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Abstract

A stable (or independent) set is a set of vertices where no two of the vertices in
the set are adjacent. The stability polynomial A(G; p) of a graph G is the proba-
bility that a set of randomly chosen vertices is stable where the probability of each
vertex being chosen is p. Factorisation is an important algebraic property of polyno-
mials, but there has been little research on factorisation of the stability polynomial.
This research considers the s-factorisations of stability polynomials. The stability
polynomial A(G; p) is said to have an s-factorisation with s-factors H1 and H2 if
A(G; p) = A(H1; p)A(H2; p).

Stable sets and the stability polynomial are related to some other graph poly-
nomials. There is an analogy between the chromatic polynomial and the stability
polynomial. The method of studying chromatic factorisation can also be used in s-
factorisation. By implementing a similar research method on stability polynomials of
connected graphs with order at most 9, we found 152 different s-factorisations and
used certificates, sequences of steps applying the properties of the stability polyno-
mial, to explain these s-factorisations. Upper bounds for the length of the certificates
for stability equivalence and s-factorisations are given. Moreover, we have found short
certificates to explain 2 infinite families of stability equivalences and 2 infinite families
of s-factorisations. These short certificates for s-factorisations were generalised to 2
certificate schemas.

1 Introduction

A graph G = (V,E) is a set of vertices and a set of edges that are connections between
pairs of vertices [21]. Graphs can be used to model objects by abstracting the elements as
vertices and the connections between these elements as edges. Graphs are used to model
networks including social networks [19], transport systems [9] and electric grids. People
in a social network can be represented by vertices in a graph, while their relationships
between each other can be represented by edges in the graph. The vertices of a graph can
be also used to denote the stations of a transport system while the edges are used to denote
the paths between these stations. Graphs offers us a useful tool for solving problems in
many different areas. Studying the properties of graphs can produce valuable knowledge
for many practical applications.

Graph polynomials are polynomials that give special information about graphs. There
are many kinds of graph polynomials. Each polynomial gives information about a different
graph property. The chromatic polynomial P (G;λ) of a graph G gives the number of
different ways colours can be assigned to the vertices of a graph such that no pair of
adjacent vertices get the same colour [1]. This is a useful property for resource allocation
[5]. The stability polynomial A(G; p) of a graph G gives the probability that a set of
randomly chosen vertices is stable [11]. The stability polynomial is useful for object
selection. Furthermore, there are other polynomials including the flow polynomial, the
matching polynomial, the vertex cover polynomial [8], the clique polynomial and the
independence polynomial.

In this thesis we will consider the stability polynomial and study its factorisation
properties. First we will introduce the definitions of some basic concepts. Two vertices
are said to be adjacent or neighbours if there is an edge connecting them. The set of
neighbours of a vertex v in graph G is donated by NG(v) or N(v). The order of a graph
G is the number of vertices of this graph [7]. A stable set (or independent set) is a set of
vertices where no two of the vertices in the set are adjacent [7]. The independence number
α(G) is size of a maximum stable set in graph G [20].

Let G be a graph and p ∈ [0, 1] be the probability of each vertex being chosen. The
vertex choices are made independently. The stability polynomial A(G; p) of a graph G
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is the probability that a set of randomly chosen vertices is stable [11]. Let H1 and H2

be graphs. The stability polynomial of graph G is said to have an s-factorisation with
s-factors H1 and H2 if

A(G; p) = A(H1; p)A(H2; p). (1)

The graph G is said to be s-factorised or G is s-factorisable. In this research we will focus
on the s-factorisations of connected graphs because it is known that any disconnected
graph always has an s-factorisation [10].

Some s-factorisations of graph G can be used to reduce the computational complexity
of calculating A(G; p) by calculating the product of the stability polynomial of two smaller
graphs H1 and H2. We illustrate this with the following example. We can use a graph
G to represent the social network of Facebook. Vertices in G represent the users on
Facebook and edges between vertices show the ‘friendship’ connections between the users.
If Facebook is planning to organise an ‘All strangers party’ to help users meet new friends,
it will try to choose a group of users X, so that any one in X do not know each other.
Thus, X is a stable set. If every user is chosen independently with probability p, then the
probability that the randomly chosen users are all strangers to each other is A(G; p). If the
size of graph G is too big, the computational complexity of calculating A(G; p) will be too
high. We can search for some s-factorisatons A(G; p) = A(H1; p)A(H2; p) to decompose
the computation of A(G; p).

As a polynomial is an algebraic object, the study of its algebraic properties, including
factorisation, is important. But there has been little research done on the factorisation
of graph polynomials. One objective of this research is to search for s-factorisations of
connected graphs and find short theoretical certificates to explain these cases. We searched
all the stability polynomials of connected graphs of order at most 9 and found 17,461,965
s-factorisations corresponding to 273,192 graphs. We use certificates to explain these s-
factorisations. A certificate is a sequence of expressions S1, S2, ..., Sk. The first expression
S1 is the graph G. Each expression Si is obtained from Si−1 by applying a property of
the stability polynomial or an algebraic property.If the last expression is the graph H
then we have a certificate of equivalence. If the last expression Sk is the product of the
graphs H1 and H2 then we have a certificate of factorisation. A certificate step is a rule
that uses some properties of the graph polynomial or algebraic property to transform one
expression to another [17]. A single certificate step is usually not enough to explain the
s-factorisation. In this research, short certificates of s-factorisations for all graphs of order
at most 6 are given. A short certificate of one s-factorisation for a graph of order 7 was
also found.

Another objective of this research is to find upper bounds of the certificate length
of s-factorisations and stability equivalence. We found these upper bounds by studying
the properties of stability polynomials. The upper bounds of the length of certificates of
s-factorisations and stability equivalence are both exponential.

The final objective of this project is to find certificate schemas of the certificates
for s-factorisations. If there is a group of graphs that have s-factorisations which can
be explained by certificates that use the same sequence of steps, these certificates will
be generalised to a certificate schema. We found 2 certificate schemas by analysing the
patterns of short certificates of s-factorisations.

This thesis contains six sections. Section 1 gives an overview of this research and
introduces some definitions and notation. Section 2 shows the relationship between the
stability polynomial and some other graph polynomials and introduces the previous re-
search on graph polynomial factorisation. Section 3 gives the research methodology of
this project. Section 4 gives the computation results. Section 5 presents the theoretical
research results including the upper bounds of certificates of stability equivalences, certifi-
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cates and certificate schemas of s-factorisations. Section 6 summarised our work and and
points some directions of future research.

1.1 Contributions

The contributions of this research are listed as following:

1. Implementing a program for calculating the stability polynomial of any given graph.
(Section 3.1)

2. Implementing a program for searching s-factorisations from a list of stability poly-
nomials.
(Section 3.1)

3. Calculating stability polynomials of all graphs of order at most 9.
(Section 4)

4. Identifying all connected graphs of order ≤ 9 that have s-factorisations.
(Section 4)

5. Giving certificate steps for certificates of s-factorisations.
(Section 5.1)

6. Giving an upper-bound of the length of certificates of stability equivalence and s-
factorisations.
(Section 5.2)

7. Finding short certificates for stability equivalence and identifying two infinite families
of stability equivalent graphs.
(Section 5.3)

8. Finding short certificates for s-factorisations and identifying two infinite families of
graphs that have s-factorisation.
(Section 5.4)

9. Identifying that for any graph G, there exists a connected graph G′ such that G is
an s-factor of G′.
(Section 5.4)

10. Finding two certificate schemas of s-factorisations.
(Section 5.5)

1.2 Definitions and notation

A matroid is a pair (E, ρ) where E is a non-empty finite set and ρ is a rank function
satisfying [21]:

1. 0 6 ρ(A) 6 |A|

2. If A ⊆ B ⊆ E, then ρ(A) 6 ρ(B)

3. ρ(A) + ρ(B)− ρ(AB)− ρ(AB) > 0 for all A,B ⊆ E

A null graph is graph with no edges.
Some notation used in this thesis are listed in Table 1 and graphs defined in this

research are listed in Table 2.
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Table 1: Definitions and Notation

Notation Explanation

R− The set of negative real numbers

Gn,∅ The graph of order n ≥ 0 with no edges

Cn The cycle of order n

Kn The complete graph of order n

Pn Path graph of order n with n− 1 edges

G ' G′ Graphs G and G′ are isomorphic

G− v A graph obtained from G by deleting vertex v

G ∪G′ Disjoint union of graphs G and G′

G+ e A graph obtained from G by adding the edge e

G+G′ A graph obtained from G and G′ by choosing one vertex from
each graph and adding an edge between this pair of vertices.

