
GENERATIVE MODELLING WITH TIMED L-SYSTEMS

JON McCORMACK

Centre for Electronic Media Art,

School of Computer Science and Software Engineering

Monash University, Clayton, Australia

Email: jonmc@csse.monash.edu.au

Abstract. This paper describes a generative design system based on
timed, parametric Lindenmayer systems (L-systems), developed for
the continuous modeling of dynamic phenomena such as morpho-
genesis. The specification of development functions gives the system
the ability to continuously control temporal aspects of development in
conjunction with the discrete rewriting for which L-systems are com-
monly associated. Incorporating advanced modeling extensions, such
as generalized cylinders, into the interpretation of derived strings
gives the system the ability to model complex shapes and forms. Ex-
amples in the design and simulation of mechanical models, plant
morphogenesis and the animation of animal gaits are provide as an in-
sight into the flexibility provided by the system.

1. Introduction

Generative design offers new modes of aesthetic experience based on the

incorporation of system dynamics into the production of artifact and

experience. In the terminology of Thomas Kuhn (Kuhn 1996) it offers a

‘paradigm shift’ for the process of design and the expression of that

process. The traditional modes of representation become unnecessary,

being replaced by a meta-design process of activities, relationships,

events and processes. A key feature of generative processes is one of

database amplification, where simple sets of interacting components

generate information complexity, many orders of magnitude greater than

the specification.

This paper looks at a developmental model suitable for generative de-

sign, based on Lindenmayer Systems (L-systems). A temporal, develop-

mental model is described, and its application to generative design is illus-

trated with examples. This model is well suited to simulating the devel-

opment of a wide variety of natural and artificial phenomena.
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2.  L-systems

L-systems are string-rewriting formalisms, originally developed in 1968

by the biologist Lindenmayer for the purposes of modeling multicellular

development. Since the original formulation, L-systems have been widely

studied from a variety of perspectives, including: biological simulation,

mathematical formalisms, theory of computation, artificial life, and visu-

alization. A number of variations have been introduced adapting the basic

rewriting process to specific applications. Some of these applications in-

clude: cellular interaction (Lindenmayer and Rozenberg 1979); visual

modeling of plants, flowers and trees (Prusinkiewicz and Lindenmayer

1990); music composition (McCormack 1996); data compression

(Nevill-Manning and Witten 1997); modeling of biological organ growth

(Durikovic, Kaneda and Yamashita 1998); design of neural networks

(Kitano 1990); architectural design (Coates, Broughton and Jackson

1999; Hornby and Pollack 2001a); construction of artificial creatures

(Hornby and Pollack 2001b); procedural design of cities (Parish and

Müller 2001). This diverse oeuvre confirms the flexibility and adaptabil-

ity of L-systems as a general paradigm in generative design and modeling.

Fundamental to all varieties of L-systems is the concept of parallel

rewriting, whereby a set of symbols are rewritten (replaced, changed) ac-

cording to some set of rules. This rewriting process occurs over the entire

set of symbols simultaneously, simulating parallel development of com-

ponents, similar to the way cells develop in parallel in an organism. Due

to this parallelism, L-systems differ from other grammars such as Chom-

sky grammars, which are rewritten sequentially.

2.1.  L-SYSTEM CLASSIFICATION: AN OVERVIEW

Key classification distinctions in L-systems are made between context

sensitive and context free grammars. In the context sensitive case neigh-

bor relations are considered in deciding which rewriting rule is to be ap-

plied (Salomaa 1973). Context sensitivity can be used, for example, t o

implement chemical signaling or hormone propagation in cellular simula-

tions.

