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Although the conceits of symbolicism are well worth exposing, the marriage between
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1 Introduction

In recent years much has been made of the
tensions, disputes and divergent methods of
“traditional” artificial intelligence on the one
hand — which relies upon the use of purely
symbolic, qualitative reasoning, such as that
supported by symbolic logic — and connec-
tionism on the other — which prefers to
use neural network models of reasoning that
have no apparent place for symbols at all.
It has commonly been asserted that con-
nectionist Al has opened up new possibili-
ties for investigating mind and reasoning us-
ing non-algorithmic, sub-symbolic approaches
that would otherwise be unavailable. Connec-
tionist modeling has also received a (partially)
sympathetic response from Hubert Dreyfus,
who has spent much energy since the 1960s
attempting to establish the impossibility of
artificial intelligence — at least if using non-
connectionist means. Many connectionists
have in their turn decided that Dreyfus’s ar-

guments offer support in their own disputes
with symbolic Al

Here T wish to sketch out the arguments:
that connectionism and other approaches to
AT have more in common than has generally
been acknowledged; that jingoists on both
sides — as they are everywhere wont to do —
have greatly exaggerated the differences be-
tween them, as well as the relative merits of
their own methods; and that Dreyfus’s argu-
ments against traditional Al were always at
best inconclusive and in any case provide faint
support for the ‘new’ connectionism. The
most plausible approach for artificial intelli-
gence is to take full advantage of both neu-
ral networks and symbolic inference, perhaps
producing “hybrid systems”; indeed, there is
no reason for these not to be combined with
genetic algorithms and many other techniques
ignored by those ideologues on both sides who
are repelled by any kind of eclecticism — un-
like the eclectic evolutionary forces that have
produced our own brains.



2 Traditional AT

Artificial intelligence as a discipline of re-
search began in the 1950s, simultaneously
with the availability to researchers of the first
electronic, digital computers.
evitable inasmuch as interest in the possibil-

This was in-

ity of a mechanized intelligence was aroused
by the very first machines. In the 1950s all
avenues of approach that had any promise of
success were pursued. Newell, Shaw and Si-
mon investigated the potential of logical in-
ference in their Logic Theorist, which was
magnificently able to reproduce a few dozen
of the proofs from Russell and Whitehead’s
Principia Mathematica (Newell et al. 1957).
Rudimentary artificial neural networks were
investigated, notably in Rosenblatt’s studies
of the perceptron (Rosenblatt 1958). And au-
tomated methods of evolving rules using the
model of natural selection, nowadays called
genetic algorithms or evolutionary computa-
tion, were being developed. (For example,
in Selfridge’s “Pandemonium,” 1959; indeed,
Selfridge’s paper prominently displays impor-
tant elements of all three traditions: sym-
bolic rules, genetic algorithms, and layers
of nodes tied together via weighted connec-
tions. Pandemonium was an early hybrid sys-
tem.) Curiously, these three strategies for
developing artificial intelligence — symbolic
methods (logic), neural networks, and genetic
algorithms! — are just the same three strate-
gies that dominate research today; although
only the latter two are considered ‘new’ ap-
proaches, for reasons unclear. (Commonly,
their antecedents in the 1950s are either ig-
nored or under-appreciated.)

It is not right, then, to label symbolic ap-
proaches to Al traditional, if that is meant to
imply that symbolic techniques have temporal
precedence. What is closer to the truth is that

1Some would argue that genetic algorithms do not
offer an approach to Al, being only an optimization
technique. I believe the writings of John Holland and
others make it clear that there is much more to genetic
algorithms than simply function optimization, that it
offers a quite different perspective on the nature of
machine learning and machine induction.

