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ficial systems. I argue, however, that non-quantitative methods are inherently insufficient for
supporting inductive inference. In particular there are reasons to believe that purely deductive
techniques—as advocated by the naive physics community—and their nonmonotonic progeny
are insufficient for supplying means for the development of the autonomous intelligence that
AT has as its primary goal. The lottery paradox points to fundamental difficulties for any such
non-quantitative approach to AL I suggest that a hybrid system employing both quantitative
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gence that can avoid both the paralysis induced by computational complexity and the inductive
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1 Learning as Inductive Inference

Alan Turing invented computer science in order to solve a problem posed by David Hilbert: Is
first-order logic decidable? That is, given a sentence in first-order logic can we decide in finite
time, and using only well-understood inferential steps, whether it is or is not a theorem? In order
to solve this problem, Turing had to provide a more precise definition of decidability. He did so
by providing a precise definition of a computation, giving us our concept of Turing machines.
And he proved that first-order logic is not decidable (Turing 1937; to be sure, simultaneously
with Church’s proof of the same, 1936).

It is perhaps the existence of this connection at the foundations of computer science which
has led many to believe that artificial intelligence is fundamentally an exercise in logic, that
artificial inference is exhausted by deductive inference and so that artificial knowledge must be
encoded in a logical language. There have been recent challenges to this paradigm from the
neural computing community, based upon some limited successes in that approach. But it has
not been well appreciated that this “logicist” paradigm for artificial intelligence is, and always
was, confused.

We can obtain at least as many definitions of ‘artificial intelligence’ as we can find intro-
ductory textbooks. But surely we can say that what artificial intelligence research aims at is
the production of a computer system which behaves in ways we deem intelligent; in particular,
most researchers believe it is possible (in theory, eventually, given an indefinitely long wish-list
of technological breakthroughs) to program a computer that could power a robot to behave as
intelligently as humans do, much like Isaac Asimov’s detective robot Daneel, say. Whatever
intelligence may or may not be, that would satisfy us (and it would go well beyond satisfying
Turing’s original test for intelligence; cf. Harnad’s “Total Turing Test” in 1989). Without getting
into very deep points about such a test for intelligence, we can see that its adoption requires a
computer system that can learn about the world into which it is born: there is no physically
normal human who is unable to learn what foods are edible, what animals are dangerous, etc.—
unless that human is not intelligent. Any system which cannot learn the simplest fact about
the world is not intelligent. So whatever else intelligence involves, it requires the ability to learn
about its world, which we can call empirical learning.

Such abilities are not well reflected in deductive logic: the distinguishing feature of a deduc-
tive inference rule is that it is valid. Validity means that whenever the premises of the inference
are true, the conclusion is true—indeed, it is guaranteed to be true. The only way to guarantee
the truth of a conclusion is to adopt a conclusion which, in some sense, tells us nothing over-
and-above the premises we have already accepted; its content must already be implicit within
the premises. Or: the possible worlds in which the premises are true are a subset of the possible
worlds in which the conclusion is true. Such inferences are non-ampliative, they add nothing
to our empirical knowledge.! While such deductive inference may supply us with learning of a
sort (we “learn the implications” of what we already believed), it is not empirical learning. It
is, therefore, not enough learning to pass our test of intelligence. The logicist research program
in artificial intelligence, despite dominating much of the work in AI, has not yet succeeded in
fulfilling its early promises. Indeed, it can never succeed, for it is trying to use non-ampliative
inference to do what only ampliative inference can.

Ampliative inference is otherwise known as inductive inference: at its most general, any
inference is inductive if it leads from a set of premises to a conclusion which could fail to be
true even though the premises are true. There have been many varieties of inductive inference
proposed by philosophers and scientists; some have turned out to be useful and others not. The
simplest to describe is one of the least useful to us, enumerative induction.? In enumerative



induction we simply observe a sequence of objects and if the first n of them all have some
property, we conclude that all of them have that property. For example, after observing many
thousands of white swans, and swans of no other color, Europeans may be forgiven if they
conclude that all swans are white (there are black swans in Australia). Clearly, the conclusion
(if it were but true) tells us something new about the world that is not implicit in the premises
(in this case, the observation reports).

The use of enumerative induction as an example may be misleading. A traditional way of
distinguishing induction from deduction is to say that induction proceeds from particulars to
generalizations and that deduction proceeds in the reverse direction. Enumerative induction
is then used to illustrate the former. But such a definition is an oversimplification. There
are deductive inferences that lead from particular to particular, and others that lead from
generalization to generalization: any inference in propositional logic will provide an example, if
you substitute particular (general) statements for its sentential variables. On the other hand,
some kinds of inductive inference may lead from one particular to another; for example, from
the current swan being white to the prediction that the next swan will be white (the inductive
logician Rudolf Carnap was particularly fond of such cases of “instance confirmation”; cf. his
appendix to his classic work 1962). It is not the “logical form” of an inference which determines
whether or not it is inductive, but the informational relation between premises and conclusion.
Pointing this out is not mere pedantry: it will be an important point later in the discussion
that the default inference from particular to particular—for example, the inference from Tweety
being a bird to Tweety being capable of flight—is a kind of induction.3

As inductive inference is defined by negation—those forms of inference that are not deductive—
there are many kinds of inductive inference open to investigation; indeed, there are too many
to investigate. But there is no disputing that some inductive processes work, for however it is
that humans learn about their world, that process works and is inductive.

