
Certificates for Properties of
Chromatic Polynomials of Graphs

by

Zoe Bukovac

Thesis

This thesis is presented in partial fulfilment
of the requirements for the degree of

Bachelor of Computer Science with Honours
at Monash University

Supervisors: Graham Farr
Kerri Morgan

ii

Contents
List of Tables v

List of Figures vi

Abstract vii

Acknowledgements xi

1 Introduction 1
1.1 Thesis Structure . 2
1.2 Main Contributions . 2
1.3 Definitions . 4

2 Literature Review 6
2.1 Graph Colouring . 6

2.1.1 The Four Colour Theorem . 6
2.2 The Chromatic Polynomial . 7

2.2.1 Origins and Applications . 7
2.2.2 Expressing and Evaluating the Chromatic Polynomial 7
2.2.3 Coefficients of the Chromatic Polynomial 8
2.2.4 Chromatic Roots . 8

2.3 Chromatic Equivalence . 9
2.4 Chromatic Factorisation . 9
2.5 Certificates . 10

2.5.1 Certificates in Computational Complexity Theory 10
2.5.2 Certificates for the Chromatic Polynomial 10
2.5.3 Finding Certificates . 13
2.5.4 Schemas . 13

3 Certificate Theory 14
3.1 Fundamental Concepts and Terminology 14
3.2 Certificates for Trees . 14

4 Algorithms and Software 20
4.1 Design Decisions . 20

4.1.1 The Minimal Set of Certification Steps 22
4.2 Implemented Algorithms . 22

4.2.1 The Exhaustive Search Algorithm 23

5 Experiments 28
5.1 Experimental Procedure . 28
5.2 Discussion of Results . 28

5.2.1 Certificate Length . 28
5.2.2 Schemas . 30
5.2.3 Certificates for Trees Revisited 31

iii

6 Conclusion 33
6.1 Achievements . 33
6.2 Further Work . 34

7 References 36

8 Appendix A Software Information 39
8.1 Environment . 39
8.2 Building the Software . 39
8.3 Using the Software . 39
8.4 Interpreting Output Certificates . 40

9 Appendix B Schemas 41

10 Appendix C Certificates 45

iv

List of Tables
5.1 Details of the Computer Used for Computational Experiments 28
5.2 The lengths of shortest certificates found for chromatically equivalent

pairs of graphs of order ≤ 7 . 29
5.3 The length of each schema. 30
5.4 The distribution of encountered shortest certificates amongst the schemas,

for each graph order considered. 30
5.5 The lengths of shortest certificates found for chromatically equivalent

trees of order ≤ 7 . 31

v

List of Figures
2.1 A certificate of equivalence of length 2 11
2.2 A certificate of factorisation for a strongly non-clique-separable graph

from [31] . 12
3.3 The path P4. 15
3.4 The star S5. 15
3.5 The comets C5,4, C5,0 and C2,1 . 15
5.6 A certificate of equivalence for two graphs of order 6, belonging to

Schema 14 . 29

vi

Abstract

The chromatic polynomial gives the number of possible colourings of a graph for
some number of available colours. In general, calculating the chromatic polynomi-
als of graphs is hard, so any means of reducing the difficulty of finding out infor-
mation about them are of interest. Certificates of equivalence can provide proofs
about the relationships between the chromatic polynomials of graphs. The lengths
of these proofs may provide insight into the computational complexity of determin-
ing if two non-isomorphic graphs share the same chromatic polynomial. In this
thesis a new linear bound on the lengths of certificates of equivalence for some spe-
cific types of tree graphs is given. An algorithm for finding short certificates of
equivalence using a minimal set of certification steps is designed and implemented.
This algorithm is used to find the shortest certificates of equivalence for all graphs
of order n ≤ 7. A linear upper bound of 2(n−3) on the length of shortest certificates
for an infinite class of tree graphs is also introduced. We conjecture that this bound
holds for all trees.

vii

viii

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education.
Information derived from the published and unpublished work of others has been
acknowledged in the text and a list of references is given.

Zoe Elizabeth Bukovac
November 26, 2012

ix

x

Acknowledgements

I am grateful to my supervisors Prof. Graham Farr and Dr. Kerri Morgan for their
time and advice. They are both outstanding supervisors; their attention to the little
details, generosity with meetings, and unwavering support have been invaluable.
Graham is a superb source of guidance regarding academic writing and academia
in general. Kerri is always full of enthusiasm and new ideas. She encouraged me
to undertake honours and I will always be grateful to her for her faith in me.

Thanks are due to the members of the Discrete Mathematics research group at
Monash University for their advice and for broadening my understanding of the
field.

I am thankful for the helpful feedback provided over the course of this project by
my examiners David Albrect and John Betts. I also thank the staff of the Clayton
School of Information Technology for all of their assistance and encouragement.

I thank my parents Diana and Branko Bukovac for their love and support.

I would also like to thank Chris, whom, without this project, I might never have
met, and without whom this project might never have been completed.

Zoe Bukovac

Monash University
November 2012

xi

xii

1 Introduction

A graph is a collection of vertices and a collection of edges that link pairs of vertices.
Due to their nature as representations of relationships between objects, graphs lend
themselves to many purposes and they are regularly used to model many problems
in a diverse range of fields. Applications exist in various engineering disciplines,
including the analysis of electrical circuits and their design, the design of traffic
networks and the layout of facilities within buildings [19]. They have been used
in physics to represent the atomic scale structure of crystals [7], in chemistry to
model the structure of molecules [9] and in biology to describe evolutionary trees
and genetic structure [35]. There are applications in the social sciences, economics,
logistics, game theory and computer science [19].

The first known application of graph theory is attributed to Euler in 1736 [5].
The town of Königsberg had seven bridges and it was a common game to attempt
to walk through the town while crossing each of the bridges exactly once. No-one
could find a successful route, so it was believed to be impossible. By expressing
the problem as a graph where the edges represented the bridges, Euler was able to
show that such attempts were indeed in vain, as there was no possible path that
allowed exactly one crossing of each bridge [5].

Graphs are useful representations of problems in many situations, but they are
associated with many computationally difficult problems. Some of these problems
involve colourings of graphs. A colouring of a graph assigns a colour to each vertex
of a graph such that adjacent vertices receive different colours. Many aspects of
graph theory grew out of one of the oldest graph colouring problems, known as the
Four Colour Conjecture, now known as the Four Colour Theorem, which was posed
in 1852. It asked if every map could be coloured with at most four colours in such
a way that no countries that shared a border received the same colour. Although
easy to state, it ultimately proved very difficult to solve. Since a map can be repre-
sented as a graph, where the vertices represent countries and the edges represent
borders, it is clearly a graph colouring problem. Despite its simple appearance, its
proof remained elusive for many years, and all existing proofs for the problem are
computer generated and are too complex to verify by hand [1, 2, 21, 40].

Even though much of the work on proving the Four Colour Theorem did not
result in a formal proof or resulted in proposed proofs that were later shown to
be wrong, a great deal of insight into the nature of graph colouring problems in
general was gained. The chromatic polynomial P(G;λ), first introduced by Birkhoff
in [6], gives the number of possible colourings of a graph G using at most λ colours.
Ultimately, it did not yield a proof for of the Four Colour Theorem [50], but the
chromatic polynomial has since been the subject of a great deal of investigation
which has revealed a number of interesting properties [17].

Calculating the chromatic polynomial of a graph is at least as computationally
hard as determining the smallest number of colours needed to colour a graph [39],
which is known to be NP-complete [25]. As a result, any method that can reveal
information about the chromatic polynomial of a graph without needing to calculate
it is of interest. The certificates for the chromatic polynomial introduced by Morgan
and Farr [31, 32, 33, 34] provide such a method by demonstrating how the chromatic

1

polynomials of graphs are related.
In this project we consider certificates that can be used to show that two dif-

ferent graphs have the same chromatic polynomial. In order to produce computa-
tionally feasible software, we restrict these certificates to a more compact subset of
possible operations. An algorithms for finding short certificates was designed and
implemented, along with some additional software tools for investigating certificate
structures. We give a linear bound on the lengths of certificates of equivalence for
some specific types of tree graphs. An algorithm for finding short certificates of
equivalence using a minimal set of certification steps is designed and implemented.
This algorithm is used to find the shortest certificates for all chromatically equiva-
lent graphs of order n ≤ 7.

1.1 Thesis Structure
This thesis is structured as follows.

Chapter 2 discusses the wider context of this work. A brief overview of graph
colouring is presented. The chromatic polynomial’s origins and various expressions
are considered, along with a discussion of its coefficients and roots. The concepts of
chromatic equivalence and factorisation are introduced. Certificates are discussed
from both a general computational complexity perspective as well as within the
context of the chromatic polynomial.

Chapter 3 introduces some new terminology for describing certificates for the
chromatic polynomial. A proof for the length of certificates of equivalence for a
particular infinite family of graphs is given. Some important corollaries of this
proof is outlined.

Chapter 4 explains the reasoning behind selection of a minimal set of certifica-
tion steps for the certificates in this project. A description of the algorithms used to
find certificates in this research is given.

A discussion of the experimental procedure is given in Chapter 5. The certifi-
cates of equivalence found during the experimental tests are considered along with
their schemas. We present a conjecture regarding the lengths of certificates for
pairs of chromatically equivalent trees.

Conclusions and a discussion of possible further work are detailed in Chapter 6.

1.2 Main Contributions
The following were achieved in this project:

• Found an linear upper bound of 2(n−3) on the length of shortest certificates
for an infinite family of tree graphs.

• Designed an algorithm for finding shortest certificates of equivalence using a
minimal set of certification steps.

• Produced the certsearch software for generating and searching for certifi-
cates.

• Found the shortest certificates for all chromatically equivalent pairs of graphs
of order ≤ 7.

2

• Found the schemas for the above certificates for all chromatically equivalent
pairs of graphs of order ≤ 6.

Experimental results suggest the following conjecture:

• Conjecture: For all pairs of chromatically equivalent trees of order n there
exists certificate of equivalence of length ≤ 2(n−3).

3

1.3 Definitions
In this section some formal definitions are given that will be used in this document.

A graph G = (V ,E) is a set of vertices V , often denoted with V (G), together with
a set of edges E ⊆ { {u,v} | u ∈ V , v ∈ V , and u 6= v }, often denoted with E(G). Two
vertices u and v are said to be adjacent in G if the edge {u,v} (usually written
as uv) belongs to E; we also say, in such a case, that the edge uv is incident to the
vertices u and v. On the other hand, if uv ∉ E, then we often call uv a non-edge of G.
The degree of a vertex is the number of edges incident to the vertex. Furthermore,
The number |V (G)| of vertices in G is called the order of G, whereas the number
|E(G)| of edges in G is called the size of G. We shall often write n and m for |V (G)|
and |E(G)| respectively.

The following graph operations are fundamental to our work. Let u and v be
vertices in G. If uv is an edge of G, then we can form a new graph, denoted G \uv,
by removing the edge uv from G. We call this process edge deletion. In contrast, if
uv is a non-edge of G, then we can insert an edge between u and v to obtain a new
graph G+uv. We call this process edge addition. Finally, and regardless of whether
uv is an edge in G, we can derive a new graph G /uv by merging u with v into a
single vertex x, whose adjacencies are inherited from u and v to give the following
edge set:

{ xy | uy ∈ E(G) or vy ∈ E(G), but u 6= y 6= v }.

We call this process vertex identification; however, when uv is an edge in G, we shall
often call it edge contraction.

A tree is a graph which contains no cycles. A graph G′ = (V ′,E′) is said to be a
subgraph of G = (V ,E) if V ′ ⊆ V and E′ ⊆ E. A subgraph H of a graph G is said to
be induced if, for any pair of vertices u,v ∈ H, uv is an edge in H if and only if uv is
an edge in G.

The graphs G = (V ,E) and G′ = (V ′,E′) are isomorphic if there exists a bijection
ϕ : V → V ′ with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E′. In this research two isomorphic graphs G
and G′ are considered to be identical and we write G 'G′.

A colouring of a graph G is a function f : V (G)→Λ such that if two vertices u and
v are adjacent then f (u) 6= f (v). Λ is the set of available colours and a λ-colouring is
a colouring of a graph which uses at most |Λ| colours. A graph for which there exists
a λ-colouring is said to be λ-colourable. The smallest number of colours needed to
colour a graph G is known as the chromatic number and is written as χ(G).

A clique is subset of the vertices of a graph where each pair of vertices in the
subset is connected by an edge. A clique with r vertices is an r-clique or Kr, where
Kr is the complete graph on r vertices.

A graph G is said to have a chordless cycle if G has an induced subgraph with
vertex set V ′ ⊆ V and E′ = {uv ∈ E | u,v ∈ V ′} that is a cycle. A chordal graph is a
graph that contains no chordless cycle of size > 3

If two disjoint graphs H1 and H2 both contain a clique of at least size r then
the graph G formed by identifying an r-clique in H1 with an r-clique in H2 is an
r-gluing. A graph obtained by an r-gluing of the two graphs is said to be a clique-
separable graph.

We conclude with some miscellaneous definitions. If k is a natural number, then
we often write the set {1, . . . , k} as [k]. When working with two sequences ρ and σ,
we shall use ρσ to denote the concatenation of the two such that ρ is followed by σ.

4

Furthermore, if x is some object, then the sequence comprising x alone will often be
written as x, when the context is clear. The sequence comprising no entries is called
the empty sequence, and shall be denoted with ε.