Deterministic L-systems are characterized by having only one rule or

production for each symbol in the L-system alphabet. This means that

all rewriting is deterministic and the strings produced by such L-systems

will be identical provided they begin with the same initial string (known

as the axiom). Stochastic L-systems permit rewriting on a probabilistic

basis and allow the simulation of inter- and intra-species variation from

the same L-system in the case of plant modeling. They can also be used

to simulate Markov models, popular in musical applications (McCormack

1996).
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In certain modeling contexts, the discrete nature of L-systems makes

the simulation of irrational ratios or continuous properties difficult. Pa-

rametric L-systems solve this problem by associating real-valued parame-

ters with symbols (collectively referred to as a module) and permit sym-

bol rewriting to proceed by not only matching symbols but logical and

arithmetic conditions involving parameters as well (Hanan 1992; Prus-

inkiewicz and Hanan 1990).

The key type of L-system that will be considered here is the context

free, timed, parametric L-system (tp0L-system), which includes a tempo-

ral component suitable for simulation of continuous development. This is

described in the next section.

3.  Timed, Parametric 0L-systems

Timed L-systems were proposed by Prusinkiewicz and Lindenmayer

(Prusinkiewicz and Lindenmayer 1990, Chapter 6) as an extension for

achieving continuous development with D0L-systems1. The important

developments described by the research presented in this paper are:

  the incorporation of parametric and stochastic components into

timed modules;

 birth age parameters (defined below) may be expressions;

 a general development function is used to specify the relationship be-

tween module age and its realized properties (e.g. size, colour, shape,

etc.).

3.1  DEFINITION OF TPD0L-SYSTEMS

We assume an alphabet, V, composed of a finite set of distinct symbols

      

€ 

s
1
,s

2
,K,s

n
. tpD0L-systems operate on timed, parametric modules, which

consist of timed symbols with associated parameters. For each module,

the symbol also carries with it an age — a continuous, monotonically

increasing, real variable, representing the amount of time the module has

been active in the derivation string. Strings of modules form timed, pa-

rametric words, which can be interpreted to represent modeled structures

(described in section 4). As with parametric L-systems, it is important t o

differentiate between formal modules used in production specification,

and actual modules that contain real-valued parameters and a real-valued

age.

Let V be an alphabet as defined above, 

€ 

ℜ the set real numbers and 

€ 

ℜ
+

the set of positive real numbers, including 0. The triple

                                    
1 The ‘D’ indicates deterministic, ‘0’ represents the context level — in this case 0, which
means context free.



4 J. McCORMACK

    

€ 

s,λ ,τ( )∈ V ×ℜ* ×ℜ+  is referred to as a timed parametric module (here-

after shortened to module). It consists of the symbol,   

€ 

s ∈ V , its associ-

ated parameter vector, 
      

€ 

λ = a
1
,a

2
,K,a

n
∈ ℜ  and the age of s, 

€ 

τ ∈ ℜ
+
. A

sequence of modules, 
      

€ 

x = s
1
,λ

1
,τ

1( )L s
n
,λ

n
,τ

n( )∈ V ×ℜ* ×ℜ+( )
*

 is called a

timed, parametric word. A module with symbol   

€ 

S ∈ V , parameters

    

€ 

a
1
,a

2
,...,a

n
∈ ℜ  and age 

€ 

τ  is denoted by 
    

€ 

S(a
1
,a

2
,...a

n
),τ( ). It is important

to differentiate the real-valued actual parameters of modules, from the

formal parameters (notated by underlined symbols in this section) speci-

fied in productions. In practice, formal parameters are given unique2

identifier names when specifying productions.

We assume the following definitions:

 

€ 

Σ is the set of formal parameters, 
  

€ 

C Σ( ) is a logical expression using

parameters from 

€ 

Σ, 
  

€ 

E Σ( ) is an arithmetic expression with parameters

from the same set.

 C and E  consist of formal parameters and numeric constants, com-

bined using the standard operators +, –, /, *, ^ (exponentiation)

  

€ 

n (nth root, defaulting to n=2 if n is not specified); relational opera-

tors 

€ 

<,

€ 

>,

€ 

≤,

€ 

=,

€ 

≠; logical operators ! (not), & (and), | (or); a number of

trigonometric, stochastic and other functions; and parentheses ‘(’, ‘)’.

Rules for constructing expressions, operator precedence and associa-

tivity are the same as for the C programming language (Kernighan and

Ritchie 1988).