2 Overview

Bayesianism arose within epistemology as an account of rational belief and rational changes of
belief in the work of de Finetti (1937) and Ramsey (1931). More recently, it has flourished as a
theory of statistical inference (Lindley 1971), as a philosophy of science accounting for normative
methodological standards for scientific research (Howson and Urbach 1989), and as a leading
contender for accommodating reasoning under uncertainty within artificial intelligence (Pearl
1988 and Neapolitan 1990). What serves to distinguish all of these efforts as (loosely) Bayesian
is the belief by their authors that the probability calculus provides the single best standard for
assessing inference with incomplete evidence—as exemplified by the use of Bayes’ Theorem for
conditioning upon experimental or observational evidence—and therefore also the best standard
for assessing scientific inductions (without necessarily assuming that Bayesianism supplies the
only standard or means for such inference).

The aim of this paper is to critique, from a Bayesian perspective, the long-dominant view
of artificial intelligence as an exclusively symbolic enterprise. My aim being primarily critical,
I will not be defending Bayesianism explicitly, except with respect to some of the direct criti-
cisms which have been raised previously within the AI literature. There already is an extensive
philosophical literature dedicated to attacking and defending Bayesianism.*

I proceed by first reviewing logicism within Al, the view that artificial intelligence is to be
achieved exclusively or primarily by the use of deductive inference. Nonmonotonic formalisms
have evolved out of logicism’s commitment to symbolic processing under pressure from examples



of ordinary default inferences that lead to retractable (defeasible) conclusions. These formalisms
have difficulties with modus tollens type inferences and with specificity, which are reviewed;
it is suggested that such difficulties are resolvable via probabilistic inference. In any event,
the most promising interpretation of defeasible inference thus far appears to be a probabilistic
interpretation. I proceed to consider the lottery paradox, which has long been held to be an
insurmountable barrier to probabilistic inference. I demonstrate that it is a general problem for
inductive inference methods—including nonmonotonic formalisms—and conclude by indicating
means for dealing with it within a probablistic framework.

3 The Logicist Program in Al

The logicist research program has occupied a pre-eminent position within artificial intelligence—
although neither it nor any other paradigm for AI has dominated research to the point of exclud-
ing other conceptions. ‘Logicism’ was originally used to characterize the philosophical enterprise
of securing our mathematical knowledge in the indubitable bedrock of our a priori logical intu-
itions, as exemplified in the work of Russel and Whitehead in their Principia Mathematica. That
original logicist program failed in part due to Godel’s incompleteness result (1931). Logicism in
AT, on the other hand, does not propose to reduce mathematics to logic. It proposes, rather, that
prerequisite to developing an artificially intelligent system we must find means for representing
and reasoning with a vast store of propositional knowledge and that the only viable candidates
for representing propositional knowledge are formal logics and their associated formal languages.
This view is a not entirely unnatural extension of Church’s and Turing’s research leading to the
Church-Turing Thesis. That thesis states that any precise definition of ‘algorithm’ or ‘definite
procedure’ will turn out to be equivalent to Turing computability, as did Church’s definition
of effective calculability and those of various other people. Assuming the thesis is true, then
since Turing computability is defined in terms of universal Turing machines—which are abstract
symbol-processing machines—it follows that any algorithm which is sufficient for the produc-
tion of artificial intelligence (if there be such) is equivalent to some symbol-processing machine.
In some important sense, then, symbol processing exhausts the possibilities of algorithmic Al
Hence, the broad support within AT for Newell and Simon’s Physical Symbol System Hypothesis
(Newell and Simon 1976). Symbol processing is not, however, exhausted by deduction—for ex-
ample, heuristic programming is not mere deduction. Nevertheless, logicism draws succour from
such reasoning inasmuch as logical languages have considerable representational capabilities (cf.
Hayes 1977) and logical inference offers considerable computational power. Logical inference has
long appeared to offer the best prospect for producing artificial intelligence by symbolic means.

I can find no fault with the argument above to the effect that algorithmic Al is symbolic
AT. What T object to is the idea that logicist, symbolic Al exhausts AIl. That is, what I find
objectionable are the two exclusionary notions that only formal logic has a role to play in
symbolic representation and that only non-quantitative symbol processing has a role to play in
inference. These notions have been coupled with a tendency to consider deduction to be the
only rational variety of inference. Notice that it is only within the 1980s that defeasible inference
(that is, any inference that is not strictly deductively valid) has been generally acknowledged
within the AT community to be legitimate. I shall argue that an exclusive reliance on qualitative
inference—including logicism’s rebirth within default logic—is inimical to machine learning and,
therefore, to the wider goals of artificial intelligence.’

The goal of AT has always been to produce an intellectually autonomous, intelligent, rational
agent using a computer as the primary vehicle for intellection. Its inspiration lies in the surprising



computational power (surprising when Al arose, namely during the 1950s) and algorithmic
flexibility of the electronic digital approximations of Alan Turing’s universal machine. While
computers and computer science have progressed by leaps and bounds since their introduction,
their use in achieving the aims of AI has been far less impressive. Hence, there is much talk
about “the AI problem.” David Israel (1985) offers two formulations of the AI problem: (I)
How do we impart a normal body of commonsense knowledge to a robot? Or, alternatively, (II)
how do we get a robot to learn such a body of knowledge? Israel thinks that (I) and (II) are
alternative formulations of the same problem. They are not; and the confusion of the two is
fundamental.

