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Abstract. We generalize an information-based reward function, introduced by Good (1952), for
use with machine learners of classification functions. We discuss the advantages of our function
over predictive accuracy and the metric of Kononenko and Bratko (1991). We examine the use
of information reward to evaluate popular machine learning algorithms (e.g., C5.0, Naive Bayes,
CaMML) using UCI archive datasets, finding that the assessment implied by predictive accuracy
is often reversed when using information reward.
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1 Introduction

Predictive accuracy as an evaluation metric for machine learners has a number of notable weaknesses:
it fails to differentiate between the value of correct classification and incorrect classification, a problem
addressed by cost-sensitive classification (cf. Turney (1995)); it also fails to take into account the
uncertainty of predictions, treating a fully certain binary prediction as the same as one with probability
0.51. Given these substantial drawbacks, it is somewhat surprising how many researchers use predictive
accuracy (or its converse, error rate) as their one and only metric. Perhaps it is the extreme simplicity
of its application which maintains its widespread use: computing accuracy requires only a simple yes/no
answer to the question, does this instance belong to this class?

We believe a cost-sensitive assessment, namely which machine learner maximizes expected reward,
is clearly the best one for evaluating learning algorithms. Unfortunately, finding an appropriate cost
function may be difficult or impossible. No expert may be available to provide a suitable cost function;
or the algorithms being assessed may be applied across an open-ended variety of domains. An evaluation
method independent of cost function which has become popular recently uses ROC curves, as in Provost
and Fawcett (1997). ROC curves, however, again ignore the probabilistic aspect of prediction, as does
predictive accuracy simpliciter. Here we examine a metric which specifically attends to the estimated
probability of a classification, but is also independent of cost, and so easier to apply than cost-sensitive
metrics; in particular, we examine the Information Reward (I R) measure, its properties, requirements,
and generalization. We also present some empirical results which show the surprising dominance of
Naive Bayes when compared with other well known machine learning algorithms such as C5.0 (Quinlan,
1998).

We take the right model for computing reward in uncertain predictions to be that of gambling:
a bettor is rewarded not just for identifying the ultimate winners and losers, but more importantly
for identifying the appropriate odds — namely, those odds which give neither side to a bet an ad-
vantage over the other, that is fair odds. An agent, artificial or natural, which can consistently beat
its opposition in making bets about outcomes in a domain, or across a range of domains, is clearly a
superior predictor to is opposition. Predictive accuracy can never hope to assess this ability, since it
is constrained to ignore probabilities and therefore odds. IR measures exactly this ability. IR reports
an information-theoretic function of class predictions in comparison with their prior probabilities, re-
warding domain understanding as reflected in the correctness of modal predictions, but also rewarding
the calibration of predictions, penalizing over- and under-confidence while rewarding matches between
probabilitistic predictions and the frequency with which those predictions are realized. I R is equivalent
to the gambling reward over a series of fair bets (see Korb et al. (2001)).
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2.1 Original Information Reward

The original definition of IR was introduced by Good (1952) as fair betting fees, that is, the cost of
buying a bet which makes the expected value of the purchase zero. Good’s IR positively rewarded
binary classifications which were informative relative to an uninformed, uniform prior. The score of a
single classification is generated in terms of the generating machine learner’s estimated probability p.
IR is split into two cases: that where the classification is correct, indicated by a superscripted ‘+’, and

where the classification is incorrect, indicated by a superscripted ‘—’.

Definition 1. The IR of a binary classification with probability p is

I =1+logy,p (for correct classification) (1a)
I =1+1logy,(1—p) (for misclassification) (1b)
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Fig. 1. Good’s Information Reward

IR has the range (—o0,1) (see Figure 1). For successful classification, it increases monotonically
with p, and thus is maximized as p approaches 1. For misclassification, IR decreases monotonically
from the value 0 when p = 0.5.

