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Abstract

The reliability polynomial Π(G, p) of a graph G = (V,E) represents the probability

that there exists a connected path between any two vertices in G, given a set of

independent events that an edge e ∈ E can randomly fail with probability 1 − p.
A reliability polynomial Π(G, p) has a reliability factorisation if there exist smaller

graphs G1 and G2 such that Π(G, p) = Π(G1, p)Π(G2, p). Factorisation is a basic

property of any polynomial. Reliability factorisation gives a divide-and-conquer ap-

proach to compute reliability polynomials that can be reliably factorised.

A cutvertex of a graph G is a vertex whose removal increases the number of compo-

nents ofG. It is known that any graph with a cutvertex has a reliability factorisation.

This research investigates if there exist reliability factorisations for graphs without

cutvertices. We find 581 such reliability factorisations by an exhaustive search over

reliability polynomials of all connected graphs with at most 13 edges. We also show

that an infinite graph family has a reliability factorisation.

A certificate is a sequence of steps based on identities. This research uses certificates

to explain reliability factorisations. We give certificates for reliability factorisations

of all connected graphs with at most 8 edges. We also show a certificate for a reli-

ability factorisation of an infinite family of graphs. Considering the complexity of

computing reliability polynomials, the lengths of these certificates are quite short.

We discuss how the upper bound on the lengths of certificates of reliability fac-

torisation is related to the complexity of the decision problem whether a reliability

polynomial has a reliability factorisation.

vii



Certificates for Properties of Reliability

Polynomials of Graphs

Declaration

I declare that this thesis is my own work and has not been submitted in any

form for another degree or diploma at any university or other institute of tertiary

education. Information derived from the published and unpublished work of others

has been acknowledged in the text and a list of references is given.

Rui Chen
November 9, 2012

viii



Acknowledgments

I would like to thank Prof. Graham Farr for his offer and guidance on this research.

I would like to thank Dr. Kerri Morgan for her supervision over the past eight

months.

I would like to thank my parents, Xiaobin Chen and Hongling Guo, for their care,

support and sponsorship.

Rui Chen

Monash University

November 2012

ix



x



Chapter 1

Introduction

A graph is a set of vertices and a set of edges that join pairs of vertices. Graph the-

ory is widely used in the study of mass transportation, computational biochemistry,

computer networks and social networks as well as other fields of mathematics (Evans

et al., 2006; Pirzada and Dharwadker, 2007; Newman et al., 2002; Bertram and Horá,

1999). Graphs are an abstraction of the essential elements in network structures. A

network can be represented as a graph by modelling each node such as a terminal, a

station or a computer as a vertex and modelling each link between nodes as an edge.

A network is reliable if every pair of nodes is connected by a path. The analy-

sis of the reliability of networks such as computer architecture networks and data

communication networks has become an increasingly significant field of study (Ball

et al., 1995; Chang and Shrock, 2003). Reliability is one of the most important

considerations in network design as failures in networks may cause serious damage

(Konak et al., 2002).

The reliability of a network can be determined by analysing the reliability of the un-

derlying graph. The reliability polynomial (Brown and Colbourn, 1992; Colbourn,

1997; Chang and Shrock, 2003) was introduced to represent algebraically the re-

liability of graphs. It is the probability of a graph being reliable assuming a set

of independent events that each edge can randomly fail with a certain probability.

Rather than considering the possibility of failure of vertices, the reliability polyno-

mial depends on the reliability of edges (Chang and Shrock, 2003).

This thesis focuses on an algebraic property of the reliability polynomial, reliability

factorisation, which refers to the case that a reliability polynomial can be expressed

as a product of reliability polynomials of lower degrees. It is well known that any

graph with a cutvertex has a reliability factorisation (Wanger, 2000). One objective

of this research was to investigate if there exist reliability factorisations for some

1



2 CHAPTER 1. INTRODUCTION

graphs without cutvertices.

In this research, we compute the reliability polynomials of all connected graphs

with at most 13 edges. Reliability equivalence refers to the fact that there exist

two graphs that have the same reliability polynomial. We identify 581 reliability

factorisations of graphs without cutvertices by an exhaustive search over all cases of

reliability equivalence. We also give a reliability factorisation for an infinite family

of graphs.

The concept of certificate (Morgan and Farr, 2009b) is extended by this research to

explain cases of reliability factorisation and reliability equivalence. We give certifi-

cates for all reliability factorisations of connected graphs with at most 8 edges. We

also give a certificate for a reliability factorisation of an infinite family of graphs.

Compared with the complexity of computing reliability polynomials, the lengths

of these certificates are remarkably short. Motivated by the short lengths of these

certificates, we discuss the relationship between the upper bound on the lengths of

certificates and the complexity of the decision problem whether a reliability polyno-

mial has a reliability factorisation.

The rest part of this chapter gives definitions related to the reliability polynomial

and main contributions of this research. Chapter 2 gives an overview of the litera-

ture context of the reliability polynomial. Chapter 3 describes the methods used by

this research to generate graphs, compute reliability polynomials and search for re-

liability factorisations. Chapter 4 lists the results including reliability factorisations

of graphs without cutvertices and a reliability factorisation of an infinite family of

graphs. Chapter 5 shows certificates for reliability factorisations of graphs without

cutvertices and a certificate of reliability factorisation for an infinite graph family.

Chapter 6 discusses the relationship between the upper bound on the lengths of cer-

tificates and the complexity of the decision problem whether a reliability polynomial

has a reliability factorisation. Chapter 7 summarises the main works done in this

research and makes some suggestions for further research.
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1.1 Definitions

1.1.1 Graph Basics

This section gives some basic knowledge about graphs. It includes the definition of

a graph, special elements of graphs such as cutvertices, bridges and multiple edges,

different types of graphs such as paths and cycles as well as some operations on

graphs such as contraction, deletion and vertex-gluing.

A graph G is a pair of sets G = (V,E) where V (or V (G)) is the set of vertices and E

(or E(G)) ⊆ V (2) is the set of edges (Diestel, 2000) where V (2) is the set of unordered

pairs of elements of the set V . The order of G is |V |, denoted by n. The size of G is

|E|, denoted by m. For example, Figure 1.1 displays a graph H on vertex set V =

{1, 2, 3, 4, 5, 6, 7} with edge set E = {{1, 2}, {1, 2}, {2, 3}, {3, 3}, {3, 4}, {4, 7}, {1, 7},
{4, 6}, {5, 6}, {5, 6}, {5, 5}}. The order n of H is 7. The size m of H is 11.

Figure 1.1: A graph H

If both of the vertices incident to an edge e ∈ E are the same, then e is a loop.

If both of the vertices incident to an edge e1 are the same as both of those incident

to another edge e2, then e1 and e2 are multiple or parallel edges. If a graph G

contains multiple edges, then G is a multigraph. In Figure 1.1, the edges d = {3, 3}
and k = {5, 5} are both loops. The edge pairs (a, b) = {1, 2} and (i, j) = {5, 6}
are multiple edges. The graph H in Figure 1.1 is a multigraph. Multiple edges are

allowed on graphs in this research.

A graph G
′

= (V
′
, E

′
) is a subgraph of G, denoted by G

′ ≤ G, if V
′ ⊆ V and
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E
′ ⊆ E (Diestel, 2000). If V

′
= V then G

′
is a spanning subgraph (Diestel, 2000).

If a spanning subgraph G
′

is a tree, then G
′

is a spanning tree of G. A graph G

is connected if G contains at least one spanning tree. A graph G is disconnected if

G has no spanning tree. The scope of this research is limited to connected graphs.

Figure 1.2 illustrates three spanning subgraphs of the graph H in Figure 1.1. The

graph H1 is disconnected. The graphs H2 and H3 are connected spanning subgraphs

of the graph H in Figure 1.1. The graph H3 is also a spanning tree of H.

(a) The graph H1 (b) The graph H2 (c) The graph H3

Figure 1.2: Spanning subgraphs of the graph H in Figure 1.1

A complete graph Kn is a graph of order n where all pairs of vertices are adjacent (Di-

estel, 2000). A null graph Nn is an edgeless graph of order n. A path is a graph Pn =

(V,E) of order n where V = {v0, v1, ..., vn−1} and E = {v0v1, v1v2, ..., vn−2vn−1} (Di-

estel, 2000). A θ-graph, denoted by θx,y,z, is a graph that can be obtained from three

disjoint paths p1 = (a0, a1, a2, ..., ax), p2 = (b0, b1, b2, ..., by) and p3 = (c0, c1, c2, ..., cz)

for x, y, z ≥ 1 by identifying vertices a0, b0 and c0 and identifying vertices ax, by

and cz (Morgan, 2010). A cycle Cn is a graph C ≡ Pn + vn−1v0 of order n where

P = v0v1...vn−1 is a path. Figure 1.3 gives three examples of cycles C2, C3 and C7.

A component of a graph G is a maximal connected subgraph of G (Diestel, 2000).

By definition, a connected graph has a single component. A vertex v ∈ V is a

cutvertex if the removal of v increases the number of components of G. A graph G

is separable if G has at least one cutvertex. A graph G is a non-separable if G has

no cutvertex. The graph H in Figure 1.1 is separable with two cutvertices 4 and 6.

