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Abstract

The measurement of causal power has been of long-standing interest in philos-
ophy and psychology. With the development of Bayesian network technology, the
interest has spread to artificial intelligence. We introduce a metric which applies in-
formation theory to Bayesian networks. We show that it generalizes prior metrics
restricted to linear and noisy-or models, while providing a metric appropriate to the
full representational power of Bayesian nets.
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1 Introduction

The causal interpretation of Bayesian networks has risen greatly in prominence since the
development of effective probabilistic reasoning with Bayesian networks (Pearl, 1988), and
more especially since the development of methods of learning Bayesian networks from data
in causal discovery algorithms (Verma and Pearl, 1990; Spirtes et al., 2000; Neapolitan,
2004). The causal interpretation makes sense of the success of causal discovery, which
otherwise would be miraculous. Despite this, the causal interpretation brings with it a
host of difficulties, philosophical and technical, leading to various research efforts, such
as the attempt to apply the theory of probabilistic causality in philosophy of science to
causal Bayesian networks (e.g., Hitchcock, 2001; Halpern and Pearl, 2001; Twardy and
Korb, 2004). Another long-standing research program in philosophy and psychology has
attempted to develop a formal theory of causal power: as probabilistic causality already
recognizes, causation is not an either/or affair, but comes in degrees. But then explanatory
power — the normative attribution of an effect to one of its causes — ought also to
come in degrees, particularly in cases of overdetermination or multiple causation. The
development of a well-founded metric of causal power promises to be of wide-spread interest:
as a normative standard for assessing such causal attributions; as an aid in knowledge
engineering Bayesian networks, by providing guidance in the interpretation of prototype
networks; as an aid in understanding and using probabilistic expert systems, in simplifying



and making explicit causal relationships that are otherwise complicated or implicit; and
also for the growing collaboration between AI and philosophy of science, in understanding,
for example, the nature of scientific explanation.

Here we review the best known prior theories of causal power, beginning with 1.J. Good
(1961) and then the recent work of Cheng (1997), Glymour (2001) and Hiddleston (2005).
The main problem we find in all of these theories is that they find their inspiration in an
overly simple model of causality, namely linear (or additive) causal models. Linear causal-
ity is a particularly simple kind of causality, which ought to have a correspondingly simple
account, to offer of causal power. Whereas simplicity can be an asset in first developing
a theory, it can be a serious impediment when attempting to generalize a theory, and we
suggest that that is the predicament of causal power theory. In particular, the transitive
nature of causality in linear models has seduced some into thinking that causality is in gen-
eral transitive. However, it is not, as Christopher Hitchcock (2001) and others have shown.
In response to this we offer an account of causal power using an information-theoretic
analysis of the relationships in non-linear Bayesian networks, while also illustrating their
application to linear models.

2 Desiderata of a Causal Power Theory

There are a number of principles we would like a causal power theory to exemplify.

1. The theory should be applicable to linear path models. This means we’ll have to
abandon — or reinterpret substantially — theories which have probability contrast
at their core. Furthermore, the theory should bear a direct relationship to linear
correlation.

2. The theory should have an information-theoretic interpretation. Causality gives rise
to probabilistic relationships, which should lead to a reasonable interpretation under
Shannon’s theory of information.

3. The theory should not depend on transitivity, simply because causation is not, in
general, transitive; of course, the theory needs to accommodate transitivity when it
appears.

4. The theory should be compatible with experimental intervention. Thus, we should
be able to quantify the effect of setting a variable to a particular value, as well as
contrasting the effect of one value with another.

In describing the various theories of causal power we shall adopt the standard convention
of writing variables as capital letters (e.g., C' for a causal variable and E for an effect
variable) and the states or values they take in lower case. Thus, C' = ¢ means we are
considering the variable C' in its particular state c. And ¢ alone may be used as shorthand
for C' = ¢, etc.

3 A History of Causal Power

3.1 Good’s Causal Calculus

The first serious attempt to provide a formal theory of causal power that we know of is that
of I.J. Good (1961). In the same work, Good also presented the first probabilistic theory
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of causality (see Salmon, 1980, for a review).

Good’s formulation of causal power seems motivated by a desire for a theory analagous
to circuit theory. Causal strength (@) is analogous to conductivity, and he defines a kind
of ‘causal resistance’ (R) to parallel circuit resistance. In circuits, resistors in series are
additive; in turn, Good’s causal resistance is additive along a causal chain. Conductivity
and causal power, on the other hand, are additive in parallel. In circuits, conductivity is
the reciprocal of resistance; similar to this, Good’s causal strength and causal resistance
are related thus:

(1) e Bre@=1

Given these requirements, the only additional requirement is a definition either of causal
strength or of causal resistance for direct causal links (which we will call Qinx). Good’s
definition of causal strength for a causal link is:!

