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Abstract. Evolutionary Art typically involves a tradeoff between the
size and flexibility of genotype space and its mapping to an expressive
phenotype space. Ideally we would like a genotypic representation that
is terse but expressive, that is, we want to maximise the useful variations
the genotype is capable of expressing in phenotype space. Terseness is
necessary to minimise the size of the overall search space, and expres-
siveness can be loosely interpreted as phenotypes that are useful (of high
fitness) and diverse (in feature space). In this paper I describe a system
that attempts to maximise this ratio between terseness and expressive-
ness. The system uses a binary string up to any maximum length as
the genotype. The genotype string is interpreted as building instruc-
tions for a graph, similar to the cellular programming techniques used to
evolve artificial neural networks. The graph is then interpreted as a form-
building automaton that can construct animated 3-dimensional forms of
arbitrary complexity. In the test case the requirement for expressiveness
is that the resultant form must have recognisable biomorphic properties
and that every possible genotype must fulfil this condition. After much
experimentation, a number of constraints in the mapping technique were
devised to satisfy this condition. These include a special set of geometric
building operators that take into account morphological properties of the
generated form. These methods were used in the evolutionary artwork
“Codeform”, developed for the Ars Electronica museum. The work gen-
erated evolved virtual creatures based on genomes acquired from the QR
codes on museum visitor’s entry tickets.

Keywords: Evolutionary Art, Aesthetics, Artificial Life, genotype-
phenotype mapping.

1 Introduction

Amajor challenge in designing evolutionary systems is defining efficient genotype
representations and the phenotypes they encode for. In evolutionary art this
problem is forefront when critical attention is placed on the evolutionary system
and the artistic intent of what it produces.

This paper describes an artwork titled “Codeform”, created by the author.
The work was developed for the Ars Electronica museum in Linz, Austria, and
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runs on the museum’s Deepspace facility1, a bespoke, large-scale virtual reality
system with 16m × 9m stereoscopic projections onto the wall and floor using
eight high-brightness stereo projectors. The space can accommodate up to sev-
eral hundred participants who wear active polarising glasses to experience an
immersive 3D virtual environment, generated in real-time.

1.1 Utility and Diversity

While this paper will describe the technical and implementation details of Code-
form, the main purpose is to highlight a common problem for evolutionary art:
achieving a good balance between the size of the genotype space and its ex-
pressive power or aesthetic2 utility. This is a well known “open problem” for
Evolutionary Music and Art [9]. In basic terms, we want a generative system
that can express phenotypes that are useful and diverse. Useful in the sense
that they satisfy some creative or artistic criteria (e.g. have interesting aesthet-
ics or semantics), and diverse in the sense that they occupy distinct areas in
the feature space of the phenotype. Hence we want to avoid representations that
result in a large number of unappealing or highly similar phenotypes, making
the evolutionary search difficult (e.g. a “needle in a haystack” problem[7, p. 21]).

In [10], this problem was described in terms of a quality factor, Q, for an
evolutionary image generating system. Q was defined as the ratio between the
normalised value of useful images output by the system to the size of the pa-
rameter phase-space (genotype space). A reinterpretation of this measure can be
expressed:

Q =
ν

ψ
log γ (1)

where ν is the total number of “interesting” phenotypes in the entire phenotype
space, ψ is the total size of the phenotype space, and γ is the total size of the
genotype space. The goal is to maximise Q.

“Interesting” is of course a subjective or context dependent measure and its
definition can change the value of Q significantly. Here is a simple example. A
4-bit genome is used to generate integers (the phenotype) using a direct interpre-
tation of the bit-string’s integer value. If we define “interesting” as the phenotype
being prime then ν = 7, ψ = γ = 16, so Q ≈ 1.21. Defining “interesting” as
being divisible by 5 results in Q ≈ 0.52. In this example the size of genotype
space is equal to phenotype space due to the direct 1-to-1 mapping, but this
does not need to be the general case (for any system ψ ≤ γ must be true).

Provided the definition of “interesting” is held constant, it is reasonable to
compare different representation schemes in terms of their potential Q value.3

However due to the subjective nature of its definition, comparing Q values with
different criteria for “interesting” makes no sense. In the case of the work de-
scribed in this paper, “interesting” has multiple dimensions and constraints.