All cycles in Figure 1.3 are non-separable.

A block of a graph G is a maximal connected non-separable subgraph (Diestel, 2000).
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(a) The graph C2 (b) The graph C3 (c) The graph C7

Figure 1.3: Cycles

An edge e ∈ E is a bridge if the removal of e increases the number of components

of G. A C2-bridge of a graph G is a pair of multiple edges whose removal increases

the number of components of G. The graph H in Figure 1.1 has a bridge h = {4, 6}
and three blocks. The graph J in Figure 1.4 has a C2-bridge (e, f) = {3, 4}. We say

that J is divided by a C2-bridge into two graphs each of which is isomorphic to C3.

1 2

3

4

5 6

a

b
c

e f

g
h

i

Figure 1.4: A graph J with a C2-bridge (e, f) = {3, 4}

Given a set E
′ ⊆ E, the complement of E

′
from E, denoted by E − E

′
, is the

set of edges that belong to E and do not belong to E
′
. Given an edge e of a graph
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G, the contraction of e on G is the graph G/e obtained by identifying the vertices

with which e is incident and removing e (Diestel, 2000). The deletion of e from G

is the graph G− e obtained by removing e. A graph G is a vertex-gluing of graphs

G1 and G2, denoted by G = G1 · G2, if G can be obtained by identifying a vertex

of G1 with a vertex of G2. Figure 1.5a shows the contraction of the edge b on the

graph H in Figure 1.1. Figure 1.5b shows the deletion of b from H. The graph J in

Figure 1.4 is a vertex-gluing of a cycle C2 and two cycles C3.

(a) Graph H/b (b) Graph H − b

Figure 1.5: Contraction and deletion of the edge b in the graph H

1.1.2 Concepts of the Reliability Polynomial

For a graph G = (V,E), an edge e ∈ E fails at a particular time t if e is absent at

t. An edge e ∈ E operates at a time t if it does not fail at t. This research assumes

that vertices never fail and that every edge e can either operate or fail at a certain

time. At any time, each edge fails randomly and its failure is independent of the

other edges. A state S ⊆ E at a time t refers to the set of all operating edges of the

graph G at t. In the rest of this document, the time t is omitted.

The k-terminal reliability of a graph G (Ball et al., 1995; Colbourn, 1997; Chang

and Satyanarayana, 1983; Page and Perry, 1994) is the probability that any two

vertices in the set K ⊆ V are connected by a path of edges e ∈ S, that is, between

any two vertices in K, there exists at least one path constructed by edges in S. If

K = V , it is called the all-terminal reliability of G (Colbourn, 1997; Chang and

Shrock, 2003; Page and Perry, 1994) which is the probability that there exists at

least one spanning tree of G constructed by edges e ∈ S. The reliability polynomial

in this research is referred as the all-terminal reliability of graphs.
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Assuming that every edge in a graph G operates with probability p ∈ [0, 1] and

fails with probability 1 − p, the reliability of G can be expressed as a polynomial

called the reliability polynomial (Brown and Colbourn, 1992; Colbourn, 1997; Chang

and Shrock, 2003), denoted by Π(G, p). The reliability polynomial represents the

probability that there exists a state S ⊆ E such that S contains at least one span-

ning tree of G. A graph G is reliably equivalent to another graph G
′
, denoted by

G ∼ G
′
, if Π(G, p) = Π(G

′
, p). A class of reliably equivalent graphs is a set of graphs

whose reliability polynomials are the same. For example, the graphs G and G
′

in

Figure 1.6 have the same reliability polynomial p4(2p− 3)2. We say that G and G
′

belong to a class of reliability equivalent graphs.

(a) A graph G (b) A graph G
′

Figure 1.6: Reliably equivalent graphs

1.1.3 Reliability Factorisation

We say that a graph G or a reliability polynomial Π(G, p) has a reliability factori-

sation if there exist graphs G1 and G2 such that

Π(G, p) = Π(G1, p)Π(G2, p).

A reliability polynomial that have a reliability factorisation can be computed using a

divide-and-conquer approach. Reliability factorisation shows a relationship between

reliability polynomials of some graphs. It is known that any separable graph has a

reliability factorisation. This research investigates reliability factorisations of non-

separable graphs. We find 24,886 reliability factorisations of all connected graphs

of size at most 13. In those reliability factorisations, we identify 581 cases of non-

separable graphs (see Section 4.1). We show a reliability factorisation of an infinite

family of θ-graphs in Section 4.2.2.
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1.1.4 Certificate

A certificate is a sequence of steps CS1, CS2, ..., CSi, ..., CSk based on identities

(Morgan and Farr, 2009b). Each of these steps is called a certificate step. A cer-

tificate of reliability equivalence is a sequence of steps based on algebraic operations

and properties of the reliability polynomial to prove that two reliability polynomials

are equivalent. Similarly, a certificate of reliability factorisation is a sequence of

such steps to explain a reliability factorisation. We find 54,577 classes of reliably

equivalent graphs from all connected graphs of size at most 13 (see Section 4.1).

In order to construct certificates, this research generates twelve types of certifi-

cate steps (listed in Section 5.1) based on properties of the reliability polynomial.

We give certificates for all reliability factorisations of connected graphs of size at

most 8 in Section 5.2. We also show a certificate of reliability factorisation for an in-

finite family of θ-graphs by mathematical induction in Section 5.2.2. A certificate of

reliability factorisation shows a sequence of expressions E0, E1, ..., Ei, ..., Ek where

E0 = Π(G, p), Ek = Π(G1, p)Π(G2, p) and each expression Ei is transformed to the

next expression Ei+1 based on a certificate step CSi+1. The length of a certificate

of reliability factorisation is the number of steps k.

1.2 Main Contributions

This research mainly involves the following works:

• Initiating the study of reliability factorisation of graphs

• Computing all reliability polynomials of connected graphs of size at most 13

• Finding all reliability factorisations of connected graphs of size at most 13

• Demonstrating the existence of reliability factorisations of non-separable graphs

• Identifying all reliability factorisations for non-separable graphs of size at most

13

• Extending the concept of certificate to explain cases of reliability factorisation

and reliability equivalence

• Generating twelve certificate steps used in construction of certificates

• Generating certificates of reliability factorisation for all connected graphs of

size at most 8
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• Finding a reliability factorisation of an infinite family of θ-graphs

• Generating a certificate of reliability factorisation for an infinite family of θ-

graphs.
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Chapter 2

Research Context

This chapter shows the literature context of the reliability polynomial. Section

2.1 discusses several combinatorial interpretations of the reliability polynomial. All

those interpretations are based on the property that the reliability polynomial can be

expressed as a sum over all connected spanning subgraphs. Section 2.2 discusses the

roots of the reliability polynomial. The analysis of implications from the real roots

was used in the search algorithm for reliability factorisations which will be described

in Section 3.3. Section 2.3 states some properties of the reliability polynomial, in-

cluding the deletion-contraction relation used by this research to compute reliability

polynomials. Section 2.4 introduces the Tutte polynomial. The reliability poly-

nomial is a partial evaluation of the Tutte polynomial. Section 2.5 introduces the

chromatic polynomial which is another partial evaluation of the Tutte polynomial.

The research conducted by Morgan and Farr (2009b) on certificates of chromatic

factorisation is analysed in terms of computing methods and certificates of chromatic

factorisation, which give some motivation and implication for this research.

2.1 Combinatorial Analysis

This section gives some combinatorial interpretations of the reliability polynomial.

These interpretations are based on the fact that the reliability polynomial of a graph

G can be expressed as a sum over subsets of edges of G. Every interpretation gives

an expression with different coefficients.

2.1.1 Basic Form

The reliability polynomial Π(G, p) can be written as a sum over all connected span-

ning subgraphs (Chang and Shrock, 2003). Given a connected spanning subgraph

G
′
= (V,E

′
), the probability of the existence of such G

′
is p|E

′ |(1−p)|E|−|E
′ |. The re-

liability polynomial Π(G, p) is a summation over such probabilities, namely, Π(G, p)

11
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can be expressed as

Π(G, p) =
∑

G′=(V,E′ )

p|E
′ |(1− p)|E|−|E

′ | (2.1)

where E
′ ⊆ E and G

′
is connected (Colbourn, 1997; Chang and Shrock, 2003; Graver

and Sobel, 2005; Page and Perry, 1994; Welsh, 1993). Equation (2.1) shows that

the coefficients of the reliability polynomial Π(G, p) counts the connected spanning

subgraphs of G.

2.1.2 Derived Forms

The reliability polynomial Π(G, p) of a graph G = (V,E) can be expressed in the

following forms based on Equation (2.1) given that m is the size of G:

(a) N-form (Ball et al., 1995; Colbourn, 1997; Moore and Shannon, 1956)

Π(G, p) =
m∑
i=0

Nip
i(1− p)m−i (2.2)

where Ni is the number of connected spanning subgraphs of size i. The re-

liability polynomial Π(G, p) in this form sums over all connected spanning

subgraphs of size from 0 to m.

(b) F-form (Brown and Colbourn, 1992; Ball et al., 1995; Colbourn, 1997; Slyke

and Frank, 1971)

Π(G, p) =
m∑
i=0

Fi(1− p)ipm−i (2.3)

where Fi is the number of connected spanning subgraphs of size m − i. The

reliability polynomial Π(G, p) in this form sums over all connected spanning

subgraphs of size from m to 0. Thus, Fi = Nm−i.