While the constant 1 in (1a) and (1b) is unnecessary for simply ranking machine learners, it makes
sense in terms of fair fees. When the learner reports a probability of 0.5, it is not communicating any
information (given a uniform prior), and thus receives a zero reward. Ignoring the constant 1, IR
has a clear information-theoretic basis: it reports (the negation of) the number of bits required in a
message reporting an outcome of the indicated probability. Thus, a certain message requires no bits at
all, whereas a certainly false message can never be communicated successfully, requiring an infinitely
long message.

Kononenko and Bratko (1991), when introducing a related metric (more about which below), have
expressed the intuition that when such a reward is applied to a correct prediction with probability
1 and an incorrect prediction also with probability 1, the correct and incorrect predictions ought
precisely to counterbalance, resulting in a total reward of 0. This intuition, however, is at variance with
the supposed information-theoretic basis for their reward: on any account in accord with Shannon’s
information measure, a reward for a certain prediction coming true can only be finite, while a penalty
for such a certain prediction coming false must always be infinite. Putting these into balance guarantees
there will be no proper information-theoretic interpretation of a reward function.
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Our search for a definition of TR that generalizes Good’s began with an attempt to apply Good’s
measure to multiclass datasets (Korb et al., 2001). Good’s measure ‘hardcodes’ a zero score to one
where the confidence p is 0.5. So, for example, if a machine learner correctly identifies class A in a
3-class problem with confidence of 0.4, the machine learner will receive a negative score. Following
Good’s treatment of binary variables, it seems that correct classification with probability greater than
% should be given a positive score. So one possible generalization simply replaces the relativization to
a uniform prior over two cases with a uniform prior over n cases. But what if prior information about
class A in the 3-class problem indicates that without any further information, its probability is 0.87?
Should the machine learner be rewarded for its correct prediction at 0.4, or should it be penalized?
We believe it should be penalized for underconfidence, and hence introduce a Bayesian prior p’ to the
IR calculation.

The idea behind fair fees, that you should only be paid for an informative prediction, is simply not
adequately addressed by Definition 1. Suppose an expert has diagnosed patients with a disease that is
carried by 10% of some population. This particular expert is lazy and simply reports that each patient
does not have the disease, with 0.9 confidence. The expected reward per patient for this strategy, under
Definition 1 is

0.9(1 +log, 0.9) + 0.1(1 + log, 0.1) = 0.531

So the expert is rewarded substantially for the uninformed strategy! The expected reward per patient
we should like to see is 0, which our generalization below provides. Definition 1 breaks down in its
application to multinomial classification: any successful prediction with confidence less than 0.5 is
penalized, even when the confidence is greater than the prior. Good’s fair fees are actually fair only
when both the prior is uniform and the task binary.

Hence, we now define the IR of a single classification in terms of the estimated probability p
and the class’s prior probability p’. Henceforth, Definition 1 will be referred to as I Rg; Definition 2,
immediately below, replacing it pro tem. IR is again split into two cases: that where the classification
is correct, and that where the classification is incorrect.

Definition 2. The Bayesian IR of a single classification with estimated probability p and prior prob-
ability p', is

1

) ) 5
logp/ (for correct classification) (2a)

~__ log(1-p) : S
I = Tog (1= /) (for misclassification) (2b)

This IR also has the range (—o0,1). For successful classification, it increases monotonically with p,
and thus is maximized as p approaches 1, and approaches negative infinity as p approaches 0. IR is 0
precisely when p = p'. So, increased certainty (p > p') is rewarded, while decreased certainty (p < p')
is punished. For misclassification, IR decreases monotonically as p increases, taking the value 0 when
p = p'. Thus, misplaced increased certainty (p > p’) is punished, while a decreased certainty (p < p')
when misclassifying is rewarded.