Table 2: Graphs defined in this thesis

Notation Explanation Location in thesis

K∗
n The graph of order 2n with Cor 4

E(K∗
n) = {vivn+i : 0 ≤ i ≤ n− 1}

∪{vjvk : 0 ≤ j, k ≤ n− 1, j 6= k}
Kn∼n The graph of order 2n with Cor 7

E(Kn∼n) = {vivj : 0 ≤ i, j ≤ n− 1, i 6= j}
∪{vkvl : n ≤ k, l ≤ 2n− 1, k 6= l} ∪ {vn−1vn}

Qn The graph of order n with Thm 23, Cor 3
E(Qn) = {v0v2} ∪ {vivi+1 : 0 ≤ i ≤ n− 2} Cor 8

Yn The graph of order n with Cor 3
E(Yn) = {v0v2} ∪ {vivi+1 : 0 ≤ i ≤ n− 3} ∪ {vn−1v1}

Υm,n The graph of order n with Thm 25
E(Tm,n) = {vivi+1 : 0 ≤ i ≤ n− 2}
∪{vm−1vj : 0 ≤ j ≤ m− 3}
where 2 ≤ m ≤ n

2 Background

This section will explain the relationships between the stability polynomial and some other
graph polynomials, study the properties of roots of stability polynomials, discuss current
research and identify gaps in the current state of knowledge. It will consist of three topics:

1. Relationships between the stability polynomial and other graph polynomials: The
stability polynomial is strongly correlated with the independence polynomial. We
will consider six graph polynomials and discuss the analogy between the stability
polynomial, independence polynomial and chromatic polynomial. The similarities
and differences between the properties of these graph polynomials will be analysed.
The stability polynomial and the chromatic polynomial of graphs can be considered
as specialisations of the chromatic polynomial of a matroid.

2. Roots of stability polynomials: The roots of a polynomial are one of its important
algebraic properties. A common root of stability polynomials is 1. In this section, we
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will discuss the strong relationship between the stability polynomial and the inde-
pendence polynomial and then survey current research on the roots of independence
polynomial.

3. Research of polynomial factorisation: We will study current research on chromatic
factorisations and discuss if the method used in this research can applied on s-
factorisations. Then the properties of stability polynomials will be analysed and
be converted to certificate steps. Finally we will discuss the feasibility of stability
polynomial s-factorisations research, study the theoretical properties of the stability
polynomial and introduce an efficient algorithm for calculating the stability polyno-
mial.

2.1 Relationships between the stability polynomial and other graph
polynomials

The stability polynomial is closely related to the independence polynomial and other graph
polynomials. In this section, we survey six graph polynomials and analyse the relation-
ship between the stability polynomial and these polynomials. We also give a more general
definition of chromatic polynomials for matroids. Stability polynomials and chromatic
polynomials of graphs can be considered as specialisations of hypermatroid chromatic
polynomials.

2.1.1 Properties of the stability polynomial

The stability polynomial is closely related to the independence polynomial and some other
polynomials. In this section we give five interesting properties of the stability polynomial
which were identified by Farr [10]. We then compare them with similar properties of some
related graph polynomials.

Theorem 1. For any vertex v ∈ V (G) which is not incident to a loop, there is

A(G; p) = (1− p)A(G− v; p) + p(1− p)dA(G− v −N(v); p) (2)

where d is the degree of vertex v and N(v) is the neighbour set of v.

Theorem 2. For any edge uv ∈ E(G),

A(G; p) = (1− p)A(G− u; p) + (1− p)A(G− v; p)− (1− p)2A(G− u− v; p).

Theorem 3. Let H1 and H2 be two disjoint graphs. If G = H1 ∪H2, then

A(G; p) = A(H1; p)A(H2; p). (3)

Theorem 4. Let G be a graph with loops, L is the set of vertices incident to loops. Then

A(G; p) = (1− p)|L|A(G− L; p).

Theorem 5. For any edge uv ∈ E(G)

A(G; p) = A(G\uv; p)− p2(1− p)|(N(u)\{v})∪(N(v)\{u})|A(G− u− v −N(u)−N(v); p).

Theorem 3 is a basic case of stability polynomial factorisation. It gives a case of
factorisation when the graphs H1 and H2 are disjoint. In this project we will find s-
factorisations of graphs that do not have disjoint components but still satisfy Equation
(3). Studying s-factorisations may result in new rules for stability polynomials. A new
rule is a proposition which can be explained by a certificate schema.
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2.1.2 The independence polynomial

The independence polynomial I(G;x) is a generating polynomial for the number of stable
sets si of cardinality i [13]. It can be expressed as

I(G;x) =
∑

X stable

x|X| =

α(G)∑
i=0

six
i (4)

where α(G) is the size of a maximum stable set in G. If the probability of each vertex in
G being chosen is p, and X is a randomly chosen vertex subset of graph G then

A(G; p) = Pr(X is stable) [14]. (5)

When X is a stable set of G and the probability of X being chosen is p|X|(1− p)n−|X|, the
stability polynomial can also be defined as

A(G; p) =
∑

X stable

p|X|(1− p)n−|X| =

n∑
i=0

sip
i(1− p)n−i, (6)

where n is the order of G.
Comparing Equation (4) with Equation (6), it is clear that A(G; p) and I(G;x) are

related to each other by the following transformation [10]

A(G; p) = (1− p)nI

(
G;

p

1− p

)
(7)

and

I(G;x) = (1 + x)−nA

(
G;

x

1 + x

)
(8)

Equations (7) and (8) show that the properties of the independence polynomial can be
transferred to properties of the stability polynomial. Studies of the independence polyno-
mial can produce information for research on the stability polynomial.

Properties of independence polynomials
The research on the properties of independence polynomials was started by Gutman and
Harary [13]. A number of papers have investigated these properties and presented useful
results [2][6][16][20]. Following are some properties of independence polynomials. We can
compare the following theorems with the theorems of the stability polynomial presented
in Section 2.1.1.

Theorem 6. [13] For every vertex v of graph G,

I(G;x) = I(G− v;x) + xI(G− v −N(v);x)

where N(v) is the neighbourhood of v.

Comparing Theorem 6 with Theorem 1 shows that Theorem 1 can be converted to
Theorem 6 by replacing 1− p with 1, and p with x.

Theorem 7. [16] For any edge uv ∈ E(G), there is

I(G;x) = I(G− uv;x)− x2I(G−N(u) ∪N(v);x)

where N(u) and N(v) are the neighbourhoods of vertex u and vertex v respectively.
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Theorem 2 can be converted to Theorem 7 by replacing 1− p with 1, and p with x.

Theorem 8. [13] If G1 and G2 are two disjoint graphs, then

I(G1 ∪G2;x) = I(G1;x)I(G2;x).

Theorem 8 is precisely the same as Theorem 3, which means the independence poly-
nomial and stability polynomial have the same property on disjoint graphs. Comparing
the theorems of the independence polynomial with those of the stability polynomial shows
that the independence polynomial and the stability polynomial have similar properties.