 
  

€ 

C Σ( ) and 
  

€ 

E Σ( ) are the sets of correctly constructed logical and arith-

metic expressions with parameters from 

€ 

Σ. Logical expressions evalu-

ate to Boolean values of TRUE or FALSE (equivalent to 1 or 0).

Logical expressions evaluate to a real number in an arithmetic con-

text.

A timed, parametric 0L-system (tp0L-system) is an ordered quadruplet

    

€ 

G = V ,Σ,ω,P  where:

  V  is the non-empty set of symbols called the alphabet of the L-

system;

 

€ 

Σ is the set of formal parameters;

  
    

€ 

ω ∈ V ×ℜ* ×ℜ+( )
+

is a nonempty timed, parametric word over V ,

called the axiom, and

                                    
2 Within the scope of the associated production.
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  
      

€ 

P⊂ V × Σ* ×ℜ+( )× C(Σ)× V × E(Σ)
* × E(Σ)( )

*

is a finite set of produc-

tions.

A production 
    

€ 

a,C,χ( )  is denoted 
    

€ 

a : C → χ , where the formal mod-

ule
    

€ 

a ∈ V × Σ* ×ℜ
+
 is the predecessor, the logical expression       

€ 

C ∈ C(Σ)  is

the c o n d i t i o n ,  and the formal timed parametric word

      

€ 

χ ∈ V × E(Σ)
* × E(Σ)( )

*

is called the successor. Let 
    

€ 

s,λ ,β( ) be a predeces-

sor module in a production   

€ 

p
i
∈ P  and 

      

€ 

s
1
,λ 1,α 1( )L s

n
,λ

n
,α

n( )  the succes-

sor word of the same production. The parameter 

€ 

β ∈ ℜ
+
 of the predeces-

sor module represents the terminal a g e  of   

€ 

s . The expressions,

      

€ 

α
i
∈ E(Σ), i = 1..n  sets the initial or birth age. Birth age expressions are

evaluated when the module is created in the derivation string. This no-

menclature is illustrated in the figure below. If the condition is empty, the

production can be written 
  

€ 

s → χ . Formal and actual parameter counts

must be the same for any given symbol.

Figure 1. Nomenclature for predecessor and successor modules in a tpD0L-system

Here are some example productions:

    

€ 

A j,k( ),3.0( ) : j < k → B j * k( ),0.0( ) C j +1,k −1( ),0.5( ) (1)

    

€ 

A t( ),3.0( )→ A t +1( ),3.0 / t( ) (2)
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It is assumed:

 For each symbol   

€ 

s ∈ V there exists at most one value of 

€ 

β ∈ ℜ
+  for

any production   

€ 

p
i
∈ P  where 

    

€ 

s,λ ,β( ) is the predecessor in   

€ 

p
i . If s

does not appear in any production predecessor then the terminal age

of s,   

€ 

β
s
=∞ is used (effectively the module never dies).

 If 
    

€ 

s,λ ,β( ) is a production predecessor in   

€ 

p
i  and 

    

€ 

s,λ
i
,α

i( ) any module

that appears in a successor word of P for s, then   

€ 

β >α
i  when 

  

€ 

α
i  is

evaluated and its value bound to   

€ 

α
i  (i.e. the lifetime of the module,

    

€ 

β −α
i
> 0 ).

Development proceeds according to some global time, t, common to the

entire word under consideration. Local times are maintained by each

module’s age variable, 

€ 

τ  (providing the relative age of the module). Re-

writing begins with the axiom, 

€ 

ω . Modules age according to t, and when a
module reaches it’s terminal age, it is replaced by a successor word, 

€ 

χ ,

from the production whose predecessor module matches the module that

has reached its terminal age. The formal parameters of the successor

modules bound to the corresponding actual values when placed into the

derivation string.

The necessary conditions for matching are: if the module and produc-

tion predecessor symbols and  parameter counts match; the condition

statement, C, evaluates to TRUE when the module’s actual parameters

are bound to the formal parameters as specified in the predecessor mod-

ule.