In his “Programs with Common Sense” (1968) John McCarthy proposed that constructing a
program he called the Advice Taker be taken as a central problem for artificial intelligence. The
Advice Taker ‘learns’ just by absorbing what the programmer tells it. Theorem-proving is its
key to understanding: “We shall ... say that a program has common sense if it automatically
deduces for itself a sufficiently wide class of immediate consequences of anything it is told and
what it already knows” (1968, p. 403). In Israel’s account, McCarthy’s project is to create a
“sentential automaton ... whose abstract data structures are sentences of a formal language
and whose interpreter is—or includes—a sound theorem prover for that language.... We im-
part commonsense knowledge to a robot by first formalizing and axiomatizing this knowledge,
as completely as we can, and then telling it all to the robot” (1985, p. 429). Or, in another
suggestive formulation: “I am urging that we may want to think of the first-order predicate
calculus as a universal machine-language for Knowledge Representation” (p. 445; his empha-
sis). Clearly, this program—like philosophical logicism before it—is one that has been deeply
impressed by the successes of twentieth-century mathematical logic and axiomatics: it places a
theorem prover (whether supplemented or not) at the core of the artificial epistemic agent.

This model of artificial intelligence as the natural outcome of a logic machine has led many
to conclude that machine learning is irrelevant to the mission of AI. Those who look to expert
systems as a model for Al programs might think that human experts can do our learning for us.
Others believe that a key ingredient missing in our Al programs thus far—common sense—can
be supplied by axiomatizing some large fraction of what humans know. Neither of these views
can be sustained.

3.1 Machine Learning as Artificial Intelligence

The first claim is that inductive machine learning is unimportant, for the reason that the general
rules that might be so induced can always be extracted from human experts. What AI program-
ming is about then is just deductively applying those rules to initial data to solve some problem
or classify some situation. In effect, the Al systems envisaged are just super-calculators doing
computations humans already understand, only faster and perhaps more reliably than humans
could.

This idea that AI systems just are super-tools is one that Herbert Simon has pushed in his
“Why Should Machines Learn?” (1983). He points out there that the learning we observe in
humans has various features that are clearly not what we want to emulate in artificial intelligence:
the human learning of substantial intellectual tasks is hard, takes many years, is preceded by
many other years of dependency upon adults, and when acquired cannot be simply copied and
passed around by floppy disk from one human to the next—each human must repeat the hard
study on her or his own. Mimicking these features is surely not what we want of artificial
intelligence, even though they may well be desirable features of programs intended to model
human cognitive function. Regarding the latter, Simon is quite prepared to allow that learning



programs are important for computational psychology; but this has no implications for normative
ALS

These points are intended to be suggestive, and that is all that they can be. Slowness of
acquiring knowledge cannot be essential to learning, and indeed it has nothing to do with the
definition of learning Simon himself proposes: “Learning denotes changes in the system that
are adaptive in the sense that they enable the system to do the same task or tasks drawn from
the same population more efficiently and more effectively next time” (p. 28). And our current
inability to copy the contents of our brains is presumably due to our inability to understand our
brains, rather than to anything more fundamental.” Simon requires a positive argument for the
irrelevance of machine learning.

The positive argument comes in two parts. First, Simon divides machine learning into hy-
pothesis discovery (or invention) and learning; second, he argues that, whereas investigating the
automation of discovery is legitimate and important, the learning aspect is irrelevant. Simon’s
distinction between hypothesis discovery and learning is similar to the distinction made within
the philosophy of science between the context of the discovery or pursuit of hypotheses and the
context of their justification. There are some perfectly legitimate grounds for drawing such a
distinction. In particular, abductive methods, which are heuristic means of selecting some small
subset of explanatory hypotheses out of the (normally) infinite set of possible explanatory hy-
potheses, are directed at proposing hypotheses for pursuit, rather than at accepting or rejecting
hypotheses on the basis of evidence. And the ignoring of that distinction has led to some dubious
methodologies proposed for science, such as “inference to the best explanation,” which tends
to take the abductive step as both the first and last step in an induction (cf. Harman 1965).
But the legitimacy of this distinction does not imply that Simon is right to exclude discovery
from the domain of machine learning. On his own definition he is wrong: the discovery of new
hypotheses, unless immediately forgotten or not followed up, will make a difference in how the
system subsequently deals with problems similar to the one which led to the discovery—ergo,
machine learning. Furthermore, there is little doubt that the contexts of discovery and justi-
fication, while distinct, are interrelated—some abductive methods are more fruitful, turn up
hypotheses more likely to be true; this is properly reflected in the probability of the hypothesis
prior to testing, and Bayes’ theorem tells us that the probability of the hypothesis in the light
of the evidence must take that prior probability into account. In short, if machine discovery is
legitimate and important, then machine learning is important.