2.1.3 The clique polynomial

A clique is set of vertices where every pair of vertices in the set are adjacent [7]. The
clique polynomial of a graph was defined by Hoede and Li [15]. Let n be the order of
graph G and ai(G) be the number of cliques with i vertices. The polynomial

C(G;x) =

n∑
i=0

ai(G)xi

is called the clique polynomial of graph G.
Hoede and Li [15] studied the relationship between the clique polynomial and the

independence polynomial and gave the following results:

Theorem 9. If G is the complement of graph G, then

C(G;x) = I(G;x).

According to Equation (8), Theorem 9 can be transformed to

C(G;x) = (1 + x)−nA

(
G;

x

1 + x

)
.

A vertex subset of a graph G is a stable set if and only if it is a clique in G. The size of a
maximum stable set of G equals the size of a maximum clique of G. Thus the independence
polynomial of G equals the clique polynomial of G.

Theorem 10. If G1 and G2 are two disjoint graphs, then

C(G1 ∪G2;x) = C(G1;x) + C(G2;x)− 1

and

I(G1 +G2;x) = I(G1;x) + I(G2;x)− 1.

Theorem 11. If G1 and G2 are two disjoint graphs, then

I(G1 ∪G2;x) = I(G1;x)I(G2;x)

and

C(G1 +G2;x) = C(G1;x)C(G2;x).

Theorem 10 and 11 show that clique polynomials and independence polynomials have
some similar properties. Since an independence polynomial can be transformed to a stabil-
ity polynomial by applying Equation (7), it is clear that the cliques polynomial is related
to the stability polynomial.
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2.1.4 The vertex cover polynomial

A vertex cover of a graph G = (V,E) is a set of vertices V ′ ⊆ V such that for any edge
uv ∈ E, there must be u ∈ V ′ or v ∈ V ′. Dong et al. [8] define the vertex cover polynomial
for graphs as:

Ψ(G;x) =
n∑

k=0

cv(G, k)xk

where n is the order of G and cv(G, k) is the number of vertex covers with k vertices.
They also identified the following three theorems about the vertex cover polynomial which
are related to the properties of the stability polynomial.

Theorem 12. Let G be a graph with loops and L be the set of vertices which are adjacent
to loop. Then

Ψ(G;x) = x|L|Ψ(G− L;x).

This result has the same structure as Theorem 4 for A(G; p).

Theorem 13. Let G be a graph without loops. For any vertex v ∈ V (G) there is

Ψ(G;x) = xΨ(G− v;x) + xdΨ(G− v −N(v);x)

where d is the degree of vertex v and N(v) is the neighbour set of v.

This theorem can be obtained from Theorem 1 by replacing p and (1− p) with x.

Theorem 14. Let G1 and G2 be two disjoint graphs. If G = G1 ∪G2, then

Ψ(G;x) = Ψ(G1;x)Ψ(G2;x).

This result has the same structure as Theorem 3.
Comparing Theorems 12-14 with Theorem 1, 3 and 4 of the stability polynomials shows

that there is an analogy between the stability polynomial and the vertex cover polynomial.

2.1.5 The positive matching polynomial

The matching polynomial is a generalised polynomial defined as

M(G;x) =

|E(G)|∑
k=0

(−1)kmkx
n−2k,

where mk is the number of matchings with k edges [13]. In this paper, we are more
interested in the positive matching polynomial, which is defined as

M+(G;x) =

|E(G)|∑
k=0

mkx
k

Comparing this definition with the definition of the independence polynomial shows that

M+(G;x) = I(L(G);x),

where L(G) is the line graph of G [13]. This finding shows that the positive matching
polynomial is closely related to independence polynomial. Thus the positive matching
polynomial is related to the stability polynomial by Equation (8) as follows

M+(G;x) = I(L(G);x) = (1 + x)−nA

(
L(G);

x

1 + x

)
.
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2.1.6 The chromatic polynomial

The chromatic polynomial PG(k) counts the number of proper colourings of a graph G in
at most k colours [1]. A proper colouring is a colouring such that any two adjacent vertices
were assigned different colours [21]. The chromatic number χ(G) is the minimum number
of colours required to properly colour G. The chromatic polynomial has the following
interesting property [12]:

Theorem 15. The chromatic polynomial of a graph G = (V,E) is

P (G;λ) =
∑
X⊆E

(−1)|X|λn−ρ(X),

where n is the number of vertices of G. ρ(X) = |VX | − k(VX , X) is The rank of X and k
is number of components of the graph GX = (VX , X).

It follows from Theorem 15 that

P (G;λ)

λn
=

∑
X⊆E

(−1)|X|λ−ρ(X). (9)

The stability polynomial can be written

A(G; p) =
∑
X⊆E

(−1)|X|pυ(X) (10)

where υ(X) is the number of vertices which meet X [14].
When p = 1

λ , the only difference between the right hand sides of Equation (9) and
(10) is that ρ(X) is the rank of the matroid of G while υ(X) is the rank function of a
hypermatroid. Comparing Equation (9) with (10) shows the close relationship between
the stability polynomial and the chromatic polynomial which we will discuss in detail in
Section 2.1.7.

2.1.7 The chromatic polynomial of a matroid

Helgason [14] studied the chromatic polynomial and the vertex cover polynomial of a ma-
troid. He gave a more general definition of the vertex cover polynomial of a hypergraph
before Dong et al. [8] gave their definition on a graph.
According to Helgson [14], if H = (V,E) is a hypergraph and H has no empty edges. The
characteristic polynomial of the covering hypermatroid of H is

χH(λ) =
∑
X⊆E

(−1)|X|λ|V |−|∪X| (3.7)

When a graph G = (V,E), the characteristic polynomial of the chromatic matroid
M(G) is defined as

P (M(G);λ) =
∑
X⊆E

(−1)|X|λρ(E)−ρ(X) (11)

where the matroid M(G) = (E(G), ρ) and ρ is the rank function on E defined as:

ρ(X) := (number of vertices adjacent to X)− (number of connected components of X)

9



Based on this definition, we can see the relationship between P (M(G);λ), the chromatic
polynomial of graphic matroid of G, and P (G;λ), the chromatic polynomial is

P (G;λ) =
∑
X⊆E

(−1)|X|λn−ρ(X)

= λn−ρ(E)
∑
X⊆E

(−1)|X|λρ(E)−ρ(X)

= λk(G)
∑
X⊆E

(−1)|X|λρ(E)−ρ(X)

= λk(G)P (M(G);λ).

The results given in this section show that the vertex cover polynomial and chromatic
polynomial are specialisations of the characteristic polynomial of the matroid. The struc-
ture of the characteristic polynomial of a matroid is similar to the structure of the stability
polynomial.

2.2 Roots of graph polynomials

The nature and location of the roots of a graph polynomial are important algebraic prop-
erties. In this section, a common root of stability polynomials was found. By analysing
the definitions of the stability and independence polynomial, we find that there is a strong
correlation between the roots of stability polynomials and the roots of independence poly-
nomials. This finding shows that studying the properties of roots of independence poly-
nomials can provide useful knowledge for the research of roots of stability polynomials.

2.2.1 Roots of stability polynomials

When G has at least one edge there is no stable set of size n that is, sn = 0 in Equation
(4). Thus the stability polynomial A(G; p) has a factor (1 − p) and so p = 1 is a root of
the stability polynomial of any graph that has edges. This is because when p = 1 all the
vertices are chosen and so the chosen set is not stable if the graph has at least one edge.