1 http://www.aec.at/center/en/ausstellungen/deep-space/
2 “aesthetics” in the sense of 1, 2, 6 and 7 from [12].
3 Assuming ν can be measured or estimated, which is not always possible.

http://www.aec.at/center/en/ausstellungen/deep-space/
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Key amongst these was the requirement that all phenotypes have basic biomor-
phic appearances (discussed in Section 2.1), and that the aesthetic experience of
the work conforms to a particular and recognisable artistic style consistent with
the author’s previous works.

Our goal is to maximise Q, that is to devise a system that can consistently
produce useful phenotypes over the largest possible genotype space. In general
terms this is often problematic because increasing the size of the genotype does
not automatically result in a system that is capable of producing a higher pro-
portion of interesting phenotypes – after a certain point the reverse is more
probably the case.

This issue will be discussed in more detail in Section 3 using the Codeform
artwork as the example. But before doing so we briefly review some previous
work in this area, then explain Codeform’s representation scheme, generative
mechanism and genotype and phenotype representations.

1.2 Related Work

Many researchers have devised schemes for evolving 3D, articulated biomorphic
shapes, a well-known example is that of Sims [14] who evolved virtual articulated
creatures, constructed from cubic blocks, using a graph represention that coded
for morphology, sensors and motor control. Hornby looked at a wide variety
of representation schemes for generative design [4], including “virtual creatures”
generated using a variant of L-systems. Hornby and others [2] have observed that
the generative reuse of parameterised elements in encoded designs improves the
ability of an evolutionary algorithm to search large design spaces. The cellular
encoding technique, developed by Gruau [3] used transformational graph gram-
mars to generate neural networks and is related to the graph-building mechanism
described in this paper. Cellular encoding provided a useful generative mecha-
nism for generating neural networks (essentially graphs), exploiting modularity
and reuse in the encoding mechanism.

2 Generative Mechanisms

The project called for a simple method to convert museum visitor tickets to a
unique id to use as the basis of a generative, evolutionary artificial “creature”
(phenotype) that is specific to each visitor. Fortunately the tickets already had
a QR code printed on them (Fig. 1), which resolved to a unique 12-digit dec-
imal number. This number serves as both an identifier (to the ticket and its
owner) and as a generator of each creature. Ticket numbering is often in sequen-
tial batches, so there was a requirement that numbers in close proximity don’t
generate phenotypes of similar appearance.

The ticket number was therefore used as a hash to both reference the phe-
notype and to generate it. Generation is a three-step transformational process:

ticket number → genome string → graph → phenotype (2)
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Fig. 1. Museum entry ticket showing the QR code on the left side of the ticket

To transform the ticket to the genome, the ticket number is used as the ini-
tial bit pattern in a modified linear congruential generator algorithm [6], which
creates bit strings of lengths that vary between supplied minima and maxima.
This ensures sufficient variation while keeping the bit string within acceptable
limits. Thus the genotype generated is a bit string of length l : lmin ≤ l ≤ lmax.

The bit string genome (I) is interpreted as a series of programming instruc-
tions to a machine that builds graphs. This is somewhat similar to the cellular
encoding technique developed by Gruau, which used sequences of graph trans-
formations to build neural networks [3]. Here the instructions are represented
as a binary string of machine instructions. Each instruction is 4 bits in length,
consisting of a 2-bit opcode and a 2-bit parameter.

From these instructions, I, the machine, M , builds a graph G = (N,E): a set
of nodes (N) and unidirectional edges (E), i.e.

M
I−→ G (3)

At all times M maintains a current node, c, and a root node, r, both initially set
to ∅ (empty).