Simon proceeds to downplay the role of interesting learning (relying upon discovery) in favor
of the primacy of rote learning, which in an AI program would be nothing more than data entry
into a knowledge base. The notions Simon expresses here appear to underwrite much of the
goodwill that logicism has received. For example (p. 29): “Most of what we know somebody
told us about or we found in a textbook.... Most of the things we know were discovered by
other people before we knew them, and only a few were even reinvented by us.” Now this claim
is not based upon any survey of the jobs to which our different neurons are dedicated. I suppose
it is an intuitive response to the difficulties Simon himself experienced pouring over textbooks or
trying to teach others. I flatly assert that Simon’s intuitions here are wrong. On the contrary,
I claim that the majority of information content that could be found in our heads—had we the
tools to find them—is dedicated to keeping track of such mundane things as the way to work,
the way back to home, the semantic connections between words, the taste of Coke Classic versus
New Coke (or Pepsi), etc. Certainly, if you keep a logbook of how much time you spend studying
texts, listening to lectures, or talking to people, then even if you are a professional student, it is
most unlikely that the majority of your waking hours will be given over to storing what other
people have told you to believe. Whatever the relative role of rote learning in building up our



individual corpora of knowledge, rote learning would have no role whatever were that the only
variety of learning available to us. Machine learning and machine discovery are irrelevant to Al
only if knowledge is irrelevant.

Well, maybe not. What if all that we demanded of our Al systems was the speedy and reliable
computing of solutions to problems that we already understood? This is exactly how Simon
construes Al (vs. computational psychology), as having the exclusive goal of getting computers
to do difficult computational tasks so that humans need no longer do them (p. 27). So Simon
implicitly denies the goal of producing an autonomous agent that can learn independently of
human support and comfort and that specifically can adapt to an environment that changes in
ways unanticipated by its creators. Yet the brittleness of extant AI systems has widely, and
rightly, been regarded as a sign of their inadequacy: when confronted with environments at
variance with that for which they have been trained or programmed, the performance level of
AT systems drops off the table. Humans who perform well within highly restricted domains
only are called idiot savants for a reason, they lack general, adaptive intelligence. The goal of
providing a learning, independently adaptive intelligence has virtue that undeniably outstrips the
amusement value of observing toy robots rolling about on their own, so long as we do not believe
that we have mastered all the problems that our environment has presented, or will present, to
us. Indeed, it turns out that the development of systems that can learn about their world to
roughly the extent and depth that humans can is a matter of no small practical importance:
the inability of expert systems to learn other than by being spoon-fed production rules by
“knowledge engineers” is one of the most significant factors impeding their increased use within
industry (cf. the discussion of the “knowledge bottleneck” in Hayes-Roth et al. 1983). More
generally, the ability to learn is deeply connected with the concept of intelligence. Degrees of
learning ability are primarily what we take to distinguish degrees of intelligence among humans,
and primarily what we take to distinguish degrees of intelligence across species. If we are to
speak properly of artificial intelligence at all, we must be prepared to tackle the problem of
machine learning.

3.2 Naive Physics as Naive Al

The second claim arising from the logicist model for artificial intelligence is that common sense
can be attained by axiomatizing much of our own common sense knowledge. This notion has
been promoted particularly by Pat Hayes in his Naive Physics Manifestos (1979 and 1985): It
is the self-proclaimed task of naive physics to satisfy Israel’s formulation (I) of the AI problem
by axiomatizing the various domains of commonsense knowledge. But this idea is based upon
precisely the claim that Simon’s argument stumbled over: that rote learning is as much learning
as intelligence requires. Although achieving the axiomatizations envisioned for naive physics
would be of considerable interest in its own right, that achievement would not obviously be any
great advance on understanding either intelligence or common sense. And, I submit, to think
otherwise is to be naive. For an example of naivité, some AI researchers have supposed that
what is most striking about the intelligence of a young child is the scope of its factual knowledge
about the world, the great range of things it must understand, say, before buying a McDonald’s
kids’ meal. Consider the case of IQ) tests. These tests frequently fall back on asking people about
linguistic exotica. This may be appropriate, but not because intelligence consists of the corpus
of such knowledge (linguistic or otherwise), but just because that corpus bears symptoms of
the processes whereby it was acquired. Certainly, the knowledge prerequisite to buying a kids’
meal is more impressive than the knowledge contained in any AI program. But what is more
impressive about children is how quickly they can pick up a new language.



In general, the idea that axiomatizing common sense is tantamount to producing common
sense—no matter how extensive the theories axiomatized—is a totally hopeless concept. It
confuses the product of intelligence, our common sense theories of the world, with the processes
of intelligence. No matter the scope of such axiomatizations, the robot embodying only that
will be unable to generate any new common sense theory for any new environment to which it
is introduced. As I have already remarked, an inability to learn even the simplest facts about
one’s environment is the antithesis of intelligence and common sense.?

Israel tries to defend the importance of the naive physics research program by asking what
the criterion of adequacy for our AI robot is, and then answering that it must just be that
the robot’s commonsense theory about the world be “informally complete”—which turns out
to mean for Israel that the robot successfully incorporates an axiomatized theory adequate for
getting about in the world (1985, p. 438). But this just begs the question: this supposed
criterion of adequacy is nothing less than the implementation of the logicist program. The
primary criterion is surely intelligent performance in some broad, not fully predictable, domain
of behavior. There may be additional, secondary criteria which refer to aspects of the internal
representation of knowledge and inference; but insisting that belief in logicism is a precondition
to real Al research is experimentally and theoretically inadequate.