5

2 Literature Review

2.1 Graph Colouring
Graph colouring has important practical applications to scheduling [14] and regis-
ter allocation problems [10]. Graph colouring problems are in some sense concerned
with partitioning a set of objects into classes according to a set of rules. Vertices
represent these objects and two vertices with an edge between them are restricted
from belonging to the same class. Vertices assigned the same colour are considered
to belong to the same class. In many graphs however, it is possible to the partition
vertices in more than one way, so that for some graph G with two non-adjacent ver-
tices u,v ∈ V (G), u and v may belong to the same class in one partitioning, but in
some other partitioning they may not. All of these possible partitionings contribute
to the total sum of conditions needed to determine if a graph is λ-colourable and
what its chromatic number is.

With the exception of a few cases, graph colouring is computationally hard. Both
determining a graph’s chromatic number, and determining for all λ> 2 if a graph is
λ-colourable are NP-complete problems [24].

2.1.1 The Four Colour Theorem

Many areas of graph theory can trace their origins to the Four Colour Conjecture. It
was first posed by Francis Guthrie and presented by his brother, Frederick Guthrie,
to DeMorgan in 1852 [50] and asked if every map can be coloured with just four
colours so that no adjacent countries receive the same colour. A map can be repre-
sented as a planar graph, which is a graph that can be drawn in the plane so that
no two edges cross. By representing the countries with vertices and the borders
between them with edges, the problem become one of determining if every planar
graph is 4-colourable.

There were numerous attempts to find a proof for what is now known as the
Four Colour Theorem. In the years between its first proposition and the proof fi-
nally produced in 1977 there was a wealth of research into the problem and several
attempted proofs, including one by Kempe [26] and another by Tait [42], which
were accepted for a short time before being shown to be incorrect [50]. Much of
this work did however contribute other results in graph theory, including Birkhoff ’s
introduction of the chromatic polynomial [6].

Finally proven by Appel and Haken [1, 2] and subsequently given further (but
related) proofs by Robertson et al. [40] and Gonthier [21], the proof has been largely
accepted by the mathematical community. However, due to the computationally in-
tensive method which Appel and Haken used to produce their proof it is impossible
to check it by hand in all of its detail, leaving some to remain unsatisfied with what
they consider to be a mathematically inelegant proof [50].

6

2.2 The Chromatic Polynomial
2.2.1 Origins and Applications

The chromatic polynomial P(G;λ) of a graph G gives the number of λ-colourings of
G. As mentioned earlier, it was first introduced by Birkhoff as a possible algebraic
approach for a proof for the Four Colour Theorem [6]. While it did not yield the
desired proof, it has proved to have other applications.

The chromatic polynomial is studied extensively in graph theory. Dong et al.
[17] provide a summary of much of this research. The chromatic polynomial is also
of interest in statistical mechanics, as the Potts model partition function generalises
the chromatic polynomial [4]. Potts model partition function was introduced by
Potts in [36] and is a function of graphs that has multiple variables. The chromatic
polynomial of a graph can be found by assigning certain values to some of these
variables.

2.2.2 Expressing and Evaluating the Chromatic Polynomial

Early research into the chromatic polynomial focused on the chromatic polynomials
of planar graphs. Whitney [48, 49] was the first to explore the chromatic polyno-
mials of general graphs, using the principle of inclusion-exclusion to express the
chromatic polynomial as

P(G,λ)=∑
c,s

(−1)sN(c, s)λc

where N(c, s) is the number of subgraphs of G with s edges and c components [49].
Read [37] provided another expression for the chromatic polynomial

P(G,λ) =
n∑

r=1

(
λ

r

)
r!PG(r)

= λ(r)PG(r)

where PG(r) is the number of ways of partitioning the vertex set into exactly r (non-
empty) independent sets and λ(r) is the falling factorial λ(λ−1)...(λ− r+1).

Calculating the chromatic polynomial is #P-hard [45], which is a class of hard
counting problems [46]. Even when restricted the family of subgraphs of square
lattices it is #P-hard [18]. The following two relations can be used to calculate the
chromatic polynomial. By applying them recursively they will eventually give the
chromatic polynomial of G, but for most graphs it will take exponential time to
compute. The deletion-contraction relation states that for any edge e ∈ E

P(G,λ)= P(G\e,λ)−P(G/e,λ).

The addition-identification relation states that for any vertices u,v ∈V ,uv ∉ E

P(G,λ)= P(G+uv,λ)+P(G/uv,λ).

Zykov [51] gives another method of evaluating the chromatic polynomial if G is a
r-gluing of some graphs H1 and H2.

P(G,λ)= P(H1,λ)P(H2,λ)
P(Kr,λ)

7

This method for evaluation can only be applied when G is clique-separable, which
does restrict it, but its divide and conquer nature means that under such circum-
stances it can offer a significant reduction to the difficulty of calculating a graph’s
chromatic polynomial.

2.2.3 Coefficients of the Chromatic Polynomial

The chromatic polynomial is a monic polynomial, meaning that the coefficient of
the highest order term is 1. It is also a polynomial of degree n with integer coef-
ficients that alternate in sign and no constant term [37]. Not all polynomials that
satisfy these conditions are the chromatic polynomial of some graph. For exam-
ple, λ4 −3λ3 +3λ2 satisfies the conditions, but is not the chromatic polynomial of a
graph [37].

A sequence a0,a1, . . . ,an−1 is unimodal if there exists some j such that ai ≤ ai+1
whenever 0 ≤ i < j and ai ≥ ai+1 whenever j ≤ i ≤ n−2. Read [37] conjectured that
the sequence of absolute values of the coefficients of the chromatic polynomial was
unimodal and computational results have shown that this is true for all chromatic
polynomials of graphs of order n ≤ 11 [27]. Some recent work by Huh [22] gives a
proof of the unimodality of the coefficients of the chromatic polynomial.

2.2.4 Chromatic Roots

The roots of a polynomial P(λ) are the values of λ for which the polynomial evalu-
ates to zero. The roots of the chromatic polynomial are often referred to as chromatic
roots. Research on chromatic roots has focused on three areas: integer roots, real
roots and complex roots.

The chromatic polynomial of any graph has integer roots {0,1, . . . ,χ(G)−1} and
the integer roots of the chromatic polynomial cannot exceed the maximum degree
of the graph [15]. A chordal graph is a graph that contains no chordless cycle of size
> 3. The chromatic polynomials of chordal graphs have only integer roots. However,
there exist non-chordal graphs that have the same chromatic polynomial as chordal
graphs and so they too have only integer chromatic roots [38].

Real roots are excluded from some very specific intervals on the real number
line. There are no non-integer real chromatic roots in the interval (−∞,32/27] [23]
and no real roots in the interval [5.664∆,∞) where ∆ is the maximum degree of the
graph [16]. It has been shown that the Beraha numbers, Bi = 2+2cos(2π/i), i ≥ 5,
[43] (excluding possibly B10) are not chromatic roots [44].

The complex roots of the chromatic polynomial are dense in the complex plane
[41], meaning that, informally, for every point in the complex plane, the point is
either in the set of chromatic roots or arbitrarily "close" to a chromatic root. Even
when restricted to the chromatic polynomials of planar graphs which have no real
roots in the interval (5,∞), there exists a family of planar graphs with chromatic
roots dense in the entire complex plane (possibly excluding the region |λ−1| < 1)
[41]. There also exist complex chromatic roots with a negative real part [8], even
though no negative real number can be a chromatic root.

8

2.3 Chromatic Equivalence
If two graphs G and G′ have the same chromatic polynomial, then they can be said
to be chromatically equivalent, written G ∼ G′ [17]. It is interesting to note that
this is possible when the graphs are not isomorphic. Two chromatically equivalent
graphs may differ in their fundamental structure and yet they still share all of the
same information that is encoded in their chromatic polynomial. However, there
is currently no way of easily showing that two graphs are in fact chromatically
equivalent. Calculating their chromatic polynomials and comparing the results will
determine if they are equivalent, but these calculations are intractable in all but a
small number of cases.

The general characterisation of chromatically equivalent graphs is unknown,
but there is a wealth of research on the subject of chromatic equivalence, much
of which is summarised in [13] and [17]. Research in this area focuses on either
small sets of graphs that have been found to be chromatically equivalent or infi-
nite families of chromatically equivalent graphs. A result by Morgan [32] uses the
certificates discussed later in this review to construct infinitely many pairs of chro-
matically equivalent graphs where one graph in the pair is clique-separable and the
other is not.

The idea of a chromatically unique graphs was introduced by Chao and White-
head Jr. [12]. A graph G is chromatically unique if the only graphs which have the
same chromatic polynomial are also isomorphic to G.

2.4 Chromatic Factorisation
The factorisation of a polynomial is the first step to finding its roots. The chromatic
polynomial is said to have a chromatic factorisation if there exist graphs H1 and H2
such that

P(G,λ)= P(H1,λ)P(H2,λ)
P(Kr,λ)

where χ(Hi)≥ r ≥ 0 and Hi 6= Kr for all i [34]. A graph G is said to have a chromatic
factorisation if P(G,λ) has a chromatic factorisation. In a chromatic factorisation
each of the factors therein is itself the chromatic polynomial of some smaller graph.

Such a factorisation of the chromatic polynomial always exists when G is clique-
separable. Most graphs, however, are not clique-separable. If a graph is chro-
matically equivalent to a clique-separable graph then it is said to be quasi-clique-
separable, so all graphs of this type will also have a chromatic factorisation. A
strongly non-clique-separable graph is graph that is not quasi-clique-separable and
it is not as immediately clear that such graphs can have chromatic factorisations.
Morgan and Farr [34] showed that there do exist chromatic factorisations for the
chromatic polynomials of some strongly non-clique-separable graphs.

Certainly, not all strongly non-clique-separable graphs have a chromatic factori-
sation. For example, a complete graph has no chromatic factorisation. The smallest
graph of this type which is not a complete graph is the cycle C4 [31]. At this stage
there is no known general characterisation of strongly non-clique-separable graphs
with no chromatic factorisation.

9

2.5 Certificates
2.5.1 Certificates in Computational Complexity Theory

A decision problem is a set of instances D with a subset of instances Y ⊂ D [20].
Informally, a decision problem poses a question that has only yes and no answers,
but generally the yes answers are of more interest. Chromatic equivalence and
chromatic factorisation are both examples of decision problems.

Chromatic Equivalence :
INSTANCE: Graphs G = (V ,E),G′ = (V ′,E′)
QUESTION: Does P(G,λ)= P(G′,λ)?

Chromatic Factorisation :
INSTANCE: Graph G = (V ,E)
QUESTION: Does G have a chromatic factorisation?

A decision problem (or language) is in the complexity class NP if given an input
x, we can easily verify that x is an affirmative instance of the problem (or equiva-
lently, x is in the language) if we are given the polynomial-size solution for x that
verifies this fact. Such a solution is a called a certificate. A certificate, also known
as a witness, certifies that the answer to some instance of a decision problem is yes.

A more formal definition of NP given by Arora and Barak [3] states that a lan-
guage L ⊆ {0,1}* is in NP if there exists a polynomial p :N→N and a polynomial-
time Turing Machine M such that for every x ∈ {0,1}*,

x ∈ L ↔∃u ∈ {0,1}p(|x|) such that M(x,u)= 1.

If x ∈ L and u ∈ {0,1}p(|x|) satisfy M(x,u)= 1 then u is a certificate for x (with respect
to the language L and machine M). This definition emphasises that a decision
problem is in NP if, for all affirmative instances x of the problem, the length of the
certificate u must be polynomially bound in the size of the input x so the machine
M is able to verify it in polynomial time.

2.5.2 Certificates for the Chromatic Polynomial

Certificates to verify instances of chromatic equivalence and chromatic factorisa-
tion were first introduced by Morgan and Farr [34] in 2009. A certificate of this
type is a sequence of algebraic transformations based on identities for the chro-
matic polynomial and algebraic properties. A certificate of factorisation explains a
factorisation of a graph’s chromatic polynomial. A certificate of equivalence demon-
strates the chromatic equivalence of two graphs. Each of the individual algebraic
transformations in a certificate of either kind is the result of performing an op-
eration, called a certification step. By starting with a graph G and performing a
sequence of these certification steps it may be possible to to express G as factorised
expression involving several smaller graphs in a certificate of factorisation, or as
some other non-isomorphic graph G′ in a certificate of equivalence.

Each application of a certification step adds a single expression to the certificate
for G, increasing the length of the certificate. Each expression in a certificate for
G can be evaluated to a polynomial, and all these polynomials will be equal to the

10

chromatic polynomial of G. Importantly, the actual chromatic polynomial of G is
not calculated or required at any point in the process of creating a certificate for G.

The following is a description of each of the certification steps used to produce a
certificate. Each new expression in a certificate is obtained by applying one of the
following certification steps to the previous expression in the certificate:

CS1 G −→ (G\e)− (G/e) for some edge e ∈G.

CS2 (G\e)− (G/e)−→G for some edge e ∈G.

CS3 G −→ (G+uv)+ (G/uv) where the vertices u,v ∈G and u,v are not adjacent.

CS4 (G+uv) + (G/uv)−→G where the vertices u,v ∈G and u,v are not adjacent.

CS5 G − (G\e)−→ (G/e) for some edge e ∈G.

CS6 G −→G1G2/Kr where G is isomorphic to the graph obtained by an r-gluing of
G1 and G2.

CS7 G1G2/Kr −→G where G is isomorphic to the graph obtained by an r-gluing of
G1 and G2.

CS8 Applying field operations to the terms in an expression a finite number of
times to produce a different expression.

Note that certification steps (CS1) and (CS3) are based upon the deletion-
contraction and addition-identification relations seen earlier. Also note that (CS2)
and (CS4) are the inverses of these two steps respectively. Throughout this thesis,
we shall refer to these four steps using both the numbering scheme listed above, and
the following naming scheme: step (CS1) is called deletion-contraction, whereas
the inverse step (CS3) is called inverse deletion-contraction; similarly, step (CS4) is
called addition-identification, and the inverse step (CS4) is called inverse addition-
identification.