The prior probability p’ can be obtained any number of ways, including being set arbitrarily (or
subjectively). We use frequency from the training set given to the machine learner to calculate the prior,
for two reasons. First, we are obtaining the prior from a source that the machine learner has full access
to, and thus there is no ‘unfair’ bias in the measure. Second, this means that the simplest algorithm,
one which translates observed prior frequencies into posterior probabilities of future occurrence, will
receive a score of zero, acting as a baseline for assessing more intelligent algorithms.

Our Definition 2 subsumes Definition 1: given a uniform prior and binary classification, I Rz and
IR are identical.

There are, however, some difficulties with Definition 2 since it assesses the machine learner’s prob-
ability distribution over classes only on the basis of the modal class, that is, that class which has the
greatest probability according to the learner. Since the posterior distribution is only being assessed
against a single class, its potential to inform us about the quality of its learning by examining other
classes is being wasted. This also has the effect of producing the “kink” reported for information reward
in Figure 2: since the true class in that figure is no longer the modal class below its prior probability
of 1/3, IR is computed relative to a different class; and the penalty for that modal class changes at a
different rate than the reward for the true class when it is modal. Even worse than these points is the



05 E

-05 -

reward
.
AN
T
1

-2+ -

-25 -

_3 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
probability

Fig. 2. Bayesian Information Reward. This is computed assuming three possible classes, with the z axis indi-
cating the posterior probability given to the true class, and assuming a prior of 1/3.

fact that should the learner incorrectly assign probability zero to some class, and thus be potentially
deserving of an infinitely negative reward (as we argued above), the learner will escape its due pun-
ishment, since that class will never be modal. These difficulties are all easily rectified by summing the
reward function over all the classes:

Definition 3. The Generalized Bayesian IR for a classification into classes {Ch,...,Ck} with esti-
mated probabilites p; and prior probabilities p, where i € {1,...,k}, is

_ Zz Ii
IR === (3)

where I; = I} below for correct classes and I, for incorrect classes:

log p; . .
IFf=1-
; Tog 7/ (for correct classification) (3a)
I =1- M (for misclassification) (3b)
log (1 - pj)

Generalized Bayesian information reward reflects the gambling metaphor more adequately than
does Definition 2. Book makers are required to take bets for and against whatever events are in their
books, with their earnings depending on the spread between bets for and against particular outcomes.
They are, in effect, being rated on the quality of the odds they generate for all outcomes simultaneously.
Generalized IR does the same for machine learning algorithms: the odds (probabilities) they offer on
all the possible classes are simultaneously assessed, extracting the maximum information from each
probabilistic classification.

We illustrate generalized Bayesian information reward in Figure 3, which also displays Kononenko
and Bratko’s measure (discussed immediately below). Some differences will be observed with Figure 2,
where generalized I R modifies the assessment of Definition 2 by incorporating non-modal class proba-
bilities. This is most noticeable when the low probability accorded the true class (in the range (0,1/3))
keeps it out of the assessment in Figure 2. This final version of Bayesian information reward again
subsumes the original one of Good: since for classification into two classes {Cop, C1}, where Cy is for
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Fig. 3. Generalized Bayesian information reward (BIR) together with Kononenko & Bratko’s information re-
ward (KBir). These are computed based upon three classes and a uniform prior distribution, with the probability
for the true class given on the x axis.

example correct, IRz = 1+ log, po, whereas (taking logs to base 2)

_ 2+1logy po +logy(1 —p1)

IR 5

=IRg

on the assumption of a uniform prior.

3 Kononenko and Bratko’s Measure

A related measure introduced by Kononenko and Bratko (1991) also relativizes reward to prior prob-
abilities. Furthermore, it too is nominally based upon information theory, although as we pointed out
above, that interpretation is undermined by the introduction of an inappropriate symmetry in the
reward for correct and incorrect classifications.