(2) lek(E . C) = — log %
3) ~—log

where p = P(e|c) and ¢ = P(e|—c). Good stipulates that Q,x be non-negative: where the
formula above would yield a negative value, it takes zero instead. Thus, ¢ must promote e
for Qink to be non-zero. Good calls this formula “the weight of evidence against e, if ¢ did
not happen.”

Using the fact that resistance is additive along a chain, together with formula (1)
relating resistance and causal strength, it follows that:

(4) Q(E:C) =—log (1-1‘[?’_(1")

; —q;

(3

where ¢ and e are connected by a chain of links indexed by i. This formula is derived
by finding each Qinx’s corresponding Ry, using (1), summing the R’s to get the total
resistance, then reapplying (1) to transform the sum into a causal power expression.

Good’s theory has some nice properties; the analogy to circuit resistances in particular
is mathematically pleasing, as is the use of information-theoretic ideas. However, there are
some key objections. The first is that the theory exhibits a form of transitivity, because of
the additivity of resistances. Since causation in general is not transitive, this will often yield
the wrong answer. Take, for example, Richard Neapolitan’s case of finesteride (Neapoli-
tan, 2003). Finesteride reduces testosterone levels; lowered testosterone levels can lead to
erectile dysfunction. However, finesteride fails to reduce testosterone levels sufficiently for
the follow-on erectile dysfunction to occur.? Good’s calculus of causal strength cannot rep-
resent these facts: as soon as the individual (); in a chain all are given positive values,
the end-to-end @, by formula (4), also must take a positive value. Salmon (1980) also
pointed out technical difficulties in Good’s calculus which allow distinct causal chains with
distinct end-to-end dependencies to be accorded the same end-to-end () values, evidently
misrepresenting the causal story.

LGood includes the context in his formula, which we leave implicit here.

2This was reported in at least one study. Whether or not true generally, the point is that it could be
true. Incidently, this case does not appear in Neapolitan (2004) because the publisher thought the example
too challenging for its delicate readership!



3.2 Cheng’s Power PC Theory

The starting point for the probabilistic theory of casuality is that a positive probabilistic
dependency is a necessary condition of causality: no causation without probabilification.
This can be represented by finding what Cheng calls a positive (or negative, given the
opposite sign) probabilistic contrast: AP, = P(e|c) — P(e|—¢) > 0 — which Suppes (1970)
called prima facie causation. In this case c is only a prima facie cause, since a common
ancestor may be responsible for correlating two effects; so Suppes’ theory went on to lay
down conditions ruling such cases out. The later research program in probabilistic causality
is largely concerned with further refinement of such conditions, which in the end have
been subsumed by technical developments in the Bayesian network theory for representing
conditional independence (cf. Twardy and Korb, 2004).

Cheng’s causal power theory also attempts to overcome the limitations of prima facie
causation, which she calls candidate generative (or preventive) causation.

Figure 1: The structural restrictions implied by Cheng’s power PC.

3.2.1 Generative causes.

Cheng’s causal power theory begins with some very stringent requirements for causal struc-
ture. The covariation between the effect e and candidate cause ¢ must be independent from
any covariation of e and all other causes (gathered together as a, in Figure 1). Further,
the occurence of ¢ must itself be independent of a. This implies either the limited causal
structure represented by Figure 1 or else that all the causes of a are fixed.

Cheng defines the causal power of ¢ for e as the probability that ¢ produces (or generates)
e. The causal power of c is labelled p., leaving e implicit. Under Cheng’s assumptions, e
can only be caused by either a or ¢, so P(e) can be written as:

(5) P(e) = P(¢)p. + P(a)p, — P(c)P(a)pepa
Conditioning on ¢ and —c¢,

(6) P(e|c) = p. + P(alc)pa — pcP(alc)pa (as P(clc) =1)
(7) P(e|—c) = P(a|—¢)p, (as P(c|—e) = 0)

This allows her to redefine AP using p, and p,:

(8) AP, = P(e|lc) — P(e|—c)
(9) = pe + P(ale)ps — pcP(alc)pa — P(al=c)pa
(10) = [1 = P(alc)palpe + [P(alc) — P(a|=¢)]pa

Finally, this can be solved for p,:

AP. = [P(alc) = P(a|=c)]pa

(b Pe = T~ (o),




This equation requires p,, so we use the above assumptions to eliminate it, as follows.
Assuming a occurs independently from ¢ means that P(a|c) = P(a|-c) = P(a), and so
the p, term in the numerator of (11) disappears. This, together with the assumption that
a’s effect on e is independent from ¢, lets us use P(e|—c) to estimate P(a|c)p, = P(a)p,.
This is because in the cases where ¢ is not present, a is the only generative cause of e by
definition.