=

=

_

Figure 2.1: A certificate of equivalence of length 2

Figure 2.1 shows a very short example of certificate of equivalence. The certifi-
cation steps performed in the certificate in Figure 2.1 are as follows:

G −→ (G\e)− (G/e) (CS1)
−→ (G\e+ f) (CS2)

11

=
_

=
_

=
_

=

_

=

Figure 2.2: A certificate of factorisation for a strongly non-clique-separable graph
from [31]

12

Figure 2.2 gives an example of a certificate of factorisation. The certification
steps performed in the certificate in Figure 2.2 are as follows:

G −→ H3 −H4 (CS1)

−→ H1H5

K2
− H1H6

K2
2× (CS6)

−→ H1

K3

(
K3H5

K2
− K3H6

K2

)
(CS8)

−→ H1

K3
(H7 −H8) 2× (CS7)

−→ H1H2

K3
(CS2)

2.5.3 Finding Certificates

At present, there is no existing software for finding certificates in general, and no
known algorithm to find the shortest possible certificate of either factorisation or
equivalence. Finding a shortest certificate of either equivalence or factorisation for
a graph appears to be a difficult problem, but exactly how difficult is unknown.
For a graph with n vertices there exist upper bounds on the lengths of certificates
of equivalence (length < 2n2/2) and factorisation (length ≤ n22n2/2). These are very
long, however in practice the shortest certificates of both equivalence and factorisa-
tion that have been found so far are much shorter than these bounds [34].

2.5.4 Schemas

A schema is a template for a certificate which represents a set of certificates that all
share certain subsequences of steps. A schema can include some actual certification
steps as well as gaps, which must be replaced by a sequence of certification steps to
form an actual certificate. Certificates which conform to a schema in this manner
can be said to belong to the schema. Morgan and Farr found certificates of fac-
torisation that explained the factorisations of all chromatic polynomials of strongly
non-clique-separable graphs with at most 9 vertices. They were able to show that
vast majority of these certificates belonged to a small number of schemas and that
the lengths of these certificates were much shorter than the upper bound given
above [34].

13

3 Certificate Theory

3.1 Fundamental Concepts and Terminology
In this research we view the expressions in certificates as formal mathematical
entities in their own right, rather than as just expressions of chromatic polynomials.
If we are to generate of certificates of equivalence computationally, we must shift
from viewing the expressions therein as polynomials to viewing them as This allows
us to systematically store and manipulate them, which is key to the aims of this
research. While the possible manipulations of these symbolic expressions arise out
of the way in which they are used to express the chromatic polynomial, it is more
convenient from a computational perspective to see certificates of equivalence as
sequences that begin with a single graph, end with a single graph and transform
the former into the latter by means of the certification steps available to us.

To be able to do this more easily, it is convenient to define some terms for dis-
cussing the mechanics of creating and manipulating certificates and the expressions
they contain. Firstly, if G and G′ are chromatically equivalent graphs and T is a
certificate for this equivalence that begins with G, then we shall often refer to T as
being a certificate from G to G′. This puts an emphasis on the fact that T trans-
forms the graph G, as the sole symbol in an expression, into the graph G′, as the
sole symbol in an expression.

It is helpful to think of the certificates discussed herein as being sequences of
lines. A line in a certificate is a single expression. The first line in a certificate
between two graphs G and G′ is just the graph G. Subsequent lines are created by
applying a certification step to the preceding line. The final line in such a certificate
would be the graph G′. Note that the length of certificate is not the number of
lines in the certificate but the number of certification steps applied to transform G
into G′.

Also the concept of a partial certificate, a sequence of lines which is not yet a
complete certificate is important. A sequence of lines which, should some additional
lines be added to it, forms a certificate of equivalence for a particular pair of graphs
is a partial certificate.

3.2 Certificates for Trees
Tree graphs are one of the most important kinds of graph. They find applications
in many areas of science, and their structural simplicity has lead to a great deal
of research into their mathematical properties. From the perspective of chromatic
equivalence alone, the situation is particularly simple: all trees of a given order
are chromatically equivalent to each other [17]. However, when it comes to the
structure of the certificates that confirm instances of this equivalence, very little is
known at all. This section shall perform a theoretical exploration of such certificates
by focussing on a particular kind of tree.

We begin our explorations with a well-known fact from the theory of chromatic
polynomials–that the smallest (as in smallest order) example of distinct chromati-
cally equivalent graphs is a particular pair of trees. In fact, we have already met
these trees in Figure 2.1, which illustrated one of the certificates between the two.

14

Figure 3.3: The path P4.

Figure 3.4: The star S5.

It turns out that these two trees respectively belong to two general types of tree,
both of which we shall now define.

Let k ≥ 1. A path is a sequence v1 . . .vk of vertices such that each pair of consec-
utive vertices is joined by an edge. We call the number of vertices k the length of
the path. Furthermore, there is only one path for such a k, and we shall write it as
Pk. Figure 3.3 provides us with an example of such a tree: the path P4. This is also
the path that features in the certificate found in Figure 2.1.

x y

head tail

head

yx

tail

tailhead

Figure 3.5: The comets C5,4, C5,0 and C2,1

15

Now let k ≥ 2. We define a star to be a tree comprising k vertices of degree 1
adjacent to and surrounding a single vertex u of degree k. The number k is called
the size of the star. Like the path Pk, there is only one star for such a k, and we
denote it with Sk. We shall refer to the k vertices of degree 1 as the outer vertices of
Sk, and refer to u as the central vertex of Sk. The star S5 can be seen in Figure 3.4,
whereas the star that appears in Figure 2.1 is S3.

These two types of tree provide us with a starting point for studying certificates
between trees in general: not only do they fulfil the fundamental role discussed
above, they are particularly structurally simple. Consequently, we shall focus our
investigatation on the structure of certificates between stars and paths; however,
we shall do this by introducing and working with a more general type of tree that
unifies the preceding two.

Let h and t be in N such that h ≥ 2 and t ≥ 1. Consider the graph constructed
by inserting an edge between an end vertex y of the path Pt and an outer vertex x
of the star Sh. We call this graph a comet and denote it with Ch,t. The subgraphs
Sh and Pt are respectively called the comet’s head and tail, whereas the numbers h
and t are the comet’s head size and tail size. Furthermore, we regard the star graph
Sh as a comet with head size h and tail size 0; that is, Ch,0 = Sh. For example, the
graphs in Figure 3.5 are the comets C5,4, C5,0, and C2,1. Note, in particular, that
P4 = C2,1; it is not hard to extrapolate that Pn = C2,n−3 whenever n ≥ 4. Also note
that the order of a comet is h+ t+1, which implies that the smallest comets are
trees of order 4.

Since comets are a type of tree, all comets of a given order are chromatically
equivalent to each other. Therefore, all pairs of such comets will have associated
certificates. The following result provides some insight into the precise structure
of these certificates by showing that each pair of chromatically equivalent comets
possesses a certificate of a particular length.

Theorem 3.1. For each t ≥ 1, each h ≥ 2, and each s ∈ N such that 1 ≤ s ≤ t,
there is a certificate of chromatic equivalence of length 2s from the comet Ch,t to
the comet Ch+s,t−s.

Proof. We proceed by induction on the tail length t.

Base case: Let t = 1, let h ≥ 2, and let 1≤ s ≤ t. We build our certificate as follows.
The comet Ch,t has the form

u v w

and shall constitute our initial line. Perform a deletion-contraction (CS1) on
the edge vw to obtain the line

u v w u .

16

Now we perform an inverse deletion-contraction (CS2) on the non-edge uw to
obtain the graph

u

v

w ,

which is the star Sh+1 and the final line in our sequence. Since s = 1 = t
and Sh+1 = Ch+1,0 = Ch+s,t−s, this sequence of lines constitutes a certificate of
length 2= 2s from Ch,t to Ch+s,t−s. Consequently, a suitable certificate can be
found for each possible selection of h and s, which confirms our base case.

Inductive step: Let c ∈ N such that c ≥ 1. Assume that if t = c, then there is a
certificate of length 2s from Ch,t to Ch+s,t−s for each h and s satisfying h ≥ 2
and 1≤ s ≤ t. Now consider the case of t = c+1. Let h and s be in N such that
h ≥ 2 and 1 ≤ s ≤ t. We shall now construct a certificate. The comet Ch,t has
the form

u v w ,

since t = c+1 ≥ 2, and constitutes our initial line. Now perform a deletion-
contraction (CS1) on the edge vw to obtain the line

u v w u .

We then perform an inverse deletion-contraction (CS2) on the non-edge uw
to obtain the graph

u

v

w ,

which is the comet Ch+1,t−1. We now have two cases to consider.

If s = 1, then Ch+1,t−1 = Ch+s,t−s, and so our sequence of three lines constitutes
a certificate of length 2= 2s from Ch,t to Ch+s,t−s. Seeing as this is a certificate
of the required length, we need not proceed further. Suppose then that s 6= 1.

17

Firstly, 2≤ s ≤ t, so 1 ≤ s−1 ≤ t−1; letting s′ = s−1, it follows that 1 ≤ s′ ≤ c.
Furthermore, the most recent line in our sequence, Ch+1,t−1, can be expressed
as Ch+1,c. We can use these two facts to extend our sequence of lines further.
Applying our initial assumption about the presence of certificates when t = c,
we obtain a length 2s′ certificate T from Ch+1,c to C(h+1)+s′,c−s′ . Since

(h+1)+ s′ = (h+1)+ (s−1)= h+ s

and
c− s′ = c− (s−1)= (c+1)− s = t− s,

we can conclude that C(h+1)+s′,c−s′ = Ch+s,t−s. Therefore, the certificate T has
length 2(s−1) and concludes with the graph Ch+s,t−s. Identifying the first line
of T with the final line of our initial sequence of three lines, we obtain a length
2+2(s−1)= 2s certificate from Ch,t to Ch+s,t−s; this concludes our second case.
Consequently, regardless of what values s and h take, our initial assumption
allows us to construct a suitable certificate from Ch,t to Ch+s,t−s.

It is not difficult to see that the preceding result can be applied to any pair of
distinct chromatically equivalent comets. Let Ch,t and Ch′,t′ be two such comets
of order n ≥ 4. Both must have head size at least 2 and tail length at least 0.
Furthermore, either comet distributes its n vertices over its head and tail, so we
must have

h+ t+1= n = h′+ t′+1. (1)

Since the comets are distinct, (1) implies that they must have different tail lengths;
we may assume that Ch,t has the longer tail. We can then view the theorem’s
variable s as specifying the number of vertices that need to be shifted from the tail
of Ch,t to its head in order to obtain Ch′,t′ . Indeed, if we let s = t− t′, then we can use
(1) to deduce that s = t− (h+ t−h′)= h′−h. Consequently, h+s = h+(h′−h)= h′ and
t− s = t− (t− t′) = t′, which implies that Ch+s,t−s = Ch′,t′ . Furthermore, 1 ≤ t− t′ ≤ t,
and so the theorem provides a certificate from Ch,t to Ch′,t′ of length 2(t− t′). Note
that the length of this certificate is double the difference between the comets’ tail
lengths. By applying this reasoning to the specific instance of the star and path of
order n, we can obtain the following important consequence of the theorem.

Corollary 3.2. There is a certificate of length 2(n−3) from the path Pn to the star
Sn−1, for each n ≥ 4.

Proof. Let n ≥ 4. As touched upon earlier, Pn = C2,n−3 and Sn−1 = Cn−1,0. Let h = 2,
let t = n−3, and let s = n−3. Since h ≥ 2 and 1 ≤ s ≤ t, we can apply Theorem 3.1
to h, t, and s to deduce that there is a certificate of length 2s from Ch,t to Ch+s,t−s.
Noting that 2s = 2(n−3), that Ch,t = C2,n−3 = Pn, and that Ch+s,t−s = Cn−1,0 = Sn−1,
we can conclude that our claim is true.

The preceding corollary provides us with the information that we initially set
out to find: insight into the structure of certificates between stars and paths. How-
ever, the certificate length that it determines has repercussions for certificates be-
tween comets in general. As we recently discussed, Theorem 3.1 provides certifi-
cates for comets that have length determined by the difference in comet tail length.

18

Intuitively speaking, since the path Pn and the star Sn−1 are respectively the or-
der n comets with the longest and shortest tails, the difference in their tail length
provides an upper bound for the difference in tail length of any pair of order n
comets. This entails an upper bound for the length of shortest certificates between
comets; the following corollary of Theorem 3.1 constitutes an exact specification of
this bound.

Corollary 3.3. Let n ≥ 4, and let Ch,t and Ch′,t′ be distinct comets of order n. If l is
the length of the shortest certificates from Ch,t to Ch′,t′ , then l ≤ 2(n−3).

Proof. Recall our discussion that immediately followed Theorem 3.1. We may as-
sume that t < t′; furthermore, we know that the theorem guarantees us a certificate
of length 2(t− t′) from Ch,t to Ch′,t′ . Letting l be the length of the smallest certifi-
cates from Ch,t to Ch′,t′ , we then know that l ≤ 2(t− t′). By definition, a comet’s head
size is at least 2 and its tail size is at least 0, so h+1 ≥ 3 and t′ ≥ 0. It then follows
from (1) that t = n− (h+1)≤ n−3, which implies that t− t′ ≤ n−3. We can conclude
that l ≤ 2(t− t′)≤ 2(n−3).