2.2.2 The relationship between the roots of stability and independence poly-
nomials

In Section 2.1, we discussed the relationship between the independence polynomial and
stability polynomial. Two important equations (7) and (8) showed how the independence
polynomial and the stability polynomial are related. These equations show the relationship
between the roots of the stability polynomial and the independence polynomial. From

A(G; p) = (1− p)nI

(
G;

p

1− p

)
we see that if p1 is a root of the stability polynomial of graph G, then p1 = 1 or p1

1−p1
is a

root of the independence polynomial of G. From

I(G;x) = (1 + x)−nA

(
G;

x

1 + x

)
we see that if x1 is a root of the independence polynomial of graph G, then x1 = 1 or x1

1+x1

is a root of the independence polynomial of G.
Based on these findings, we can say that the roots of stability and independence polyno-

mials are closely related. Thus we can study the nature of roots of the stability polynomial
by studying the roots of the independence polynomial.
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2.2.3 Roots of independence polynomials

Since there is little research on the roots of stability polynomials, and the roots of stabil-
ity polynomials and the independence polynomials are strongly related, we can study the
results of research on roots of independence polynomial to give us information about the
roots of the stability polynomial. The nature of the roots of the independence polyno-
mials have been investigated by several research papers. These studies give the following
properties:

Theorem 16. [2] All the real roots of an independence polynomial are negative.

Theorem 17. [2] The real roots of an independence polynomial are dense in (−∞, 0] and
the complex roots are dense in C.

Theorem 18. [3] The modulus of any root of I(G;x) is not greater than (n/α(G))α(G)−1+
O(nα(G)−2) where α(G) is the independence number of graph G.

Theorem 19. [3] Let G be the line graph of a tree T and α(G) be the independence number
of G, then the modulus of any root of I(G;x) is not greater than

(
α(G)
2

)
.

Theorem 20. [13] Let G be a line graph, then every root r of I(G;x) satisfies r ∈ R−

Brown and Nowakowski [4] researched the average independence polynomials. The
average independence polynomial of simple graphs of order n is defined as

aipn(x) =
1

2(
n
2)

∑
G∈Ģn

I(G;x)

where Ģn is the set of all simple graphs of order n. They proved the following theorem:

Theorem 21. Average independence polynomials always have real, simple roots [4].

A claw is a graph Gc = (V,E) where V = {v1, v2, v3, v4} and E = {v1v2, v1v3, v1v4}.
If a graph G does not have any induced subgraph which is isomorphic to Gc, then G is a
clawfree graph [6]. If G is a clawfree graph then the independence polynomial of G has
only real roots [6]. Furthermore, Rosenfeld [20] proved that clawfree graphs are not the
only graphs whose roots of independence polynomial are all real.

2.3 Graph polynomial factorisation research

In this section we will study current research on chromatic factorisations and discuss how
the approach used in chromatic factorisations research can be applied on s-factorisation
research.

2.3.1 Research on chromatic factorisations

The chromatic polynomial P (G,λ) is said to have chromatic factorisation [17] with chro-
matic factors H1 and H2 if

P (G,λ) =
P (H1, λ)P (H2, λ)

P (Kr, λ)
(12)

where H1 and H2 are not isomorphic to Kr and have χ(Hi) ≥ r, i = 1, 2.
A certificate of chromatic factorisation is a sequence of expressions P0, P1,..., Pi where

P0 = P (G,λ) and Pi = P (H1;λ)P (H2;λ)P (Kr, λ). For every j, 1 ≤ j ≤ i, Pj is obtained
from Pj−1 by applying an algebraic property or a property of the chromatic polynomial.
The certificate is used to explain why a given graph G has a chromatic factorisation with
chromatic factors H1 and H2.

Research on chromatic factorisation of chromatic polynomials of graphs has been done
by Morgan and Farr [18]. Their research consisted of four parts.

11



1. Compute the chromatic polynomials of all connected graphs of order at most 10 and
find all chromatic factorisations.

2. List the certificate steps according to the properties of the chromatic polynomial and
algebraic operations.

3. Use certificate steps to construct certificates to explain these chromatic factorisa-
tions.

4. Generalise the chromatic factorisation certificates which use the same sequence of
certificate steps to certificate schemas.

Morgan and Farr [18] found a class graphs that have chromatic factorisations and success-
fully generalised the certificates of these graphs to a certificate schema.

As the stability polynomial is closely related to the chromatic polynomial (see Equation
(9) and (10)) it seems likely that interesting factorisations for the stability polynomials
can be found in the same way.

2.3.2 Feasibility of s-factorisation research

In the research on chromatic factorisations, certification steps which were based on prop-
erties of the chromatic polynomial were used to explain chromatic factorisations. In the
stability polynomial, there are also some properties which can be used to obtain certifica-
tion steps. Section 2.1.1 listed five theorems about the stability polynomial.

Theorem 1, 2 and 5 can be used to construct recursive algorithms for the computation
of the stability polynomial. We implemented an algorithm using Equation (2) to calculate
the stability polynomial. According to Farr [12], the time complexity of this algorithm
is O(2npoly(n)), which is more efficient than the usual recursive algorithm for computing
the chromatic polynomial. This means that the stability polynomial can be computed for
graphs of larger order than the chromatic polynomial.

3 Design

In this project, we have used two different methods to search for s-factorisations. The
practical method calculated the stability polynomials of all connected graphs of order
at most 9 and exhaustively search for s-factorisations. The theoretical method used the
properties of stability polynomials to build graphs that can be s-factorised. Details of
these two methods are given in Section 3.1 and 3.2.

3.1 Practical method

Our program for computing the stability polynomial uses a recursive algorithm based
on Theorem 1. The base case of this recursive algorithm is A(Gn,∅; p) = 1. If G has
edges, then we compute A(G; p) as the sum of two recursive calculations, A(G− v; p) and
A(G − v − N(v); p). In this project, we built a program to search for s-factorisations by
going through four steps:

Step 1 : Use Theorem 1 to build a tool for calculating the stability polynomial of any
given connected graphs.

Step 2 : Compute the stability polynomial of all connected graphs of order at most 9.

Step 3 . Factorise all stability polynomials of graphs of order at most 9. Store all the
factorised stability polynomials in a new list ’Factorised Stability Polynomials List’.
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Step 4 . Exhaustively search for s-factorisations of all stability polynomials in the ’Fac-
torised Stability Polynomials List’.

3.2 Theoretical method

Exhaustive search enable us to find all s-factorisations of graphs of small order. Instead of
exhaustively searching all stability polynomials of graphs to find s-factorisations, the the-
oretical method constructs s-factorisations according to the known properties of stability
polynomials. This approach consists of three steps:

Step 1 : List all available certificate steps based on the known properties of stability
polynomials.

Step 2 : Do theoretical investigation. Use the listed certificate steps to build graphs that
can be s-factorised.

Step 3 : Try to build certificate schemas corresponding to common sequences of steps
used to explain similar s-factorisations.

Computational results provide some ideas on how to construct graphs that have s-
factorisations. The outcomes of theoretical method can also guide the s-factorisation
search in the practical method.

After finding s-factorisations by applying the practical method, we analysed the struc-
tures of some s-factorisable graphs and the reasons why these graphs can be s-factorised.
Then we built new s-factorisable graphs by modifying the s-factorisable graphs found by
practical method. Some s-factorisations caused by special structure of graphs are inde-
pendent to the size of input graphs. By modifying these s-factorisations we found infinite
families of s-factorisable graphs.

4 Computational results

According to Theorem 8, any disconnected graph G has an s-factorisation A(G; p) =
A(H1; p)A(H2; p) where H1 and H2 are two disjoint components of G. In this thesis, we
focus on s-factorisations of connected graphs.

We used the program designed in Section 3.1 to calculate the stability polynomials
of all connected graphs of order at most 9 and searched for s-factorisations. The com-
putational results show that there are 17,461,965 s-factorisations corresponding to 28,576
s-factorisable graphs. These s-factorisable graphs have 1,52 different stability polynomials.
Detailed results are given in Table 3 and Table 4.

For each order, Table 3 gives the number of non-isomorphic graphs, the number of
different stability polynomials, the number of graphs that have s-factorisation and the
number of different stability polynomials that can be s-factorised. Table 4 gives the accu-
mulated data about s-factorisations of graphs. It presents the main results of this project
including the number of connected graphs that can be s-factorised (Column C), the num-
ber of different stability polynomials that can be s-factorised (Column D) and the number
of different s-factorisations (Column F).