Allowing 2 bits for an opcode gives 4 possible instructions, which are sum-
marised in Table 1. Four instructions were chosen as they provide the minimum
set of operations necessary to construct a graph from scratch. Opcodes 00 (add
child) and 01 (add sibling) have special behaviour defined when c = r = ∅: they
will add the node, n, as the root and set c = r = n. Instructions to create edges
or shift the current node when c = ∅ are ignored.
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Table 1. Instructions for the graph building machine and their interpretation

opcode instruction description

00pp add child add a child node of type pp to the current node (c) and set c to
be the new child

01pp add sibling add a sibling node of type pp (a new child to the parent of c)
10pp add edge create an edge c → (c− pp) mod |N |
11pp shift current set c = (c+ pp) mod |N |

Allowing 2 bits for the parameter values means each node can be of four
distinct types. For the moment, let us label these types A,B,C and D for the
parameter values 00, 01, 10 and 11 respectively. Similarity, when creating edges
or shifting the current node the 2-bit parameter allows for only 4 possible values,
being the number of nodes to move from the current node in the node set N .
The choice of using only 2 parameter bits places limits on possible phenotypes
that the system can generate. This issue is discussed in Section 3.

B B

0000 0001 1000 1101 0001 1000

A

C

A

D

B

0010 0000 0001  0111 1010

D

B

B
0111 0001 0001 1001 1001

A D

C

B
0010 0111 0100 0001 1010

Fig. 2. Some example genome program strings and the graphs they generate

Figure 2 shows some hand-made example bit strings and the graphs they
generate.

2.1 Graph Interpretation

The next stage is generating the phenotype: essentially using the graph as a gen-
erative specification for an animated 3D form. This is achieved by traversing the
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graph from the root node in a breadth-first traversal, interpreting information in
the nodes and edges to construct time-varying 3D geometry and transformations.

Initially, we experimented with an interpretation similar to that of Sims [14],
whereby each node generates a cuboid of varying dimensions with a series of ar-
ticulated joints that specify the placement of the parts generated by child nodes.
Sims also used a parameter to specify the “recursive limit” of node traversal to
limit the number of times a node should generate a part when in a recursive
cycle. Edge information was used to specify the placement of child parts relative
to the parent, with child parts constrained to the surface of the parent part.
Finally, a terminal-only flag was used to specify the connection of child parts
only at the end of a recursive cycle.

These node and edge parameters were generated using the parameter infor-
mation (pp) associated with each machine instruction. Having only four possible
values places some limitation on the parameter variation possible, but gives
enough variety to easily distinguish one phenotype from another.

This interpretation allows for a large flexibility in the structure and mor-
phology of possible phenotypes, however for the application described in this
paper there was an additional requirement: that the phenotype generated from
a ticket have a basic, recognisable biomorphic appearance, including recognisable
features such as lateral or radial symmetry, articulated appendage parts and a
coherent overall structure. The reasons for this will be explained in Section 3.

After some experimentation, the following interpretation of the graph was
used. Each node type defines a unique morphic structure, S, composed of a
connecting topology, shape (geometry) and an ordered set of connection points,
Sc. Connection points have specific locations over the topology that allow other
structures to be connected to them and from them, subject to an affine geometric
transform applied at each point. This transformation is stored as a homogeneous
4x4 matrix for each point.

Table 2. Node types and their geometric interpretation

node type description S
A n-point radial symmetry a disk shape with n radially symmetric

connections

B bi-directional branch branching element with laterally
symmetric branch connections

C uni-directional branch branching element with uni-directional
laterally symmetric branch connections

D n−phyllotaxic sphere with n points distributed over the
surface in a phyllotaxis pattern

Table 2 details the interpretation of each node type and shows a graphical rep-
resentation of S, including the connection points, shown as either black, white
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or red points on an example shape (shown in grey). The difference between the
black and white connection points is in the way the point performs its transfor-
mation, with the white point applying a reflection transform (lateral mirroring
about the symmetry) to the child geometry instantiated at the connection point.
The red point defines the location and orientation at which the structure is at-
tached when being placed as a child object. Some examples are shown in Fig.
3. The examples in the figure show topological relationships only – additional
geometric and transformational operations are also applied which are not shown
in the figure for sake of clarity.

One important feature of this system is that the topologies always connect in any
possible combination without generating illegal topologies or self-intersections –
an important attribute given the requirement of biomorphism in every phenotype.

D

C

B C

A

Fig. 3. Example graphs and the topological structures they generate. The root node
is shown with darker shading.