In summary, the production of an autonomous artificial intelligence presupposes an answer
to the problem of how to produce an artificial system that can learn about its world. In the
sequel I shall examine a number of suggestions about how this might be done without using
quantitative reasoning methods; I shall find them lacking. What I am not arguing, however,
is that these or any other qualitative reasoning methods are without merit. They may well
be useful in the sorts of super-tools that I dismissed above: these were dismissed after all not
because of their unimportance, for expert systems and other super-tools are very important;
they were dismissed simply because they do not offer a model of autonomous intelligence, and
they should not be misconstrued as doing so. All of my subsequent criticisms are intended to
be of like kind: in particular I shall attempt to show that default logic cannot reasonably be
construed as offering a model for a learning, inductive intelligence.

3.3 The Challenge of Nonmonotonicity

Marvin Minsky pressed some quite different complaints about logicism in an unpublished ap-
pendix “Criticism of the Logistic Approach” (1974). One of Minsky’s central objections is that
logic demands consistency, since inconsistency plus deductive closure leads to a radical inability
to demarcate rational from irrational beliefs; but, since the sets of beliefs of some rational agents
(namely, us) are demonstrably inconsistent (as Plato’s Socrates was fond of pointing out), we
cannot then use logic to model rational inference. We must employ some inference technique, a
control method, which is not so sensitive to inconsistency as are the rules of logic. Minsky goes
so far as to claim that consistency is not desirable (1974, p. 76):

I do not believe that consistency is necessary or even desirable in a developing intel-
ligent system. No one is ever completely consistent. What is important is how one
handles paradox or conflict, how one learns from mistakes, how one turns aside from
suspected inconsistencies.

David Israel (1985) pounces upon this. If consistency is not even desirable, why bother to remove
or avoid inconsistencies? But a more sympathetic understanding of Minsky’s words is in order
here; we shouldn’t expect Minsky to be so silly as to assert that inconsistency (of all things!)
both is and is not desirable. And a perfectly sensible interpretation is available: clearly, what



Minsky means here is that inconsistency is undesirable locally—when a specific inconsistency
is found it should be expunged—but the generation of inconsistencies may be an unavoidable
side-effect of inference and learning (in the “developing system”); that is, an appropriately rich
and flexible epistemic agent needs to be capable of reaching unrecognized inconsistent states,
much as we do. In what follows, I will characterize such an agent as ‘systemically inconsistent’.”

The undesirability of local inconsistency, and the long-term unavoidability of systemic incon-
sistency, are hardly irreconcilable. We reconcile them. We manage somehow to learn inductively
by coming to conclusions that explain prior facts that puzzle us, while avoiding—or retracting—
conclusions that we know are likely to be in error. To be sure, there is not universal agreement
about this ability. Karl Popper, for one, thought that the tension implicit in our having the
twin goals of maximizing information content and minimizing error were irreconcilable and in
particular that it posed insuperable difficulties for any inductive philosophy. If, for example, we
adopt the by now standard way of measuring the information content of h as the —log P(h), then
the probability of h rises as its content diminishes, and vice versa. From this Popper concluded
that scientists “have to choose between high probability and high information content, since for
logical reasons they cannot have both” (1959, p. 120; his emphasis). Popper notwithstanding, the
conclusion does not follow from the above inverse relation, as there is no incompatibility between
high prior content for h and high posterior probability for h. (The inverse relation obtains for
the probability of A and its content only if they are calculated using the same probability func-
tion.) When we aim for high content, we aim for theories that go well beyond our initial state
of knowledge. That inductive leap makes error unavoidable in the long run. But recognition
of that unavoidability is not tantamount to a passive acceptance of inconsistent states nor to a
lack of a preference for truth over falsehood. We assess our inductive leaps in the harsh light of
posterior evidence.

Israel has a more relevant response to Minsky’s inconsistency argument against logicism,
drawing a distinction between the use of logic as a representation language and the use of logic
per se. Israel’s idea is not, of course, that knowledge should be encoded in formal language while
formal inference rules be abandoned: he allows full use of formal inference rules. The idea is
rather that the logical inference rules are to be embedded in a broader control structure. As he
says, although a set of inconsistent premises can be used to infer anything at all, that fact does
not show that they should be so used.

The remaining question is, What is the nature of this broader control mechanism? What
I will continue to call logicism below—exemplified by both Israel and McCarthy—displays a
strong preference for minimizing non-logical rules of inference and the exclusion of quantitative
modes of reasoning.

3.4 The Response of Default Logic

Many of Minsky’s objections to logicism revolved around the existence of exceptions, on the
importance of defeasible inference in human cognition. The point is that we often, if not typically,
draw conclusions from what we know or believe that are far more tentative than the premises
we start from. Thus, knowing that Tweety is a bird and that birds generally fly, we happily
conclude (perhaps) that Tweety can fly. While such inferences may be rational, they are hardly
exceptionless.'?

Allowing exceptions to our accepted rules of inference violates the standard canons of de-
ductive inference: it is placing the center of gravity for our inferential world in some other place
than its traditional home, deductive validity.