Table 3 shows that connected graphs which have s-factorisations have order ≥ 6. By
analysing the ratio between the number of graphs of order n and the number of different
stability polynomials of these graphs, we can see that when the order of graphs increase,
the probability that different graphs have the same stability polynomials gets higher as n
increase.

Table 4 shows that there are 28,576 of the 273,192 connected graphs of order 2 to
9 can be s-factorised. These s-factorisable graphs correspond to 152 different stability
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Table 3: Graphs and the stability polynomials

Order #Graphs #Different polys #s-factorisation #Different
graphs s-factorised polys

2 1 1 0 0
3 2 2 0 0
4 6 5 0 0
5 21 13 0 0
6 112 38 4 3
7 853 116 50 9
8 11117 391 955 42
9 261080 1438 27567 143

Table 4: s-factorisations

Order A B C D E F

2 1 1 0 0 0 0
2-3 3 3 0 0 0 0
2-4 9 7 0 0 0 0
2-5 30 17 0 0 0 0
2-6 142 45 4 3 18 3
2-7 995 130 54 10 741 10
2-8 12112 420 1009 44 73617 44
2-9 273192 1503 28576 152 17461965 152

(A) Number of non-isomorphic graphs, (B) Number of different stability polynomials,
(C) Number of s-factorisable graphs, (D) Number of different s-factorisable stability
polynomials, (E) Number of s-factorisations, (F) Number of different s-factorisations.

polynomials, and have 152 different s-factorisations. Another interesting fact given by
Table 4 is that the values in Column D are the same as the values in Column F, which
means the number of different s-factorisable stability polynomials is equal to the number
of different s-factorisations. This finding may indicate that one the stability polynomial
can be s-factorised in at most one way.

5 Theoretical results

Based on the computational results given in Section 4, we conducted theoretical research
on stability equivalence and s-factorisations. The main theoretical results presented in this
section are organised as follows. Section 5.1 lists the certificate steps for explaining stability
equivalences and s-factorisations. Section 5.2 gives upper bounds on length of certificates.
Some infinite families of stability equivalent graphs and short certificates for these stability
equivalences are given in Section 5.3. Section 5.4 presents the s-factorisations that can be
explained by short certificates. By analysing the similarities of these short certificates, we
found certificate schemas and presented them in Section 5.4.
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5.1 Certificate steps

In their research on chromatic factorisations, Morgan and Farr [18] defined certificates of
chromatic factorisation and converted the properties of chromatic polynomials to certifi-
cate steps. Based on the properties of the stability polynomial which are presented in
Section 2.1.1, we can also define certificates for s-factorisation and give certificate steps
for explaining s-factorisations.

We can define a certificate of s-factorisation as a sequence of expressions P0, P1, . . . , Pi

where P0 = A(G, p) and Pi = A(G1; p)A(G2; p). For every j, 1 ≤ j ≤ i, Pj in the sequence
is obtained from Pj−1 by applying one of the certificate steps of stability polynomials.
The certificate steps which are obtained from the properties of the stability polynomial
are listed as follows.

CS1 A(Gn,∅; p) becomes 1.

CS2 1 becomes A(Gn,∅; p).

CS3 A(G; p) becomes (1− p)A(G− v; p) + p(1− p)dA(G− v−N(v); p) for some vertex
v ∈ V (G) where d is the degree of vertex v.
(Theorem 1)

CS4 Let U = {u1, u2, u3, ..., ud} be d distinct vertices in V (G1).Then (1− p)A(G1; p) +
p(1− p)dA(G2; p) becomes A(G; p) where G = (V,E) is isomorphic to the graph G′

with vertex set V ′ = V (G1)∪ {v}, and edge set E′ = E(G1)∪ {vui : where ui ∈ U},
and where G2

∼= G1 − U − {v}.
(Theorem 1)

CS5 A(G; p) becomes (1− p)A(G− u; p) + (1− p)A(G− v; p)− (1− p)2A(G− u− v; p)
for some uv ∈ E(G).
(Theorem 2)

CS6 Let N1 ⊆ V (G3) and N2 ⊆ V (G3). Then (1− p)A(G1; p) + (1− p)A(G2; p)− (1−
p)2A(G3; p) becomes A(G; p) for some uv ∈ E(G) where the following conditions are
satisfied:

(1) G1(V1, E1) is isomorphic to graph with V ′
1 = V (G3) ∪ {u} and E′

1 = E(G3) ∪
{ua : a ∈ N1},

(2) G2(V2, E2) is isomorphic to graph with V ′
2 = V (G3) ∪ {v} and E′

2 = E(G3) ∪
{vb : b ∈ N2},

(3) G(V,E) is isomorphic to graph with V ′ = V (G3)∪{u}∪{v} and E′ = E(G3)∪
{ua : a ∈ N1} ∪ {vb : b ∈ N2}.

(Theorem 2)

CS7 A(G; p) becomes A(G \ e; p)− p2(1− p)dA(G− u− v −N(u)−N(v); p) for some
uv ∈ E(G) and d = |(N(u) \ {v}) ∪ (N(v) \ {u})|.
(Theorem 5)

CS8 A(G1; p)− p2(1− p)dA(G2; p) becomes A(G; p) where
G(V,E) is isomorphic to graph with V = V (G2) ∪ {u} ∪ {v} and E = E(G2) ∪
{ua : a ∈ N1} ∪ {vb : b ∈ N2} when N1 ⊆ V (G2), N2 ⊆ V (G2) and d = |N1 ∪N2|.
(Theorem 5)

CS9 A(G; p) becomes A(G1; p)A(G2; p) where G1, G2 are two disjoint graphs andG1∪G2

is isomorphic to G.
(Theorem 3)
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CS10 A(G1; p)A(G2; p) becomes A(G; p) where G1, G2 are two disjoint graphs and G is
isomorphic to G1 ∪G2.
(Theorem 3)

These certificate steps can be used to explain s-factorisations and stability equivalences.
We consider how the length of the certificates depends on the order of corresponding
graphs.

5.2 Upper bound of certificate length

In this section we will discuss the length of certificates for stability equivalences and s-
factorisations. We use a naive approach to find an upper bound on length of certificates. In
practice we found much shorter certificates. To show two graphs are stability equivalent we
must transform expression A(G; p) to expression A(H; p). We can first express the stability
polynomial of G as an expression in null graphs. Then we transform this expression into
the stability polynomial of H.

To show A(G; p) has an factorisation A(H1; p)A(H2; p) we must transform expression
A(G; p) to expression A(H1; p)A(H2; p). We can also first express the stability polynomial
of G as an expression in null graphs and then transform this expression into product of
the stability polynomial of H1 and the stability polynomial of H2.

First of all, we use a naive approach to express the stability polynomial of graph G
as an expression in null graphs to find an upper bound for the number of certificate steps
to express A(G; p) in terms of stability polynomial of null graphs. For any graph G, if
there exists a vertex v ∈ V (G) with degree ≥ 1, we apply certificate step CS3 on v and
transform A(G; p) to (1− p)A(G− v; p) + p(1− p)degvA(G− v −N(v); p). If graph G− v
and G− v −N(v) are not null graphs, we recursively apply CS3 on these graphs until all
graphs in the expression are null graphs. Let T (n) be the maximum certificate steps the
naive approach need to express the stability polynomial of a graph G of order n in terms
of stability polynomials of null graphs. Then

Lemma 1. For any 0 ≤ a ≤ b,

T (a) ≤ T (b).

Proof. Assume that T (a) > T (b) in order to obtain a contradiction. According to the
definition of T (a), there is a graph Ga of order a that has a certificate where CS3 is
applied T (a) times to transform A(Ga; p) to an expression in null graphs. Because a ≤ b,
there exists a graph Gb of order b such that Ga is a subgraph of Gb. To transform A(Gb; p)
to an expression in null graphs, we need to apply CS3 for at most T (b) times.