The graphs are traversed using a breadth-first traversal, up to the recursive
limit imposed by the node (derived from parameter information in the genome).
For any given node, as each output edge is traversed an internal counter is
incremented and this counter is used as an index to determine the connection
point for the child object pointed to by the current edge. So if the counter value
is q, the connection point is:

Sc[q mod |Sc|] (4)

This means that the child node of each outgoing edge is iterated over the available
connection points, the number of connections points (|Sc|) being independent of
the number of outgoing edges.

The graph traversal sends a series of commands to a 3D-turtle [1], which
maintains a state, consisting of a local coordinate reference frame, transformation
matrix, position, material colour, and so on. Additionally the turtle maintains
a local stack and has commands to push and pop this state to and from the
stack. The turtle can also instantiate geometry, so traversing the graph results
in a series of commands to build a 3D geometric structure. This is a common
method used in generating models from L-systems for example [5,8,13].
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2.2 Animation and Sound

Connection points also include articulation information (degree of freedom,
movement limits, movement function) allowing different parts of the creature
to animate. Animation is performed using a simple harmonic sum-of-sines func-
tion, which is also sent as a control parameter to the sound generation system
to control audio articulation.

The sound system takes control parameter and phenotype specific information
(age, size, 3D position and orientation, etc.) to generate a soundscape specific to
each creature. This includes generating a specific pitch contour over 8 octaves
distinct to each creature and derived from the ticket number used to generate
it.

Multiple creatures can exist simultaneously and sounds for each are generated
individually and spatially located using a 5.1 surround speaker system. As a
creature ages the pitch of the sounds it makes decrease and become slower. The
sound component of the system was developed in MAX/MSP4. Communication
with the main application via OSC over a local network. Up to fifty creatures
can generate sounds simultaneously using this system. The sound system keeps
track of new creatures that may begin “life” at any time, and those that die off,
ending their sound-making in the system.

2.3 Evolution

As detailed at the beginning of Section 2, the visitor’s ticket uniquely identifies
the visitor and the phenotype (virtual creature) that the ticket generates. Vis-
itors enter a large, immersive space and have their ticket scanned, generating
the creature, which is presented to the viewer as stereoscopic 3D geometry ren-
dered using OpenGL. Multiple tickets can be scanned, creating an ecosystem of
creatures which are free to move about, breed and reproduce. Diploid reproduc-
tion is performed on each creature’s bit string, I, using single point crossover
constrained to instruction boundaries and bit flip mutation with probability in-
versely proportional to genome length/4. As the bit strings can vary in length
crossover points are clamped to whichever string is shorter.

The creatures exist in a virtual 3D ecosystem, the details of which will not
be covered in this paper for space reasons, but the interested reader can refer to
[11] for details on the ecosystemic approach. Some important considerations are
that creatures may live and die, give birth to offspring, and so on. The system
is designed with a persistence mechanism and database that keeps track of all
tickets scanned and all creatures generated, even those that have died. This
mechanism allows for a museum visitor to return to the work at any time (from
minutes to years later) and see the fate and “family tree” of their creature. Some
example creatures generated from tickets are shown in Fig. 4.

4 www.cycling74.com

www.cycling74.com
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Fig. 4. Example phenotypes generated with the system (in 3D)

3 Discussion

As outlined in the introduction (Section 1), the topic of this paper is the issue of
increasing the Q value from Equation 1. The size of the genotype space (γ) of the
system described above is 2lmax . lmax is typically 120, making γ ≈ 1036, a number
much larger than the 1012 possible ticket numbers. This is reasonable because
the number of possible phenotypes is necessarily greater than the number of
tickets, as genotypes can be created through evolution, not just ticket scanning
(you could think of the tickets as mapping to a random initialisation point in
genotype space).

One limitation of the graph generation scheme is that different genomes can
potentially produce graphs of identical structure. The “add sibling” instruction
can be replicated by a sequence of shifts and the “add child” instruction, similar
to the way multiplication can be achieved through multiple addition nodes in
a GP tree for example. However, graph structure is only one factor in pheno-
type generation, so two phenotypes with the same graph structure will still be
different.