symbolic methods have dominated research
agendas, until recently. This is in no small
measure due to the very effective hostility of
Marvin Minsky to neural network approaches,
whose research into their limitations culmi-
nated in the book Perceptrons (co-authored
with Seymour Papert 1969). That pivotal
work demonstrated that individual percep-
trons could learn to recognize only a severely
restricted class of objects (those that are ‘lin-
early separable’) and raised doubts about the
capabilities of larger networks of neural ele-
ments; especially, Minsky and Papert pointed
out there the lack of a learning method for
networks of perceptrons. This work had a se-
rious constraining influence upon neural net-
work research, and especially upon the fund-
ing of neural network research. Nor did ge-
netic algorithms prosper before the 1980s; no
doubt their tendency to consume large num-
bers of processor cycles was partially respon-
sible. Be that as it may, a larger responsibility
surely inheres in the theology of symbolicism:
during this period those advocating symbolic
approaches dominated in the journals, fund-
ing committees and classrooms. And they
were not shy about rationalizing their posi-
tion of superiority. The writings of John Mec-
Carthy, Alan Newell, Herbert Simon, Patrick
Hayes and other leading lights of Al during
the 1960s and 1970s collectively seek to es-
tablish the idea that symbolic processing in
general, and logical inference in particular, is
the only conceivable road to artificial intelli-
gence.

In this context the objections of Hubert
Dreyfus to the whole enterprise constituted
a hardly noticeable footnote. They made lit-
tle headway in the AT community and mostly
What has
changed in the last decade is that neural net-
works have become popular again. It’s been
noticed that the limitations of a single percep-

received dismissive treatment.?

tron are not shared by networks; and an ef-
fective method of learning in networks, called
backpropagation, has been developed. At the

2Terry Winograd was a notable exception.



same time it has been found that symbolic
AT programs have run up against a variety
of severe difficulties. Expert systems, while
often commercially successful, work in large
part because they are constrained to deal with
very tiny problem domains; as soon as they
are asked to perform outside of those domains,
their performance collapses. Symbolic ma-
chine learning programs, on the other hand,
can learn to recognize objects in a class, but
only so long as class membership is unambigu-
ous; given noisy data, which is characteris-
tic of most real learning problems, symbolic
machine learning collapses. And logical infer-
ence has no ability to support defeasible infer-
ence, the drawing of a conclusion that is more
doubtful than the premises — what we might
call jumping to a conclusion. For example, if
we are certain that Tweety is a bird, we will
be inclined to believe that Tweety can fly. If
we draw such a conclusion, we will be in very
little trouble should we subsequently discover
that Tweety is a penguin; the same cannot
be said of a computer program relying pri-
marily upon logical inferences. This last dif-
ficulty has spawned an elaborate, but elabo-
rately unproductive, research program for the
development of default logics (cf. Korb 1995).

These problems encountered within the Al
research community have provided much of
the impetus to neural net research and si-
multaneously have raised interest in Dreyfus’s
complaints about AI. Many, especially many
non-Al researchers, believe that Dreyfus has
simply won his arguments. If he has, he has
done so by default, for the opposition put
up by the Al community has been relatively
weak. But the lack of an organized opposition
is no very fine reason for acceding to Dreyfus’s
position.

3 Connectionism versus
Symbolicism
Before attempting to rebut Dreyfus, it will

be worthwhile to consider some of the dis-
putes that have arisen independently between

symbolic and connectionist AI. Many of these
disputes are misbegotten; many others are
conducted exclusively between the most ex-
treme representatives of each camp. One non-
dispute, for example, is the idea that symbolic
Al is committed to investigating Al strictly
via algorithmic programming, whereas con-
nectionist Al is free to wander beyond the
realm of algorithms.