(1)If a = b, by the definition of T (a) and T (b) we have T (a) = T (b), which contradicts
assumption assumption T (a) > T (b).

(2)If a < b, we let Gb
∼= Ga ∪Gb−a,∅. Then the naive approach transforms A(Gb; p) to

an expression in null graphs by transforming A(Ga; p) to an expression in null graphs. It
takes T (a) steps to transform A(Ga; p) to an expression in null graphs, but Gb needs at
most T (b) steps to transform A(Gb; p) to an expression in null graphs by definition of T .
This contradicts our assumpution T (a) > T (b).

According to (1) and (2), the assumption T (a) > T (b) is wrong. So T (a) ≤ T (b).

Theorem 22. For any n ≥ 2,

T (n) 6

(
1+

√
5

2

)n+1
−

(
1−

√
5

2

)n+1

√
5

− 1.

Proof. First we will prove three properties about T (n):
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1. T (1) = 0. A graph with only one vertex is a null graph. Thus T (1) = 0

2. T (2) = 1. Let G2 be a connected graph of order 2. Then G2
∼= K2. We can apply

certificate step CS3 on K2, then A(K2; p) can be expressed by (1 − p)A(K1; p) +
p(1 − p)|N(v)|A(G0,∅; p) where v ∈ V (K2). Since K1 and G0,∅ are both null graphs,
T (2) = 1.

3. For any n ≥ 3, T (n) 6 1 + T (n− 1) + T (n− 2). Let Gn be a graph of order n,

(a) If Gn is a null graph, the maximum steps we need for expressing A(Gn − v; p)
in terms of null graphs is 0 and 0 6 1 + T (n− 1) + T (n− 2).

(b) If Gn is not a null graph, there exist a vertex vc ∈ V (Gn) such that |N(vc)| ≥ 1.
Then A(Gn; p) can be transformed to (1−p)A(Gn−vc; p)+p(1−p)|N(vc)|A(Gn−
vc − N(vc); p) by applying certificate step CS3. The graph Gn − vc has order
n − 1 and Gn − vc −N(vc) is a graph of order ≤ n − 2. According to Lemma
1, for any a ≤ n − 2, T (a) ≤ T (n − 2). Thus the certificate steps we need for
expressing A(Gn; p) in terms of null graphs is 6 1 + T (n− 1) + T (n− 2)

According to (a) and (b), for any n ≥ 3, there is

T (n) 6 1 + T (n− 1) + T (n− 2). (13)

Now Equation (13) is closely related to Fibonacci sequence. Solving this recurrence we
get

T (n) 6

(
1+

√
5

2

)n+1
−
(
1−

√
5

2

)n+1

√
5

− 1

With Theorem 22, we can get the upper bound of the length of certificates for stability
equivalence and s-factorisations.

Corollary 1. If A(G; p) = A(H; p), G is a graph of order nG and H is a graph of order
nH , then there exist a certificate of A(G; p) = A(H; p) of length at most(

1+
√
5

2

)nG+1
−

(
1−

√
5

2

)nG+1

√
5

+

(
1+

√
5

2

)nH+1
−

(
1−

√
5

2

)nH+1

√
5

+ nG + nH + 1

Proof. We can analyse the upper bound of certificate length of stability equivalence by
going through three stages.

(1) According to Theorem 22, A(G; p) can be transformed to an expression Sk which is
an expression in null graphs by applying k certificate steps, k ≤ T (nG) . Let this
sequence of expressions be S0 = A(G; p),S1, S2, S3, . . . , Sk. We can do an alegibric
transformation to transform Sk to Sk+1. Expression Sk+1 =

∑x
i=0A(Gi,∅; p)Pi(p),

x ≤ nG and Pi(p) is a polynomial in p. Then we can apply certificate step CS1 for
at most nG+1 times to transform Sk+1 to an expression Ep

G which is an polynomial
in p.

(2) According to Theorem 22, A(H; p) can be transformed to an expression El which
is an expression in null graphs by applying l certificate steps, l ≤ T (nH). Let this
sequence of expressions be E0 = A(H; p),E1, E2, E3, . . . , El. We can do an alegibric
transformation to transform El to El+1. Expression El+1 =

∑x
j=0A(Gj,∅; p)Pj(p),

x ≤ nH and Pj(p) is a polynomial in p. Then we can apply certificate step CS1 for
at most nH +1 times to transform El+1 to an expression Ep

H which is an polynomial
in p.
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(3) Then S0,S1, S2, S3, . . . , Sk, Sk+1, . . . , E
p
G,E

p
H , . . . , El+1, El, El−1, El−2, . . . , E2, E1,E0 is

a certificate for A(G; p) = A(H; p). Length of this certificate is at most k+1+nG+
1 + l + 1 + nH steps. According to Theorem 22, we have

k + l + nG + nH + 3 ≤

(
1+

√
5

2

)nG+1
−
(
1−

√
5

2

)nG+1

√
5

+

(
1+

√
5

2

)nH+1
−

(
1−

√
5

2

)nH+1

√
5

+ nG + nH + 1

This upper bound is approximately 0.724× (1.618nG + 1.618nH ) + nG + nH + 1.

Corollary 2. If A(G; p) = A(H1; p)A(H2; p), G is a graph of order nG, H1 is a graph
of order nH1 and H2 is a graph of order nH2, then there exist a certificate for A(G; p) =
A(H1; p)A(H2; p) of length at most(

1+
√
5

2

)nG+1
−

(
1−

√
5

2

)nG+1

√
5

+

(
1+

√
5

2

)nH1
+1

−
(
1−

√
5

2

)nH1
+1

√
5

+

(
1+

√
5

2

)nH2
+1

−
(
1−

√
5

2

)nH2
+1

√
5

+ nG + nH1 + nH2 + 1

Proof. We can analyse the upper bound of certificate length of s-factorisation by going
through four stages.

(1) According to Theorem 22, A(G; p) can be transformed to an expression Sk which
is an expression in null graphs by applying k certificate steps, k ≤ T (nG). Let
this sequence of expressions be A(G; p),S1, S2, S3, . . . , Sk. We can do an alegibric
transformation to transform Sk to Sk+1. Expression Sk+1 =

∑x
i=0A(Gi,∅; p)Pi(p),

x ≤ nG and Pi(p) is a polynomial in p. Then we can apply certificate step CS1 for
at most nG+1 times to transform Sk+1 to an expression Ep

G which is an polynomial
in p.

(2) According to Theorem 22, A(H1; p) can be transformed to an expression El which
is an expression in null graphs by applying l certificate steps, l ≤ T (nH1). Let
this sequence of expressions be A(H1; p),E1, E2, E3, . . . , El. We can do an alegibric
transformation to transform El to El+1. Expression El+1 =

∑x
j=0A(Gj,∅; p)Pj(p),

x ≤ nH1 and Pj(p) is a polynomial in p. Then we can apply certificate step CS1 for
at most nH+1 times to transform El+1 to an expression Ep

H1
which is an polynomial

in p. And A(H2; p) can be transformed to an expression Fm which is an expression
in null graphs by applying m certificate steps, m ≤ T (nH2). Let this sequence of
expressions be A(H2; p),F1, F2, F3, . . . , Fm. We can do an alegibric transformation to
transform Fl to Fm+1. Expression Fm+1 =

∑x
j=0A(Gj,∅; p)Pj(p), x ≤ nH2 and Pj(p)

is a polynomial in p. Then we can apply certificate step CS1 for at most nH2 + 1
times to transform Fm+1 to an expression Ep

H2
which is an polynomial in p.