3.2  INTERPRETATION OF MODULES

A derivation word is the list of modules generated by G at some time t. In

order for such an L-system to generate (for example) geometric form,

this word must be interpreted to generate actual geometry. This is tradi-

tionally carried out using a turtle interpretation, based on the idea of turtle

geometry (Abelson and DiSessa 1982) from the LOGO programming lan-

guage, whereby an imaginary turtle maintains a local coordinate frame

which is modified by commands such as ‘move forward’, ‘turn left’, ‘turn

right’ and so on. Commands to draw (‘pen up’ and ‘pen down’) permit

2D drawing. The system described in this paper offers considerably more

sophisticated drawing commands (detailed in section 4.1), but the basic

principle remains the same. With a turtle interpretation, the entire deri-

vation word is interpreted sequentially from left to right, generating the

geometry. By interpreting the derivation word at different times in its

development, animated sequences can be generated.
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Certain symbols in the alphabet, V, are designated as turtle commands.

The interpretation of these commands involves all elements of the mod-

ule: the symbol determines the actual command, the module’s age and

parameters control various properties of the particular command. A

module’s parameters and age are connected to the turtle interpretation

via the development function, specified in the next section.

3.3  DEVELOPMENT FUNCTIONS

Let 
    

€ 

m = s,λ ,τ( )∈ V ×ℜ×ℜ+  be an actual module composed of the sym-

bol, s, its actual parameters, 

€ 

λ  and its current relative age, 

€ 

τ . A timed

symbol   

€ 

s ∈ V  may optionally have associated with it a development

function,  
    

€ 

g
s
: V ×ℜ* ×ℜ+( )→ℜ . This function may involve any of the

parameters, the current age, 

€ 

τ , and the terminal age 

€ 

β  of s (determined

by the predecessor of the production acting on s). Thus   

€ 

g
s
is a real valued

function that can be composed of any arithmetic expression 
    

€ 

E λ
s
,τ

s
,β

s( ) .

In addition to the formal parameters supplied, expressions can include the

operators, numeric constants, and functions defined in section 3.1. The

development function returns a real value, which is then used as a scaling

factor for the actual parameter vector 

€ 

λ . That is:

  

€ 

′ λ = g
s
⋅ λ[ ] (3)

The development function is evaluated whenever a module requires turtle

interpretation, with parameter vector 

€ 

′ λ  sent to the turtle, rather than

€ 

λ  as is the case with parametric L-systems. No constraints are placed on

the range or continuity of   

€ 

g
s
, however if continuity is required when a

production is applied (such as the accurate modeling of cellular develop-

ment)   

€ 

g
s
 must be monotonic and continuous. These constraints extend

to the development functions for those symbols that are related as being

part of the successor definition of s.

The development function is specified in the form:

    

€ 

g
s
parameter_list( ) =expression (4)

where parameter_list  is drawn from the parameters, age and terminal

age of s 
    

€ 

λ
s
,τ

s
,β

s{ }  and expression is any valid arithmetic expression.
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4.  Turtle Commands

The system provides a wide variety of turtle commands. For the sake of

brevity, only a subset will be detailed here. For more complete details the

reader is referred to (McCormack 2003).

The turtle maintains its own local coordinate reference frame, con-

sisting of three orthogonal unit vectors representing the current Heading,

Left and Up directions (denoted   

€ 

H ,   

€ 

L , and   

€ 

U  respectively). A world co-

ordinate position, t, is also maintained (see Figure 2 below).

Figure 2. Turtle coordinate system and commands to change orientation

Basic turtle commands allow movement forward (‘f’), turning left

(‘+’) and right (‘–’), pitch up (‘^’) and down (‘&’) and twist clockwise

(‘/’) and anti-clockwise (‘\’). Parameters to these commands describe the

amount of that particular command, i.e. f(3.2) moves forward (in the

direction of   

€ 

H  by 3.2 units; +(45) turns the turtle left by 45 degrees.