What is often considered the definitive
statement of the symbolic point of view was
presented by Newell and Simon (1976), which
advanced the Physical Symbol System Hypoth-
ests: that the necessary and sufficient con-
dition for a system to exhibit intelligence is
that it be a physical symbol-processing sys-
tem. This proposal arises fairly naturally
from the observation that some Turing ma-
chines are universal — they can perform any
computation that any other Turing machine
can perform — and from the Church-Turing
thesis that any precise definition of ‘compu-
tation” will turn out to be equivalent to Tur-
ing computability; i.e., universal Turing ma-
chines are capable of computing precisely the
set of all computations, neither more nor less.
This last thesis is intuitively well-supported
by the fact that all other attempts to pre-
cisely define the concept of computation have
turned out to be provably equivalent to Tur-
ing computability, including those using par-
allel architectures. Since Turing machines
are (abstract characterizations of) physical
symbol-processing machines, then if intelli-
gence is thought to arise exclusively because
of one’s physical computational processes —
which is at least a plausible thought — then
intelligence must consist of physical symbol-
processing.

Further observations lead to logicism within
Al: formal logic has been fantastically suc-
cessful as a discipline within the twentieth
century; it appears to capture (more accu-
rately, it arose from an attempt to capture)
the essence of human inference; inference is at
the heart of intelligence. Therefore, the right
kind of symbol-processing is that supported
by logical rules of inference.



This last inference, however, is quite a
stretch — it goes well beyond what is clearly
supported by its premises. Indeed, I have al-
ready pointed out that logicism has failed to
deal with any variety of defeasible or induc-
tive inference. In any case, most proponents
of symbolic Al have ignored the constraints
that would be imposed by a restriction to
logic programming. Indeed, symbolic AT is
not even restricted to the use of algorithms.
Algorithms are, by definition, procedures with
three characteristics: they definitely termi-
nate within finite time; they definitely termi-
nate with the correct answer; they use ‘well-
understood,” primitive steps (e.g., flipping a
coin to choose the next action is not allowed).
To pick nits: even a conventional computer
program that has a bug in it is not executing
an algorithm; bugs are not allowed. But more
relevantly, the heuristic programming that is
characteristic of much of symbolic Al goes be-
yond algorithmic programming, for heuristics
by definition are not guaranteed to produce
the right answers.

Connectionism is based upon an architec-
ture dramatically different from von Neu-
mann machines, the standard serial architec-
ture for everyday computers. Neural networks
are composed of interconnected nodes that are
segregated into layers. At the first layer are
nodes which respond directly to a vector of in-
put sensors; at the final layer are nodes which
take various possible states of activity, pro-
viding a vector of outputs; in between are one
or more hidden layers. Commonly, each layer
of nodes is fully connected with the units in
the preceding layer; whether a node is acti-
vated (fired) or not depends upon the levels
of activation in the preceding layer and upon
weights attached to each connection. The
weights typically start off being randomly as-
signed. The neural network learns by adjust-
ing these weights in response to good or bad
performance (outputs) via some learning al-
gorithm, such as backpropagation.

Neural networks are clear enough. What
connectionism may be is not altogether clear.
It is some body of belief about how to go

about creating an artificial intelligence using
neural networks, presumably. Whatever it
may be, it should not be the belief that neu-
ral networks provide a better approach to Al
because they are computationally more pow-
erful. There is a straightforward argument
that von Neumann machines and neural net-
works are computationally equivalent. On
the one hand, it is a fairly trivial exercise to
wire up a neural network to compute AND
gates, OR gates, etc. and latches as well. So
it 1s not particularly difficult to implement a
universal Turing machine using a neural net-
work. Therefore, neural networks are at least
as powerful as von Neumann machines. On
the other hand, neural networks are primar-
ily implemented as software on von Neumann
machines. Relatively few neural networks ac-
tually consist of physical nodes and connec-
tions at all. But if a von Neumann machine
can emulate a neural network, then trivially a
von Neumann machine is at least as powerful
as a neural network. Therefore, they are com-
putationally equivalent. (For a more exacting
treatment of these computational issues see

Franklin and Garzon 1991.)