(3) According to (2), we can apply certificate step CS1 for at most nH1 + 1 + nH2 + 1
times to transform El+1 · Fm+1 to an expression Ep

H1
· Ep

H2
which is an polynomial

in p.
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(4) ThenA(G; p),S1, S2, S3, . . . , Sk, , Sk+1,E
p
G,E

p
H1

·Ep
H2

,,El+1·Fm+1,El·Fm,El−1·Fm, El−2·
Fm, . . . , E2·Fm, E1·Fm,A(H1; p)·Fm,Fm−1·A(H1; p), Fm−2·A(H1; p), . . . , F2·A(H1; p), F1·
A(H1; p), A(H2; p) ·A(H1; p) is a certificate for A(G; p) = A(H1; p)A(H2; p). Length
of this certificate is k+1+nG+1+ l+1+nH1 +m+1+nH2 . According to Theorem
22, we have

k + l +m+ nG + nH1 + nH2 + 4 ≤

(
1+

√
5

2

)nG+1
−

(
1−

√
5

2

)nG+1

√
5

+

(
1+

√
5

2

)nH1
+1

−
(
1−

√
5

2

)nH1
+1
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This upper bound is approximately 0.724 × (1.618nG + 1.618nH1 + 1.618nH2 ) + nG +
nH1 + nH2 + 1.

5.3 Stability equivalence

The computational results given in Section 4 show that many non-isomorphic graphs have
the same stability polynomial. In this section, short certificates for two infinite families of
stability equivalent graphs are presented.

Theorem 23. The stability polynomial A(Cn; p) = A(Qn; p) for n ≥ 3.

Proof. The following is a certificate of equivalence to show A(Cn; p) = A(Qn; p):

A(Cn; p) = (1− p)A(Pn−1; p) + p(1− p)2A(Pn−3; p) (CS3)

= A(Qn; p). (CS4)

This certificate is illustrated in figure 1.

In this thesis, we use the convention of representing the stability polynomial of a graph
by a picture of the graph itself.

Figure 1: A(Cn; p) = A(Qn; p)
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Theorem 23 shows that for any n ≥ 3, A(Cn; p) = A(Qn; p) have certificates of length
= 2. The length of certificates for this infinite family of stability equivalences is much
lower than the exponential upper bound given in Section 5.2.

Theorem 24. For any uv ∈ E(G), if (N(v)\{u}) ⊆ (N(u)\{v}). Then

A(G; p) = A(G′; p)

where G′ is a graph with V (G′) = V (G) ∪ {w}, E(G′) = (E(G)\uv) ∪ {uw}

Proof. The following is a certificate of the stability equivalence:

A(G; p) =(1− p)A(G− u; p) + p(1− p)|N(u)|A(G−N(u); p) (CS3)

=(1− p)A(G− u; p)A(K1; p) + p(1− p)|N(u)|A(G−N(u); p)A(K1; p) (CS2)

=(1− p)A({G− u} ∪K1; p)

+ p(1− p)|(N(u)\{v})∪{w}|A({G−N(u)} ∪K1; p) (CS10)

=A(G′; p). (CS4)

Figure 2 illustrates this certificate.

Figure 2: Edge breaking theorem

Theorem 24 shows that an infinite family of graphs have stability equivalences that
can be explained by certificates of length = 4. The length of certificates for these stability
equivalences is much lower than the exponential upper bound given in Section 5.2 and is
independent of the order of the graph. Theorem 24 is a powerful theorem which can be
used to show the following two infinite families of graphs are stability equivalent.

Corollary 3. For any n ≥ 3, there is

A(Qn; p) = A(Yn+1; p)

Proof. The certificate in Theorem 24 is a certificate of stability equivalence of this infinite
family of graphs. The certificate is illustrated in Figure 3. The length of certificates
provided by this corrollary is 4.
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Figure 3: A(Qn; p) = A(Yn+1; p)

Corollary 4. For any n ≥ 2, there is

A(Kn+1; p) = A(K∗
n; p)

Proof. Let {vi : 0 ≤ i ≤ n− 1}∪ {w} be the vertex set of Kn+1. Applying Theorem 24 on
all edges in {viw : 0 ≤ i ≤ n−1} will provide certificates for this infinite family of stability
equivalences. Theorem 24 is used for n times. Thus the length of certificates provided by
this proof is 4n. This length is linear, which is much shorter than the exponential upper
bound given in Section 5.2. This proof is illustrated in Figure 4.

Figure 4: A(Kn+1; p) = A(K∗
n; p)

5.4 S-factorisations

In this section, we studied the s-factorisations provided by the computational results and
found short certificates for two infinite families of s-factorisations.

Theorem 25. For any n ≥ 2, we have

A(Υn,2n; p) = A(Pn−1; p)A(Υn+1,n+1; p)
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Proof. The following is a certificate of this s-factorisation:

A(Υn,2n; p) = (1− p)A(Υn,2n ∪ Pn−1; p) + p(1− p)2A(Pn−1 ∪ Pn−2; p) (CS3)

= (1− p)A(Υn,2n; p)A(Pn−1; p) + p(1− p)2A(Pn−1; p)A(Pn−2; p) (CS9)×2

= A(Pn−1; p)[(1− p)A(Υn,n; p) + p(1− p)2A(Pn−2; p)] (Algebraic)

= A(Pn−1; p)A(Υn+1,n+1; p). (CS4)

Figure 5 illustrates this certificate. The length of certificates provided by the proof of
Theorem 25 is 5, which is much lower than the exponential upper bound given in Section
5.2.

Figure 5: A(Υn,2n; p) = A(Pn−1; p)A(Υn+1,n+1; p)

Theorem 26. (General symmetry theorem) If G ∼= G′, u ∈ V (G) and u′ is the image
of u in G′ under a mapping of the isomorphism,N(u) is the neighbor set of u in G. Let
N2 ⊆ V (G2), G3 is a graph with vertex set V (G3) = V (G) ∪ V (G′) ∪ V (G2) and edge set
E(G3) = E(G) ∪ E(G′) ∪ E(G2) ∪ {uv, u′v : v ∈ N2} ∪ {uu′}. Then

A(G3; p) = A(G− u; p)A(G4; p)

where G4 is a graph with vertex set V (G4) = V (G2) ∪ V (G′)∪ {w} and edge set E(G4) =
E(G2) ∪ E(G′) ∪ {wv, u′v : v ∈ N(u)}

Proof. The following is a certificate of this s-factorisation:
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A(G3; p) =p(1− p)|N(u)∪N2∪{u′}|A((G− u−N(u)) ∪ (G′ − u′) ∪ (G2 −N2); p)

+ (1− p)A((G− u) ∪ (G3 −G); p) (CS3)

=p(1− p)|N(u)∪N2∪{u′}|A(G− u−N(u); p)A(G′ − u′; p)A(G2 −N2; p)

+ (1− p)A(G− u; p)A(G3 −G; p) (CS9)×2

=p(1− p)|N(u)∪N2∪{u′}|A(G− u−N(u); p)A(G2 −N2; p)]

+A(G− u; p)[(1− p)A(G3 −G; p) (Algebraic)

=A(G− u; p)A(G4; p). (CS6)

The length of certificates provided by this proof is 5. This independent of the order of the
graph and is much lower than the exponential upper bound given in Section 5.2. Figure
6 illustrates this certificate.

Figure 6: General symmetry theorem

Theorem 26 is a property of stability polynomial which can be used to decompose
graphs with isomorphic subgraphs. We applied Theorem 24 on some more specialised
cases and found the following interesting corollaries.
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Corollary 5. (Symmetry corollary) If G ∼= G′, u ∈ V (G) and u′ is the image of u in G′

under a mapping of the isomorphism, N(u) is the neighbour set of u in G. Let G2 be a
graph with vertex set V (G2) = V (G)∪V (G′) and edge set E(G2) = E(G)∪E(G′)∪{uu′}.
Then

A(G2; p) = A(G− u; p)A(Gu+; p)

where Gu+ is a graph with vertex set V (Gu+) = V (G) ∪ {w} and edge set E(Gu+) =
E(G) ∪ {wu} ∪ {wv : v ∈ N(u)}

Proof. The following is a certificate of this s-factorisation:

A(G2; p) =(1− p)A((G− u) ∪G′; p)

+ p(1− p)dA((G−N(u)) ∪ ((G′ − u′)); p) (CS3)

=(1− p)A(G− u; p)A(G′)

+ p(1− p)dA(G−N(u); p)A(G′ − u′) (CS9)×2

=A(G− u; p)[(1− p)G+ p(1− p)|N(u)∪{w}|(G−N(u))] (Algebraic)

=A(Gu+; p). (CS4)

where d = |N(u) ∪ {u′}| = |N(u) ∪ {w}|. Certificate length of this proof is 5 steps. Figure
7 illustrates this corollary.