Unsurprisingly, there has been some resistance to this shift. As David Israel points out



(1980), traditional logics may be employed in nonmonotonic ways—that is, logic alone does
not dictate that our knowledge bases must only grow and never contract. Thus, when a new
belief is added and an inconsistency arises, we may repair the damage by rejecting one or more
premises that gave rise to the inconsistency, including perhaps that new belief. This does not
require unsound rules of inference (although, of course, selecting something to reject requires
more control structure than a theorem prover provides). But what Israel fails to notice is that
the Tweety example (and indefinitely many others) does employ such unsound inference rules.
If we discover that Tweety has a broken wing, then none of the premises we invoked, nor the
new belief that Tweety does not fly, is a promising candidate for rejection in order to clean
up our belief set. What happened? We did not use modus ponens in the first place. We used
an entirely different kind of inference rule, a default inference rule, whose conclusion can be
retracted without impugning the epistemic standing of any of its premises. That is what is
strikingly nonmonotonic about default inference: not that premises may be retracted, but that
conclusions may be retracted without affecting the premises. (Of course, the latter characteristic
does not preclude retracting premises as well, should circumstances warrant it.)

Many (or most) logicists have given up on defending monotonic logic as the primary vehicle
for automating intelligence (for a notable exception see Poole 1989). Like McCarthy, they
have moved on to formalizing nonmonotonic inference. But it seems appropriate to continue
calling them logicists since the approach taken has almost always been to extend formal logic, by
including new inference rules and axiom schemata. The nonmonotonicity that is characteristic
of defeasible inference obliges us to recognize it as a form of inductive inference: if the retraction
of a conclusion does not impugn any of the premises used in arriving at it, then the conclusion
ipso facto is an ampliative one. As I noted earlier, the default inferences addressed by default
logic lead from particular to particular, rather than engaging in the testing or validation of
general hypotheses. But they are no less inductive for that, and it will be our special concern
here whether the logicist refusal to employ the usual quantitative tools for assessing inductions—
especially probability theory—leaves them in a tenable position for modeling defeasible inference.

What has come to be called default logic (following Reiter 1980), and which is the most
popular Al formalism for effecting nonmonotonic inference, adds default rules of the form:

A:B

C

Such a rule supports the defeasible inference of C given knowledge of A, so long as B is consistent
with what we know. More precisely, if A (conventionally called the prerequisite) is a member of
K (where K is the corpus of knowledge/belief) and if B (the justification) is consistent with K,
then defeasibly add C (the consequent) to K. If the above rule is named ‘d’, we can use ‘PRE(d)’,
‘JUS(d)’, and ‘CON(d)’ to refer respectively to its prerequisite, justification, and consequent;
i.e.,, PRE(d) = A, JUS(d) = B, and CON(d) = C.

Successive use of default rules, employing intermediate default conclusions as the prerequi-
sites of further rules, can characterize the default import of a state of belief K. We can introduce
a formal concept of a default proof based upon this intuitive idea of using a sequence of default
rules (cf. Reiter 1980, p. 99).

A default rule for the Tweety inference would be:

Bird (Tweety) : Flies (Tweety)
Flies (Tweety)

This kind of rule is called a normal default because the consequent and justification are identical
(i.e., JUS(d) = CON(d)); such rules can be abbreviated in the fashion Bird — Flies. In our
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initial epistemic state we do not know of any reason to believe that Tweety cannot fly, so the
default rule allows us to conclude that Tweety does fly (if we had known that Tweety cannot
fly, the justification Flies(Tweety) would not have been consistent with K).!! Assuming we
can develop sensible criteria for what is and what is not a good (justified) default rule, then
this extension to logic promises to allow us to explore the (default) implications of our beliefs.
Cashing in on this promise turns out to have been extremely difficult and has absorbed most
of the energy of default theorists. This research program has so far failed to meet the basic
criterion of adequacy: to provide a non-ad hoc formalization that (mostly) endorses default
conclusions that humans readily accept and does not endorse those that humans strongly reject.
This failure has been freely admitted by at least some proponents of nonmonotonic formalisms.
(E.g., Reiter 1987, p. 183: “..we know almost nothing about reasonable ways to compute
nonmonotonic inferences.” See McDermott 1987 and Etherington, et al. 1991 for interesting
discussions of this point.) Defenders will point to the many technical obstacles that stand in
the way of producing an adequate nonmonotonic formalism. It may be, however, that many of
the technical difficulties have underlying conceptual causes.

4 Problems with Default Logic

The general model for an independent intelligence suggested by default logic is that of an agent
using default rules to predict events in its world and using observations to confirm or correct these
predictions. The ability to perform defeasible inference must be supplemented by complicated
perceptual mechanisms and the means to do belief revision, in particular throwing out default
conclusions that get in the way of observational facts. This is the logicist view of default logic.
Whether or not default logic may be useful otherwise for artificial intelligence, I shall argue
that this model of intelligence must be wrong. For this logicist model is of an agent that can
only learn about the world what is directly given it by its designers (in the form of magically
available default rules) and by perception. There is no ability in prospect for the agent to be able
to generalize about its world, to generate and evaluate default rules on its own, without relying
upon magic. What are lacking are any useful criteria of adequacy for the default rules themselves.
The difficulties posed by the lack of such criteria are clear in the technical development of default
logic.