Another dubious aspect of Kononenko and Bratko’s analysis is their claim that costs can be com-
puted from prior probabilities. Thus, they assert that when P(Cy) > P(Cs), “if we denote the credit
for correct classification into class C' with V,(C), and the penalty for misclassification with V,,(C),
then the following should hold: V,(C1) < V.(C2) and V,,,(C1) > V;(C2)” (p. 70). Cost and probability
functions are, in fact, orthogonal: any combination of high and low cost with high and low probability
is possible. For example, the cost of misclassifying a disease might be very high (e.g., leading to death),
even when the frequency of the disease is also very high, as might be the case for patients referred
to a specialty clinic. We nevertheless agree with Kononenko and Bratko that the kind of cost-neutral
reward we are attempting to identify here needs to be relativized to prior probability: otherwise there
is no way to avoid rewarding a learner which slavishly mimicks frequencies in a training set and no
way to penalize algorithms which simply fail to learn from such frequencies.

Kononenko and Bratko specifically introduced the following reward function, which is assessed for
each instance against the true class only:

I g =logp —logp' (for correct classification) (4a)

Igp =—log(l—p)+log(l—p) (for misclassification) (4b)

This function is mapped for the simple three-class case with a uniform prior probability and varying
probabilities for the true class in Figure 3, while being compared with IR. There are two substantive
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(1) Their reward function has a kink located at the true class’s prior probability, as did our intermediate
I R; this reflects their inappropriate concern to even out rewards and punishments, so that their reward
function no longer has a suitable information-theoretic interpretation. (2) Their reward function is
assessed only against the prior probability of the true class. This is a failing again with some analogy
to that of our intermediate Definition 2: since the probabilities of false classes are not considered, an
overconfident assessment of what is false will go unpunished. For these reasons we do not consider the
Kononenko and Bratko function to be adequate; however, we will examine their measure empirically
below.

4 Information Reward for a Test Set

Ideally, we would like to know the expected information reward for each machine learner in a domain,
or across a set of domains over which we anticipate they will be used. Since we often don’t know
enough about the domain(s) of application, we may sample from the domain(s), obtaining a test set
with which the learners can be evaluated. The cumulative reward, divided by the number of test cases,
then serves as a best estimator for expected reward.

Predicted
Actual|+ve| -ve
+ve |TP| FN
-ve |FP| TN

Table 1. The four types of possible classification.

For a binary task, where one class is denoted as Positive (+ve) and the other as Negative (-ve),
there are four different types of classification that can be made: True Positive (TP), where the learner
correctly classifies a positive instance, False Positive (FP), where the learner misclassifies an instance
as positive (the instance was actually negative), True Negative (TN), where the learner classifies a
negative instance correctly, and False Negative (FN), where the learner incorrectly classifies a positive
instance as negative, as in Table 1.

Lemma 1. The cumulative IR for the machine learner M L on a binary classification task, where ML
generates n classifications, each classification i € {1...n} having an associated probability p;, is given
by:

log wz log zy
I(ML)=n—
(ML) == (102;19’ +10g(1—p’)) ®)

where,

w= ][ p 2= ] @-p),

i€TP i€EFN
i€EFP i€TN

and p' represents the prior probability of the +ve class.
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log pi

I(ML)=n—
(ML) =n .E og p/
i€TP

log(1 — p;)
-2 log(1 - p')

i€FN
_log[lierppi 108]licrp(l —pi)
log p/ log(1 - p')
log [TiernPi 108 [Ticpn (1 —pi)
log(1 —p/) log p/

And with w, z, y and z as defined in (5),

o (long log zy

- logp'  log(l — p/)) , as required.

The uniform IR for a test set (that is, where each class has equal prior) is simplified substantially.
For the binary case, this is precisely what applying Definition 1 to each case in a test set would yield.

Lemma 2. The uniform IR on a binary task, corresponding to Definition 1, is denoted by I, (ML)
and simplifies as follows:

_ log(wzyz)
I,(ML) =n+ o 2 (6)

with w, x, y, z and n as defined in (5).

Proof. Lemma 2 is obtained from Lemma 1 by setting p’ = 1 — p' and applying the log laws.