As discussed in Section 2.1, initially the “block creatures” method of Sims
[14] was implemented as the way of interpreting the graph generated from the
genome string. As is well known, Sims was able to evolve “biomorphic” creatures
with characteristics strikingly reminiscent of real biology. However he was not
able to get the system to evolve creatures with morphologies like those he was
able to easily devise by hand, including a tree, a multi-segmented, multi-legged
figure, and a human-like figure, despite these morphologies needing a maximum
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of only 3 nodes and 6 edges. One explanation for this difficulty is that, despite a
relatively low number of elements, each node and edge contains a large number
of parameters, significantly increasing the size of the search space. Additionally,
certain fitness measures used (such as the distance moved from a fixed point
or light following ability) would not tend to favour the evolution of tree- or
human-like shapes over any others.

The application described in this paper required that when a user scans their
ticket, they expect the resultant phenotype to have at least some biomorphic
properties (such as those which could easily be devised by hand in Sims’ system).
The nature of the algorithm that converts a ticket number to genome bit-string
is essentially mapping the ticket to a random point in genotype space, necessary
so that consecutive ticket numbers do not produce very similar genotypes5, as
would be the case with a direct conversion of the ticket number to bit-string, for
example.

Allowing only 2 parameter bits in each instruction places limitations on phe-
notype diversity: the translation distances in the add edge and shift instructions
(Table 1) and the number of possible node types in any graph. In the case of
graph generation this did not appear to be a problem. Multiple shift instruc-
tions, for example, allow large movements beyond the 4 possibilities allowed by
a single instruction. Statistical tests on large numbers of randomly generated
genotypes (bit strings) showed that increasing the parameter bits did not result
in a significant increase in the variety of graph topologies generated.

While more node types could be added with an increased parameter size, this
also increases the size of the search space. The question to ask is: does adding
additional types significantly increase the utility and diversity of the resultant
phenotypes? If the additional functionality gained by introducing a new type
can be achieved through a combination of existing types, we are potentially
increasing utility (its easier to find good phenotypes) but reducing diversity
(more phenotypes will have this composite functionality).

3.1 Composing Structure

Testing the system by generating many thousands of initial bit-strings did reveal
that while there was good variation in the graphs, the majority of phenotypes
generated just looked like random assemblages of blocks, suggesting the value of ν
from Equation 1 was very low. Trying to find even basic “biomorphic” structures
that the genotype space is known to possess requires significant amounts of time
to evolve, which is not practical in a situation where the time between scanning
a ticket and seeing it generated must be less than around 500ms. Hence the
solution is to try and increase the value of ν in Equation 1.

To achieve this the system was modified so that the nodes of the graph control
a kind of “biomorphic construction kit”, meaning that it will always generate

5 Tickets are dispensed from rolls in sequentially numbered batches. While there are
several different ticketing machines simultaneously in operation each with a different
counter, analysis of ticket numbers shows that for any given audience there are many
tickets that form sequences.
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“acceptable” phenotypes. Interestingly, this was achieved without modification
to the size of the genotype space. While this may at first seem counterintuitive,
it is analogous to an evolutionary text generation system whose genome controls
the assembly of words to form sentences (the phenotype). Allowing every possible
word combination gives great scope, but the majority of randomly assembled
words will be grammatically incorrect nonsense. Enforcing structure (adjectives
precede nouns, verb conjugation, etc.) provides a good starting point for building
coherent sentences.

However, by enforcing this structure, we impose a limitation on what can po-
tentially ever evolve – nothing can “break the rules”. In other words (and related
to the discussion above regarding tradeoffs when increasing the number of node
types), we limit the diversity of what is potentially possible while increasing the
utility or usefulness of what is produced. If we equate both utility and diversity
with the “interestingness” of our system (Section 1.1), then arguably we haven’t
increased ν as it might first have appeared. This is an inherit problem with
trying to formalise the subjective, a problem that we might optimistically hope
improves as our understanding of human subjectivity increases.

The experiments discussed here suggest that a system which imposes fewer
structural rules has only the potential to generate useful diversity, not the cer-
tainty. Understanding the sizes and structure of genotype, phenotype and feature
spaces allows us to make better judgments in this “balancing act” between the
potential and the practical, hence improve the possible of our evolutionary art
systems.
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