Figure 7: Symmetry corollary

Corollary 5 is a specialisation of Theorem 26. The length of certificates provided by
Corollary 5 is 5 steps. It follows from Corollary 5 that

Corollary 6. For any graph G, there exists a graph H such that H has an s-factorisation
with G as a factor.

This result is analogous to the finding provided by Morgan and Farr’s research on
chromatic factorisation [18].

Corollary 7. For any n ≥ 2, there is

A(Kn∼n; p) = A(Kn−1; p)A(Kn+1; p)

Figure 8 illustrates this corollary.

Corollary 7 is a specialisation of Corollary 5. The length of certificates provided by
Corollary 7 is 5.

Corollary 8. For any n ≥ 2, there is

A(P2n; p) = A(Pn−1; p)A(Cn+1; p).

24



Figure 8: A(Kn∼n; p) = A(Kn−1; p)A(Kn+1; p) when n = 4

Proof. Let G be a Pn, V (G) = {v0, v1, ..., vn} and E(G) = {v0v2} ∪ {vivi+1 : 0 ≤ i ≤
n − 2}. Let G′ ' G and v′i is the image of vi in G under a mapping of the isomorphism.
G2 = (G ∪ G′) + {v0v′0}, G2 is a P2n. G4 is a Qn with vertex set V (G4) = V (G′) ∪ {w}
and edge set E(G4) = E(G′)∪ {wv, u′v : v ∈ NG(v

′
0)} By Theorem 26, there isA(G2; p) =

A(G− v0; p)A(G4; p).Thus

A(P2n; p) = A(Pn−1); p)A(Qn; p) (14)

By Theorem 23 A(Qn; p) = A(Yn+1; p) = A(Cn+1; p), there is A(Qn; p) = A(Cn+1; p),
Apply this on Equation 14 and there is

A(P2n; p) = A(Pn−1; p)A(Cn+1; p).

The length of certificates provided by the proof of Corollary 8 is 5 + 2 = 7. Figure 9
illustrates this corollary.

Figure 9: A(P2n; p) = A(Pn−1; p)A(Cn+1; p)

5.5 Certificate schemas of s-factorisations

The certificates for s-factorisations presented in Section 5.4 show that two different families
of s-factorisations can be explained by the same sequence of certificate steps. We group
these certificates of s-factorisations into two certificate schemas as follows:

A(G; p) =(1− p)A(H1; p) + p(1− p)dA(H2; p) (CS3)

=(1− p)A(H3; p)A(H4; p) + p(1− p)dA(H3; p)A(H5; p) (CS9)×2

=A(H3; p)((1− p)A(H4; p) + p(1− p)dA(H5; p)) (Algebraic step)

=A(H3; p)A(H6; p) (CS4)

Schema 1
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The length of certificates constructed by Schema 1 is 5 steps. This schema can used to
build the certificates in Theorems 25 and 26 and Corollaries 5 and 7.

A(G; p) =(1− p)A(H1; p) + (1− p)A(H2; p)− (1− p)2A(H3; p) (CS5)

=(1− p)A(H4; p)A(H5; p) + (1− p)A(H4; p)A(H6; p)

− (1− p)2A(H4; p)A(H7; p) (CS9)×3

=A(H4; p)((1− p)A(H5; p) + (1− p)A(H6; p)

− (1− p)2A(H7; p)) (Algebraic step)

=A(H4; p)A(H8; p) (CS6)

Schema 2

The length of certificates constructed by Schema 2 is 6. This schema can used to build
the certificates of Theorems 25 and 26 and Corollaries 5 and 7

6 Conclusion and further work

This thesis initiates an algebraic study for the stability polynomial. Factorisation is an
important algebraic property of polynomials, but previously there had been little work
done in the factorisations of the stability polynomial. In this thesis we conducted re-
search on s-factorisations and presented results in five areas: computational results, upper
bounds for certificates for stability equivalences and s-factorisations, certificates for stabil-
ity equivalences and s-factorisations and certificates schemas for s-factorisations. We also
present are some open questions for further work.

6.1 Computational results

First we implemented a recursive algorithm to calculate the stability polynomial of all
connected graphs of order at most 9 and exhaustively searched for s-factorisations. The
computational results showed that 28,576 graphs of order at most 9 are s-factorisable
and corresponding to 152 different stability polynomials and 152 different s-factorisations.
We found s-factorisable connected graphs have order ≥ 6. The probability that different
graphs are stability equivalent appears to increase as the order of graphs increase.

6.2 Upper bounds for certificates for stability equivalences and s-factorisations

We used the notion of a certificate based on Morgan and Farr’s research [18] to explain
the s-factorisations and stability equivalences given in the computational results. The
first question we addressed on certificates is the length. A naive approach was used to
construct certificates. This gave a theoretical upper bound of
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on length of certificates for stability equivalence A(G; p) = A(H1; p)A(H2; p), where nG

and nH is the order of graph G and H. This upper bound is approximately 0.724 ×
(1.618nG + 1.618nH ) + nG + nH + 1.
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An upper bound on length of certificate of s-factorisation A(G; p) = A(H1; p)A(H2; p)
was given as
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where nG, nH1 and nH2 is the order of graph G, H1 and H2. This upper bound is
approximately 0.724× (1.618nG + 1.618nH1 + 1.618nH2 ) + nG + nH1 + nH2 + 1.

6.3 Stability equivalences

As a stability polynomial is a algebraic object, we are often interested in when two algebraic
objects are equivalent. In this research we found two infinite families of graphs that are
stability equivalent and gave short certificates of length at most 5 to explain these stability
equivalences. The lengths of these short certificates are much smaller than the theoretical
upper bound for certificates for stability equivalences. Furthermore these certificates have
constant lengths and are independent of the order of the graphs.

6.4 S-factorisations

Another algebraic property we are interested in is factorisation. The computational results
of this researched show that there are 17,461,965 s-factorisations corresponding to 28,576
graphs of order at 9. We found short certificates for two infinite families of s-factorisations.
These certificates had of length at most 7. The lengths of these certificates are much shorter
than the theoretical upper bound for certificates for s-factorisations and are independent
of the size of the graph.

A natural question that arises from the existence of s-factorisations is what graph can
be s-factors. We found that for any graph G, there exists a connected graph G′ such that
G is an s-factor of G′.

6.5 Certificate schemas of s-factorisations

Most of the short certificates for s-factorisations used the same sequence of certificate
steps. This allowed us to generalise these certificates to schemas. We found two schemas
for the certificates for s-factorisations and the lengths of certificates constructed by these
schemas are ≤ 6. Both of this schemas can be used to explain the s-factorisations of our
families of graphs.

6.6 Further work

In this research we found short certificates for all s-factorisations of graphs of order 6 and
one s-factorisation of graphs of order 7. Finding short certificates for s-factorisations of
graphs of order ≥ 7 will be a valuable further work. We may build an automatic certificate
searching tool to search for short certificates for these s-factorisations.

An open question arises from this research is what are the shortest certificates for
s-factorisations and stability equivalences. We found some short certificates but it is not
known if these certificates are the shortest. Finding shortest certificates for infinite families
of s-factorisations and stability equivalences will be a challenging work.
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