The turtle is a state-based system and the square brackets (‘[’ and ‘]’)

push and pop the turtle state (reference frame and associated drawing pa-

rameters) on and off a stack. This mechanism permits the creation of

branching structures so important in plant and tree modeling applications

(Prusinkiewicz and Hanan 1989).

Other commands instance geometry, for example the ‘F’ command

draws a cylinder of length specified by its parameter (the radius is set us-

ing the ‘!’ command). So for example the command sequence: !(3)F(10)

draws a cylinder of radius 3 units and length 10, with the principle axis in

the direction of   

€ 

H . In addition, the current turtle position is updated t o

the end of the cylinder after drawing.

4.1  GENERALIZED CYLINDERS

Wainwright suggests that the cylinder has found general application as a

structural element in plants and animals (Wainwright 1988). He sees the

cylinder as a logical consequence of the functional morphology of organ-
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isms, seeing the dynamic physiological processes (function) as dependent

on form and structure over time. Wainwright distinguishes the cylinder as

a natural consequence of evolutionary design based on the physical and

mechanical properties of cylindrical structures.

This simple cylindrical method provided by the ‘F’ command is not

sufficient for more complex geometric modeling. Consider the case of

modeling a compound segment, such as a tentacle or horn. A relatively

simple L-system can be used to describe such a shape, as illustrated in Fig-

ure 3. The problem in using the cylinder symbol, F, is that compound

segments exhibit discontinuities between segments.

    

€ 

# define N 10

# define L 10

# define R 5

# define A 10

# define k
l
   0.8

# define k
r
   0.8

ω : horn(N ,L, R, A)

p
1
: horn(n, l,r,a)→ seg(n, l,r,a)

p
2

: seg(n, l,r,a) :  n >  0 :  →

!(r) F(l) ^ (a)

seg(n−1, l * k
l
,r * k

r
,a *1.1)

    

€ 

# define N 10

# define L 10

# define R 5

# define A 10

# define k
l
   0.8

# define k
r
   0.8

ω : horn(N ,L, R, A)

p
1
: horn(n, l,r,a)→ c(1) cseg(n, l,r,a)

p
2
: cseg(n, l,r,a) :  n >  0 :  →

!(r) C(l) ^ (a)

cseg(n−1, l * k
l
,r * k

r
,a *1.1)

A B

Figure 3. A simple horn defined (A) using cylinders, which leaves noticeable gaps

where the radius and angle of the cylinder changes. In B, this problem is fixed with

the use of generalized cylinders. The parametric L-system generating each model is

shown below the image (timed information is not shown)

This problem of describing more complex cylindrical shapes can be

solved using generalized cylinders, originally developed by Agin for ap-

plications in computer vision (Agin 1972). Generalized cylinders have

been used extensively by Bloomenthal to model tree limbs (Bloomenthal

1985) and a variety of natural objects (Bloomenthal 1995).
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Similar systems to the one described here also make use of generalized

cylinders. The xfrog system of Lintermann and Deussen makes basic use

of cylindrical structures in stem and branch modelling (Lintermann and

Deussen 1998; Lintermann and Deussen 1999). Prusinkiewicz et. al. de-

scribe an interactive plant modeling system that makes use of generalized

cylinders and is based on L-systems (Prusinkiewicz et al. 2001). Both

these systems rely on external curve editing software, whereas the system

described in this paper uses an extended set of turtle commands to auto-

mate generalized cylinder construction.

The basic principle for creating a generalized cylinder is to define a se-

ries of cross-sections, possibly of varying shape and size, distributed over

some continuous curve, known as the carrier curve. The cross-sections

are connected to form a continuous surface.

Turtle commands include the selection and construction of cross-

sections and the cubic interpolation of curves between cross-sections.

Specific details on generalized cylinder generation can be found in

(McCormack 2003).

5.  Examples

Here some examples of the use of tpD0L-systems and their associated

development functions are shown, highlighting their application in mod-

eling animated mechanical and organic structures.