The only apparent escape from this argu-
ment for a connectionist who believed neu-
ral networks to be computationally superior
would be to emphasize that neural networks
implemented as analog machines can take
full advantage of the real-valued connection
weights, whereas a von Neumann emulation,
due to limited-precision arithmetic in discrete
representations, cannot. But it is hardly clear
that an analog machine would in fact behave
differently from all discrete emulations. To
suppose this is to suppose that the analog de-
vice is sensitive to the exact value of the real-
valued weight, beyond any finite enumeration
of its digits whatsoever.?

3To the extent that we have evidence that there
are chaotic systems in the world we have evidence that
there are physical processes which are indeed infinitely
sensitive to initial conditions. So the possibility ex-
ists that analog machines may perform computations
importantly different from any digital machine. But
it remains thoroughly mysterious, given a chaotic de-



Even supposing someone should be pre-
pared to swallow that, it is not clear that this
cuts a difference between connectionism and
the rest of the artificial intelligence commu-
nity. It is true that hard-core symbolicists es-
chew the use of real-valued quantities. But
it 1s not clear why they should do so. In
any case many Al researchers — well out-
side the connectionist fold — do employ, and
always have employed, real-valued quantities
in their work. All of the many who investi-
gate the use of information theory in inference
(e.g., Wallace and Boulton 1968), statistical
pattern recognition, Bayesian inference, and
evolutionary computation employ real-valued
quantities. Although this separates these re-
searchers from hard-core symbolicism, it also
shows that the argument from infinite sensi-
tivity to real values fails to demarcate connec-
tionist methods from the rest of Al

4 Distributed
Representation

Much has been made of the fact that neu-
ral networks can, and usually do, support
distributed representations, whereas symbolic
architectures do not. In all probability too
much has been made of this. I shall examine
here a number of influential claims attribut-
ing a strong significance to the distribution of
connectionist representations.

It is less than entirely clear what ‘dis-
tributed representation’ is supposed to mean.
Van Gelder, in his study of the concept
(1991), notes that extendedness is not enough
to capture what connectionists intend: it is
not enough to point out, for example, that
when the input vector of a neural network de-
scribes a situation in which coffee is present
— say, coffee in a mug, or in a cup, or in a
glass — there is a common pattern of activa-
tion across a number of internal units of the
neural network. It is trivial that symbolic ar-

vice, how to harnass that difference in any meaningful
way.

chitectures either do or can spread their rep-
resentations across multiple elements as well.
The presence of coffee might be represented
by ‘c¢’, ‘o’, ‘f7, ‘f7, ‘€’, ‘e’ in successive locations
of memory. Perhaps more pointedly, in a se-
mantic network such as those introduced by
Quillian (1968) — a symbolic network with
nodes representing objects and events and
links relations between them — the presence
of coffee might be represented by the pattern
of spreading activation from the coffee node
across links throughout much of the network,
capturing the functional role semantics of the
concept of coffee, or what Quillian called its
“full concept” (1968, p. 227).

Van Gelder considers the idea of adding to
the requirement of physical distribution the
requirement that elements participating in a
distributed representation be capable of par-
ticipating in other representations as well. He
rejects this (p. 36) for the reason that in
symbolic systems variables represent multi-
ple objects as well — over time.
we can add the further condition that ele-

However,

ments in a distributed representation must
be able to support multiple representations at
the same time, since in fact that is a feature
of neural network representations. Neverthe-
less, this again will not be sufficient to rule
out symbolic representations: crossword puz-
zles are symbolic, yet the letters on intersect-
ing squares participate in multiple represen-
tations simultaneously. Furthermore, some
functional role of a node in a semantic net-
work may partially determine a representa-
tional content, and nodes may participate in
multiple functional roles simultaneously.