Our later experimental results shall provide further information about certifi-
cates between trees. In particular, we shall explore data that pertains to the two
preceding corollaries, which shall then allow us to make some conjectures about
how the corollaries might extend to all trees. Before that point, however, we must
outline our algorithmic methods and software design, which we do in the next chap-
ter.

19

4 Algorithms and Software

4.1 Design Decisions
This work is largely concerned with shortest certificates, that is, the shortest cer-
tificates that can be found with the set of certification steps available to us. The
primary goal of the software designed in this project was to create a research tool
to aid the process of finding shortest certificates, particularly shortest certificates
of equivalence. There is no known fast algorithm for finding a certificate of equiva-
lence for a pair of chromatically equivalent graphs. During the design of the algo-
rithms developed in this research some important decisions were made, which are
detailed in this section.

Consider a single line in a partial certificate that starts with a graph G of order
n. It is a non–trivial problem to determine exactly which certification steps can
or should be performed on this line to produce a new line, let alone one that is
part of the shortest certificate possible. How many applications of the certification
steps listed in Chapter 2 are even possible? How does one decide where they can be
applied within the line? Is there any way of knowing which of the many possible
applications of these certification steps is more likely to produce a short certificate
for G? While we may not be able to answer these questions entirely, attempting to
do so gives us an excellent starting point for designing an algorithm to find shortest
certificates.

Firstly, we have no exact or heuristic methods to inform our decisions about the
order in which certification steps should be performed. This suggests suggests that
an exhaustive search might be appropriate; however, given that graphs are combi-
natorial objects, any sort of exhaustive approach is likely to only be possible for a
small number of graphs before exponential explosion makes computation infeasi-
ble. We can then conclude that an exhaustive approach that considers only a small
number of graph orders is a suitable point at which to start. However, an exhaus-
tive search algorithm must be able to take a single line of a partial certificate and
determine precisely the entire set of certification steps that could be performed on
that line. Furthermore, this process must be performed for each line that arises
during the exhaustive search.

In some cases, it appears that the process of determining exactly when some
types of certification step can be performed appears to be a computationally difficult
problem. Consider, for example, the certification step (CS6), also known as clique
separation. A linear time algorithm for determining if a graph is clique separable
is given by Whitesides in [47]. However, the algorithm does not return all of the
possible separating cliques, and there is no known efficient algorithm that does so.
If the search is to consider all possible steps that could be taken for a single line in
a partial certificate, then all of the separating cliques in each of the clique separable
graphs would need to be determined for an exhaustive search. So we can conclude
that for at least some types of certification step, determining where they may be
applied is not always straightforward.

We also need to consider just how many applications of each of the certifica-
tion steps might be possible at each line in a partial certificate. Let us restrict

20

ourselves for a moment to just two types of certification step: deletion-contraction
and addition-identification. For each pair of vertices (u,v) in a graph G of order n,
exactly one of these two certification steps may be applied to produce a new line
that includes some new graphs. If there is an edge between u and v in G, then
deletion-contraction may be applied. If there is no edge between u and v in G, the
addition-identification may be applied. So the number of possible steps that can be
taken to produce a new expression is(

n
2

)
= n(n−1)

2
.

In a line that contains multiple graphs G1, . . . ,G l the above is true for each graph
G i of order ni. So the number of possible steps that can be taken is then

l∑
i=1

(
ni

2

)
=

l∑
i=1

ni(ni −1)
2

.

However these two steps cannot alone produce a certificate as they only extend
the length of a line. Let us consider just how such a line can be obtained during an
exhaustive search for certificates. Consider the inverses of the deletion-contraction
and addition-identification steps, (CS2) and (CS4) respectively. We know from Mor-
gan’s PhD Thesis [31] that (CS1), (CS2), (CS3), and (CS4) are sufficient for provid-
ing certificates between chromatically equivalent graphs. Therefore, an exhaustive
search can restrict itself to these four steps. We can make the following intuitive
deductions about a line obtained from an order n graph in such a search. Firstly, all
four steps maintain the maximum graph order of a line when constructing a new
one. This means, if we begin our search with an order n graph, that every encoun-
tered line must contain a graph of order n. Therefore, if we regard our preceding
hypothetical line G1, . . . , G l as having been constructed by such a search–one that
began with an order n graph–then we can be certain that one of the terms in the line
must be of order

(n
2

)
, and so there are at least

(n
2

)
lines to be derived from G1, . . . , G l .

Applying this reasoning to every line encountered in such a search, we can con-
clude that if we are searching up to some maximum length d for a certificate, then
there are at least (

n
2

)d

partial certificates to consider in the search. The actual number of possible partial
certificates is greater, as there tend to be other graphs to consider in each line, as
well as the possible inverse steps on each line. Nevertheless, this lower bound is
not small, being considerably larger than the well-known binary tree exponential
of 2d.

Despite these considerable challenges, the algebraic structure of the resulting
lines mentioned above is purely additive–owing to the nature of the four certifica-
tion steps that are considered. This would make for lines that are not only easy to
represent as mathematical structures, but also easy to manipulate computationally.
In the following section, we shall explore the possibility of an exhaustive search that
takes advantage of these observations.

21

4.1.1 The Minimal Set of Certification Steps

As we have just seen, when considering the task of searching for shortest certifi-
cates, one of the first things that becomes apparent is the inherent computational
difficulty involved. There are many possible paths one could take to produce a cer-
tificate, and which among those may lead to the shortest one possible is not easy to
discern. For these reasons, this research considers a smaller set of the certification
steps than the one that is usually dealt with in the literature.

The minimal set of certification steps is the set comprising steps (CS1), (CS2),
(CS3), and (CS4). In the computational work of this research, we only consider the
certification steps in this minimal set, for reasons discussed in the previous section.
Morgan and Farr [30,31,32,33] use an extended set of possible certification steps
to allow for the creation of certificates of factorisation, which are not considered
in this research. This extended set does, under some circumstances, allow for the
creation of certificates of equivalence that are shorter than those that only arise
from the minimal set. However, since little information is available regarding the
general structure of shortest certificates of equivalence, short certificates that use
the minimal set are a relatively simple, yet non-trivial, starting point for gaining
more knowledge into the matter.

Constraining the set of certification steps to just these few is a natural choice.
Deletion-contraction is a fundamental property of the chromatic polynomial, as is
the very closely related addition-identification. By choosing to use these two steps,
along with their inverses, we are able to make real progress with understanding
how certificates can be found for chromatically equivalent graphs, and what the
shortest of those certificates are like, while simultaneously making the task of gen-
erating them more reasonable computationally.

Importantly, the choice to investigate certificates created using this smaller por-
tion of the various certification steps available does not affect our ability to draw
conclusions about their relationship to computational complexity. If, for exam-
ple, we could show that shortest certificates of this type were always polynomially
bounded in length, then, regardless of the excluded certification steps, we would
still have shown that chromatic equivalence is in NP. So the lengths of the certifi-
cates found using this smaller subset of certification steps retain their relevance to
the computational complexity of chromatic equivalence.

4.2 Implemented Algorithms
The certsearch software developed to support this research consists of a program
written in C, tested under the Linux operating system. It was designed with ex-
tensibility in mind, supporting this quality through modularisation. It was also
designed to have a small memory footprint, facilitating the possible increases in
memory usage required for searches involving increasingly larger orders of graphs.
At the time of writing, there is no other existing software is available for search-
ing for shortest certificates of equivalence. The program will now be summarised
and the core algorithms presented. We take a close look at the exhaustive search
algorithm employed by certsearch. Consult Appendix A for more information re-
garding the use of this software.

22

4.2.1 The Exhaustive Search Algorithm

In this section we explore the fundamental algorithms that the software is built
around. To do this, we need a way to structurally represent the notions of a line
and the partial certificates that they constitute.

A line representation is a sequence of signed graphs; that is, a sequence

(G1, s1), . . . , (G l , sl)

of ordered pairs such that, for each 1 ≤ i ≤ l, G i is a graph, and si is an integer
from the set {−1,1}. Each such pair represents the position and sign that a graph
possesses in a partial certificate line. A partial certificate can then be represented
as a sequence of line representations.

We now examine four algorithms that correspond to the four certification steps
that our exhaustive search uses to generate lines–those from the minimal set of
certification steps. Our first two respectively stem from the deletion-contraction
step (CS1) and its inverse (CS2). Our first algorithm is very straightforward, owing
to the simple nature of the step (CS1).

Algorithm 4.1. Performs a deletion-contraction (CS1) at a specified location in a
line representation.

Input: A line representation (G1, s1), . . . , (G l , sl), an index 1≤ j ≤ l, and two distinct
vertices u and v from G j. The only requirement is that uv be an edge in G j.

Output: A new line representation.

1. Perform the edge deletion by letting D :=G j \uv. The sign for D is inherited
from G j by letting d := s j.

2. Perform the edge contraction by letting C := G j /uv. The sign for C is the
opposite to that of G j, so let c :=−s j.

3. Construct the new line representation by letting

ρ := (G1, s1), . . . , (G j−1, s j−1), (D,d), (C, c), (G j+1, s j+1), . . . , (G l , sl).

4. Terminate with the line representation ρ as output.

Our second algorithm is more involved. This is because the step (CS2) requires
various pre-conditions to be satisfied before it can be used on a line. In particu-
lar, these conditions include an isomorphism check. We shall discuss some of the
algorithm’s subtleties shortly.

Algorithm 4.2. Performs an inverse deletion-contraction (CS2) using two specified
locations in a line representation.

Input: A line representation (G1, s1), . . . , (G l , sl), two distinct indices 1 ≤ j ≤ l and
1 ≤ k ≤ l, and two distinct vertices u and v from G j. The only requirements
are that uv not be an edge in G j, that s j 6= sk, and that G j /uv 'Gk.

Output: A new line representation.

23

1. Reverse the deletion using edge addition: let A := G j +uv. The sign for A is
inherited from G j by letting a := s j.

2. Determine the order of the indices by letting x :=min(j,k) and y :=max(j,k).

3. Construct the new line representation by letting

ρ := (G1, s1), . . . , (Gx−1, sx−1), (A,a), (Gx+1, sx+1), . . . ,
(G y−1, sy−1), (G y+1, sy+1), . . . , (G l , sl).

4. Terminate with the line representation ρ as output.

Both of the these algorithms are based upon the deletion-contraction relation

G =G \uv−G /uv.

This equation can be viewed as a general rule for how subexpressions of lines are
transformed by the steps (CS1) and (CS2): the former step replaces an instance
of the left-hand side with an instance of the right; the latter does the reverse sub-
stitution. Both directions allow for the inversion of graph signs, and both of the
preceding algorithms handle this fact by checking and maintaining the relation-
ship between the signs being worked with, rather than dealing with literal values.

The reverse substitution poses some particular challenges, because we need to
take into account some of the basic rules of additive algebra: firstly, the two graphs
that we use for the reversal may not be adjacent in the line representation; secondly,
they may not appear in the order given in the above expression. Both of these
problems are dealt with by working with two indices for the line representation, and
making no assumptions on the order in which the graphs appear. The position in
which the resulting graph is inserted is purely arbitrary; by convention we replace
the earlier of the two graphs and remove the subsequent one.

Our next two algorithms are analogous the preceding two, and are based upon
the addition-identification step (CS3) and its inverse step (CS4). The preceding
comments also apply to them in a clear analogous manner; therefore, we shall not
follow these two algorithms with a detailed commentary.

Algorithm 4.3. Performs an addition-identification (CS3) at a specified location in
a line representation.

Input: A line representation (G1, s1), . . . , (G l , sl), an index 1≤ j ≤ l, and two distinct
vertices u and v from G j. The only requirement is that uv not be an edge
in G j.

Output: A new line representation.

1. Perform the edge addition by letting A :=G j +uv. The sign for A is inherited
from G j by letting a := s j.

2. Perform the vertex identification by letting I := G j /uv. The sign for I is also
inherited from G j, so let i := s j.

3. Construct the line representation by letting

ρ := (G1, s1), . . . , (G j−1, s j−1), (A,a), (I, i), (G j+1, s j+1), . . . , (G l , sl).

24

4. Terminate with the line representation ρ as output.

Algorithm 4.4. Performs an inverse addition-identification (CS4) using two speci-
fied locations in a line representation.

Input: A line representation (G1, s1), . . . , (G l , sl), two distinct indices 1 ≤ j ≤ l and
1 ≤ k ≤ l, and two distinct vertices u and v from G j. The only requirements
are that uv be an edge in G j, that s j = sk, and that G j /uv 'Gk.

Output: A new line representation.

1. Reverse the addition using edge deletion: let D := G j \uv. The sign for D is
inherited from G j by letting d := s j.

2. Determine the order of the indices by letting x :=min(j,k) and y :=max(j,k).

3. Construct the new line representation by letting

ρ := (G1, s1), . . . , (Gx−1, sx−1), (D,d), (Gx+1, sx+1), . . . ,
(G y−1, sy−1), (G y+1, sy+1), . . . , (G l , sl).

4. Terminate with the line representation ρ as output.

All four of the preceding algorithms require that their inputs meet some very
specific restrictions. If we are to use them in an exhaustive search, then we must be
certain that we can discover all the possible ways in which they may be applied to
a given line representation. Only then can we be sure that the certificate produced
is in fact of minimal length for the certification steps available. On the other hand,
we want to reduce unnecessary work as much as possible, so potential applications
of the preceding algorithms that do not meet the necessary requirements must be
excluded as quickly as possible. The following recursive algorithm attempts to bal-
ance these requirements: it performs an exhaustive search for shortest certificates
of a certain kind, and uses some basic heuristics to expediate the process.

Algorithm 4.5. Finds a shortest certificate that begins with a specified line se-
quence, ends in a specified graph, and does not exceed a specified number of lines.

