilistic output can be used by a

utility-based dialogue manager (Horvitz and Paek,

2000).

6 Conclusion

We have extended Scusi?, our spoken language

interpretation system, to interpret sentence se-

quences. Specifically, we have offered a procedure

that combines the interpretations of the sentences

in a sequence, and presented a formalism for es-

timating the probability of the merged interpre-

tation. This formalism supports the comparison

of interpretations comprising different numbers of

UCGs obtained from different mergers.

Our empirical evaluation shows that Scusi? per-

forms well for textual input corresponding to

(modified) sentence pairs. However, we still need



to address some issues pertaining to the integra-

tion of UCGs for sentence sequences of arbitrary

length. Thereafter, we propose to investigate the

influence of speech recognition performance on

Scusi?’s performance. In the future, we intend to

expand Scusi?’s grammatical capabilities.
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