Many commentators contrast distributed
representations with the discrete represen-
tations of symbolic systems. Discrete rep-
resentations are supposed to be “modular”:
amenable to being added to or subtracted
from a knowledge base independently of other
representations.  However, if you train a
neural net via backpropagation to adopt a
new representation, everything in the net will
change; so far from these representations be-
ing modular, “it simply makes no sense to ask



whether or not the representation of a par-
ticular proposition plays a causal role in the
network’s computation” (Ramsey, Stich and
Garon 1991, p. 212).

But neither side of this contrast between
discreteness and distributedness quite lives up
to the demands placed upon it.
that advocates of expert systems tout as one
of their signal virtues the modularity of their
production rules (e.g., Winograd 1975). How-
ever, any serious examination of the literature
of expert systems will quickly reveal that this
is a sham: so far from productions being in-
dependent of each other, it is a major worry
about either adding or deleting productions
from working systems that they frequently

It 1s true

thereafter fail at problems previously handled
correctly (e.g., Buchanan and Shortliffe 1984,
chapter 7). Such changes often force exten-
sive testing and fine-tuning to recover good
performance. The idea that the semantics of
representations can be well understood with-
out regard for the ways in which those repre-
sentations causally or computationally inter-
act 1s simply impoverished.

The claimed lack of modularity in neu-
ral networks is also dubious. Ramsey et al.
(pp. 211-13) describe two neural networks
trained by backpropagation which share rep-
resentations for 16 propositions but not for
an additional proposition, which was used in
training only the second of them. The connec-
tion weights of the two networks are markedly
different, which is taken to support the no-
tion that adding or deleting representations
without disturbing others is infeasible. What
they neglect to note is that it is quite typ-
ical for a neural network trained twice on
exactly the same propositions to adopt radi-
cally different connection weights: the weights
adopted at the start of training are randomly
selected. If the first network were trained on
the first 16 propositions and only subsequently
trained on all 17 propositions (which is a per-
fectly feasible procedure), it is most unlikely
that the before and after connection weights
would be nearly so far apart as in the cases
Ramsey et al. have chosen to show. Regard-

less of what they say about the impossibility
of observing (or even asking about!) the role
distributed representations play in computa-
tion, it remains the case that those represen-
tations must continue to lead to correct out-
puts in handling the first 16 propositions even
while training on the seventeenth — the back-
propagation procedure ensures this. And that
will not happen if the connection weights are
fluctuating wildly during the second training
round. Distributed representations can in fact
be added and removed “discretely” — mean-
ing, about as discretely as in many symbolic
systems.

The distributedness of connectionist repre-
sentations has been deployed in arguments
that connectionism is committed to a rejec-
tion of psychology,* by both advocates of
connectionism (and therefore “eliminativism”
— e.g., Ramsey et al. 1991) and detractors
of eliminativism (and therefore connectionism
— e.g., Davies 1991). These arguments de-
pend crucially upon the uninterpretability of
the distributed representations buried within
the neural network. Davies” argument, for in-
stance, is that for cognition to exhibit the kind
of systematicity that psychology and linguis-
tics attribute to humans it must employ com-
mon states across related inferences (1991,
pp. 243f; echoing the critique of Fodor and
Pylyshyn 1988). For example, it is not enough
to recognize that drinking coffee from a cup
will warm you up (in some case) and that
drinking coffee from a mug will do likewise,
but such recognition must rely upon a com-
mon underlying concept of warm coffee. How-
ever, in distributed representations there is
no common syntax that can be manipulated
in such inferences; Davies quotes Smolensky
(1988): “These constituent subpatterns rep-
resenting coffee in varying contexts are activ-

*Not “folk” psychology. It is a rhetorical move by
antagonists of psychology to label what they are re-
jecting as a matter of folk belief(?). Certainly, the
concepts involved have their origins in common sense
and common language, but the support for their util-
ity goes well beyond that, as any text in cognitive
psychology will demonstrate.



ity vectors that are not identical, but possess
a tich structure of commonalities and differ-
Hence, according to Davies, “there
simply is no strictly common subpattern of
activation” (1991, p. 248).