Much of that development has occurred through considering cases of defeasible inference
which are intuitively clearly good or bad, and then adjusting the rules of the logic so as to match
our intuitive classifications. To take a simple example, consider Figure 1, the “Nixon diamond”
(referring to Richard M. Nixon). This is an inference net, where each ‘=’ arc represents a
universal generalization, ‘—’ represents a default rule, and ‘|=’ (or ‘|—’) represents the denial
of a universal generalization (or, of a default rule)!2—in this case, we have the default rule
Republican(x) — — Pacifist(x). Here we have two potential chains of inference, one leading to
Pacifist(a) and one to — Pacifist(a), where ‘a’ designates Nixon.!3 This means that we can use
default logic to get two competing, incompatible extensions'® of K: K’ = {Nixon(a), Quaker(a),
Republican(a), Pacifist(a)}* and K” = {Nixon(a), Quaker(a), Republican(a), = Pacifist(a)}*.
But the existence of multiple extensions here is not really a problem. It is true that we have
grounds for preferring one conclusion over the other, but those are additional grounds. Were
we confronted with only the information that Nixon is a Republican and a Quaker, then the
response that the information is ambiguous with respect to pacifism seems quite legitimate. In
other words, it is a plausible interpretation of default logic that only sentences in the intersection
of extensions to the knowledge base are to be considered valid default conclusions.
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Insert Figure 1 about here

Consider then Figure 2, which is superficially similar to the Nixon diamond. Here again
we have two potential chains of inference. Given Whale(a), we can conclude by deduction that
Marine-Animal(a) and that Mammal(a). We can then use the default rule to infer Gilled(a)
or use modus ponens to get — Gilled(a). Intuitively, it is clear that we want to prefer the
latter inference over the former. In this case it is no trouble to “adjust” the default logic to
correspond to our intuitions: application of the default rule in the first inference would require
that {Whale(a), Marine-Animal(a), Mammal(a)} U K U {Gilled(a)} be consistent, which is
false. The only difficulty here is to ensure that any implementation of the default logic includes
heuristic consistency checks that go at least so far as to discover this level of inconsistency.'®

Insert Figure 2 about here

A kind of statistical syllogism, by contrast, has been the source of serious difficulties for
default logic. Consider the following argument:

Most birds are fliers
Most fliers are insects
Most birds are insects

The conclusion that Insect(Tweety) can be defeated trivially by pointing out that we know
independently that no birds are insects. But I can embellish the story to the point where this
defeater is unavailable. Suppose that in the biology department some bioengineers have managed
to mix together the genes of bees and robins, producing some hideous monster that can fly. It is
not inconceivable that we would accept a linguistic convention to describe these things as both
birds and insects. Since there are no great number of these (nor are they typical of birds, etc.),
we can represent the inferential setting with Figure 3.'® Here once more we have competing
inferential chains. However, a preference for deduction will not resolve the impasse. Nor is
resignation to ambiguity acceptable: the lack of conclusion (incompatible multiple extensions)
that one obtains by a direct translation of the arcs as default rules is inconsistent with our clear
preference for denying that an arbitrary bird would turn out to be an insect.

Insert Figure 3 about here

There have been a number of responses to this kind of problem (known as the ‘specificity’
problem). One way of forcing a preference is to rewrite the default rules to name explicitly those
exceptions which defeat them: instead of the “normal” rule (a) use the “semi-normal” (b):

(a) Flier(x) : Insect(x) (b) Flier(x) : Insect(x) A — Bird(x)
Insect(x) Insect(x)

Touretzky (1984, p. 107) notes that moving to semi-normal rules forces the complexity of default
rules to increase as the knowledge base grows. But things are even worse than that. Many of
the concepts of ordinary language are not resolvable into a clean set of necessary and sufficient
conditions, as Wittgenstein pointed out for the concept of game (1958, paragraphs 68-70). Any
proposed set of sufficient conditions will have exceptions. For example, whatever criteria we
propose for an activity being a game, we can always invent a new game using new kinds of
activity (unless the sufficient conditions offered circularly make reference to something being a
game, when we have no interesting analysis of the concept). But if that is so, there is no reason
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to believe that the program of implementing autonomous intelligence using semi-normal rules
can succeed: as our concepts have this open texture there is no point at which we can claim
to have a complete list of exceptions. The default “logician” shall continue to need magical
assistance to provide truly intelligent editing of its semi-normal rules.

Another attempt to deal with the birds and the bees has been to point out that the path from
Bird(Tweety) to — Insect(Tweety) is shorter than that leading to Insect(Tweety) (e.g., Fahlman’s
NETL works this way; see Fahlman 1979). Unfortunately, this shortest path criterion is overly
sensitive to our language and state of knowledge. For example, if we added a node between Bird
and — Insect, such as Vertebrate, then the shortest path criterion fails to yield an answer, even
though we know that being a vertebrate does not predispose anything to being an insect.

Touretzky (1984) presents an alternative approach to enhancing default logic so as to avoid
indecision, or the wrong decision, in this case. He introduces a partial ordering on normal
defaults by which he can prefer arguments based upon preferred default rules. A rule d; is
preferable to d;, written (perhaps counterintuitively) as ‘d; < d;’, if and only if

(a) there is a dj such that PRE(d;) = PRE(d;) and CON(d;) = PRE(d;). For example, if
we have a chain of defaults A - B — C, then A - B <« B — C, because PRE(A —
B) = PRE(A — B) and CON(A — B) = PRE(B — C). Le., the initial link of a chain is
preferred.

or

(b) there is a dj, such that d; < dj and dj, < d;. For example, if we add one link to our chain
in (a) we get A - B — C — D; by clause (a) we get both A - B« B — C and B —
C <« C — D, so by clause (b) A - B <« C — D. (Le., clause (b) allows us to prefer the
earlier links in a chain of defaults to subsequent links.)