Thus, under the above assumptions we have:

AP,

(12) bec = m

Cheng claims that this is a significant improvement on previous theories, such as that of
Rescorla and Wagner (1972) because, among other reasons, it provides the correct answer
for when e always occurs. If e always occurs, then the value for p. is undefined, rather than
the zero Rascorla and Wagner suggest. Leaving p. unspecified is deemed correct because
we should be unable to assess the causes of a universal event.

3.2.2 Preventive causes.

Cheng stipulates the same structural restrictions for preventive causes as she does for
generative ones. Her definitions are the same as for generative causes, except now p. is
preventive, thus p, is the only generative cause; to distinguish prevention notationally, we
will write such powers as p.,.

Cheng takes the occurrence of e to be the combination of e produced by a with e not
being stopped by c, and therefore:

(13) P(e) = P(a)pa(1 — P(c)pc)

This means that e being produced by a occurs independently from e being prevented by
¢, which is a rather strange idea, as noted by Hiddleston (2005), and discussed further in
Section 3.4.

As with generative causes, this is used to find P(e|c), P(e|—¢) and AP,:

(14) P(elc) = P(alc)pa(1 — p)
(15) P(e[~c) = P(al=c)p,
(16) AP, = P(alc)p, — P(alc)pepe — P(a|—c)pa

(16) is solved for p, to obtain:

 [P(ale) — P(a]-c)lp. — AP.
i) Pe = Plalop,

Cheng then uses the same assumptions as for generative causes to get:

(18) P P

Analogously to positive causation, this leaves the preventive power of a for a never-
occurring e undefined.



3.2.3 Problems with Cheng’s theory.

The main difficulty for Cheng’s theory is that it is extremely limited in scope. In addition
to being defined only over binomial variables, it has severe limitations in scope, due to both
the structural restrictions and the restrictions on interactions between variables. These are
necessary to make her derivations work, but constrict the theory to a very limited range
of cases.

Novick and Cheng (2004) extend the model to deal with a limited form of interaction
between causes. Briefly, the causal power of an interaction between causes ¢; and co is
calculated by finding the difference between the actual probability P(e|ci,ce) and the
counterfactual probability P’(e|c;, o) which assumes there is no interaction between ¢; and
co. This extension does not relax the structural requirements of the original formulation,
so we do not deal with it further here.

3.3 Glymour’s Extension to Cheng Models

As noted in Section 3.2.3, Cheng’s (1997) power PC models require that candidate causes
occur independently of each other. Glymour (2001) extends Cheng’s models to a limited set
of Bayesian models. His extension assumes non-interacting causes, so the work of Novick
and Cheng (2004) does not apply.

Glymour has derived a set of structural rules that are more general than Cheng’s, under
which the power PC theory holds. We paraphrase them here:

1. If an effect e has a single generating cause a and an independent unobserved preventer
u, then the causal power of a cannot be estimated.

2. If e has any number of observed generating and preventing causes, and an independent
unobserved preventing cause, then the ratios of any two generating causes can be
estimated.

3. If e has at least one observed generating cause and an independent unobserved pre-
venting cause, observed preventing causes can be estimated.

4. If e has an independent generating cause, then the causal power of an observed cause
(whether generating or preventing) can be estimated.

5. If e has an unobserved generating cause u, a generating cause ¢ may be estimated if
(1) u does not cause a and (2) another observed cause b of e is not directly caused
by u as well as either caused by a or connected via an unobserved common cause to
a.

The first rule shows a particular case where the causal power cannot be determined,
while the rest detail cases where it can be found. The second through fourth rules describe
situations where the unobserved cause is independent from the other causes. The last rule
describes a complicated case where the unobserved cause is confounding other observed
causes. For the particular confounding case presented, causal power can be estimated.

Glymour has extended Cheng models in two ways. First, he notes that her equations
are easily adapted to Bayesian Networks, albeit ones with constrained probability relations
(that is, causes must not interact). He also detailed a set of rules for when the causal power
can be assessed when an unobserved cause is present.
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Figure 2: How Cheng’s preventive powers work.

3.4 Hiddleston’s Causal Powers

Hiddleston’s (2005) analysis of causal powers is heavily influenced by Cheng’s and Gly-
mour’s accounts. However, he disagrees with Cheng’s formulation of preventive causes.
Recall Cheng’s formula (13) for how e occurs when c is a preventive:

(19) P(e) = P(a)pa(1 — P(c)pc)

This means that e occurs only when a causes it and, independently, ¢ fails to prevent it.
But Hiddleston argues that preventers work by preventing particular causes, and so he
suggests replacing Cheng’s formula with:

(20) P(e) = P(a)pa(1 — P(cla)pe,a)

where p,, is ¢’s probability of preventing a’s effect on e.