Input: A sequence ρ of non-empty line representations that constitutes a valid
partial certificate, a target graph T, and an integer M ≥ 3 specifying the max-
imum number of lines.

Output: A shortest certificate that begins with the sequence ρ, ends with T, and
has no more than M lines. If no certificate could be found, then the algorithm
returns the empty sequence.

1. Perform the following checks and initialization:

1.1. Check whether M has been exceeded: if |ρ| > M, then return the empty
sequence ε.

1.2. Let φ := (G1, s1), . . . , (G l , sl) be the final line representation in ρ. Check
whether ρ is a certificate that ends with our target graph: if l = 1, G1 = T,
and s1 = 1, then terminate with ρ as output.

25

1.3. Define a best certificate so far, initially the empty sequence: let β := ε.
2. We shall iterate over the line representation φ, so let j := 1.

3. If j > l, then terminate with β as output. Otherwise let v1, . . . , vn be the ver-
tices of G j. We shall iterate over this sequence to form vertex pairs. For each
x such that 1≤ x ≤ n and each y such that 1≤ y< x, perform the following:

3.1. If vxvy is an edge of G j, then perform a deletion-contraction: apply Al-
gorithm 4.1 to φ, index j, and vertices vx and vy. Otherwise, perform an
addition-identification: apply Algorithm 4.3 instead. In either case, let µ
be the resulting line representation.

3.2. Use recursion by applying Algorithm 4.5 to the partial certificate ρµ,
target graph T, and maximum length M. Let γ be the resulting sequence
of lines.

3.3. If γ 6= ε, then a certificate was found, so update our best certificate and
maximum length: let β := γ, and let M := |β|−1. Otherwise, no certificate
was found. In either case, we move on to the next values of x and y.

4. We shall now iterate over the sequence (G1, s1), . . . , (G j, s j), so let k := 1.

5. If k = j, then let j := j+1 and go to Step 3.

6. If we cannot choose indices a and b from { j,k} such that |V (Gb)| = |V (Ga)|+1,
then proceed to Step 7. Otherwise, using such a choice, let v1, . . . , vn be the
vertices of Gb. For each x such that 1 ≤ x ≤ n and each y such that 1 ≤ y < x,
perform the following:

6.1. If vxvy is an edge of Gb, then attempt an inverse addition-identification:

6.1.1. Check the signs of Ga and Gb: if sa 6= sb, then go to Step 7.
6.1.2. Check for isomorphism: if Gb /vxvy 6'Ga, then go to Step 7.
6.1.3. Perform the operation: apply Algorithm 4.4 to φ, b and a (in that

order), and vx and vy. Let µ be the result.

6.2. If vxvy is not an edge of Gb, then attempt an inverse deletion-contraction:

6.2.1. Check the signs of Ga and Gb: if sa = sb, then go to Step 7.
6.2.2. Check for isomorphism: if Gb /vxvy 6'Ga, then go to Step 7.
6.2.3. Perform the operation: apply Algorithm 4.2 to φ, b and a (in that

order), and vx and vy. Let µ be the result.

6.3. Use recursion by applying Algorithm 4.5 to the partial certificate ρµ,
target graph T, and maximum length M. Let γ be the resulting sequence
of lines.

6.4. If γ 6= ε, then a certificate was found, so update our best certificate and
maximum length: let β := γ, and let M := |β|−1. Otherwise, no certificate
was found. In either case, we move on to the next values of x and y.

7. Let k := k+1 and proceed to Step 5.

26

Although the body of the preceding algorithm provides a good deal of explana-
tion, a few particular points regarding its heuristics are worth mentioning. Firstly,
whenever a new certificate is found in the algorithm, we can be certain that it will
be the shortest one yet: the variables β and M are maintained in a way that en-
sures, once β is a valid certificate, that M = |β|−1. Since M is passed to recursive
calls of the algorithm, all discovered certificates must be shorter than the shortest
currently known. This also means that the number of partial certificates to examine
decreases as certificates are found.

The remainder of our heuristics pertain to deciding when pairs of graphs in a
line representation are valid candidates for an inverse certification step. Since the
algorithm ultimately needs to perform an isomorphism check when processing such
graphs–not an easy computational feat–we perform an initial graph order check in
Step 6 to discount a potentially large number of possible graph pairings. We also
perform the necessary edge and sign checks in steps 6.1, 6.2, 6.1.1, and 6.2.1, before
performing the final check for isomorphism in steps 6.1.2 and 6.2.2.

Although Algorithm 4.5 provides a general method for performing exhaustive
searches for shortest certificates of a certain kind, we need to use it in a specific way
if we wish to find shortest certificates for pairs of graphs. The following algorithm
provides a means of initializing Algorithm 4.5 in the way that we desire.

Algorithm 4.6. Finds a shortest certificate between two distinct specified graphs
that has no more than a specified number of lines.

Input: Two distinct graphs G and G′, and an integer M ≥ 3 representing the max-
imum number of lines.

Output: A shortest certificate from G to G′ in the form of a sequence of line rep-
resentations. If no such certificate is found, then the output is the empty
sequence ε.

1. Construct our initial line representation: let ρ := (G,1).

2. Apply Algorithm 4.5 to the partial certificate ρ, the target graph G′, and the
maximum number of lines M. Let γ be the resulting sequence of line repre-
sentations.

3. Terminate with γ as output.

Algorithm 4.6 is able to take two graphs G and G′ and find a shortest certificate
of equivalence between them, provided that one exists with at most M lines. Should
there be no such certificate, then the algorithm will return the empty sequence ε.
Note that this failure will certainly happen when G and G′ are not chromatically
equivalent; bear in mind, however, that it can also happen when they are chromat-
ically equivalent. This means that the algorithm has no general use in deciding
chromatic equivalence between graphs. However, the algorithm is used in all of the
experiments described in Chapter 5.

27

5 Experiments

5.1 Experimental Procedure
The certsearch program was written in the C programming language and com-
piled with gcc using the Linux operating system. The exhaustive search algorithm
described in Chapter 4 was used for all of the computational experiments.

The experiments were carried out as follows. For each chromatic equivalence
class, pairs of graphs were exhaustively formed such that each graph from the class
appeared with another precisely once. Each of these pairs were given as an input to
the exhaustive search algorithm, which then found a shortest certificate for the pair
and wrote this certificate out to the file of results for the corresponding graph order.
This procedure was performed for graph orders 4, 5, 6, and 7. Table 5.1 provides
details about the computer on which all of the experiments were performed.

Computer: Lenovo ThinkPad X1
Processor: Intel(R) Core(TM) i5–2520M CPU @ 2.50GHz
Speed: 800.00 MHz
Memory (RAM): 3.8 GB
Operating System: Linux openSUSE 12.2

Table 5.1: Details of the Computer Used for Computational Experiments

The search algorithm requires lists of the chromatic equivalence classes for
graphs of order 4 ≤ n ≤ 7. This data was provided by Kerri Morgan. These lists
themselves contain lists of the graphs, indexed by certain integers and arranged
by equivalence class. The indices correspond to graph data provided by Brendan
McKay, which is made available at [30]. The program also uses nauty [29], also
developed by McKay [28] to perform isomorphism checking during the running of
the search algorithm.

5.2 Discussion of Results
The experiments that we described in the preceding section examined a total of
3821 pairs of chromatically equivalent graphs from 157 equivalence classes, and
obtained a shortest certificate for each of these pairs. In this section we discuss the
lengths of the certificates that were found. We also consider the schemas to which
some of these certificates belong. We conclude the section by examining the portion
of results that pertains to trees.

5.2.1 Certificate Length

One of the main reasons for conducting the experiments was to find information
about the length of shortest certificates of chromatic equivalence. Table 5.2 lists
the certificate length data from the experiments. For each graph order, it lists the
number of shortest certificates found of each length. Although the experiments
considered only a small number of small graph orders, the certificate lengths that
they found are, relative to corresponding graph order, very short. In particular,

28

Graph Order Length 2 Length 4 Length 6 Length 8
4 1
5 8 1
6 113 48 2
7 1610 1759 272 7

Table 5.2: The lengths of shortest certificates found for chromatically equivalent
pairs of graphs of order ≤ 7

=

=

=

=

=

=

Figure 5.6: A certificate of equivalence for two graphs of order 6, belonging to
Schema 14

29

only seven of the certificates have length greater than the order of their associ-
ated graphs, and these certificates are of length 8. In general, certificates that are
shorter relative to graph order are more numerous. While these experiments only
consider graphs of very small order, it is encouraging that so far the shortest certifi-
cates produced have been very short indeed, especially since the best known upper
bound on the length of certificates is < 2n2/2, which is exponential in the order of the
pair of graphs.

The certificate in Figure 5.6 is an example of one of the many certificates found
using certsearch. All certificates found during the experiments for orders 4≤ n ≤ 6
can be found in Appendix B. These certificates, as well as those for the order 7
graphs, can also be found on the accompanying CD.

5.2.2 Schemas

Recall from Chapter 2 that a schema provides a template for a certificate which
represents a set of certificates that all share common subsequences of steps. A
schema may include some actual certification steps, or gaps that need to be replaced
by a sequence of certification steps to form an actual certificate. A certificate which
follows the pattern of certification steps given in a schema is said to belong to the
schema In this section we will only be considering schemas which have all of the
certification steps required to form a certificate.

Appendix B lists the schemas to which each certificate found via the computa-
tional experiments belongs, for all certificates for graphs of order 4 ≤ n ≤ 6. These
schemas were obtained by analysing the certificate data produced from the experi-
ments. Lacking a computational method, it was not feasible to also find the schemas
for certificates for graphs of order 7, as they number in the thousands.

Schema S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
Length 2 2 4 4 6 4 4 4 4 4 4 4 4 6

Table 5.3: The length of each schema.

Order S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
4 1
5 4 4 1
6 62 51 4 4 1 10 2 2 9 5 6 1 3 1

Table 5.4: The distribution of encountered shortest certificates amongst the
schemas, for each graph order considered.

Table 5.3 details the lengths of these schemas. For each such schema, Table 5.4
provides the number of discovered shortest certificates that belong to it. Schemas
given in Appendix B are not all of the possible schemas for certificates up to length
6, they are only those to whom at least one certificate in the results belongs. There
exist many other possible schemas of the same lengths.

The exhaustive algorithm finds just one of potentially many shortest certificates
for each input graph pair. The set of schemas to which the resulting certificates
belong to are in part artefacts of how the graphs are stored, as the labelling of edges
affects the order of edge selection during the running of the algorithm. The order in

30

which possible certification steps are attempted will also affect the schema to which
a shortest certificate conforms. Consequently, the schemas to which the certificates
from our results belong are not necessarily the only ones for which certificates of
the same length for each pair could be produced, although they are the shortest.
There may exist other certificates of the same length for a given pair of graphs
that belong to some other schema; either one of the others listed in Appendix B, or
another schema altogether.

Nevertheless, we are still able to draw some important conclusions from the
information we do have. Since shortest certificates that were found conform to a
small set of only 14 schemas, and there certainly exist other possible schemas of
these lengths, we can say that the entire set of possible schemas may not need to be
considered when searching for shortest certificates.

The vast majority of the certificates found conform to Schemas 1 and 2. This is
not unexpected, as these two schemas describe the only two sequences of certifica-
tion steps that can produce a certificate of length 2. Schemas 5 and 14 both describe
length 6 certificates, and the remainder describe all of those found with length 4.

Two schemas differ somewhat to the others that were found. Schemas 13 and
14 are a little unusual. If one considers the final line of any of the schemas, the
final graph in the schema is given in terms of the first graph in the schema, with
some set of edges removed, and some other set added. We will call this sum the for
the pair of graphs the their edge difference. For example, Schema 3 has the final
graph (G+ e\ f + g\h), so the edge difference of a pair of graphs that conform to this
schema is 4. In the first 12 schemas, the edge difference is always the length of the
schema.

However, in Schemas 13 and 14, the edge difference for them both is two less
than their respective lengths. This suggests that the process of transforming the
pairs of graphs whose certificates belong to these schemas is perhaps a slightly more
complicated task than those that belong to the other schemas. It is possible that the
certification steps in the extended set, which were not used in this research, may be
able to produce certificates for these pairs of graphs that have a length less than or
equal to their edge difference.

5.2.3 Certificates for Trees Revisited

As we saw in Chapter 3, all trees of a given order are chromatically equivalent,
and some interesting theoretical results about the certificates between them can
be found. We shall now examine how our experimental results complement the
theoretical results that we obtained in that chapter.

Tree Order Length 2 Length 4 Length 6 Length 8
4 1
5 2 1
6 9 5 1
7 27 20 7 1

Table 5.5: The lengths of shortest certificates found for chromatically equivalent
trees of order ≤ 7

Firstly, for each 4≤ n ≤ 7, the star Sn−1 and path Pn of order n have the longest
certificate of equivalence amongst the shortest certificates for pairs of trees. This

31

also happens to be the case for the corresponding shortest certificates between pairs
of graphs, for the graph orders given; however, it seems less likely that this may be
a trend that continues for higher graph orders. Table 5.5 lists the certificate length
data from the experiments for pairs of trees.

Interestingly, there is exactly one certificate of precisely length 2(n−3) for each
order n in the results. Each of these certificates is, in fact, a certificate between a
star and a path. The edge difference, as described in the previous section regard-
ing schemas, for star and path pairs appears to be 2(n−3). This is also the upper
bound on the length of shortest certificates between comets that Corollary 3.3 es-
tablished. In a sense, the star and path appear to provide a worst case scenario
for the lengths of certificates of equivalence for pairs of trees: it appears that the
edge difference of such pairs may be smaller, or at least no worse, than it is for the
star and path. This corollary, together with our computational results, suggests the
following conjecture.