If one emphasizes the strictness of common-
ality Davies is requiring here, the claim will
surely end up being true — trivially true.

ences.”

No two tokenings of the same symbol are
ever strictly identical. But as Smolensky was
quoted as asserting, there is important (rich)
commonality between representations of cof-
fee in different contexts. Indeed, Davies him-
self confesses that the analysis of neural net-
work representations “may vindicate a higher
level of description from whose point of view
the approximate and blurred commonalities
are just variable realizations of real common-
alities” (1991, p. 254). There is no obvious
reason why the commonalities available are
insufficient to carry the weight of systematic
reasoning; indeed, some connectionists have
responded to Fodor and Pylyshyn precisely by
building neural networks which exhibit forms
of systematicity which they had claimed to be
impossible (cf. the collection Hinton 1991). If
such commonalities are inherently too weak
for some reason, it is incumbent upon the crit-
ics of connectionism (or advocates of elimina-
tivism) to display that reason.

Perhaps the emphasis was intended to be on
the contextual dependencies that connection-
ist representations show: the activiation pat-
tern for coffee-in-a-cup will likely be charac-
teristically different from (while having much
in common with) the activation pattern for
coffee-in-a-mug. But a semantic network rep-
resentation of the same facts will show anal-
ogous contextual dependencies, in particular
the functional roles of a cup of coffee and a
mug of coffee may well be interestingly differ-
ent.

I do not intend to be read here as claiming
that there are no interesting differences be-
tween the distributed representations of con-
nectionist networks and the “local” represen-
tations of semantic networks, or other vari-
eties of symbolic representation. The differ-

ences are quite interesting. The flexibility and
resilience of neural network processing is cer-
tainly of interest. And the task of interpreting
distributed representations is both interesting
and difficult. What I am suggesting is that
the obscurities in the interpretation of neural
networks are greatly magnified by those who
would spin them into whole philosophies.

5 Dreyfus

Hubert Dreyfus’s objections to artificial intel-
ligence have been many and varied. I can here
only treat a few of the more salient ones.
One of Dreyfus’s main criticisms of artifi-
cial intelligence, central to his What Comput-
ers Can’t Do (1972) as well as his more re-
cent Mind over Machine (Dreyfus and Drey-
fus 1986), is that the rules typical of arti-
ficial intelligence programming are context-
free whereas human actions are never per-
formed without regard for context and so can-
not be rule-governed. Expert systems tech-
nology is largely based upon the firing of
rules: determining that a condition is satis-
fied by (matches) the current state of affairs,
and so taking the action specified by the rule.
But whether the situation matches a rule
is typically determined by a simple-minded
pattern-matching algorithm that takes no ac-
count of more global aspects of the situation
within which the system is operating. In or-
der to have a rule-based system sensitive to
the global situation, we would have to be
able to represent each possible situation in-
ternally within the computer program: we
“would have to treat each type of situation
the computer could be in as an object with
its prototypical description” (Dreyfus 1979,
p. 52). In effect, we should have to have a
separate rule for each possible situation.® On
the other hand, “human beings, of course,
don’t have this problem. They are, as Hei-

5Curiously, it is just such an inability to cope
with situations systematically that Davies attributes
to neural networks, suggesting that this renders them
inadequate for modeling cognition.



degger puts it, already in a situation, which
they constantly revise.” Dreyfus goes on to
say that human situatedness is not reducible
to a set of knowledge representations, for it
is based upon moods, current concerns, self-
image and in general upon our being embod-
ied at a certain place and time in the world.
What is supposedly characteristic of compu-
tational intelligence is its being disembodied,
its being strictly portable from one universal
machine to another.