This difference between Cheng’s and Hiddleston’s accounts can be thought of as a
difference between two kinds of barrier against generative powers. Cheng’s is a uniform
barrier against all possible generative causes (as in Figure 2), while Hiddleston’s only
shields against a specific cause.

4 Wright’s Method of Path Coefficients

Wright (1934) was the first to use diagrams for representing causal relationships between
random variables, although limiting them to linear causal relationships. Wright began with
a formula relating deviations from the mean and correlation:

(21) (%_‘70):COI(‘/I_‘71)+602(‘/2_‘72)+---+60n(vn_‘7n)

Where Vj, ..., V, are variables, V; is the mean of V;, and cg1, ..., co, are the correlation
coefficients between V; and the other variables. If we set X; = (V;—V;)/0o;, the standardized
deviation of V;, then the path coefficient is Py; = co;(0;/00), which measures the (normal-
ized) proportion of the deviation of Vj contributed by V;. The above equation can then be
rewritten as:

(22) X0:P01X1+P02X2+...+P0an

Wright’s path diagrams contain directed arcs between variables, representing direct
causal relationships, and undirected (or bi-directed) arcs, representing correlations not
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further analysed. The correlation between any two variables is the sum of the correlations
attributable to each path between them, with two sorts of paths being inadmissable. If two
variables directly affect another variable, then no correlation between the parents can be
ascertained from this connection (you cannot trace forward and then backwards through
the diagram). Similarly, only one undirected (residual) correlation can be included in a
path.

The correlation ro, between variables X, and X, can be calculated recursively:

(23) Tog = Z Poﬂ“gi
i

Note that if X, and X, are directly connected (i.e., one is a descendant of the other), then
X, must be the descendant.

Wright does not discuss causal power as such, but a causal power metric is easily
developed for his theory. We start, as does Wright, with all arcs oriented in the causal
direction, and replace Wright’s restrictions with a stronger one: paths containing either
common causes or common effects are inadmissable (so you cannot trace forward then
backwards or backwards then forward). This can be implemented by simply cutting the
arcs between the cause and its parents, as in current interventionist accounts of causality,
which model causal interventions by cutting the arcs between the intervened-upon variable
and its parents (e.g., Pearl, 2000a). The correlation that remains, as given by Wright’s
equation, measures the causal power of the cause under test and the effect, across all
directed paths from the former to the latter.

Unfortunately, undirected paths are a problem. In our account here, the causal power
associated with these paths is undefined. And if we cannot assess the causal power of a
single path, then the total causal power cannot be assessed. Our solution is simply to
disallow undirected paths in causal path models. This is not merely because our account
cannot accommodate them: directed paths are metaphysically fundamental; correlations
associated with undirected paths are just those whose underlying causal story has yet to
be told, whether by orienting arcs or by the discovery of latent variables.

Wright’s method of path coefficients is simple and elegant, and can be readily extended
to incorporate a theory of causal power. The only disadvantage is its limitation to linear
relations.

In any case, this theory provides a litmus test for more general theories. If a general
theory, in its restriction to path models, does not provide the same answers as Wright’s
method, then we shall hold it to be in error.

5 Causal Information and Causal Power

We now develop a theory of causal power which blends information theory and causal
intervention theory (Pearl, 2000b; Korb et al., 2004).

The basic case, which the theories of causal power described above treat, is the power
of some specific event to cause some other specific event; it thus concerns particular values
of the cause and effect variables. Information theory, however, relates pairs of variables to
each other, across the full range of values they may take, rather than for any particular
pair of values of those variables. Therefore, we shall first introduce an information-theoretic
metric that relates variables, which we call causal information and then particularize the
metric to relate values of variables, rendering the concept relevant to the kinds of cases
discussed above, and which we call causal power.



5.1 Causal Information

Definition 1 The causal information (CI) between a cause C and an effect E in the
causal model g 1s

(24) CI(C,E)=Fk Y p(e|c)logM

ceCeclE p(e)

with some parameter k € RY. This is to be measured between the two variables in the
auziliary model g*, where g* is the same as g, except the arcs between C' and its parents
have been cut (removed).

This is closely related to mutual information, which has the definition for the discrete
case (Cover and Thomas, 1991):

(25) MIX,Y)= Y p(x,y)logp;x|y)

ze€X,yey (x)

When parameter k is set to 1/|C|, causal information is equal to mutual information
(in the auxiliary model) when p(C) is uniform. This setting is convenient and we use it
throughout this paper.?

We can specialize the definition of causal information along either, or both, of two
dimensions, namely relative to a particular causal event or relative to a particular effect
event.

Definition 2 The causal information (CI) between a cause C = ¢ and an effect E in
the causal model g is

(26) CI(C=cE)=k Zp(€|c) log p}E?S)

with some parameter k € R*, as measured in the auziliary model g*.