(c) M-form (Colbourn, 1997)

Π(G, p) = 1−
m∑
i=0

Mip
i(1− p)m−i (2.4)

where Mi is the number of disconnected spanning subgraphs of size i. In

contrast to the N-from and the F-form, the reliability polynomial Π(G, p) in

this form gives a summation over all disconnected spanning subgraphs of size

from 0 to m. Thus, Ni +Mi =
(
m
i

)
.
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(d) C-form (Ball et al., 1995; Colbourn, 1997; Moore and Shannon, 1956)

Π(G, p) = 1−
m∑
i=0

Ci(1− p)ipm−i (2.5)

where Ci is the number of disconnected spanning subgraphs of size m − i.

The reliability polynomial Π(G, p) in this form gives a summation over all

disconnected spanning subgraphs from m to 0. Thus, Fi + Ci =
(
m
i

)
.

The above forms are useful for calculation of the reliability polynomial Π(G, p) in

different ways. Each of these forms gives a different combinatorial interpretation of

Π(G, p).

2.2 Roots of the Reliability Polynomial

This section describes some aspects of roots of the reliability polynomial. The anal-

ysis of the real roots is used by this research to search for reliability factorisations.

This reduces the search complexity by omitting impossible cases of reliability fac-

torisation in the search algorithm.

2.2.1 Implications from Real Roots for Finding Reliability

Factorisations

Brown and Colbourn (1992) showed that all real roots of the reliability polynomial

lie in the unit disc with centre 1, more precisely, in the interval 0 ∪ (1, 2]. The

reliability polynomial Π(G, p) has zero as a root of multiplicity n− 1 where n is the

order of G (Brown and Colbourn, 1992). Thus, Π(G, p) can be expressed as

Π(G, p) = pn−1f(p) (2.6)

where f(p) is a polynomial in p. If Π(G, p) has a reliability factorisation

Π(G, p) = Π(G1, p)Π(G2, p),

then

pn−1f(p) = pn1−1f1(p)p
n2−1f2(p)

= pn1+n2−2f1(p)f2(p).
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The factor pn−1 of Π(G, p) is unique, thus,

n = n1 + n2 − 1. (2.7)

In Equation (2.7), n1 ≥ 2 and n2 ≥ 2. Thus, n ≥ 3. It gives a relation on the

possible orders of reliably factorised graphs G1 and G2. Both orders of graphs G1

and G2 are less than the order of G. This relation is used to reduce the search

complexity for reliability factorisations.

2.2.2 Complex Roots

Brown and Colbourn (1992) gave a conjecture that the complex roots of the relia-

bility polynomial of a connected graph lie in {z : |z − 1| ≤ 1}. However, Royle and

Sokal (2004) divided the Brown-Colbourn conjecture into two parts: a univariate

conjecture and a multivariate conjecture and proved that both univariate and mul-

tivariate conjectures are false.

A graph is planar if it can be drawn on a plane in a way such that no edges in-

tersect (Diestel, 2000). Royle and Sokal (2004) gave a counterexample of the graph

K4 for the multivariate Brown-Colbourn conjecture and a counterexample of a pla-

nar graph obtained from K4 by adding parallel edges for the univariate conjecture

(Royle and Sokal, 2004). A loopless graph is series-parallel if it can be obtained

from a forest by a finite sequence of replacing an edge by two edges in series or two

edges in parallel (Royle and Sokal, 2004). Wagner (2000) proved that the scope of

the univariate Brown-Colbourn conjecture was limited to all series-parallel graphs.

Royle and Sokal (2004) showed that the multivariate Brown-Colbourn conjecture

held for all series-parallel graphs as well.

2.3 Properties of Reliablity Polynomial

This section gives some properties of the reliability polynomial Π(G, p). These prop-

erties are used to compute reliability polynomials and derive basic certificates steps

by this research.

If a graph G is disconnected, then G has no spanning tree. Thus,

Π(G, p) = 0. (2.8)
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If a graph G has a cutvertex v, then

Π(G, p) = Π(G1, p)Π(G2, p) (2.9)

where G1 · G2 = G and G1 ∩ G2 = {v} (Wanger, 2000). It follows from Equation

(2.9) that the reliability polynomial Π(G, p) of a separable graph G is the product

of the reliability polynomials of its blocks (Brown and Colbourn, 1986). Prior to

this research, it was only known that separable graphs have reliability factorisations.

This research found 24,305 cases of reliability factorisation for separable graphs (see

Section 4.1).

For any edge e of a graph G,

(a) if e is a loop then its failure does not affect Π(G, p) (Chang and Shrock, 2003),

namely

Π(G, p) = Π(G/e, p); (2.10)

(b) If e is a bridge then G is disconnected when e fails (Chang and Shrock, 2003),

namely

Π(G, p) = pΠ(G/e, p); (2.11)

(c) If e is neither a loop nor a bridge, Π(G, p) comes from the sum of two mu-

tually exclusive possibilities whether e operates or fails (Ball et al., 1995;

Colbourn, 1997; Chang and Shrock, 2003; Moore and Shannon, 1956; Welsh,

1993), namely

Π(G, p) = pΠ(G/e, p) + (1− p)Π(G− e, p). (2.12)

Equation (2.12) is a deletion-contraction relation of the reliability polynomial.

It is also called the factoring theorem (Chang and Satyanarayana, 1983). Equa-

tion (2.10) and Equation (2.11) are two special cases of Equation (2.12). One

reason to state them separately is providing an inductive explanation for the

reliability polynomial which is similar to the inductive definition of the Tutte

polynomial (see Equation (2.13)).

Equations (2.10), (2.11) and (2.12) describe a recurrence relation for the reliability

polynomial. Section 3.2 will describe the algorithms to compute reliability polyno-

mials based on this relation. All the above properties are used to generate certificate

steps, which will be given in Section 5.1.
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2.4 Relation with the Tutte Polynomial

The study of the Tutte polynomial is an important subject in graph theory. The

Tutte polynomial is a generalisation of both the reliability polynomial and the chro-

matic polynomial (see Section 2.5). This section introduces the inductive definition

of the Tutte polynomial and discusses the relation between the Tutte polynomial

and the reliability polynomial.

2.4.1 Definition of the Tutte Polynomial

The Tutte polynomial T (G, x, y) of a graph G = (V,E) is a two-variable polynomial

in x, y that can be inductively defined (Welsh, 1993) as follows:

If G has no edges then T (G, x, y) = 1; otherwise for any e ∈ E,

T (G, x, y) =


yT (G− e, x, y) if e is a loop,

xT (G/e, x, y) if e is a bridge,

T (G− e, x, y) + T (G/e, x, y) if e is neither a loop nor bridge.

(2.13)

Both of the Tutte polynomial and the reliability polynomial have the property called

deletion-contraction relation.

2.4.2 The Whitney Rank Generating Expression

The Tutte polynomial is closely related to the Whitney rank generating function. If

G
′
= (V,E

′
) is a spanning subgraph of G, then the rank of E

′
, denoted by r(E

′
), is

expressed (Welsh, 1993) as

r(E
′
) = |V | − k(G

′
) (2.14)

where k(G
′
) is the number of components of G

′
. The Tutte polynomial T (G, x, y)

can be expressed (Chang and Shrock, 2003; Welsh, 1993) in the form

T (G, x, y) =
∑
G′⊆G

(x− 1)r(E)−r(E′
)(y − 1)|E

′ |−r(E′
). (2.15)

The Whitney rank generating function R(G, u, v) is a polynomial in the variables

u, v and is defined (Welsh, 1993) by

R(G, u, v) =
∑
G′⊆G

ur(E)−r(E′
)v|E

′ |−r(E′
). (2.16)
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By substituting the two variables u and v in Equation (2.16) with x− 1 and y − 1

respectively, Equation (2.15) can be derived, that is, T (G, x, y) = R(G, x−1, y−1).

2.4.3 Relation between the Reliability Polynomial and the

Tutte Polynomial

The Recipe Theorem defined in (Welsh, 1993, p.48) provides a way to calculate a

graph invariant f(G). It states that if f(G) satisfies the following properties:

(1) f(G) = af(G− e) + bf(G/e) for e ∈ E not a loop or bridge,

(2) f(G1 ·G2) = f(G1)f(G2)

then f(G) is given by

f(G) = a|E|−r(E)br(E)T
(
G,

x0
b
,
y0
a

)
(2.17)

where x0 and y0 are the values that f(G) takes when edge e is a bridge and a

loop respectively. The invariant f(G) is called Tutte-Gröthendieck(TG)-invariant.

Based on Equation (2.12) and Equation (2.9) in Section 2.3, the reliability poly-

nomial Π(G, p) is a TG-variant with a = 1 − p and b = p. Thus, Π(G, p) can

be expressed (Chang and Shrock, 2003; Welsh, 1993) as a partial evaluation of the

Tutte polynomial T (G, x, y) namely

Π(G, p) = p|V |−1(1− p)|E|−|V |+1T

(
G, 1,

1

1− p

)
. (2.18)

The reliability polynomial is a specialisation of the Tutte polynomial. It is given by

a partial evaluation of the Tutte polynomial.