This argument, while entertaining, is wrong
headed. If intelligence is based upon physical
processes, as symbolicists have insisted rather
than denied, then it is not based upon any-
thing disembodied, for there are no disembod-
ied (immaterial) processes. Intelligent robots
have never been thought of as disembodied;
if or when they exist, they will be indepen-
dent players in the social-physical world.® Nor
is it sensible to claim that the capability of
representing some large number of situations,
say N, requires the presence of N distinct
representations; this assertion reveals a lack
of awareness of combinatorics. Trivially, in
propositional logic it takes two variables to
support the representation of four possible sit-
uations. Things are no different with other
forms of representation. And Dreyfus’s no-
tion that moods, concerns, self-image, and
spatio-temporal (and cultural!) location can-
not be represented within a computer pro-
gram 1s backed by nothing more than pre-
sumption. Fach of these has in fact been the
subject of investigation by computationalist
cognitive scientists.

Another argument Dreyfus pushes against
rule-based expert systems (Dreyfus and Drey-
fus 1986, chapter 1) is that whereas human
novices certainly do use rules — indeed learn-
ing and applying rules is just how they be-

61t is undeniable, however, that much AI research
has proceeded with scant regard for the issue of em-
bodiment (Lenat’s CYC project comes to mind as a
prominent example). And T am inclined, with Drey-
fus, to consider such approaches too narrow to be very
promising as the overarching research programs that
they commonly are claimed to be.

gin to function within a new and difficult do-
main, such as chess — human experts are
just those people who no longer need to use
rules. Grandmasters can play five-minute
chess games “without serious degradation in
performance,” which certainly cannot be done
by following rules! By contrast to expert sys-
tems, connectionist programs may well suf-
fice to capture expertise, for neural networks
operate without the use of explicit rules (cf.
Dreyfus and Dreyfus 1990). (As an aside,
it is not true that grandmaster performance
does not degrade under time pressure; what is
likely true is that non-experts will have a hard
time recognizing the relatively small drop-off
in performance.)

There are a number of potential confusions
in this line of thought. I have already raised
doubts that neural networks are properly de-
scribed as operating without explicit rules
at the cognitive level. However, even if we
accept Dreyfus’s argument at face value, it
still would not necessarily follow that arti-
ficial intelligence should abandon rule-based
programming. The issue hangs in large part
upon what you imagine you are doing when
you design Al programs. At one extreme one
might be attempting to reproduce or simulate
intelligence as it occursin humans or other an-
imals. That would be a descriptive approach
to Al, what Herbert Simon has called compu-
tational psychology (Simon 1983). At another
extreme one might be attempting to produce
an intelligence unlike any other, in a norma-
tive Al perhaps. Of course, one can adopt
intermediate or mixed strategies of various
kinds. My point is this: if humans do not
exercise intelligence by exercising rules, this
is entirely beside the point for an extreme
normative Al, and is also no decisive point
against most intermediate flavors of Al. Rules
may nonetheless play an important role in de-
veloping an artificially intelligent system.

Another issue has to do with how we under-
stand the concept of following rules. When we
talk of our following some rules, what we or-
dinarily have in mind is that we consciously
apply some rules within some endeavor. [



take it that it is clear that human experts
hardly ever follow rules in this way; it is com-
pletely implausible that grandmasters, or any-
one else, can play good speed chess in that
way. But it does not follow that the cogni-
tive activity of grandmasters is not rule gov-
erned. Nobody believes that the planets lit-
erally obey Kepler’s laws of planetary motion,
and yet they do obey them (approximately);
that is, Kepler’s laws jointly form a true (ap-
proximative) theory about how the solar sys-
tem functions. The lack of introspective rule-
following by grandmasters is no more telling
against the idea that their chess thought is
properly modeled using some set of rules than
is the lack of introspection by Jupiter and
company telling against Kepler’s model of the
solar system. What processes implement cog-
nition in humans is not answerable via in-
trospection (even though introspection surely
provides some relevant evidence; cf. Dennett’s
discussion of heterophenomenology, 1991).