This causal information describes the power of a particular value ¢ of C to influence
the effect variable F in general. We may equally well be interested in the influence of C' in
general upon a particular state of E.

Definition 3 The causal information (CI) between a cause C and an effect E = e in
the causal model g is

(27) CI(C,E=¢) =k plele) log p(elc)

ceC p(e)

with some parameter k € R*, as measured in the auziliary model g*.

3Tf k is set instead to the actual prior probability p(c), then this becomes causal information for inter-
ventions, as we discuss below.
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Figure 3: The poison example. Mutual information changes greatly depending on the prob-
ability of Victim Poisoned, whereas causal information is invariant.
5.2 Causal Power

Finally, we may be interested in the very specific question of how C' = cis related to £ = e.
This is the most typical question raised, in fact, in circumstances of causal explanation:
when two particular events have occurred, how much “responsibility” for the effect’s value
can we attribute to the cause’s value? We use the designation “causal power” for these
cases, using “causal information” as the more general term.

Definition 4 The causal power (CP) between a cause C = ¢ and an effect E = e in the
causal model g is

C,e) = e|c) 10 p(€|C)
(28) CP(c,e) = kp(e|c) log (@)

with some parameter k € R*, as measured in the auziliary model g*.

This account of causal power has the advantage of providing a unified treatment of both
generating and preventive causes. The same formula applies in either case, with C' P going
negative when the particular causal state prevents the effect.

5.3 Causal Power and Mutual Information

One might wonder why we do not just use mutual information as our measure of causal
relationship. Although mutual information is symmetric, its use for causal information can-
not be, since the measurements of Definition 1 are required to occur in the (asymmetric)
auxiliary model, rather than in the original model. But another difficulty is that mutual
information depends upon the prior probability of the cause. Causal power (and informa-
tion) is surely relative to background contexts: for example, the relevance of an antidote to
health is very low generally, but high when a particular toxin is present. Thus, we expect
the probability distributions to be used in applying any metric shall be relativized to some
set of background observations. However, it is not so sensible to relativize a causal power
metric to a set of conditions yielding a specific probability distribution over the cause itself.
If a highly effective poison is applied to a victim, that will be a powerful explanation of
the victim’s subsequent death, particularly if no other explanations are plausible in the
circumstances. But then the powerful explanation will not at all be undermined should
closer scrutiny reveal that the circumstances were highly likely to lead to just this kind
of poisoning! In general, causal power should not depend upon the chance of the cause
occurring, but rather upon its role in bringing about the effect should it occur.

In the example of Figure 3 poison has a 0.9 probability of causing death — i.e.,
P(death|poison) = 0.9. Its causal information is 0.758, whereas the mutual information
varies from zero to half this causal information, depending upon the probability of the
cause.
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5.4 The Causal Power of Interventions

Despite these remarks, there is some role for the assessment of causal power relative to the
probability of the cause itself, measured by Equation (28) with & = p(c). We can call this
particular C'P the causal power of an intervention on C. For example, if a public health
official is considering the merit of administering a vaccine to a group of people, rendering
them immune to a threatened disease, it will be important to take into account not just the
efficacy of the vaccine to induce immunity (as well as side-effects, etc.), but also the prior
probability of individuals already being immune (having already received the vaccine). This
is so precisely because in such a case it is not the isolated efficacy of the cause which is at
issue, but the efficacy of the intervention upon the cause.

5.5 Information-theoretic Interpretations

As we have already noted, causal information can be viewed as a special kind of mutual
information. It can also be interpreted in terms of Kullback-Leibler (K L) divergence (or
cross-entropy). KL divergence takes the form

(29) KL(p(X),¢(X) = 3" (@) log%

where p is taken to be the true distribution and ¢ an approximation to p. KL is a measure
of the expected information cost of using distribution ¢ to describe p. Mutual information
can be understood as the information cost of assuming the two variables X and Y are
independent when they may not be; that is, it is equal to the KL divergence from p(X,Y)
to p(X)p(Y).

The KL divergence interpretation of causal information, then, is just that the causal
information of ¢ for E is the KL divergence from p(E|c) to P(E).

Theorem 1 The causal information of c € C' for E is:

(30) CIC = B) =k (el log 'S = KLG(EIe) n(E)

with the last equality holding if we set k = 1.

This theorem follows immediately from Definition 2 and (29).

This account of causal power has the immediate advantage of being defined in general,
applying to any probabilistic system for which we can find the underlying causal structure.*
(The causal structure is necessary in order to identify which arcs are to be cut under inter-
vention, of course.) Thus, it applies to linear models, Cheng models and their extensions,
and additionally to discrete variable models representing interactive causes — applying to
the full range of (causal) Bayesian networks, unlike any of its predecessors. In order to
assess this account against its predecessors, however, we need to look at how it applies to
the simpler cases of linear and Cheng models, which we now do.