2.5 Methodologies in Chromatic Polynomial Re-

search

Both the reliability polynomial and the chromatic polynomial are partial evalua-

tions of the Tutte polynomial (Welsh, 1993). Morgan and Farr (2009b) investigated

the factorisation of chromatic polynomials of graphs and introduced certificates to

explain chromatic factorisations.
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2.5.1 Definitions

For a positive integer λ, a λ-colouring of a graph G = (V,E) is a mapping φ : V →
{1, 2, ..., λ} such that φ(u) 6= φ(v) for all uv ∈ E (Diestel, 2000; Welsh, 1993). The

chromatic number of G, denoted by χ(G) (Diestel, 2000), is the smallest value λ that

can be used in a λ-colouring. The chromatic polynomial P (G, λ) is defined as the

number of λ-colourings of G (Welsh, 1993). An r-clique is a subgraph G
′
= (V

′
, E

′
)

such that |V ′ | = r and each vertex v
′ ∈ V ′

is adjacent to the other vertices in V
′
.

A graph G is a clique-gluing of graphs H1 and H2 if G can be obtained by iden-

tifying an r-clique in H1 with an r-clique in H2 (Morgan, 2010). A graph G is

clique-separable if G is a clique-gluing of two graphs (Morgan, 2010). If G is not

clique-separable, then G is a non-clique-separable graph (Morgan and Farr, 2009b).

Graphs G and G
′

are chromatically equivalent if P (G, λ) = P (G
′
, λ). A graph G is

quasi-clique-separable if P (G, λ) = P (G
′
, λ) where G

′
is clique-separable (Morgan

and Farr, 2009b). A graph is strongly non-clique-separable if it is not quasi-clique-

separable (Morgan and Farr, 2009b).

2.5.2 Computation Method

Morgan and Farr (Morgan and Farr, 2009b) calculated the chromatic polynomials of

all non-isomorphic connected graphs of order at most 10. The calculation was based

on an algorithm that recursively applied the deletion-contraction relation (Read,

1968, 1987; Read and Tutte, 1988; Tutte, 1972)

P (G, λ) = P (G− e, λ)− P (G/e, λ) (2.19)

with the base case of computing the chromatic polynomial of null graphs (Morgan

and Farr, 2009b). Then PARI, a C library for fast computation (PARI/GP, ver-

sion 2.3.0, 2006), was used to factorise these chromatic polynomials (Morgan and

Farr, 2009b). A search of all the chromatic polynomials of degree at most 10 was

conducted to identify which chromatic polynomials have chromatic factorisations

(Morgan and Farr, 2009b).

2.5.3 Chromatic Factorisation

A chromatic polynomial P (G, λ) of a graph G has a chromatic factorisation if there

exist graphs H1 and H2 such that

P (G, λ) =
P (H1, λ)P (H2, λ)

P (Kr, λ)
(2.20)
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where H1, H2 are graphs of lower order than G and r ≤ min{χ(H1), χ(H2)} (Mor-

gan and Farr, 2009b). Equation (2.20) shows that a clique-separable graph has a

chromatic factorisation. Based on this, the motivation was to find chromatic factori-

sations of non-clique-separable graphs. In this research, Morgan and Farr (2009b)

found 512 chromatic polynomials of strongly non-clique-separable graphs of order

at most 10 which have chromatic factorisations.

2.5.4 Certificate of the Chromatic Factorisation

Morgan and Farr (Morgan and Farr, 2009b) introduced the concept of a certificate

of chromatic factorisation, a series of steps P1, P2, ..., P i, ..., Pn−1, Pn using the prop-

erties of the chromatic polynomial and some basic algebraic operations in order to

explain chromatic factorisations for some graphs. These steps are used to construct

certificates of chromatic equivalence when two graphs have the same chromatic poly-

nomial (Morgan and Farr, 2009b).

Certificates, which share some common steps of transformations are grouped into a

template, defined as a schema (Morgan and Farr, 2009b). Equation (2.20) can be ei-

ther a single certificate of factorisation for a clique-separable graph or a schema. The

first expression E1 is P (G, λ). The second expressionE2 is P (H1, λ)P (H2, λ)/P (Kr, λ)

obtained from E1 by applying the step given by Equation (2.20). The graphs that

satisfy this certificate have a common structural property called clique-separability

(Morgan and Farr, 2009b). Non-clique-separable graphs which have chromatic fac-

torisations that satisfy a schema have a common structure as well (Morgan and Farr,

2009b). Here the non-clique-separable graphs are not limited to small graphs. Mor-

gan and Farr (2009a) constructed an infinite family of strongly non-clique-separable

graphs whose chromatic polynomials have chromatic factorisations.

A certificate is a sequence of steps that transform a factorisation expression to

another equivalent expression. The length of a certificate of chromatic factorisation

is related to the complexity of determining a chromatic factorisation. Morgan and

Farr (2009b) gave an upper bound n22n2/2 on the lengths of certificates of chro-

matic factorisation. In comparison to this result, some classes of certificates in their

research were much shorter.

2.5.5 Implications for Reliability Polynomial Research

Chapter 3 describes a similar approach applied in this research to investigate the

reliability factorisation. Firstly, the reliability polynomials of all connected graphs

of size at most 13 were computed. Then an exhaustive search over all reliability
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polynomials was used to find reliability factorisations (see Section 3.3). Similarly,

the motivation of the research on reliability polynomials was to identify cases of

reliability factorisation for single non-separable graphs as well as an infinite family

of non-separable graphs.

The research on reliability polynomials also generated certificate steps (see Section

5.1) to explain reliability factorisations. Section 5.2.1 gives certificates of reliability

factorisations for all non-separable graphs of size at most 8. Section 5.2.2 gives a

certificate for a reliability factorisation of an infinite family of graphs. The lengths

of certificates of reliability factorisation are analysed in Section 5.2.3.



Chapter 3

Computational Methods

This chapter describes the computational methods used in this research. Section 3.1

introduces the way to generate all connected graphs including both simple graphs

and multigraphs of size at most 13. Section 3.2 gives the methods to compute

reliability polynomials for these graphs. Section 3.3 describes the search over all

reliability polynomials to find reliability factorisations.

3.1 Method to Generate Graphs

This research imports a suite of programs gtools included in the nauty package

(McKay, 2009) to generate all connected simple graphs and multigraphs of size at

most 13. There are 1, 821, 234 such graphs. Each of these graphs has a canonical

label used to uniquely identify non-isomorphic graphs. For example, Figure 3.1

shows the graph with the canonical label 84.

Figure 3.1: Graph 84

All graphs were generated in two main steps: The first step used the program

geng in gtools to generate all connected simple graphs of order at most 14; the

second step implemented the program multig in gtools to generate all connected

graphs including both simple graphs and multigraphs of size at most 13 based on

the simple graphs generated in the first step. Given a certain order n as input, the

21
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program geng can generate all connected simple graphs of order at most n

(McKay, 2009). Given a certain size m as input, the program multig reads a set

of simple graphs and replace every edge with multiple edges in all possible ways as

long as the size of the generated multigraphs is no greater than m (McKay, 2009).

The maximum order of connected graphs of size at most 13 is 14. Thus, the

previous two-step approach can generate all connected graphs of size at most 13.

3.2 Methods to Compute Reliability Polynomials

In this research, we computed the reliability polynomials of all connected graphs of

size at most 13 using two methods: Recursive and Lookup. Both methods are based

on the deletion-contraction relation given in Equation (2.12).

3.2.1 Recursive Method

The Recursive method includes two algorithms ComputeAllRelPolys1 and Com-

puteRelPoly. The algorithm ComputeAllRelPolys1 takes as input a list L of all

connected graphs of size at most 13 and calls ComputeRelPoly once for each graph

G in L. The algorithm ComputeRelPoly takes as input a graph G and recursively

computes the reliability polynomial of G with the base case where the input is the

graph N1.

Algorithm 1 ComputeAllRelPolys1

Input: Graph list L

foreach G in L do
ComputeRelPoly(G)

end
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Algorithm 2 ComputeRelPoly

Input: Graph G

if G has no edges then

if G has a single vertex then
return 1

else
return 0

end

else
e← an edge of G

if e is a loop then
return ComputeRelPoly(G/e)

else if e is a bridge then
return p ∗ ComputeRelPoly(G/e)

else
return p ∗ ComputeRelPoly(G/e) + (1− p) ∗ ComputeRelPoly(G− e)

end

end

3.2.2 Lookup Method

The Lookup method includes one function ComputeAllRelPolys2. The input list L

of ComputeAllRelPolys2 is required to be sorted in increasing order of m. Com-

puteAllRelPolys2 maintains two lists GL and PL which store the processed graphs

and their reliability polynomials respectively. The reliability polynomial of the i-th

graph in GL is the i-th reliability polynomial in PL. When computing the reliability

polynomial of a graph G of size m, the reliability polynomials of both G/e and G−e
can be found in PL as GL is a list of all connected graphs of size no greater than

m.
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Algorithm 3 ComputeAllRelPolys2

Input: Graph list L

GL← an empty list of graphs

PL← an empty list of reliability polynomials

insert N1 to the first place of GL

insert Π(N1, p) to the first place of PL

foreach G in L do
i1 ← index of G1 in GL where G1 is isomorphic to G/e

i2 ← index of G2 in GL where G2 is isomorphic to G− e
Π(G1, p)← PL(i1)

Π(G2, p)← PL(i2)

append G to GL

append p ∗ Π(G1, p) + (1− p) ∗ Π(G2, p) to PL

end

This research computed the reliability polynomials of all connected graphs of size at

most 13 using the Recursive method. The Lookup method was used to recompute

the reliability polynomials of all connected graphs of size at most 12. It was not

feasible to use the Lookup method for m > 12 due to the large search cost of the

program based on the Lookup method. A possible future improvement would be

using a hash table to store graphs rather than a list. The reliability polynomials

computed by both methods are the same for all connected graphs of size at most

12. The results from the Lookup method are able to confirm the correctness of the

Recursive method.