5 Information Reward and Evaluation

With Lemma 1 and Lemma 2 in hand, we may now investigate the application of Bayesian IR to
evaluation. We first consider whether TR can make a difference between the relative rankings of two
machine learners, M L1 and M L», compared to I Rg. If our generalization cannot make any difference
to the relative rankings of machine learners, then it cannot represent any very important improvement
upon IRg.

Thesis 1 There exists a binary test set, machine learners M Ly and M Lo and prior probability p' such
that:

I,(MLy) < I,(MLy) (Ta)
and,
I(MLy) > I(MLs) for somep' # 0.5. (7b)

Proof. Substituting (6) into (7a):

log wiz1y121 log waTay222
8
n + Tog 2 <n-+ log 2 ( )

<~ W1T1Y121 < W2X2Y222 (9)
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likelihood ranking.)

w121 T2Y2
— <
w322 Z1Y1

(10)

Substituting (5) into (7b):

lOg w121 IOg T1Y1 IOg Wy 2o IOg T2Y2
- > - 11
! ( logy ' log(1—p) " logy " log(1—p) ()

logwi 21 log 2111 log we 22 log 2292 (12)
logp"  log(l—p') = logp’ = log(l—p)
IOg w121 — IOg wa 22 IOg T2Ya — IOg T1Y1 (13)
log p' log(1 —p')
< log(1—p)log (%> < logp'log <%> (14)
Wa 22 T1Y1

To finish the proof, we simply produce a set of numbers simultaneously satisfying inequalities (10)
and (14). Setting w121 = 0.6, waze = .5, Toys = .7, z1y1 = .3, together with a prior p' = .8 suffices.
Thus the thesis is proven.

6 Results

For this study we tested a number of well-known machine learning algorithms, using the same datasets
employed by Holte (1993) and Korb et al. (2001):

— C5.0 (Quinlan, 1998): C5.0 is an improvement over C4.5, and comes with the option of boosting.
C5.0 was run with both boosting enabled (cB) and disabled (c5).

— Causal MML (ca) (Wallace et al., 1996): This learns Bayesian Networks from data using the
Minimum Message Length (MML) principle (Wallace & Boulton, 1968).

— Naive Bayes (nb): These simple Bayesian net models split on class membership, with the leaves
representing the different available attributes. They are “naive” because they assume that the
attributes, given knowledge of class membership, are independent of each other. Observed attribute
values are filled in and a simple Bayesian net propagation provides a posterior probability of class
membership. We implemented the algorithm as described by Mitchell (1997).

Each of these learning algorithms allowed classification probabilities to be read.

The empirical evaluation in this study was performed using Dietterich’s 5x2c¢v paired ¢ test, which
has been shown in his empirical work to be superior to standardly used tests (Dietterich, 1998). Briefly,
this method requires 5 replications of 2-fold cross-validation and approximates a ¢ test with 5 degrees
of freedom. The method is used because it more closely approximates the ¢ distribution by better
supporting the independence assumptions required than more common tests such as the resampled
paired t test and other cross-validation techniques (Dietterich, 1998).

Three different evaluation measures are shown. Predictive accuracy is calculated by giving each
classification a score of 1 if the true class is given the highest probability by the machine learner, and
0 otherwise. Kononenko and Bratko’s measure is calculated as in Section 3. Information reward is
calculated as in Definition 3. All the measures are normalised by dividing by the number of items in
the test set.

Since both IR and Kononenko and Bratko’s measure can penalize wrong predictions without limit
— for example, probabilities of 0 and 1 correspond to offering infinite odds, and so when wrong are

penalized infinitely — we applied a cutoff to extreme probability estimates supported by MML theory

n+0.5

%, m] where n is the sample size and k is the number

(Dowe, 2000), enforcing the range [
of classes.!
1 C5.0, and to a lesser extent CaMML, reported numerous classes with extreme probabilities; thus, this

adjustment gave them an important advantage in estimating these reward metrics. Only Naive Bayes avoided
extreme probability estimates on its own.
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ranked worse than all other learners five times (those being datasets ch, hy, mu, se and vo).