4This includes being defined over continuous probability spaces, where probabilities, mutual informa-
tion, entropy, etc. are redefined in terms of integrals, rather than sums. The definition of causal information
is analogously redefined in such cases.
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6 Applications
6.1 Path Models

To test the application of causal information to linear models we consider it in connec-
tion with Wright’s theory of path models, which are a general method of treating linear
Gaussian (normal) models and which apply the unit normal N (0, 1) to all residual terms
by standardizing all variables. The particular requirement is that causal information make
sense of correlation, as calculated by the method of Wright (1934), which we do by treating
causal information in the form of mutual information.®

To find the mutual information between two correlated normals, it is easiest to start
with the identity MI(X,Y) = H(X)+ H(Y)— H(X,Y), where H is the entropy. The unit
normal distribution N (0, 1) has the density:

(31) flz) = e

The entropy for a continuous variable is:
(32) HX) == [ f@)log f(@)ds

Therefore the entropy for N(0,1) is:

(33) HNO,)) = - [ f() log[\/%_ﬂe_g?]dx

(34) :—/_oo f(x)[—log\/ﬂ—x;]dx

1 * 1 [

(35) =3 log 27r/ f(x)dx + 5/ f(x)a’da
1 1

(36) =35 log 27 + 3
1

(37) =3 log 27e

since [* f(z)dz =1 and [ f(z)2z?dz = E(2?) =0 = 1.
The joint entropy for two continuous variables is:

(38) H(X,Y) = - / N / " Flayy) log £ (z, y)dyda

Two normal distributions have the following joint density, where p, = p, = 0 and
o, = 0, =1 (as is assumed in path models), with r being the correlation.

1 7m2+ 2 _org
(39) flw,y) = —m=se 20

2mv/1 — 1?2

SWright details a recursive method of calculating total correlation from causal (directed) paths.
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(42)

Figure 4: Mutual information is an increasing function of correlation.
From (38) the joint entropy for X and Y is:

$2+]£2 —2rzy

(40)H(X,Y) = —/ / f(z,y) log[%\/%e_ 2(1-r%) }dydx
=log2mV1 —r? /OO /00 f(z,y)dzdy

/ / s _2)myf(x,y)dxdy

:logQﬁm+m[/ f()dx+/_yf()

—27‘/ / xyfxydxdy}

14+1—2r2
4 =log2nvV1l—r24 ——
(43) og2nV1 —r?+ 20 =17
(44) = log 2meV'1 — 12

Since E(X?) = E(Y?) =0, =0, =1, and E(XY) = r by definition.
Now that we have the values of H(X,Y'), H(X) and H(Y'), we can calculate MI(X,Y):

(45) MIX,)Y)=H(X)+H(Y)-H(X,Y)
(46) = % log 2me + % log 2me — log 2meV/1 — r2
(47) = —logV1—r2
The relationship between mutual information and correlation is shown in Figure 4.
This relationship is pleasingly simple and in line with our intuitions, mutual information

is a monotonically increasing function of correlation magnitude. As we should expect and
demand for linear models, the causal information is transitive, since correlation is transitive.

6.2 Causal Networks
6.2.1 Bayesian networks.

Mutual information has already been used with Bayesian networks (BNs) in a number
of ways, for example, in performing sensitivity analysis. BNs were originally designed to
be concise representations of a joint probability distribution over a number of random
variables. A Bayesian network represents the existence of a direct statistical dependency
between each pair of random variables by a directed arc (or arrow). The resultant graph
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then defines a factorization of the joint distribution using conditional probability tables
given for each variable in terms of its parents.

Under this interpretation of BNs, causality plays no part. Since our concerns are causal,
we add the constraint that arcs are oriented causally: they go from switch to light bulb,
and never the other way around. The resultant networks are then properly called causal
networks. These networks are generally discrete in practice, because the most popular
algorithms for probability updating need them to be so. Even given these constraints,
causal networks are quite general constructs; they can represent any discrete probability
distribution or function. So for instance, they subsume the models of Sections 3.2-3.4. Given
the right relationship between the variables (i.e., the right conditional probability table),
any of those models can be emulated by a causal network.

6.2.2 Applying causal information to Cheng models.

We described in sections 4 and 5 roughly how to calculate causal information. More pre-
cisely, the steps are:

1. Obtain the causal model for the domain.®

2. Select an observational context within which the causal question is to be asked and
answered. E.g., the context in the antidote case may specify whether or not poison
is present. What variables cannot be allowed into the context are either descendants
of the effect variable (which improperly give evidence about that effect) or variables
lying on a directed path between the cause and the effect (unless specifically the
causal power restricted to the remaining paths is what is of interest).