Conjecture 5.1. For each pair of trees of order n, there exists a certificate of equiv-
alence for that pair that has length no greater than 2(n−3).

If this conjecture were shown to be true, then a linear bound for shortest cer-
tificate length on an even larger infinite subset of chromatically equivalent graphs
would be confirmed. Our intention in this work has been to explore just how short
shortest certificates can get, if only for a small set of graph orders. Since certifi-
cates find their origins in computational complexity, their length is a crucial thing
to consider, particularly upper bounds on their length. Having such a bound for the
length of shortest certificates between trees would be significant.

32

6 Conclusion

In this research a new method for finding certificates of equivalence was designed
and implemented and some new research tools for finding certificates were intro-
duced. The decisions made during the course of this research have allowed for the
design of a software tool which uses a minimal set of certification steps in order to
make the exhaustive search feasible while producing interesting new data about
the general form of certificates of equivalence. The certificates found are all quite
short, relative to the order of their graph pairs. They also conform to only a small
number of schemas.

This research has also proven a new bound of 2(n−3) on the lengths of certifi-
cates of equivalence for comet graphs. This class of graph includes the star and path
graphs, which were subsequently shown for orders 4≤ n ≤ 7 to have the longest cer-
tificates amongst all trees of the same order in the experimental results. This theo-
retical result, in conjunction with the certificates produced by the exhaustive search
algorithm, lead us to conjecture that this bound applies to all shortest certificates
for trees.

It is clear that there are many things still unknown about the properties of
the chromatic polynomial, as well many things still unknown about certificates for
these properties. Finding short certificates is of particular interest due to their
implications for the computational complexity of chromatic equivalence and chro-
matic factorisation. The certificates employed in this research are quite a recent
development and there remain many questions about the types of certificates that
can be found, as well as their computational complexity implications. In general,
the certificates that have been found so far are significantly shorter than the upper
bounds on their length known at this time, so it is possible that further research
could uncover tighter upper bounds.

Although the chromatic polynomial has been investigated in considerable depth,
there has been little research into its algebraic theory [31]. Chromatic equivalence
has been the topic of much research, but knowledge about the characterisation of
chromatically equivalent graphs in general is far from complete. The certificates
of equivalence that have been found so far provide some tantalising hints as to
how they may behave generally, but there remain a great number of things about
them that are unknown. Consequently, there is a wealth of potential directions for
further research into certificates for properties of the chromatic polynomial.

6.1 Achievements
An algorithm was designed and implemented to aid research into the lengths and
general structure of certificates of equivalence. This algorithm allows for the au-
tomated generation of shortest certificates. The exhaustive search algorithm was
used to find the shortest certificates for all 3821 pairs of chromatically equivalent
graphs of order ≤ 7 These certificates are all short relative to the orders of the
graphs for which they certify equivalence. The longest found were at most length
n+1 for graphs of order n.

The schemas for all of the certificates for pairs of graphs of order <= 6 were

33

also found. The vast majority of the certificates found conform to Schemas 1 and 2,
which describe certificates of length 2. Each of the 163 certificates found for graphs
of order n ≤ 6 belongs to one of only 14 schemas. This suggests that perhaps not all
possible schemas need be considered when searching for certificates of equivalence,
as some are substantially more numerous and others are apparently not necessary.

The research also uncovered a new linear upper bound of 2(n−3) on the length
of shortest certificates for an infinite family of tree graphs. This family of graphs,
comets, includes the star and path graphs, both of which seem to play an important
role in the theory of chromatic equivalence.

Computational results suggest an upper bound on the lengths of shortest certifi-
cates of equivalence for trees. When viewed in light of the new bound on the length
of shortest certificates between comet graphs, this data suggests that the comet
graph bound may extend to all trees. In fact, we conjecture that between each pair
of distinct trees of order n there is a certificate of equivalence of length no greater
than 2(n−3).

6.2 Further Work
There are a number of ways in which the work in this project could be extended.
Some of these avenues, and their potential challenges, are outlined in this section.

It is possible to conduct a search for certificates on graphs with order n > 7 using
the software tools developed in this research. However, it is likely that such an
undertaking would require the use of a high performance computing environment,
due the incredibly large number of partial certificates that are created during the
search. With increasingly large orders of graphs comes both a larger number of
ways to apply certification steps to lines, as well as a larger number of chromatic
equivalence classes.

The schemas found in this research could be used to inform new heuristics for
generating certificates. By attempting to find certificates between pairs of graphs
using the schemas produced during this research as templates, it may be possible to
find certificates for larger orders of graph. Some schemas seem to be more common
than others, so attempting to find certificates that conform to them is a possible
avenue for improving the time taken to find certificates.

This research developed a means of finding a shortest certificate for a given pair
of graphs. However, there may be other certificates for such a pair that have the
same length, but conform to schemas that differ to those found. A search for all
of the certificates of shortest length for a pair of chromatically equivalent graphs
could be devised. This could give a more complete understanding of just what the
full range of possible schemas for shortest certificates is. This information could
then be used to inform a heuristic search.

The search algorithm could be expanded to include the extended set of certifica-
tion steps studied by Morgan and Farr [34]. Were this to be done, it is quite possible
that shorter certificates of equivalence could be found for some of the certificates
found in this project. It is also possible that such a method would find shorter
certificates, in general.

Certificates of factorisation use the same certification steps as certificates of
equivalence, with an extended set of steps to allow for factorisation. Extending the
search capabilities of our algorithms to include searching for certificates of factori-

34

sation is an avenue for further work. There are some issues that such an extension
would need to address, such as the implementation of the extended set of certifica-
tion steps, as well as major changes to the certificate data structures.

35

7 References

[1] K. Appel and W. Haken, Every planar map is four colorable. I. Discharging,
Illinois J. Math. 21:429–490, 1977.

[2] K. Appel, W. Haken and J. Koch, Every planar map is four colorable. II. Re-
ducibility, Illinois J. Math. 21:491–567, 1977.

[3] S. Arora, B. Barak, Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

[4] L. Beaudin, J. Ellis-Monaghan, G. Pangborn, and R. Shrock, A lit-
tle statistical mechanics for the graph theorist. 2008. Available from
http://arxiv.org/abs/0804.2468

[5] N.L. Biggs, E.K. Lloyd, R.J. Wilson, Graph Theory 1736-1936. Oxford Univer-
sity Press, Oxford, 1986.

[6] G.D. Birkhoff, A determinant formula for the number of ways of colouring a
map. Ann. of Math. (2) 14:42–46, 1912–1913.

[7] V.A. Blatov, Search for isotypism in crystal structures by means of the graph
theory, Acta Crystallogr A. 56:178–88, 2000.

[8] J.I. Brown, C.A. Hickman, On chromatic roots with negative real part, Ars
Combin. 63:211–221, 2002.

[9] A. Caley, On the mathematical theory of isomers, Philos Mag. 67:444–4446,
1857.

[10] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, P. Markstein,
Register allocation via coloring, Comp. Lang. 6:47–57, 1981.

[11] C. Chao, E.G. Whitehead Jr, Chromaticity of self-complementary graphs, Arch.
Math (Basel). 32:295–340, 1979.

[12] C. Chao, E.G. Whitehead Jr, Chromatically unique graphs, Discrete Math.
27:171–177, 1979.

[13] G.L. Chia, A bibliography on chromatic polynomials, Discrete Math. 172:175–
191, 1997.

[14] D. de Werra, Restricted coloring models for timetabling, Discrete Math.
165/166:161–170, 1997.

[15] R. Diestel, Graph Theory. Springer-Verlag, New York, 2000.

[16] F.M. Dong, K.M. Koh, Bounds for the real zeros of chromatic polynomials, Com-
bin. Probab. Comput. 17:749–759, 2008.

36

[17] F.M. Dong, K. M Koh, K. L Teo, Chromatic Polynomials and Chromaticity of
Graphs. World Scientific, Singapore, 2005.

[18] G. Farr, The complexity of counting colourings of subgraphs of the grid, Com-
bin. Probab. Comput. 15:377–383, 2006.

[19] L.R. Foulds, Graph Theory Applications. Springer-Verlag, New York, 1992

[20] M.R. Garey, D.S. Johnson, Computers and Intractability. W.H. Freeman and
Company, New York, 1979.

[21] G. Gonthier, Formal proof–The four-color theorem. Notices of the American
Mathematical Society 11:1382–1393, 2008

[22] J. Huh, Milnor numbers of projective hypersurfaces and the chromatic polyno-
mial of graphs, Preprint, 2011.

[23] B. Jackson, A zero-free interval for chromatic polynomials of graphs, Combin.
Probab. Comput. 2:325–336, 1993.

[24] T. Jensen, B. Toft. Graph Colouring Problems. John Wiley and Sons, New York,
1995.

[25] R.M. Karp, Reducibility among combinatorial problems. In R.E. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum, Boston, 1972.

[26] A.B. Kempe, On the geographical problem of the four colors, Amer. J. Math.
2:193–200, 1879.

[27] P.H. Lundow, K. Markström, Broken-cycle-free subgraphs and the log-
concavity conjecture for chromatic polynomials, Experiment. Math. 15:343–
353, 2006.

[28] B. McKay, Practical Graph Isomorphism. Congr. Numer. 30:45–87, 1981.

[29] B. McKay, The Nauty Page. http://cs.anu.edu.au/~bdm/nauty/.

[30] B. McKay, Graph Data. http://cs.anu.edu.au/~bdm/data/graphs.html.

[31] K. Morgan, Algebraic Aspects of the Chromatic Polynomial. PhD Thesis,
Monash University, Clayton School of Information Technology, 2010.

[32] K. Morgan, Pairs of chromatically equivalent graphs, Graph Combinator.
27:547–556, 2011.

[33] K. Morgan, G. Farr, Certificates of factorisation for a class of triangle-free
graphs, Electron. J. Combin. 16:#R75, 2009.

[34] K. Morgan, G. Farr, Certificates of factorisation for chromatic polynomials
Electron. J. Combin. 16:#R74, 2009.

[35] D. Penny, L.R. Foulds, M.D Hendy, Testing the theory of evolution by com-
paring phylogenetic trees constructed from five different protein sequences,
Nature. 297:197–200, 1982.

37

[36] R.B. Potts, Some generalized order-disorder transformations, PCPS-P. Camb.
Philol. S. 48:106–109, 1952.

[37] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory. 4:52–
71, 1968.

[38] R.C. Read, Review, Mathematical Reviews. 50: Review 6906, 1975.

[39] R.C. Read, W.T. Tutte, Chromatic polynomials. In L.W. Beineke and R.J. Wil-
son, editors, Selected Topics in Graph Theory, volume 3, pages 15–42. Aca-
demic Press, London, 1988.

[40] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, The four-colour theo-
rem. J. Combin. Theory Ser. B 70:2–44, 1997.

[41] A.D. Sokal, Chromatic roots are dense in the whole complex plane, Combin.
Probab. Comput. 13:221–261, 2004.

[42] P.G. Tait, Note on a theorem in geometry of position, Trans. Roy. Soc. Edin-
burgh. 29:657–660, 1880.

[43] W.T. Tutte, Chromials. In C. Berge and D Ray-Chaudhuri, editors, Hyper-
graph Seminar, volume 411 of Lecture Notes in Mathematics, pages 243–266.
Springer-Verlag, Berlin, 1972.

[44] W.T. Tutte, Chromatic sums for rooted planar triangulations: The cases λ= 1
and λ= 1, Canad. J. Math. 25:426–447, 1974.

[45] L.G. Valiant, The complexity of computing the permanent, Theoret. Comput.
Sci. 8:189–201, 1979.

[46] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J.
Comput. 8:410–421, 1979.

[47] S.H. Whitesides, An algorithm for finding clique cut-sets. Inform. Process. Lett.
12:31–32, 1981.

[48] H. Whitney, The colouring of graphs. Ann. of Math. (2nd Series). 33:688–718,
1932.

[49] H. Whitney, A logical expansion in mathematics. Bull. Amer. Math. Soc.
38:572–579, 1932.

[50] R.J. Wilson, Four Colours Suffice: How the Map Problem was Solved. Allen
Lane, London 2002.

[51] A.A. Zykov, On some properties of linear complexes. Amer. Math. Soc. Transl.
79, 1952. Translated from original article in Math. Sbornik, 24:163–188, 1949.

38

8 Appendix A Software Information

This appendix provides some information about the certsearch software produced
in this project. For more detailed information about the finer points of the program
implementation, we refer the reader to the source files provided in the accompany-
ing CD.

8.1 Environment
As was discussed in Chapter 4, all of the experimental runs using certsearch were
completed on a computer with the following specifications.

Computer: Lenovo ThinkPad X1
Processor: Intel(R) Core(TM) i5–2520M CPU @ 2.50GHz
Speed: 800.00 MHz
Memory (RAM): 3.8 GB
Operating System: Linux openSUSE 12.2

8.2 Building the Software
The certsearch software was written in the C programming language and was
compiled with gcc. A makefile is included with the source code on the accompanying
CD.

The program certsearch uses nauty, developed by Brendan McKay and avail-
able at [29]. In the software, nauty is used for the graph isomorphism checks per-
formed during the search. The program also uses a function from some work by
Kerri Morgan [31], which is used as an interface to nauty. This function was modi-
fied during this research to make it compatible with the graph data structures used
by certsearch. The source code files for nauty and the modified code from Mor-
gan are included along with the other source files required to build the certsearch
program.