3.3 Method to Search for Reliability Factorisa-

tions

In order to search for reliability factorisations, Maple (TM) (2011), a computer al-

gebra system, was used to factor reliability polynomials computed by the Recursive

program given in Section 3.2.1. There are a large number of cases of reliability

equivalence. Table 4.1 shows that the number of connected graphs of size at most

13 is 1,821,234 while the number of reliability polynomials, also known as the num-

ber of classes of reliably equivalent graphs, is 54,577. Thus, the search space is
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reduced significantly by performing the search over reliability polynomials rather

than graphs.

As stated in Section 2.2, every reliability polynomial has a factor pn−1 where n

is the order of G. This research focuses on reliability factorisations of non-separable

graphs. If a non-separable graph G has a reliability factorisation Π(G1, p)Π(G2, p),

then Π(G, p) must have at least three factors including the factor pn−1. Except pn−1,

the other factors are not divisible by p. Equation (2.7) shows that any graph that

has a reliability factorisation has an order n ≥ 3. Thus, the search space is further

reduced by performing the search over the reliability polynomials that have at least

three factors where the related graphs have at least order 3.

Algorithm FindRelFact takes input consisting of a list of factored reliability poly-

nomials. Given that a multiset is a generalised set in which elements are allowed

to appear more than once, for each reliability polynomial Π(G, p), FindRelFact

partitions the factors of Π(G, p) excluding pn−1 into a pair of multisets MS1 and

MS2 in all possible ways. Each multiset has at least one factor in any partition.

Then according to Equation (2.7), for each possible partition, pi and pn−1−i are

distributed to the multisets MS1 and MS2 respectively in all possible ways where

i ∈ [1, n− 2]. Thus, for each reliability polynomial, the multisets MS1 and MS2 are

listed in all possible distributions of pi and pn−1−i for all such partitions. The pair of

multisets MS1 and MS2 in a distribution of a partition is called a combination. In a

combination, the product of all factors in the multiset MSi is called a comb-factor,

denoted by cfi where i is 1 or 2.

Then FindRelFact searches for a map from each comb-factor to a reliability poly-

nomial in the list of reliability polynomials. If both comb-factors of a combination

can be mapped to reliability polynomials, then these comb-factors and the relia-

bility polynomial that generates this combination form a reliability factorisation.

Typically, combinations do not include the case in which one com-factor is px where

x ∈ Z+ because in such case, even if the combination formed a reliability factorisa-

tion, the reliably factorised graph must be separable. The output from Algorithm

FindRelFact possibly includes some duplicate cases of reliability factorisation. A

search for duplicate cases of reliability factorisation over the output list of reliability

factorisations is then performed to remove those duplicate cases.
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Algorithm 4 FindRelFact

Input: Reliability polynomial list PL
′

FL← an empty list of reliability factorisations

foreach Π(G, p) in PL
′
do

l← number of factors of Π(G, p)

n← order of G

if l ≥ 3 & n ≥ 3 then
CL← a list of all combinations for Π(G, p)

foreach combination comb in CL do
cf1 ← one comb-factor in comb

cf2 ← the other com-factor in comb

if find(cf1, PL
′
) then

if find(cf2, PL
′
) then

append Π(G, p) = cf1cf2 to FL

end

end

end

end

end

return FL



Chapter 4

Research Results

This chapter describes the results of this research. Section 4.1 gives the computa-

tional results and some analysis and propositions inspired from these results. Section

4.2 gives some cases of reliability factorisation. These cases include reliability fac-

torisations of all connected graphs of size at most 8 and a reliability factorisation of

an infinite family of θ-graphs.

4.1 Computational Results

This section gives the computational results of the number of graphs, the number

of reliability polynomials and the number of reliability factorisations with size m of

graphs (see Table 4.1). Some graphs have the same reliability polynomial, which is

a case of reliability equivalence. By Proposition 1, the reliability equivalence only

exists in the case that some graphs have the same order and the same size. A reli-

ability polynomial may or may not have a reliability factorisation. By Proposition

2, the condition that a reliability polynomial has a reliability factorisation depends

on the existence of a separable graph belonging to the class of reliably equivalent

graphs that have this reliability polynomial.

Proposition 1. If a graph G of order n and size m is reliably equivalent to another

graph G
′

of order n′ and size m′, then n = n′ and m = m′.

Proof. The reliability polynomial Π(G, p) has zero as a root of multiplicity n − 1.

The reliability polynomial Π(G
′
, p) has zero as a root of multiplicity n′−1. Because

Π(G, p) = Π(G
′
, p),

27
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we have

pn−1 = pn
′−1.

Therefore,

n = n′;

According to the deletion-contraction relation, we can say that the degree of a reli-

ability polynomial Π(G, p) increases by 1 if Π(G, p) applies the deletion-contraction

relation once on some edge of G. Thus, the degree of a reliability polynomial Π(G, p)

equals the size of G. Because

Π(G, p) = Π(G
′
, p),

we have

deg(Π(G, p)) = deg(Π(G
′
, p)).

Therefore,

m = m′.

Proposition 2. The reliablity polynomial Π(G, p) of a non-separable graph G has

a reliability factorisation if and only if G is reliably equivalent to a separable graph

G
′
.

Proof. If G has a reliability factorisation, then

Π(G, p) = Π(G1, p)Π(G2, p) (4.1)

where G1 and G2 are smaller graphs. There exists a graph G
′

which is isomorphic

to G1 ·G2. Therefore,

Π(G
′
, p) = Π(G1 ·G2, p). (4.2)

By Equation (2.9), we have

Π(G1 ·G2, p) = Π(G1, p)Π(G2, p). (4.3)
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By Equation (4.2) and Equation (4.3), we have

Π(G
′
, p) = Π(G1, p)Π(G2, p). (4.4)

By Equation (4.1) and Equation (4.4), we have

Π(G
′
, p) = Π(G, p); (4.5)

If G is reliability equivalent to G
′
, then

Π(G, p) = Π(G
′
, p). (4.6)

Because G
′

has a cutvertex, by Equation (2.9) we have

Π(G
′
, p) = Π(G1, p)Π(G2, p) (4.7)

where G1 and G2 are smaller graphs. By Equation (4.6) and Equation (4.7), we

have

Π(G, p) = Π(G1, p),Π(G2, p), (4.8)

that is, Π(G, p) has a reliability factorisation Π(G1, p)Π(G2, p).

Table 4.1 lists the main results with size m of graphs. These results include the

number of reliability polynomials (# RPs), the number of reliability factorisations

(# RFs) as well as the number of reliability factorisations of all separable graphs

(# RFs (cutvertex)) and the number of reliability factorisations of all non-separable

graphs (# RFs (mixture)). The last two fields count two mutually exclusive results

that sum up to the number of reliability factorisations (# RFs).
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m # graphs # RPs # RFs # RFs # RFs

(cutvertex) (mixture)

1 1 1 0 0 0

2 2 2 0 0 0

3 5 4 0 0 0

4 12 8 1 1 0

5 33 16 3 3 0

6 103 35 13 12 1

7 333 76 36 35 1

8 1,183 180 107 106 1

9 4,442 443 285 274 11

10 17,576 1,349 864 841 23

11 72,810 3,314 2,011 1,977 34

12 314,595 10,986 5,690 5,564 126

13 1,410,139 38,163 15,876 15,492 384

total 1,821,234 54,577 24,886 24,305 581

Table 4.1: Experimental results in terms of m

Table 4.2 lists the ratios # RPs/# graphs, # RFs/# graphs and # RFs/# RPs

with size m. The proportion # RFs/# RPs increases when m is small, peaks at

m = 9 and decreases from m = 10. Similar tendency happens for # graphs, # RPs

and # RFs with order n of graphs in Table 4.3. The details of the results grouped by

n are not covered in this research as the reliability polynomial reflects the property

of edges of graphs rather than vertices. The reason for the up-and-down tendency

of the reliability factorisation may be investigated in further research as it could

indicate some relations between the reliability factorisations and the size of graphs.
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m # RPs/# graphs # RFs/# graphs # RFs/# RPs

1 1.000 0 0

2 1.000 0 0

3 0.800 0 0

4 0.667 0.083 0.125

5 0.485 0.091 0.188

6 0.340 0.126 0.371

7 0.228 0.108 0.474

8 0.152 0.090 0.594

9 0.100 0.064 0.643

10 0.077 0.049 0.640

11 0.046 0.028 0.607

12 0.035 0.018 0.518

13 0.027 0.011 0.416

total 0.030 0.014 0.456

Table 4.2: Ratios based on Table 4.1

n # graphs # RPs # RFs # RFs # RFs

(cutvertex) (mixture)