3. Cut all arcs into the cause.
4. Compute the causal information.

Disregarding prevention pro tem, Cheng models are the pychological equivalent of the
noisy-or relationship between binary variables. It is easiest to calculate noisy-or using the
probabilities of the effect being inhibited, that is, probabilities of the form ¢ = 1 — p, where
p is the probability of the effect given some cause. If pa(e) are the parents of e and par(e)
the subset of parents which are true, then,

(48) plelpa(e) =1— [ @

i€par(e)

where g; are the probabilities that the individual causes fail to bring about the effect (i.e.,
the probability that the 7-th “inhibitor” is active). The probability of e being false is the
probability that all the inhibitors of the occurrent causes activate. Since the inhibitors are
assumed to be independent, this is the product of their individual probabilities, so the
probability of e is just one minus this quantity.”

Prevention can also be modelled by a sort of noisy-and relationship, although this is
not as nice a fit as noisy-or for generation. We use Hiddleston’s prevention (see Section 3.4)

6Questions about how to perform this complicated step are outside the scope of this paper; see, e.g.,
Verma and Pearl (1990); Spirtes et al. (2000); Neapolitan (2004); Korb and Nicholson (2004).

“Some specify a ‘leak’ probability in the node, which is the chance that the effect will occur due to
unspecified causes. We ignore leak probability here, noting that it can be obtained by specifying an extra
parent of e representing all other causes and forcing it to be true.
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Figure 5: The sharpshooter example: Trainee fires is actually preventive in the case where
sharpshooter aims, because it prevents the highly accurate sharpshooter from firing. (The
eyes indicate observed variable states.)
because preventers targeting individual causes work better here. His theory is also more
general, because it can represent Cheng’s prevention by gathering individual causes to-
gether (through an or-gate) before applying prevention.

Recall equation (20):

P(e) = P(a)pa(1 — P(i|a)pe.q)

where p., is ¢’s probability of preventing a’s effect on e.
We shall now compare Cheng’s theory of causal power and our own in some examples.

6.2.3 Example: Sharpshooter.

Hiddleston’s sharpshooter case contains a preventive cause as well as generative causes.
The idea is that a sharpshooter is supervising a trainee assassin, having the job of shooting
the victim if the trainee loses her nerve and fails to shoot. The sharpshooter either does
or doesn’t aim at the victim in advance and has a better chance of hitting the victim
if he does, should he fire. If the trainee shoots at the victim, she has a good chance of
preventing the sharpshooter from firing. What might be surprising, the trainee’s taking a
shot is overall good for the victim’s health, i.e. the victim is more likely to die if the trainee
does not shoot and so (very likely) the sharpshooter does. This ensues when the trainee is
significantly more inaccurate than the sharpshooter.

Figure 5 shows the scenario where the trainee fires and the sharpshooter aims.® In this
case, the AP of the trainee firing for the victim’s death is 0.336 — 0.9 = —0.564, so the

preventive power p,,, taking sharpshooter aims as the generative cause, is

- 0.564
(49) Pea="1g = 0.627 (the sharpshooter aims)
0.09
(50) Pea = gog = 0.091 (the sharpshooter does not aim)

Note that the former employs (18), being a prevention case, while the latter employs (12).

8Note that the conditional probability tables are not shown in the figure, but only the event probabilities
under the circumstances given.
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The causal information results are:

0.336 0.336
(51) CP(c,e) = 5 log 0618 —0.148 (the sharpshooter aims)
0.09  0.09
(52) CP(c,e) = 5 log 00408 = 0.0388 (the sharpshooter does not aim.)

Both accounts agree on the most basic feature of the example: the trainee firing prevents
death when the sharpshooter is aiming and otherwise causes death. The ratio between the
two powers for Cheng is 6.89, while for our causal power it is —3.81. So both confirm that
the trainee’s effect on the victim is larger when the sharpshooter aims.

= — [7] Testosterone : — E—
[ Finesteride 33 Dysfunction i I

: High 0.1 : - P

trlue' 0! Medium Poge trlue —

alse i i a1 §§ alse i :
| Testosterone :

[*] Finesteride 3 8 : Dysfunction I

0 - High 0.4 = 075 i
true : : true : 2
; ; Medium o5 B I - :
alse E—— - - : alse . :

Figure 6: The finesteride example. Treatment with finesteride lowers testosterone levels.
Low testosterone causes erectile dysfunction. However, finesteride does not lower testos-
terone sufficiently to affect erectile function.

6.2.4 Example: Finesteride and the threshold effect.

Now we present an example where noisy-or models (or any transitive theory) will not work,
yet causal information provides an answer in line with intuitions.