Dreyfus specifically doubts that there are
true theories of cognition in the same sense
that there are true theories of the solar sys-
tem; for he believes that this would commit
us to the idea that “everyday practice is ...
based on unconscious theory” (Dreyfus and
Dreyfus 1990, p. 396). But it is not true that
because we are talking about a theory of cog-
nition the cognition has to be using the the-
ory, consciously or unconsciously. All that is
required is that the theory describe the causal
structure of the cognitive process. It will be
sufficient evidence of that if we can use the
theory to make appropriate experimental pre-
dictions; it is in no way required that when we
examine the fine structure of neural intercon-
nections we should find the theory of cogni-
tion somehow encoded in there! 1 am per-
sonally not at all persuaded that the kinds
of rules that have been deployed in expert
systems are sufficient to build up a model
of human cognition. But my skepticism is
based upon the limitations of that approach,
and the richness of alternatives such as neural
networks, rather than Dreyfus’s curious argu-
ments.

Along similar lines I wish to raise doubts
about an interesting objection to computa-
tionalism suggested by a reading of Gerald
Edelman (1992). Edelman points out that un-
der certain circumstances human and animal
learning is accompanied by structural, mor-
phological changes in the interconnections of
neurons. For example, violinists have more
cortex devoted to sensing and controlling fin-
gers than normal. This variability of neural
wiring shows that the brain cannot be hard-
wired like a computer (p. 27); and the varia-
tion induced by learning suggests that learn-
ing cannot be thought of as a software process.

But what is software and what is hard-
ware? In computers the boundary is quite
fluid: functions that were previously imple-
mented in software may subsequently be built
into a VLSI chip. On the other hand, RISC
machines achieve a streamlined architecture
by expelling complex instructions from the
hardware, requiring them to be implemented
in software. In general, programmers do not
care whether a function is supported directly
by hardware or is provided by software im-
plementing a ‘virtual machine.” It makes no
difference to the programming task (except in
speed of execution perhaps). In the brain the
boundary is not so much fluid as it is non-
existent, or at least unknown. While it may
be seductive to identify neural interconnec-
tions in our brains with hardware and synap-
tic potentiation with software, it is not clear
what benefit might derive from such an iden-
But the difficulty, or impossibil-
ity, of construing the brain as a von Neu-
mann machine defeats neither Al nor the view

tification.

that cognition is largely a matter of computa-
tion. Neural networks perform computations
— otherwise they could hardly be computa-
tionally equivalent to von Neumann machines.
However, they are either all software (when
being emulated by software running on tradi-
tional computers) or they are empty of soft-
ware — as they are typically not programmed
in any sense, there can be no software to be
found there.



6 Conclusion

What is at issue is whether human and an-
imal cognition can be modeled properly via
(largely) computational theories. It is not at
all at issue in what medium the computations
are being performed. Of course, that is an is-
sue for the biology of cognition, but not for Al
— except to the extent that the medium has
an impact on what kinds of computations may
be more easily, or more rapidly, performed
(granting also that the medium may be im-
portant for any non-computational aspects of
intelligence). The disputes between connec-
tionists and symbolicists have largely been
conducted without regard for their underly-
ing similarities and common purpose — and
under the pretense that these two paradigms
for Al jointly exhaust the possible means for
producing an artificial intelligence. Dreyfus’s
continuing attacks on artificial intelligence
can draw solace from connectionism only by
distorting both connectionism and Al — for
example, by asserting that symbolic Al pre-
supposes what it manifestly does not, that
human expertise consists of consciously or un-
consciously obeying explicit rules.

That animal cognition is primarily a mat-
ter of computation is an empirical hypothe-
sis; it will not be settled by philosophical dis-
putation but by empirical investigation, by
the attempt to further develop descriptive Al.
Whether normative Al will be successful in
constructing an alien, non-animal intelligence
is another, distinct empirical question. These
matters are very much in doubt — as could
hardly be otherwise for such central questions
for the youngest of the sciences.”
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