2 13 13 0 0 0

3 109 109 30 30 0

4 1,258 706 251 251 0

5 9,615 3,152 1,202 1,182 20

6 49,232 8,955 3,409 3,354 55

7 158,590 15,046 5,978 5,820 158

8 330,994 14,674 6,521 6,334 187

9 454,635 8,313 4,622 4,498 124

10 419,885 2,864 2,125 2,103 22

11 260,670 630 638 624 14

12 106,619 101 110 109 1

13 26,485 13 0 0 0

14 3,159 1 0 0 0

total 1,821,234 54,577 24,886 24,305 581

Table 4.3: Experimental results in terms of n
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4.2 Reliability Equivalence and Reliability Fac-

torisation

According to Proposition 2, a non-separable graph G1 whose reliability polynomial

has a reliability factorisation is reliably equivalent to some separable graph G2. A

certificate of reliability factorisation of G1 usually includes a certificate of reliability

equivalence of G1 and G2. This section gives reliability factorisations of all non-

separable graphs of size at most 8. It also gives a reliability factorisation of an

infinite family of θ-graphs. We use graphs themselves to represent their reliability

polynomials in equations.

4.2.1 Cases of Graphs of Small Size

Table 4.1 shows that there are three reliability factorisations of all non-separable

graphs of size at most 8. They are corresponding to the cases m = 6, m = 7 and

m = 8. Figure 4.1 illustrates the case of reliability factorisation for m = 6. Graph 84

is non-separable. It is reliably equivalent to Graph 96 which has a cutvertex. Both

Graph 84 and Graph 96 can be reliably factorised into two reliability polynomials

of graphs C3 labelled as Graph 5.

Figure 4.1: Case m = 6

Figure 4.2 demonstrates the two cases of reliability factorisation for m = 7 and

m = 8. In Figure 4.2a, Graph 208 and Graph 211 are two reliably equivalent non-

separable graphs. They are reliably equivalent to two separable graphs: Graph 227

and Graph 277. They can be reliably factorised into the reliability polynomials of

Graph 33 and the reliability polynomial of the graph C2 labelled as Graph 2. Figure
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4.2b gives a reliability factorisation for a class of three reliably equivalent graphs:

Graph 615, Graph 616 and Graph 634. Graph 615 and Graph 616 are non-separable

and can be reliably factorised into the reliability polynomials of Graph 61 and Graph

2.

=

==

= ×

Graph 208 Graph 211

Graph 227

Graph 277

Graph 2
Graph 33

(a) Case m = 7

=

=

= ×

Graph 615 Graph 616

Graph 634

Graph 61

Graph 2

(b) Case m = 8

Figure 4.2: Cases m = 7 and m = 8

4.2.2 Case of an Infinite Families of θ-graphs

The following theorem gives a reliability factorisation of an infinite graph family

θ1,d,2d+2 for d ∈ Z+:

Theorem 1. The reliability polynomial Π(θ1,d,2d+2, p) of a graph θ1,d,2d+2 has the

reliability factorisation Π(C2d+1, p)Π(Cd+2, p) for d ∈ Z+.

We give the proof of this theorem in Section 5.2.2 by a sequence of certificate steps

and mathematical induction. All graphs in the family θ1,d,2d+2 for d ∈ Z+ are non-

separable. By definition of θ-graphs, a graph θ1,d,2d+2 has 1 + d + 2d + 2 = 3d + 3

edges. In all graphs of size at most 13, there are three graphs belonging to this

family. The simplest graph in this family is θ1,1,4 (labelled as Graph 84 illustrated

in Figure 4.1) for d = 1. Figure 4.3 gives the reliability factorisations of the other
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two graphs θ1,2,6 and θ1,3,8 generated in this research.

In Figure 4.3a, the graph θ1,2,6 (labelled as Graph 4674) has a reliability factori-

sation in terms of the graph C5 (labelled as Graph 38) and the graph C4 (labelled

as Graph 15). Figure 4.3b shows that the graph θ1,2,6 (labelled as Graph 369487)

can be reliably factorised into the graph C7 (labelled as Graph 339) and the graph

C5 (labelled as 38).

=

= *

Graph 4674

Graph 4701

Graph 38

Graph 15

(a) Case of the graph θ1,2,6

Graph 38

=

Graph 369487

Graph 370451

*

Graph 399

=

(b) Case of the graph θ1,3,8

Figure 4.3: Cases of the graphs θ1,2,6 and θ1,3,8



Chapter 5

Certificates of Reliability

Factorisation

This chapter gives certificates for the cases of reliability equivalence and reliability

factorisation described in Section 4.2. In order to construct certificates, Section 5.1

gives twelve types of certificate steps. Section 5.2 gives three certificates of reliability

factorisation of non-separable graphs for the cases m = 6, m = 7 and m = 8. It also

shows a proof of Theorem 1 following an illustration by a certificate of reliability

factorisation of an infinie family of graphs θ1,d,2d+2 for d = 2.

5.1 Certificate Steps

A certificate step is a way to transform an expression Ei to another expression Ei+1

based on identities in a certificate of reliability factorisation or reliability equivalence.

In order to construct certificates, this section defines twelve types of certificate steps.

Any certificate step is based on either algebraic operations or a property of the

reliability polynomial.

5.1.1 Basic Certificate Steps

The properties of the reliability polynomial stated in Section 2.3 include the cases

where an graph has a loop, a bridge or a cutvertex and the general deletion-

contraction principle. Based on these properties, we give the following certificate

steps:

(CS1) Π(G, p) becomes Π(G− e, p) for some loop e ∈ E(G)

(CS2) Π(G, p) becomes Π(G+ vv, p) where v ∈ V (G)
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(CS3) Π(G, p) becomes pΠ(G/e, p) for some bridge e ∈ E(G)

(CS4) pΠ(G, p) becomes Π(G
′
, p) where G

′
is isomorphic to G ·K2

(CS5) Π(G, p) becomes pΠ(G/e, p) + (1− p)Π(G− e, p) for some e ∈ E(G) where

e is neither a loop or a bridge

(CS6) pΠ(G1, p)+(1−p)Π(G2, p) becomes Π(G, p) where G1 is isomorphic to G/e,

G2 is isomorphic to G− e and e ∈ E(G) is neither a loop nor bridge

(CS7) Π(G, p) becomes Π(G1, p)Π(G2, p) for some cutvertex v ∈ V (G) where G1 ·
G2 = G and G1 ∩G2 = {v}

(CS8) Π(G1, p)Π(G2, p) becomes Π(G, p) where G = G1 ·G2

(CS9) Π(G, p) becomes Π(G
′
, p) where G ∼ G

′

(CS10) By applying a sequence of algebraic operations, an expression E becomes

another expression E
′
.

5.1.2 Additional Property of the Reliability Polynomial

The properties of the reliability polynomial in the case where an edge is a loop or

a bridge can be derived from the deletion-contraction principle. Both cases reduce

the number of repeated expressions in certificates. Following this purpose, we give

another property of the reliability polynomial in Theorem 2:

Theorem 2. If a graph G is divided by a C2-bridge into two subgraphs G1 and G2,

then

Π(G, p) = p(2− p)Π(G1, p))Π(G2, p) (5.1)

Proof. Assume the two vertices of C2-bridge are v1 and v2. Thus, v1 and v2 are two

cutvertices of the graph G. The reliability polynomial Π(G, p) can be expressed as

Π(G, p) = Π(G1, p)Π(C2 ·G2, p) (CS7)

= Π(G1, p)Π(C2, p)Π(G2, p) (CS7)

= Π(G1, p)(pΠ(C1, p) + (1− p)Π(K1, p))Π(G2, p) (CS5)

= Π(G1, p)(p+ (1− p)Π(K1, p))Π(G2, p) (CS1)

= Π(G1, p)(p+ (1− p)p)Π(G2, p) (CS3)

= p(2− p)Π(G1, p))Π(G2, p) (CS10)
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According to Theorem 2, we give the following two certificate steps:

(CS11) Π(G, p) becomes p(2−p)Π(G1, p)Π(G2, p) for some C2-bridge C2 where G1

and G2 are subgraphs of G such that G1 · C2 ·G2 = G

(CS12) p(2− p)Π(G1, p)Π(G2, p) becomes Π(G, p) where G = G1 · C2 ·G2

5.2 Sample Certificates of Reliability Factorisa-

tion

5.2.1 Simple Cases

This section demonstrates three certificates of reliability factorisation in the cases

m = 6, m = 7 and m = 8 given in Table 4.1. Figures 5.1 and 5.2 give a certificate of

reliability factorisation for the graph θ1,1,4 (labelled as Graph 84 in the case m = 6).