In Section 3.1, we described a case with two causal processes: lowered testosterone levels
leading to erectile dysfunction, and finesteride reducing testosterone levels. Transitivity
thus dictates that prescribing finesteride will increase the chances of erectile dysfunction.
However, in this case, it is just not so. No amount of finesteride can reduce testosterone to
the degree needed to influence erectile dysfunction.

Figure 6 shows the scenario. The causal information values are:

e CI(f,T)=0.157
e CI(T,d) = 0.304
e CP(f,d)=0.0

Since any change to the distribution over F' has no effect on the distribution over D,
finesteride is correctly reported has having no causal power to bring about D = d (or any
other value for D).

The above examples show some of the uses for causal information in Bayesian networks.
Causal information subsumes models such as Cheng’s, providing similar results when both
are applicable. However, causal information is applicable to a much broader range of prob-
lems, since it does not require transitivity or limiting independence assumptions.
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Figure 7: Two links in a noisy-or chain.

6.3 Parallel and Chained Noisy-or Networks

Now we will develop some interesting properties of noisy-or networks in particular. In our
treatment we disregard root causes other than the one being analysed. We also simplify
by assuming that only the causes under consideration are true parents (e.g., d is the only
true parent of e in Figure 7). Our results readily generalize to other cases.

Theorem 2 The total causal power of a noisy-or chain is the product of the powers of the
individual links.

Proof. We show that the power of a chain of two links (see Figure 7) is the product of their

individual powers; it then follows that a chain can be analysed recursively.
The joint probability distribution for the network in Figure 7 is:

(53) p(E,D,C) = p(E|D)p(D|C)p(C)

Therefore, assuming p(c) # 0,

(54) p(e, D|c) = p(e|D)p(D|c)
(55) p(ele) = p(e|d)p(d|c) + p(e[—~d)p(—d|c)

Substituting the noisy-or formula (48) gives:

(56) p(e|c) = PdePed + 0

as required. O

We now show that parallel non-interactive paths are additive by using the inclusion-
exclusion principle (Comtet, 1974). We refer to this special addition as ‘I F-additive’ and
denote it by the operator @. For two paths with powers p and ¢, p@q is defined as p+q—pq.
The general definition is:

Definition 5

Dipi = Z (‘Deven('mnpi

Ie{l,...,n}2 el

where [ is a subset of the power set of indices of the p;, |I]| is its cardinality and even(-) is
1 if its argument is an even number and zero otherwise.

Theorem 3 The causal power of a set of parallel noisy-or chains is I E-additive. That is,
if ¢ is connected to e by n distinct paths, then the total power is p1 S po ® ... D py.

Proof. We show that the powers of two parallel paths p; and p, are IE-additive; it imme-

diately follows that this generalizes to n paths.
Assume then that C' and F are related as in Figure 8.
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Figure 8: Two parallel paths: ¢ is connected to e by both a and b.
Then,

(57)
p(E, A7 B> C) = p(E|A, V)p(A, B|C)p(0)

Assuming p(c) # 0,

(58)  p(e|c) = plela, b)p(a, blc) + p(ela, b)p(a, blc) + p(e[a, b)p(@, blc) + p(e[a, b)p(a, blc)

Substituting the noisy-or formula gives:

(59) p(e|c) = [1 - (1 - pae)(l - pbe)]pcapcb +paepca(1 - pcb) +pbe(1 - pca)pcb
(60) = PaePca T PbePch — PcaPchPaePbe
(61) = PcaPae D DcbPbe

as required.
A or B may here represent a collection of chains, rather than individual chains, so it is
obvious that IE-additivity generlizes to any number of chains relating C' and E. O

7 Conclusion

We submit causal information as a significant improvement upon prior metrics of causal
power. As it is based upon the information-theoretic properties of Bayesian networks, it is
automatically as general as Bayesian networks, subsuming prior accounts which were based
upon linear and noisy-or networks. In consequence, causal information can cope with non-
transitive and interactive causes. Furthermore, our metrics directly apply to both individual
variables and to sets of variables, and they allow for examination of causal powers under
any context, by setting the corresponding network nodes as observed.

We have shown the relation between causal information and other information-theoretic
concepts, namely mutual information and Kullback-Leibler divergence. And we have illus-
trated how causal information handles the cases which prior theories can cope with, as
well as, in principle, any causal power analysis that might be required of the entire range
of causal Bayesian networks. The most likely immediate application of our causal power
metric is to enhance Bayesian network user interfaces to allow users to interrogate a net-
work, hypothetically or retroactively, about what causal events have most influenced one
or another outcome. Mutual information simpliciter cannot answer such questions, but
can only inform what events are most closely related by a network probabilitically. Causal
information will allow users to identify which events are most causally important for which
others, and also, employing the idea of §5.4, to identify which interventions will be most
effective for some desired outcome.
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