Also provided are the n_polys files, which contain lists of all of the chromatic
equivalence classes for all non chromatically unique graphs of order 4, 5, 6 and 7.
These files were provided by Kerri Morgan. The graphs* files are also included.
They give the adjacency matrices of all graphs of orders 4, 5, 6 and 7. These files
are provided by Brendan McKay and are made available at [30]. Both the n_polys
and the graphs* files are required by the automated exhaustive search functions.

8.3 Using the Software
When running certsearch the user is presented with a number of options. Most
important amongst these is option 2 which runs the batch experiments for all of
the pairs of graphs of order 4 ≤ n ≤ 7 and was used to find all of the computational
results in this thesis. This search option will likely take many hours to complete on
the average computer, but the certificates for graphs of order 4≤ n ≤ 6 will complete

39

in a number of minutes. The certificates found during this search option are written
out to the order_*_certificates files in the graphs directory.

8.4 Interpreting Output Certificates
This section contains information about interpreting the data output to file by
certsearch. Please note that in the certificates in the order_*_certificates files
and Appendix C, the graphs G and G0 are in fact the same graph.

In the software, order n graphs are always defined over the set of vertices
{0, . . . , n−1}. The only graph operations that the software performs are edge dele-
tion, edge addition, and vertex identification (recall that this is also called contrac-
tion when the vertices involved are adjacent). Out of these three, identification is
only one that alters the order of the resulting graph, and thus the vertex set being
worked with. Furthermore this change has an effect on the edges of the graph; it is
important to have some knowledge of how this change occurs, if the output of the
software is to be interpreted correctly.

When we perform a identification on u and v, because of the way the graphs are
represented, one of these vertices will have a smaller vertex label than the other,
so let the smaller of the two be u. We proceed in the identification by essentially
absorbing v into u, and then removing v. When v is removed from the graph, all of
the vertices adjacent to v, excluding u, become adjacent to u if they are not already
adjacent to u. Now, for each w from v+1 up to n, we do the following: replace w
with w−1 such that every edge adjacent to w becomes adjacent to w−1.

In short, v is removed, u inherits the adjacencies of v, and the vertices and edges
of the resulting graph are transformed according to the map

φ(w)=
{

w if w < v
w−1 if w > v.

With this information, together with the adjacency matrices in the graphs* files,
it is possible to interpret the certificates in Appendix C. Note that the certificates
listed in the order_*_certificates files, which can be found on the accompanying
CD, are preceded by the edge lists of the graphs involved in the certificate. The first
of the two graphs listed is G in the certificate. The second is the graph found in the
final line of the certificate. The certificates in the order_*_certificates files are
also interpreted in the manner described above.

40

9 Appendix B Schemas

This appendix contains a number of schemas. All of the certificates found for pairs
of graphs of order 4 ≤ n ≤ 6 during the experimental runs of the exhaustive search
algorithm belong to one of the following schemas.

Schema 1:

G = (G+ e) + (G/e) (CS3)
= (G+ e\ f) (CS4)

Schema 2:

G = (G\e) − (G/e) (CS1)
= (G\e+ f) (CS2)

Schema 3:

G = (G+ e) + (G/e) (CS3)
= (G+ e\ f) − (G+ e/ f) + (G/e) (CS1)
= (G+ e\ f + g) + (G/e) (CS2)
= (G+ e\ f + g\h) (CS4)

Schema 4:

G = (G\e) − (G/e) (CS1)
= (G\e+ f) (CS2)
= (G\e+ f \g) − (G\e+ f /g) (CS1)
= (G\e+ f \g+h) (CS2)

41

Schema 5:

G = (G+ e) + (G/e) (CS3)
= (G+ e+ f) + (G+ e/ f) + (G/e) (CS3)
= (G+ e+ f \g) + (G/e) (CS4)
= (G+ e+ f \g\h) (CS4)
= (G+ e+ f \g\h+ i) + (G+ e+ f \g\h/i) (CS3)
= (G+ e+ f \g\h+ i\ j) (CS4)

Schema 6:

G = (G+ e) + (G/e) (CS3)
= (G+ e+ f) + (G+ e/ f) + (G/e) (CS3)
= (G+ e+ f \g) + (G/e) (CS4)
= (G+ e+ f \g\h) (CS4)

Schema 7:

G = (G+ e) + (G/e) (CS3)
= (G+ e+ f) + (G+ e/ f) + (G/e) (CS3)
= (G+ e+ f \h) + (G+ e/ f) (CS4)
= (G+ e+ f \g\h) (CS4)

Schema 8:

G = (G\e) − (G/e) (CS1)
= (G\e+ f) (CS2)
= (G\e+ f + g) + (G\e+ f /g) (CS3)
= (G\e+ f + g\h) (CS4)

42

Schema 9:

G = (G+ e) + (G/e) (CS3)
= (G+ e\ f) (CS4)
= (G+ e\ f + g) + (G+ e\ f /g) (CS3)
= (G+ e\ f + g\h) (CS4)

Schema 10:

G = (G+ e) + (G/e) (CS3)
= (G+ e\ f) − (G+ e/ f) + (G/e) (CS1)
= (G+ e\ f \g) − (G+ e/ f) (CS4)
= (G+ e\ f \g+h) (CS2)

Schema 11:

G = (G+ e) + (G/e) (CS3)
= (G+ e\ f) (CS4)
= (G+ e\ f \g) − (G+ e\ f /g) (CS1)
= (G+ e\ f \g+h) (CS2)

Schema 12:

G = (G\e) − (G/e) (CS1)
= (G\e+ f) − (G\e/ f) + (G/e) (CS3)
= (G\e+ f \g) − (G/e) (CS4)
= (G+ e\ f \g+h) (CS2)

43

Schema 13:

G = (G+ e) + (G/e) (CS3)
= (G+ e) + (G/e\ f) − (G/e/ f) (CS1)
= (G+ e) + (G/e\ f + g) (CS2)
= (G+ e\h) (CS4)

Schema 14:

G = (G+ e) + (G/e) (CS3)
= (G+ e+ f) + (G+ e/ f) + (G/e) (CS3)
= (G+ e+ f) + (G+ e/ f + g) + (G+ e/ f /g) + (G/e) (CS3)
= (G+ e+ f) + (G+ e/ f + g\h) + (G/e) (CS4)
= (G+ e+ f \i) + (G+ e/ f + g\h) (CS4)
= (G+ e+ f \i\ j) (CS4)

44

10 Appendix C Certificates

The following are all of the certificates found for pairs of chromaticaly equivlent
pairts of graphs of order 4 ≤ n ≤ 6. A somewhat more verbose version of these
certificates, along with all of the certificates for the graphs of order 7, can be found
in the files labeled order_*_certificates on the accompanying CD.

The numbers given to denote which graphs each certificate corresponds to are
those listed in the graphs* files, also found on the CD. These files give the adjacency
matrices of the graphs.

ORDER 4:

--
GRAPH PAIR: 2 & 1 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

ORDER 5:

--
GRAPH PAIR: 2 & 1 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 9 & 1 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)} - G4{G1/(2,0)} + G2{G0/(1,0)}
= G5{G3+(2,1)} + G2{G0/(1,0)}
= G6{G5-(4,0)}

--
GRAPH PAIR: 9 & 2 CERT LENGTH: 2

G = G1{G0-(2,0)} - G2{G0/(2,0)}
= G3{G1+(2,1)}

--
GRAPH PAIR: 4 & 3 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,1)}

45

--
GRAPH PAIR: 10 & 3 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 10 & 4 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)}

--
GRAPH PAIR: 11 & 6 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)}

--
GRAPH PAIR: 12 & 6 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,2)}

--
GRAPH PAIR: 12 & 11 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,2)}

ORDER 6:

--
GRAPH PAIR: 59 & 11 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(5,2)}

--
GRAPH PAIR: 9 & 7 CERT LENGTH: 2

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 23 & 7 CERT LENGTH: 2

46

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 23 & 9 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 31 & 7 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(5,2)}

--
GRAPH PAIR: 31 & 9 CERT LENGTH: 2

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1-(5,2)}

--
GRAPH PAIR: 31 & 23 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(3,2)}

--
GRAPH PAIR: 2 & 1 CERT LENGTH: 2

G = G1{G0-(4,0)} - G2{G0/(4,0)}
= G3{G1+(5,4)}

--
GRAPH PAIR: 4 & 1 CERT LENGTH: 4

G = G1{G0-(4,0)} - G2{G0/(4,0)}
= G3{G1+(5,0)}
= G4{G3-(4,1)} - G5{G3/(4,1)}
= G6{G4+(5,1)}

--
GRAPH PAIR: 4 & 2 CERT LENGTH: 2

G = G1{G0-(4,0)} - G2{G0/(4,0)}
= G3{G1+(5,0)}

--

47

GRAPH PAIR: 5 & 1 CERT LENGTH: 4

G = G1{G0-(4,1)} - G2{G0/(4,1)}
= G3{G1+(5,1)}
= G4{G3-(4,0)} - G5{G3/(4,0)}
= G6{G4+(5,4)}

--
GRAPH PAIR: 5 & 2 CERT LENGTH: 2

G = G1{G0-(4,1)} - G2{G0/(4,1)}
= G3{G1+(5,1)}

--
GRAPH PAIR: 5 & 4 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 15 & 1 CERT LENGTH: 4

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(5,3)}
= G4{G3-(4,1)} - G5{G3/(4,1)}
= G6{G4+(5,4)}

--
GRAPH PAIR: 15 & 2 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 15 & 4 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(3,1)}

--
GRAPH PAIR: 15 & 5 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(5,2)}

--
GRAPH PAIR: 19 & 1 CERT LENGTH: 6

48

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(2,0)} + G4{G1/(2,0)} + G2{G0/(1,0)}
= G5{G3-(4,1)} + G2{G0/(1,0)}
= G6{G5-(5,1)}
= G7{G6+(4,0)} + G8{G6/(4,0)}
= G9{G7-(4,2)}

--
GRAPH PAIR: 19 & 2 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(2,0)} + G4{G1/(2,0)} + G2{G0/(1,0)}
= G5{G3-(4,1)} + G2{G0/(1,0)}
= G6{G5-(5,1)}

--
GRAPH PAIR: 19 & 4 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(2,0)} + G4{G1/(2,0)} + G2{G0/(1,0)}
= G5{G3-(4,2)} + G2{G0/(1,0)}
= G6{G5-(5,0)}

--
GRAPH PAIR: 19 & 5 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(4,2)}

--
GRAPH PAIR: 19 & 15 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 107 & 74 CERT LENGTH: 2

G = G1{G0+(3,2)} + G2{G0/(3,2)}
= G3{G1-(5,3)}

--
GRAPH PAIR: 33 & 25 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(3,2)}

--

49

GRAPH PAIR: 46 & 25 CERT LENGTH: 4

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1+(5,0)} + G4{G1/(5,0)} + G2{G0/(2,1)}
= G4{G1/(5,0)} + G5{G3-(3,1)}
= G6{G5-(4,0)}

--
GRAPH PAIR: 46 & 33 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,1)}

--
GRAPH PAIR: 51 & 25 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,3)}

--
GRAPH PAIR: 51 & 33 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 51 & 46 CERT LENGTH: 2

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 60 & 36 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(5,2)}

--
GRAPH PAIR: 65 & 36 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(4,2)}

--
GRAPH PAIR: 65 & 60 CERT LENGTH: 2

G = G1{G0+(3,2)} + G2{G0/(3,2)}
= G3{G1-(4,2)}

50

--
GRAPH PAIR: 63 & 61 CERT LENGTH: 2

G = G1{G0+(3,2)} + G2{G0/(3,2)}
= G3{G1-(5,2)}

--
GRAPH PAIR: 6 & 3 CERT LENGTH: 2

G = G1{G0-(4,1)} - G2{G0/(4,1)}
= G3{G1+(5,1)}

--
GRAPH PAIR: 16 & 3 CERT LENGTH: 2

G = G1{G0-(4,1)} - G2{G0/(4,1)}
= G3{G1+(5,4)}

--
GRAPH PAIR: 16 & 6 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,0)}

--
GRAPH PAIR: 18 & 3 CERT LENGTH: 4

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,0)}
= G4{G3+(4,3)} + G5{G3/(4,3)}
= G6{G4-(5,0)}

--
GRAPH PAIR: 18 & 6 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,0)}

--
GRAPH PAIR: 18 & 16 CERT LENGTH: 2

G = G1{G0-(4,1)} - G2{G0/(4,1)}
= G3{G1+(5,1)}

--
GRAPH PAIR: 20 & 3 CERT LENGTH: 4

51

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,3)}
= G4{G3+(4,0)} + G5{G3/(4,0)}
= G6{G4-(5,0)}

--
GRAPH PAIR: 20 & 6 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 20 & 16 CERT LENGTH: 2

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 20 & 18 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(4,2)}

--
GRAPH PAIR: 21 & 3 CERT LENGTH: 4

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}
= G4{G3-(4,1)} - G5{G3/(4,1)}
= G6{G4+(5,4)}

--
GRAPH PAIR: 21 & 6 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,0)}
= G4{G3+(2,1)} + G5{G3/(2,1)}
= G6{G4-(4,2)}

--
GRAPH PAIR: 21 & 16 CERT LENGTH: 2

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 21 & 18 CERT LENGTH: 2

52

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1-(3,0)}

--
GRAPH PAIR: 21 & 20 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,0)}

--
GRAPH PAIR: 30 & 3 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}
= G4{G3+(2,0)} + G5{G3/(2,0)}
= G6{G4-(5,2)}

--
GRAPH PAIR: 30 & 6 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 30 & 16 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,4)}

--
GRAPH PAIR: 30 & 18 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,0)} - G4{G1/(4,0)} + G2{G0/(1,0)}
= - G4{G1/(4,0)} + G5{G3-(4,1)}
= G6{G5+(3,1)}