The length of this certificate is 19. Similarly in the case m = 7, Figures 5.3 and

5.4 give a certificate of reliability factorisation of length 16 for Graph 211. The case

m = 8 demonstrated in Figure 5.5 is a certificate of reliability factorisation with

length 18 for Graph 616 using the reliability equivalence of Graph 211 and Graph

227. The certificate of reliability equivalence of these two graphs is included in the

first 15 steps of the certificate in Figures 5.3 and 5.4.
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= p (1-p)+

= p ( p (1-p)+ ) (1-p)+

=pp

p

=p( p (1-p)+ ) (1-p)+

+ 2p(1-p)

= pp (p + (1-p) ) + 2p(1-p)

= p (p + (1-p) ) + 2p(1-p)

= pp (p + (1-p) ) + 2p(1-p)

Figure 5.1: Certificate of reliability factorisation for Graph 84 (to be continued)
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Figure 5.2: Certificate of reliability factorisation for Graph 84 (Continued from
Figure 5.1)
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Figure 5.3: Certificate of reliability factorisation for Graph 211 (to be continued)
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Figure 5.4: Certificate of reliability factorisation for Graph 211 (Continued from
Figure 5.3)
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p (1-p)= +

=

Using the reliability fact-

orisation for Graph 211

p (1-p)+

= = ×

Figure 5.5: Certificate of reliability factorisation for Graph 616
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5.2.2 Case of the Infinite Graph Family θ1,d,2d+2

This section proves Theorem 1 by a sequence of certificate steps and mathematical

induction. Before showing the proof, we introduce the following fact:

Fact 1. The reliability polynomial Π(Cn, p) of the cycle Cn for n ≥ 3 can be expressed

as

Π(Cn, p) = pΠ(Cn−1, p) + (1− p)Π(Pn−1, p) (CS6)

where Pn−1 is a path of order n− 1.

By providing Fact 1, we give the following proof for Theorem 1

Proof. We use a proof by induction on d. When d = 1, the reliability polyno-

mial Π(θ1,1,4, p) = Π(C3, p)Π(C3, p). This is the only case of reliability factorisa-

tion for m = 6 as shown in Figures 5.1 and 5.2; Then given the hypothesis that

Π(θ1,d−1,2d, p) = Π(C2d−1, p)Π(Cd+1, p) is true for d ≥ 2, d ∈ Z+, the reliability
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polynomial

Π(θ1,d,2d+2, p) = pΠ(θ1,d,2d+1, p) + (1− p)Π(Cd+1 · P2d+1, p) (CS5)

= p [pΠ(θ1,d,2d, p) + (1− p)Π(Cd+1 · P2d, p)]

+ (1− p)Π(Cd+1 · P2d+1, p) (CS5)

= p [pΠ(θ1,d,2d, p) + (1− p)Π(Cd+1 · P2d, p)]

+ (1− p)pΠ(Cd+1 · P2d, p) (CS3)

= p2Π(θ1,d,2d, p) + 2p(1− p)Π(Cd+1 · P2d, p) (CS10)

= p2 [pΠ(θ1,d−1,2d, p) + (1− p)Π(C2d+1 · Pd−1, p)]

+ 2p(1− p)Π(Cd+1 · P2d, p) (CS5)

= p3Π(θ1,d−1,2d, p) + (1− p)p2Π(C2d+1 · Pd−1, p)

+ 2p(1− p)Π(Cd+1 · P2d, p) (CS10)

= p3Π(C2d−1, p)Π(Cd+1, p) + (1− p)p2Π(C2d+1 · Pd−1, p)

+ 2p(1− p)Π(Cd+1 · P2d, p) (Inductive Hypothesis)

= p3Π(C2d−1, p)Π(Cd+1, p) + (1− p)Π(C2d+1 · Pd+1, p)

+ 2p(1− p)Π(Cd+1 · P2d, p) (CS4 Twice)

= p3Π(C2d−1, p)Π(Cd+1, p) + (1− p)Π(C2d+1 · Pd+1, p)

+ 2p(1− p)Π(Cd+1, p)Π(P2d, p) (CS7)

= pΠ(Cd+1, p)
[
p2Π(C2d−1, p) + (1− p)Π(P2d, p) + (1− p)Π(P2d, p)

]
+ (1− p)Π(C2d+1 · Pd+1, p) (CS10)

= pΠ(Cd+1, p)
[
p2Π(C2d−1, p) + (1− p)pΠ(P2d−1, p) + (1− p)Π(P2d, p)

]
+ (1− p)Π(C2d+1 · Pd+1, p) (CS3)

= pΠ(Cd+1, p){p [pΠ(C2d−1, p) + (1− p)Π(P2d−1, p)] + (1− p)Π(P2d, p)}

+ (1− p)Π(C2d+1 · Pd+1, p) (CS10)

= pΠ(Cd+1, p) [pΠ(C2d, p) + (1− p)Π(P2d, p)]

+ (1− p)Π(C2d+1 · Pd+1, p) (CS6)

= pΠ(Cd+1, p)Π(C2d+1, p) + (1− p)Π(C2d+1 · Pd+1, p) (CS6)

= pΠ(Cd+1, p)Π(C2d+1, p) + (1− p)Π(C2d+1, p)Π(Pd+1, p) (CS7)

= Π(C2d+1, p) [pΠ(Cd+1, p) + (1− p)Π(Pd+1, p)] (CS10)

= Π(C2d+1, p)Π(Cd+2, p). (CS6)

Therefore, Π(θ1,d,2d+2, p) has a reliability factorisation Π(C2d+1, p)Π(Cd+2, p) for all

d ∈ Z+.
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The above proof is also a certificate of reliability factorisation for the infinite graph

family θ1,d,2d+2. To illustrate this proof, Figures 5.6-5.8 give a certificate of reliability

factorisation for the graph θ1,2,6.

Figure 5.6: Certificate of reliability factorisation for Graph 4674 (to be continued)



46 CHAPTER 5. CERTIFICATES OF RELIABILITY FACTORISATION

Figure 5.7: Certificate of reliability factorisation for Graph 4674 (Continued from
Figure 5.6)
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Figure 5.8: Certificate of reliability factorisation for Graph 4674 (Continued from
Figure 5.7)



48 CHAPTER 5. CERTIFICATES OF RELIABILITY FACTORISATION

5.2.3 Lengths of Certificates of Reliability Factorisation

This section discusses lengths of certificates of reliability factorisation. The upper

bound on the lengths of certificates of reliability factorisation could be exponential.

However, the lengths for the cases of certificates of reliability factorisation in Sec-

tions 5.2.1 and 5.2.2 are remarkably short.

Table 5.1 gives the lengths of certificates of reliability factorisation for the cases

m = 6, m = 7 and m = 8. Table 5.2 describes the lengths of certificates of relia-

bility factorsation for the infinite family of graphs θ1,d,2d+2. In terms of the size m

of graphs, the length appears to be linear, which is similar to the results shown by

Morgan and Farr (2009b) that the lengths of certificates of chromatic factorisation

are much shorter in practice. Considering that computing reliability polynomials are

known as hard problems, a certificate could be a approach with smaller complexity

to verify a reliability factorisation for a reliability polynomial.

m Length of certificate

6 19

7 16

8 18

Table 5.1: Lengths of certificates for the cases m ≤ 8

d m Length of certificate

1 6 19

2 9 36

· · ·
· · ·
· · ·
i 3i+ 3 17(i− 1) + 19

Table 5.2: Lengths of certificates for the inifinite graph family θ1,d,2d+2



Chapter 6

Complexity Analysis

As motivated by the short lengths of certificates of reliability factorisation found

in this research, this chapter discusses the relationship between the complexity of

the problem Reliability Factorisation and the upper bound on the lengths of

certificates of reliability factorisation. The lengths of certificates are related to the

complexity of decision problems. Section 6.1 defines the problem Reliability Fac-

torisation and some complexity classes. Section 6.2 analyses the complexity of the

problem Reliability Factorisation using both an oracle of the problem Compute

Reliability Polynomial and the upper bound on the lengths of certificates of re-

liability factorisations.

6.1 Preliminaries

A decision problem T is defined as a problem consisting of a set DT of instances and

a subset YT ⊆ DT of yes-instances (Garey and Johnson, 1979). It can be specified

into two parts: The first part is a generic instance of the problem; the second part is

a yes-no question in terms of this generic instance (Garey and Johnson, 1979). The

decision problem Reliability Factorisation is defined as follows:

Reliability Factorisation

Input: Connected graph G

Question: Does Π(G, p) have a reliability factorisation?

Three popular complexity classes of decision problems are P, NP and NP-complete.

Polynomial time refers to time complexity functions which are O(p(n)) for some

polynomial function p of input length n (Garey and Johnson, 1979). A function

f(n) is O(g(n)) whenever there exists a constant c such that f(n) ≤ c · g(n) for all

sufficiently large n (Garey and Johnson, 1979).
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A decision problem T is in P if there exists a polynomial time DTM (Deterministic

Turing Machine) program M such that for every I ∈ DT , I ∈ YT if and only if M

accepts I (Garey and Johnson, 1979), i.e. T can be solved by M .

A decision problem T is in NP if there exists a polynomial time DTM program

M(−,−) such that for every I ∈ DT , I ∈ YT if and only if there exists a C such that

M(I, C) accepts (Crama and Hammer, 2011; Garey and Johnson, 1979). Such a C is

called a certificate for I. In other words, T is in NP if it can be verified by M(−,−).