Kononenko and Bratko’s measure is shown in Table 4 and Table 5. Under this measure, Naive
Bayes does even worse than on accuracy. It is deemed worse on the ir dataset, as well as those found
using the accuracy measure.

Information reward is shown in Table 6 and Table 7. Using information reward, Naive Bayes is
shown to be better than the other machine learners, contrary to both the accuracy and Kononenko
and Bratko’s measures. Although Naive Bayes appears to be soundly beaten by the alternatives on
the ch and mu datasets, on the whole it is substantially better, with 10 statistically significant results
outperforming them. For example, in the hy data set C5.0 with boosting outperforms Naive Bayes to
statistical significance in both accuracy and KB reward, but this verdict is reversed with IR.

7 Discussion and Conclusion

The interpretation of I R presented in this paper has numerous advantages over that presented by Good
(1952), used to evaluate football tipsters (Dowe et al., 1996) and recently machine learners (Korb et al.,
2001).

The key argument for generalized IR rests on the interpretation of information. Information re-
duces uncertainty about the world. Thus when a machine learner correctly classifies an instance with
probability p, p must be greater than the prior probability p' to inform, or reduce uncertainty. This
is reflected in the definition of generalized I R; thus p > p' is rewarded and p < p' is penalized, given
correct classification. Given misclassification, p < p' is rewarded and p > p' penalized. This can be
interpreted as the following: the machine learner indicated that the probability p of the event was less
than what you had expected (p'). That event did not occur, so the learner should be rewarded for
reducing the expectation in the event, while if p was increased, the expectation was increased, and
thus the learner should be penalized for its estimation.

Information reward is a good objective measure of classification performance. The constant 1 is
added so that good machine learners are rewarded, that is I(ML) > 0, and bad ones penalized:
I(ML) < 0. Bad machine learners are actually misinforming, relative to the prior! That is, they
perform worse than a machine learner who just reports the modal class and its prior for each instance.
The average information reward (I(ML)/n, where n is the test set size), also has the advantage of
being bounded by 1, the value only a perfect predictor could obtain.

Where do the priors come from? In most machine learning tasks, the samples are split into two sets,
a training set and a data set. A straightforward prior is to use the relative frequencies of the classes
from the training set. Thus the prior is obtained from a source that is accessible by the machine learner.
IR also allows us to measure machine learners against any prior standard if we wish, for example one
derived from a human expert.

Dataset ch cB ca, nb

bc 0.7622378| 0.7622378|0.73426574| 0.7692308
ch 0.99248594(0.99686915|0.95241076|0.77332497
g2 0.7160494| 0.8518519(0.91358024(0.86419755
gl 0.69158876(0.69158876| 0.8224299| 0.6168224
hd 0.7086093|0.78807944| 0.7549669(0.80794704
he 0.7922078| 0.8181818| 0.8051948| 0.8961039
ho 0.8369565| 0.8152174| 0.8097826| 0.8043478
hy 0.9886148|0.98987985| 0.9892473| 0.9550917
ir 0.94666666 0.96 0.96(0.97333336
la 0.8214286| 0.8214286|0.89285713| 0.8214286
ly 0.7702703| 0.7027027| 0.7432432| 0.7702703
mu 1.0 1.0 1.0| 0.9054653
se 0.97975963(0.97975963|0.97406703| 0.9089184
S0 1.0 1.0 1.0 1.0
v2 0.85714287| 0.9078341|0.92626727| 0.875576
VO 0.95852536|0.95852536| 0.9447005|0.89400923

Table 2. Predictive accuracy reported by each machine learner, for each dataset.