--
GRAPH PAIR: 30 & 20 CERT LENGTH: 2

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 30 & 21 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,4)}

53

= G4{G3-(3,0)} - G5{G3/(3,0)}
= G6{G4+(3,2)}

--
GRAPH PAIR: 49 & 39 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,1)}

--
GRAPH PAIR: 54 & 39 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 54 & 49 CERT LENGTH: 2

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 82 & 39 CERT LENGTH: 4

G = G1{G0-(2,0)} - G2{G0/(2,0)}
= G3{G1+(2,1)} + G4{G1/(2,1)} - G2{G0/(2,0)}
= G5{G3-(4,2)} - G2{G0/(2,0)}
= G6{G5+(5,2)}

--
GRAPH PAIR: 82 & 49 CERT LENGTH: 2

G = G1{G0-(2,0)} - G2{G0/(2,0)}
= G3{G1+(2,1)}

--
GRAPH PAIR: 82 & 54 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G1{G0+(1,0)} + G3{G2-(1,0)} - G4{G2/(1,0)}
= G1{G0+(1,0)} + G5{G3+(3,2)}
= G6{G1-(4,0)}

--
GRAPH PAIR: 67 & 57 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(4,2)}

54

--
GRAPH PAIR: 85 & 57 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)}

--
GRAPH PAIR: 85 & 67 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)}
= G4{G3+(3,0)} + G5{G3/(3,0)}
= G6{G4-(5,3)}

--
GRAPH PAIR: 100 & 69 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,1)}

--
GRAPH PAIR: 87 & 71 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)}

--
GRAPH PAIR: 10 & 8 CERT LENGTH: 2

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 17 & 8 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,0)}

--
GRAPH PAIR: 17 & 10 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(2,0)} + G4{G1/(2,0)} + G2{G0/(1,0)}
= G5{G3-(5,2)} + G2{G0/(1,0)}
= G6{G5-(4,1)}

--

55

GRAPH PAIR: 22 & 8 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,0)}
= G4{G3-(4,2)} - G5{G3/(4,2)}
= G6{G4+(5,2)}

--
GRAPH PAIR: 22 & 10 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,0)}

--
GRAPH PAIR: 22 & 17 CERT LENGTH: 2

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 24 & 8 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 24 & 10 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 24 & 17 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}
= G4{G3-(3,0)} - G5{G3/(3,0)}
= G6{G4+(5,3)}

--
GRAPH PAIR: 24 & 22 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 27 & 8 CERT LENGTH: 2

56

G = G1{G0-(4,0)} - G2{G0/(4,0)}
= G3{G1+(5,4)}

--
GRAPH PAIR: 27 & 10 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G1{G0+(1,0)} + G3{G2+(1,0)} + G4{G2/(1,0)}
= G1{G0+(1,0)} + G5{G3-(3,2)}
= G6{G1-(4,3)}

--
GRAPH PAIR: 27 & 17 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,1)}
= G4{G3+(2,0)} + G5{G3/(2,0)}
= G6{G4-(5,3)}

--
GRAPH PAIR: 27 & 22 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(2,1)} + G4{G1/(2,1)} + G2{G0/(1,0)}
= G5{G3-(4,0)} + G2{G0/(1,0)}
= G6{G5-(1,0)}

--
GRAPH PAIR: 27 & 24 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(2,1)} + G4{G1/(2,1)} + G2{G0/(1,0)}
= G5{G3-(4,0)} + G2{G0/(1,0)}
= G6{G5-(3,0)}

--
GRAPH PAIR: 32 & 8 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 32 & 10 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}

--

57

GRAPH PAIR: 32 & 17 CERT LENGTH: 2

G = G1{G0+(5,3)} + G2{G0/(5,3)}
= G3{G1-(4,0)}

--
GRAPH PAIR: 32 & 22 CERT LENGTH: 2

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 32 & 24 CERT LENGTH: 2

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1-(4,0)}

--
GRAPH PAIR: 32 & 27 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(5,2)}

--
GRAPH PAIR: 50 & 8 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}
= G4{G3+(2,0)} + G5{G3/(2,0)}
= G6{G4-(4,2)}

--
GRAPH PAIR: 50 & 10 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(4,3)} + G4{G1/(4,3)} + G2{G0/(1,0)}
= G4{G1/(4,3)} + G5{G3-(5,0)}
= G6{G5-(1,0)}

--
GRAPH PAIR: 50 & 17 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}
= G4{G3+(2,0)} + G5{G3/(2,0)}
= G6{G4-(5,4)}

--

58

GRAPH PAIR: 50 & 22 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,3)}

--
GRAPH PAIR: 50 & 24 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,4)}

--
GRAPH PAIR: 50 & 27 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,1)}

--
GRAPH PAIR: 50 & 32 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 76 & 8 CERT LENGTH: 6

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}
= G3{G1+(3,0)} + G5{G4+(2,1)} + G6{G4/(2,1)} + G2{G0/(1,0)}
= G3{G1+(3,0)} + G7{G5-(3,2)} + G2{G0/(1,0)}
= G7{G5-(3,2)} + G8{G3-(3,1)}
= G9{G8-(4,2)}

--
GRAPH PAIR: 76 & 10 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}
= G4{G3-(4,2)} - G5{G3/(4,2)}
= G6{G4+(5,2)}

--
GRAPH PAIR: 76 & 17 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}
= G5{G3-(3,1)} + G2{G0/(1,0)}
= G6{G5-(5,1)}

59

--
GRAPH PAIR: 76 & 22 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 76 & 24 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,1)} - G4{G1/(5,1)} + G2{G0/(1,0)}
= - G4{G1/(5,1)} + G5{G3-(3,1)}
= G6{G5+(2,1)}

--
GRAPH PAIR: 76 & 27 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G1{G0+(1,0)} + G3{G2-(1,0)} - G4{G2/(1,0)}
= G1{G0+(1,0)} + G5{G3+(3,2)}
= G6{G1-(4,2)}

--
GRAPH PAIR: 76 & 32 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}
= G4{G3+(2,1)} + G5{G3/(2,1)}
= G6{G4-(4,2)}

--
GRAPH PAIR: 76 & 50 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}
= G4{G3-(2,0)} - G5{G3/(2,0)}
= G6{G4+(4,1)}

--
GRAPH PAIR: 77 & 8 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}
= G5{G3-(3,1)} + G2{G0/(1,0)}
= G6{G5-(4,2)}

--

60

GRAPH PAIR: 77 & 10 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)} - G4{G1/(3,1)} + G2{G0/(1,0)}
= G5{G3+(3,2)} + G2{G0/(1,0)}
= G6{G5-(5,1)}

--
GRAPH PAIR: 77 & 17 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}
= G5{G3-(3,1)} + G2{G0/(1,0)}
= G6{G5-(5,2)}

--
GRAPH PAIR: 77 & 22 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)} - G4{G1/(3,1)} + G2{G0/(1,0)}
= G5{G3+(3,2)} + G2{G0/(1,0)}
= G6{G5-(5,2)}

--
GRAPH PAIR: 77 & 24 CERT LENGTH: 2

G = G1{G0+(3,0)} + G2{G0/(3,0)}
= G3{G1-(5,1)}

--
GRAPH PAIR: 77 & 27 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 77 & 32 CERT LENGTH: 2

G = G1{G0+(3,0)} + G2{G0/(3,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 77 & 50 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,3)}

--

61

GRAPH PAIR: 77 & 76 CERT LENGTH: 2

G = G1{G0-(5,0)} - G2{G0/(5,0)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 26 & 12 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,0)}

--
GRAPH PAIR: 34 & 12 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 34 & 26 CERT LENGTH: 2

G = G1{G0+(2,1)} + G2{G0/(2,1)}
= G3{G1-(4,0)}

--
GRAPH PAIR: 40 & 12 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 40 & 26 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,0)} - G4{G1/(4,0)} + G2{G0/(1,0)}
= - G4{G1/(4,0)} + G5{G3-(4,1)}
= G6{G5+(5,2)}

--
GRAPH PAIR: 40 & 34 CERT LENGTH: 2

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 41 & 12 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,3)}

62

--
GRAPH PAIR: 41 & 26 CERT LENGTH: 2

G = G1{G0-(4,0)} - G2{G0/(4,0)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 41 & 34 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,0)} - G4{G1/(4,0)} + G2{G0/(1,0)}
= - G4{G1/(4,0)} + G5{G3-(4,2)}
= G6{G5+(5,3)}

--
GRAPH PAIR: 41 & 40 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 52 & 12 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}
= G4{G3+(2,0)} + G5{G3/(2,0)}
= G6{G4-(4,2)}

--
GRAPH PAIR: 52 & 26 CERT LENGTH: 2

G = G1{G0+(5,2)} + G2{G0/(5,2)}
= G3{G1-(3,0)}

--
GRAPH PAIR: 52 & 34 CERT LENGTH: 2

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 52 & 40 CERT LENGTH: 2

G = G1{G0+(2,0)} + G2{G0/(2,0)}
= G3{G1-(3,1)}

--

63

GRAPH PAIR: 52 & 41 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 79 & 12 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}
= G4{G3-(4,2)} - G5{G3/(4,2)}
= G6{G4+(3,0)}

--
GRAPH PAIR: 79 & 26 CERT LENGTH: 2

G = G1{G0-(4,0)} - G2{G0/(4,0)}
= G3{G1+(5,4)}

--
GRAPH PAIR: 79 & 34 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}
= G5{G3-(3,1)} + G2{G0/(1,0)}
= G6{G5-(5,1)}

--
GRAPH PAIR: 79 & 40 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 79 & 41 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)} - G4{G1/(2,0)} + G2{G0/(1,0)}
= - G4{G1/(2,0)} + G5{G3-(4,2)}
= G6{G5+(2,1)}

--
GRAPH PAIR: 79 & 52 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,0)}

--

64

GRAPH PAIR: 43 & 14 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 55 & 14 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}
= G4{G3+(2,0)} + G5{G3/(2,0)}
= G6{G4-(4,2)}

--
GRAPH PAIR: 55 & 43 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 56 & 14 CERT LENGTH: 4

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(5,0)}
= G4{G3-(3,1)} - G5{G3/(3,1)}
= G6{G4+(4,1)}

--
GRAPH PAIR: 56 & 43 CERT LENGTH: 2

G = G1{G0-(3,0)} - G2{G0/(3,0)}
= G3{G1+(5,0)}

--
GRAPH PAIR: 56 & 55 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,0)} - G4{G1/(3,0)} + G2{G0/(1,0)}
= G5{G3+(5,0)} + G2{G0/(1,0)}
= G6{G5-(4,0)}

--
GRAPH PAIR: 83 & 14 CERT LENGTH: 4

G = G1{G0-(2,0)} - G2{G0/(2,0)}
= G3{G1+(5,2)}
= G4{G3-(3,1)} - G5{G3/(3,1)}
= G6{G4+(4,3)}

65

--
GRAPH PAIR: 83 & 43 CERT LENGTH: 2

G = G1{G0-(2,0)} - G2{G0/(2,0)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 83 & 55 CERT LENGTH: 2

G = G1{G0-(4,2)} - G2{G0/(4,2)}
= G3{G1+(5,2)}

--
GRAPH PAIR: 83 & 56 CERT LENGTH: 2

G = G1{G0-(2,0)} - G2{G0/(2,0)}
= G3{G1+(2,1)}

--
GRAPH PAIR: 98 & 92 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,2)}

--
GRAPH PAIR: 106 & 102 CERT LENGTH: 2

G = G1{G0-(2,0)} - G2{G0/(2,0)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 35 & 28 CERT LENGTH: 2

G = G1{G0-(4,1)} - G2{G0/(4,1)}
= G3{G1+(5,1)}

--
GRAPH PAIR: 78 & 28 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 78 & 35 CERT LENGTH: 2

G = G1{G0+(3,0)} + G2{G0/(3,0)}
= G3{G1-(3,1)}

66

--
GRAPH PAIR: 62 & 37 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,2)}

--
GRAPH PAIR: 80 & 37 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

--
GRAPH PAIR: 80 & 62 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(2,1)} + G4{G1/(2,1)} + G2{G0/(1,0)}
= G5{G3-(4,0)} + G2{G0/(1,0)}
= G6{G5-(5,3)}

--
GRAPH PAIR: 84 & 37 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 84 & 62 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)}

--
GRAPH PAIR: 84 & 80 CERT LENGTH: 2

G = G1{G0-(4,1)} - G2{G0/(4,1)}
= G3{G1+(5,3)}

--
GRAPH PAIR: 58 & 45 CERT LENGTH: 2

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,1)}

--
GRAPH PAIR: 86 & 45 CERT LENGTH: 2

67

G = G1{G0-(3,1)} - G2{G0/(3,1)}
= G3{G1+(4,3)}

--
GRAPH PAIR: 86 & 58 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)}

--
GRAPH PAIR: 91 & 45 CERT LENGTH: 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1+(2,1)} + G4{G1/(2,1)} + G2{G0/(1,0)}
= G5{G3-(4,1)} + G2{G0/(1,0)}
= G6{G5-(5,1)}

--
GRAPH PAIR: 91 & 58 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,1)}

--
GRAPH PAIR: 91 & 86 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,2)}

--
GRAPH PAIR: 89 & 64 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(5,1)}

--
GRAPH PAIR: 88 & 70 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(2,0)}

--
GRAPH PAIR: 93 & 70 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,2)}

--

68

GRAPH PAIR: 93 & 88 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(4,2)}

--
GRAPH PAIR: 103 & 75 CERT LENGTH: 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}
= G3{G1-(3,1)}

69