A polynomial transformation from a decision problem T to another decision problem

T
′
is a function f : DT → DT ′ such that f is computable in polynomial time and for

all I ∈ DT , I ∈ YT if and only if f(I) ∈ YT ′ (Garey and Johnson, 1979). A decision

problem T is NP-complete if T satisfies two conditions (Garey and Johnson, 1979):

(1) T ∈ NP ;

(2) All other decision problems T
′ ∈ NP can be polynomially transformed to T .

An Oracle Turing Machine (OTM) is a DTM that is allowed to use an oracle (Garey

and Johnson, 1979). A polynomial time Turing reduction from a problem T to a

problem T
′

is a polynomial time algorithm A that solves T by using an oracle O for

solving T
′

such that each oracle call is counted as one time-step. This means that

A solves T in polynomial time by using O for solving T
′
. A problem T is NP-hard

if there exists a polynomial time Turing reduction from some NP-complete problem

T
′

to T (Garey and Johnson, 1979).

The class #P is the set of functions f : Σ∗ → N ∪ {0} such that there exists a

polynomial time algorithm M(−,−) such that for all input I ∈ Σ∗, f(I) is the

number of certificates C such that M(I, C) accepts.

A decision problem T is in P#P if there exists a polynomial time OTM M which

uses an oracle for a function in #P such that for every I ∈ DT , I ∈ YT if and only if

M accepts I (Welsh, 1993). The class FP is the set of problems T that can be solved

by a polynomial time DTM (Welsh, 1993). Here T can be a decision problem or a

problem of other types. A problem T is in FP#P if there exists a polynomial time

OTM M which uses an oracle in #P such that T can be solved by M . A decision

problem T
′

is in NP#P if there exists a polynomial time OTM M(−,−) which uses

an oracle in #P or FP#P such that for every I ∈ DT ′ , I ∈ YT ′ if and only if there

exists a certificate C such that M(I, C) accepts.
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6.2 Complexity Analysis of Reliability Factorisa-

tion

6.2.1 Oracle for Computing Reliability Polynomial

The problem Reliability Factorisation can be verified in polynomial time by

Algorithm M1 which uses an oracle for solving the following problem:

Compute Reliability Polynomial

Input: Connected graph G

Output: The reliability polynomial Π(G, p)

Algorithm 5 M1

Input: Connected graph G

Certificate: Connected graphs G1, G2

1: compute Π(G, p), Π(G1, p) and Π(G2, p) using oracle

2: Π(G
′
, p)← Π(G1, p)Π(G2, p)

3: simplify Π(G
′
, p)→ Π(G

′′
, p)

4: if coefficients between Π(G, p) and Π(G
′′
, p) are the same then

5: return accept

6: else

7: return reject

8: end if

In Algorithm M1, Step (1) includes three oracle calls to the problem Compute

Reliability Polynomial for Π(G, p), Π(G1, p) and Π(G2, p). Each oracle call takes

time 1. Given that m is the size of graph G, the degree of Π(G, p) is m. The degree

of both Π(G1, p) and Π(G2, p) is less than m. In Steps (2) and (3), it takes time

at most 2 · m2 to multiply Π(G1, p) by Π(G2, p) and simplify the expression. In

Step (4), it takes time at most m to compare the coefficients between Π(G, p) and

Π(G
′′
, p). Thus, Algorithm M1 takes time at most 3 · 1 + 2 ·m2 +m = 2m2 +m+ 3.

Thus, M1 takes polynomial time.

The coefficients of the reliability polynomial Π(G, p) count the number of connected

subgraphs of G (Beichl et al., 2011). The problem Compute Reliability Polyno-

mial can be solved in polynomial time by using an oracle in FP#P to compute the
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coefficients of the reliability polynomial. The problem Reliability Factorisation

can be verified by the polynomial time OTM M1 which uses an oracle in FP#P for

solving Compute Reliability Polynomial. Thus, Reliability Factorisation

belongs to the complexity class NP#P .

6.2.2 Lengths of Certificates of Reliability Factorisation

Algorithms M2 and M3 verify the problem Reliability Factorisation using the

concept of a certificate of reliability factorisation. Each step of a certificate of

reliability factorisation is based on some properties of the reliability polynomial or

some algebraic operations. There is no need to compute the reliability polynomial

in this case. We will see that processing a reliability polynomial takes at most a

linear time in the size of the input graph.

Algorithm 6 M2

Input: Connected Graph G

Certificate: Connected graphs G1, G2 and a certificate C of reliability factorisation

for G

1: k ← length of C

2: E0 ← Π(G, p)

3: for i← 1 to k do

4: apply Ci to Ei−1

5: get Ei

6: i← i+ 1

7: end for

8: if Ek = Π(G1, p)Π(G2, p) then

9: return accept

10: else

11: return reject

12: end if

In Algorithm M2, Steps (1) and (2) include two assignments which take time 2.

Given that m is the size of graph G, it take time at most cm · k to perform the

sequence of certificate steps in Steps (3)-(7) where cn is the upper bound on the

time taken to get the next expression by applying a certificate step given a constant

c. Step (8) takes time 1 to confirm that the final expression is Π(G1, p)Π(G2, p).

Thus, Algorithm M2 takes time at most cm · k + 2.
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Algorithm 7 M3

Input: Connected Graph G

Certificate: Connected graphs G1, G2

1: k ← upper bound on the certificate lengths

2: E0 ← Π(G, p)

3: t← 0

4: while t ≤ k − 1 do

5: for all Ei
t in Et do

6: apply each possible operation on Ei
t

7: end for

8: get an expression list Et+1

9: for all Ej
t ∈ Et do

10: if Ej
t = Π(G1, p)Π(G2, p) then

11: return accept

12: end if

13: end for

14: t← t+ 1

15: end while

16: return reject

In Algorithm M3, Steps (1)-(3) take time 3 for three assignments. If m is the size of

graph G and i is the upper bound on the number of operations that can be applied

to an expression, it takes time at most i · cm+ i2 · cm+ ...+ ik · cm = cm · i(i
k−1)

(i−1) to

check if the expression is Π(G1, p)Π(G2, p) by going through all possible operations

in Steps (4)-(15) where cm is the upper bound on the time taken to get the next

expression by applying a certificate step given c is a constant. Thus, Algorithm M3

takes time at most cm · i(i
k−1)

(i−1) + 3.

If the upper bound on the lengths of certificates of reliability factorisations were

a constant, then Algorithm M3 would run in polynomial time. The total number

of all certificates would be a polynomial in this case. Thus, the complexity class of

Reliability Factorisation would be P because this problem were polynomial time

solvable.

If the upper bound on the lengths of certificates of reliability factorisations were

a polynomial, then Algorithm M2 would run in polynomial time. Thus, the com-

plexity class of Reliability Factorisation would be NP because this problem were

polynomial time verifiable.
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If the upper bound on the lengths of certificates of reliability factorisations were ex-

ponential, Reliability Factorisation would neither be verified in polynomial time

by Algorithm M2 or solved in polynomial time by Algorithm M3. The complexity

class of Reliability Factorisation would be NP#P as the result from Algorithm

M1.

The current known upper bound on the lengths of certificates of reliability fac-

torisations is exponential. This research find some short certificates illustrated in

Section 5.2.3. Further research may investigate if there exists a better upper bound

on the lengths of certificates of reliability factorisations.



Chapter 7

Conclusion

7.1 Results

This research investigates reliability factorisations for all non-separable graphs of

size at most 13. Prior to this, the only known graphs that have reliability fac-

torisations were separable graphs. We compute the reliability polynomials of all

connected graphs of size at most 13. Then we identify 581 reliability factorisations

of non-separable graphs by an exhaustive search over all reliability polynomials of

connected graphs of size at most 13. We also find a reliability factorisation of an

infinite family of graphs θ1,d,2d+2 for d ∈ Z+.

We extend the concept of certificates introduced by Morgan and Farr (2009b) to ex-

plain reliability equivalence and reliability factorisation. We define twelve certificate

steps to construct certificates. We give certificates for all reliability factorisations of

non-separable graphs of size at most 8. We also give a certificate of reliability factori-

sation for an infinite family of graphs θ1,d,2d+2 for d ∈ Z+ by mathematical induction.

The upper bound of certificates could be exponential while the lengths of certificates

given in this research are remarkably short. As computing reliability polynomials is

hard, we discuss the relationship between the complexity of the problem Reliabil-

ity Factorisation and the upper bound on the lengths of certificates of reliability

factorisation.

55
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7.2 Further Work

Further research may investigate how the number of reliability factorisations varies

with size of graphs. This may real a relationship between the size of graphs and the

reliability factorisation of graphs. Some more infinite families may be investigated

such as other patterns of θ-graphs. It is of interest if there exists a better upper

bound on the lengths of certificates of reliability factorisations. Compared with the

complexity of computing reliability polynomials, certificates of reliability factorisa-

tion tend to be a better approach to decide whether a reliability polynomial has a

reliability factorisation if the length is short.

The Lookup method used to compute reliability polynomials in this research could

be improved by implementing a hash table to store the processed graphs. We could

extend the maximum size of input graphs by using the improved Lookup method.

The search algorithm for reliability factorisations could be improved by looking for

reliability polynomials of separable graphs rather than giving all possible combina-

tions of factors of reliability polynomials.
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