Table 3. Significant differences between machine learners,
machine learners were judged inferior to that particular machine learner, on each particular dataset.

bc

ch ca nb|ca nb|nb

g2 ch ch ch
gl ¢5 ¢B nb
hd ca ch ca
he

ho

hy nb |nb |nb

ir

la

ly

mu nb |nb |nb

se ca nb|ca nb|nb

S0

v2 ch ch nb

VO nb |nb |nb

using the accuracy measure. Each cell records which

Dataset cH cB ca nb

bc 0.069981635|0.069981635| —0.0018902452 0.13689728
ch 0.6723401| 0.64563507 0.5885489 0.16337916
g2 0.2591113| 0.35606107 0.5546989| 0.37491697
gl 0.81675977| 0.86755884 1.130047 0.65977937
hd 0.2506573| 0.31211603 0.3526309 0.32222697
he 0.1018493| 0.13039692 0.09669634 0.23335941
ho 0.3245233| 0.31426513 0.3549378 0.28417683
hy 0.1355615| 0.07641858 0.13847339|—0.014177129
ir 1.0032248| 0.9701727 1.0044801 0.7756945
la 0.24943754| 0.24943754 0.3933418 0.3677128
ly 0.42263785| 0.39556766 0.43005717 0.3594238
mu 0.69259095| 0.69259095 0.69259053| 0.55018294
se 0.22789803| 0.22789803 0.21835881| 0.049714945
%) 1.3987643| 1.3987643 1.4630065 1.2994881
v2 0.43209726| 0.48362544 0.52688074 0.47609127
Vo 0.5957392| 0.5655813 0.59266555 0.5302857

Table 4. Kononenko and Bratko reward reported by each machine learner, for each dataset.

Dataset|ch cB |ca nb
bc ca ca ca
ch ca cB nbj|ca nb|nb

g2 ¢5 cB nb|ch
gl nb |cb ¢cB nb
hd

he ch ca
ho nb

hy nb nb |nb

ir nb nb |nb

la

ly

mu nb nb |nb

se nb nb |nb

SO

v2 ch ch ¢cB nb

Vo cBnb |nb |[cBnb

Table 5. Significant differences between machine learners, using the Kononenko and Bratko reward. Each cell
records which machine learners were judged inferior to that particular machine learner, on each particular
dataset.



Dataset ch cB ca nb

bc —0.23610511| —0.23610511|—0.002686911| 0.2808528
ch 0.9522189| 0.93266416| 0.79834837| 0.2326152
g2 —0.49246055| 0.45041668 0.7281166| 0.5455182
gl 0.07175887 0.2923216 0.5108723|0.44003078
hd —0.22732624| 0.20924993| 0.22064793|0.37742698
he —0.15546304(0.0129868025| —0.4243838| 0.5606905
ho 0.18764098| 0.28545344| 0.20742324| 0.3494705
hy 0.5477152| 0.46073914| 0.60719365| 0.6828912
ir 0.79086244| 0.82428205| 0.81571364|0.64188224
la 0.2903297 0.2903297 0.3076863| 0.5979209
ly —0.40623546 0.1889826| 0.17918634(0.61388963
mu 0.9998209 0.9998209| 0.99982065| 0.6382106
se 0.58898747| 0.58898747 0.4046343|0.62509626
S0 0.9015267 0.9015267 0.9772743| 0.8461196
v2 0.4839226 0.5787031| 0.58912724(0.35221466
Vo 0.8161831 0.7789633| 0.81813234(0.62418294

Table 6. Information reward reported by each machine learner, for each dataset.

Table 7. Significant differences between machine learners, using information reward. Each cell records which
machine learners were judged inferior to that particular machine learner, on each particular dataset.

Dataset|ch cB |ca nb
bc ca cB
ch ca nb|ca nb|nb

g2 cdb |cb cB nb|ch

gl cB

hd ch cH ch ca cB
he ca ca cB
ho

hy cB

ir

la

ly cB
mu nb |nb |nb

se

S0

v2 nb

vo
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