5.1  A SIMPLE PISTON SYSTEM

This example simulates a simple piston and flywheel

mechanism. The piston is connected to the flywheel

via an arm of fixed length. The movement of the pis-

ton is constrained to the vertical, which drives the

wheel in a circular motion. The schematic diagram

(Figure 4, left) shows the principle features.

Figure 5 shows the L-system used to model the

above system. The period of the system is determined
by the constant 

€ 

ρ . In-built turtle geometry commands

are sufficient to construct all the geometry. Produc-

tion 
    

€ 

p
1
 builds the system, productions 

    

€ 

p
2
− p

4
 cycle

the components in loops of period 

€ 

ρ . When a symbol

reaches the end of its life, it begins again with age 0

and the cycle continues. The ‘equiv’ directives equate

symbols with different names the same turtle function,

for example the bend  symbol is interpreted in the

Figure 4: Pis-

ton schematic
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same way as the ‘+’ command (counter-clockwise rotation about the U

vector).

    

€ 

# define W
R

50

# define K
L

200

# define K
R

2

# define P
R

10

# define P
L

60

# define ρ 4

# define Ε 0.04

equiv f mov

equiv + bend

equiv − turn

ω : piston,0( )
p

1
: piston,Ε( )→ mov W

R( ),0( ) ! P
R( ) cC P

L
,TRUE( ) bend 1( ),0( ) ! K

R( ) cC K
L
,TRUE( )

turn 1( ),0( ) f W
R( ) + π 2( ) [ disc 0,W

R( ) ]

p
2

: mov x( ),ρ( )→ mov x( ),0( )
p

3
: bend x( ),ρ( )→ bend x +1( ),0( )

p
4

: turn x( ),ρ( )→ turn x( ),0( )

g
mov

τ
mov

,β
mov( ) = 1−cos

2π τ
mov

β
mov

 

 
 

 

 
 

g
bend

τ
bend

,β
bend( ) = sin−1

W
R

sin
2π τ

bend

β
bend

 

 
 

 

 
 

K
L

 

 

 
 
 
 

 

 

 
 
 
 

g
turn

τ
turn

,β
turn( ) = g

bend
τ

turn
,β

turn( )+
2π τ

turn

β
turn

Figure 5. tp0L-system for the piston system and graph showing development func-

tions over a single cycle

The development functions associated with each timed module pro-

vide the information necessary drive the animation. Thus, the produc-

tions provide structure and control, while the development functions

control the animation properties of the model. The derivation word for

the piston system is shown for various global time values in Table 1. The

parameter values shown reflect the application of the development func-

tion.

TABLE 1: Derivation word at specific times for the L-system of Figure 5.

t

(global time)

Derivation String

(after application of development function)

0.0
    

€ 

piston,0( )
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0.04

    

€ 

mov 0( ),0( ) ! 10( ) cC 60,TRUE( ) bend 0( ),0( ) ! 2( ) cC 200,TRUE( )
turn 0( ),0( ) f 50( ) + 1.57( ) [ disc 0,50( ) ]

1.04

    

€ 

mov 50( ),1( ) ! 10( ) cC 60,TRUE( ) bend 0.253( ),1( ) ! 2( ) cC 200,TRUE( )
turn 1.82( ),1( ) f 50( ) + 1.57( ) [ disc 0,50( ) ]

4.04

    

€ 

mov 0( ),0( ) ! 10( ) cC 60,TRUE( ) bend 0( ),0( ) ! 2( ) cC 200,TRUE( )
turn 6.28( ),0( ) f 50( ) + 1.57( ) [ disc 0,50( ) ]

5.2  MORPHOGENETIC DEVELOPMENT

L-systems are often associated with visual models of plants and plant

ecosystems. This example shows the animated development of an imagi-

nary species of plant from the interactive animation Turbulence devel-

oped by the author (McCormack 1994).

The full L-system describing the development is quite complex (ap-

proximately 35 productions), so in the interests of space and clarity an

overview will be presented here. There are two main stages in the devel-

opment of this sequence — (i) development of the stem, which after a

certain time bifurcates into two segments; and (ii) the development of

the flower head. The animated development of an individual model is

shown below.

Figure 6. Time slices of flower growth

The randomness and variation of structure is achieved using stochastic

functions that effect growth. The flower head consists of a number of
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animated components. The main head uses a set of three pre-defined sur-

faces, which are interpolated by development functions. Generalized cyl-

inders are used to model the thorn and spike components. Note how

these features animate in both shape and size.

A Bessel function of the first kind is used to model the scaling and

animation of the flower head (Figure 7). Bessel functions are often used

to solve motion equations for physical systems, and here the use of the

function gives the animation a damped-spring-like quality (which the

equation represents), as the head ‘puffs’ up rapidly in size and then pul-

sates in an oscillating rhythm, slowly damping down as the element ages.

Visually similar behavior is observed in time-lapse sequences of real

plants, as they respond to the rhythms of the day/night cycle.

Figure 7. Time sequence showing development of the flower head

5.3  LEGGED GAITS OF ANIMALS

Timed L-systems may also be used as controllers in the simulation of

animal gait cycles. Here the advantage of L-systems is that they can pro-

vide both motor control and structural definition within the same gram-

mar.

For the example detailed in this section, we will consider the represen-

tation of an ‘animal’ with multiple rigid body segments, each connected

with a 2-DOF3 articulation as shown in Figure 8 below.

                                    
3 Degree of Freedom
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S2

S1

Body
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J1

J2

Body
Segment

C

Body
Segment

B

Body
Segment

A

2-DOF
Articulation

sw su

st
sk

Figure 8: Legged animal composed of multiple articulated body segments (left) and

detail of an individual segment’s joint configuration (right)

Each body segment has two multi-jointed legs, at opposite sides of the

body segment. The leg detail is also shown in the figure. A leg is com-

posed of two rigid limb segments, 
    

€ 

S
1
 and 

    

€ 

S
2
. 

    

€ 

S
1
 is attached to the body

segment by a 3-DOF joint, 
    

€ 

J
1
. The joint 

    

€ 

J
2
 between 

    

€ 

S
1
 and 

    

€ 

S
2
 has 1-

DOF.

The key advantage of an L-system specification is in the flexibility of

body and limb design and specification. Similar techniques have been used

as a general system to evolve novel designs of articulated figures (Sims

1994a; Sims 1994b). Arbitrary joint, limb, and body segment configura-

tions can be achieved by modifying the productions that generate these

elements. The generalized cylinder techniques (discussed in section 4) are

used to model the complex limb and body geometries of the creature.

The motor control structure is also specified by a tp0L-system,

forming a simple finite state machine that drives the movement of the

body segments and legs. Constraints on the movement of individual limbs

are set within the development functions for each joint.
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p
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: st n,φ( ),βst( )→ st2 n,φ( ),βst( )
p

5
: sk n,φ( ),βsk( )→ sk n,φ( ),0( )

p
6
: st2 n,φ( ),3βst( )→ st −n,φ( ),0( )

Figure 9. tp0L-system fragment for the gait control mechanism to specify a single
leg configuration. The cycle time of a single step is specified by the variable 

€ 

ϕ

To illustrate how this scheme works, we will focus on the construction

and animation of a single leg. The L-system shown in Figure 9 captures

the essential components. The modules sw, su and st represent the motor

control of 
    

€ 

S
1
 (3-DOF articulation), while sk represents the joint angle

between 
    

€ 

S
1
 and 

    

€ 

S
2
. The module ls (leg segment) calls a complex set of

productions to create the geometry of the leg using generalized cylinders

(these productions are not show for the sake of clarity). This module’s

parameter specifies the overall length of the leg segment and the turtle is

placed at the position of the next joint upon completing of the geomet-

ric construction of the leg segment. The ls module is not timed due to the

fixed structure of the leg segment itself. This constraint means that the

geometric data can be cached to avoid regeneration across multiple loca-

tions and time steps. The constant 
    

€ 

R
S 12

 is the ratio of size between the

upper (
    

€ 

S
1
) and lower (

    

€ 

S
2
) leg segments.

An individual walk cycle represents the movement of the leg system

over a single gait. The total time for this cycle is represented by the vari-
able 

€ 

ϕ , with individual controllers using this time or a rational ratio of it

to ensure cyclic animation. For example, the twisting motion of the leg

(module st) is separated into three distinct components which sum to the

gait cycle time.
The parameter 

€ 

φ  represents the phase of the animation cycle. As

each body segment is added the phase of the walk cycle is shifted to en-
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sure correct motion relative to the position of the segment. The parame-

ters n and l control the magnitude of the gait and the leg respectively.
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Figure 10. Key development functions for the gait of a single leg

The productions of Figure 9 specify a simple state machine that en-

codes the geometric and temporal structure of the leg gait. The remaining

information required is the associated development function for each

module, detailed in Figure 10.

These functions approximate the inverse kinematical solution of the

system for a walking gait. The use of periodic functions ensures that

phase and perfect cycling are easily accommodated, as required for a sys-

tem that must coordinate a large number of legs in a coherent fashion. In

the actual generated sequences, noise perturbations based on the age of

the creature are used to introduce variation and a ‘natural’ feel into the

walk cycle.
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Figure 11. Still frame showing the legged creature running. The geometry and ani-

mation is generated using the timed L-system techniques described in this paper

6.  The Design Environment

This section briefly describes how, in a practical sense, the formal sys-

tems described in this paper can be used in a design environment. Design

using generative methods involves the creation and modification of rules

or systems that interact to generate the finished design. Hence, the de-

signer does not directly manipulate the produced artifact, rather the rules

and systems involved in the artifact’s production. The design process be-

comes one of meta-design where a finished design is the result of the

emergent properties of the interacting system (McCormack and Dorin

2001). The ‘art’ of designing in this mode is in mastering the relation

between process specification, environment, and generated artifact. Since

this is an art, there is no formalized or instruction-based method that can

be used to guide this relationship. The role of the human designer re-

mains, as with conventional design, central to the design process.

In the case of using the generative methods described in this paper,

fundamentally the meta-design process must produce a tpD0L-system

axiom and set of productions. To this end, the author has used three dif-

ferent meta-design methods: (i) specification of L-systems by hand,

similar to the way a programmer writes a computer program; (ii) using a

visual programming metaphor, where modules and productions are repre-

sented visually and may be manipulated topologically to create new pro-

ductions; (iii) using artificial evolutionary techniques based on aesthetic

selection (McCormack 1993).

Of these three methods, the first (direct manipulation) gives the most

flexibility and control, but is the most difficult for people without a
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strong programming background to understand. The second gives less

control, but is much more intuitive from a design perspective, and is used

in commercial implementations (Lintermann and Deussen 1999). The

third method, interactive evolution, is excellent for generating novel de-

signs without needing to understand the productions involved. However,

exact control is extremely difficult. The method favored by the author is

a combination of explicit editing of L-system productions combined with

interactive evolution. This is the methodology used to produce the ex-

amples described in Section 5.2 and 5.3. Addressing the deficiencies of all

these techniques remains an open research problem, if generative design

is to achieve widespread adoption by the design community.

7.  Conclusions

The integration of timed and parametric components to L-systems per-

mits a new degree of flexibility and possibility for generative modeling,

some of which has been illustrated in this paper. In the area of visual

simulation, the use of compound structures such as generalized cylinders

can be integrated into a turtle interpretation of modules generated by L-

systems. The system described here enables the procedural generation of

complex, time-dependent geometric structures, in ways that would be dif-

ficult or impossible to design using other methods.

Important extensions to this model are the use of hierarchical specifi-

cation of grammars and the incorporation of context into developmental

systems (McCormack 2003). These extensions provide even further

flexibility, particularly when modeling organic structures and their

morphogenesis.
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