In another case of interest, if we are given the three rules: A - B, A — C, B — D, we get
the preference A - C < B — D, because PRE(A — B) = PRE(A — C) and CON(A — B) =
PRE(B — D). Viewing the graph below, we can see that a one-link chain with a common head
gets preferred.

Insert Figure 4 about here

Now in the default representation of Figure 3 we have:

dlzB—>F
dg:F—)I
d3:B—>—|I

As T mentioned, this representation leads to multiple extensions in unvarnished default logic.
But we can use the ordering of the default rules to impose an ordering on default proofs as
well. In this case, we have the rule preferences d; < dy (by clause (a), letting d; itself be dj)
and d3 < ds (by clause (a), letting d; be di). The default proof yielding Insect(Tweety) uses
the following sequence of defaults: p = < di, d2 >; the alternative proof of — Insect(Tweety)
uses p' = < d3 >. Touretzky’s rule is to order default proofs according to the order of the last
default rules employed; since d3 < do, it follows that p’ < p. Hence, only the conclusion -
Insect(Tweety) is permissible.

This seems to be a real improvement over normal default logic. As Pearl points out (1988, p.
472), Touretzky’s rule forces our knowledge about subsets to take precedence over our knowledge
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about supersets, which is surely what we want. Returning to the case of Tweety the Penguin’s
flying abilities, if we add a default rule to represent the subset relation Penguin C Bird (do
below), we get Figure 5 or:

d1:B—)F

d2:P—>B
dg: P—>-=F

Insert Figure 5 about here

If we take do, the rule expressing the subset relationship, as dj, in clause (a) we find that the
default specific to that subset (Penguins) is preferred to the default applying to the superset
(Birds); i.e., d3 < d;.

Unfortunately, Touretzky’s system is not a general answer to the problem of selecting between
competing chains of inference. It succumbs to the same linguistic dependency that afflicted the
shortest path criterion.'” Taking the same statistical syllogism above, but adding the node
Vertebrate between Bird and — Insect, we get Figure 6, or the following four default rules:

dl:B—)F
do: B—V
dg: F =1
dy: V=l

Insert Figure 6 about here

Inspection reveals that (aside from the reflexive cases, which can be induced by adding the
dummy defaults of the form X — X) only the following four preference relations can be generated
by clause (a): di < d3, dy < dy, do K d3, and dy < dy. Clearly, we cannot get either d3 < dy
or d4s < d3 through clause (a); the former would require the default Flier — Vertebrate and the
latter Vertebrate — Flier, neither of which makes sense. Clause (b) just allows us to connect
directly the ends of chains in a preference order. In short, we cannot relate by preference ds and
dy, so Touretzky’s system gets stuck in the same way as Reiter’s default logic, with no way to
prefer the rule that birds are not insects over the rule that birds are insects.

In general, the idea of assessing the strength of non-deductive chains of reasoning using
only syntactic features of those chains appears to be of dubious merit. While it is clear from
Touretzky’s work that aspects of those chains are relevant—in particular, subset relations that
hold across chains are surely relevant—it is not believable in general that syntactic features of
those chains will serve to fully determine the inferential relevance of the beginning to end nodes.
From a Bayesian perspective, default logicians are attempting here to measure and compare
the conditional probabilities P(end-node | beginning-node) on the basis of strictly qualitative
features of an inference net. But having stripped quantitative representations from the network,
it is not reasonable to suppose that the remaining features alone could be sufficient to adequately
approximate Bayesian reasoning. The Vertebrate example occasions the failure of Touretzky’s
preference system. And this argument suggests that any qualitative extension to that system
must run up against some other counterexample somewhere.
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4.1 Modus Tollens

Given that default rules allow us to perform a defeasible kind of modus ponens, one naturally
wonders whether the inference can work in the reverse direction in a kind of modus tollens; that
is, are we justified in concluding, given only the fact that Tweety does not fly, that Tweety is
not a bird? Certainly, the default logic developed by Reiter does not endorse such reasoning.
Nor does it appear that such reasoning was intended to be supported.

A defense for a refusal to support modus tollens arguments has been presented by Dubois
et al. (1985).'® They describe an example intended to show that allowing modus tollens would
lead to fallacies. Suppose we adopt the rule that if John attends a meeting, then Bob does not;
or for short, At-Meeting(John) — — At-Meeting(Bob). Surely, this cannot by itself support the
contrapositive rule presupposed by modus tollens, At-Meeting(Bob) — — At-Meeting(John). We
can give an interpretive story that rules out the latter, in fact. Suppose John is Bob’s boss and
that he arranges and attends all of Bob’s meetings. Then not only is the contrapositive false,
its universal denial, At-Meeting(Bob)=> At-Meeting(John), is true. This is, of course, consistent
with the vast majority of John’s meetings being unattended by Bob, which would be normal
for a manager. This example makes its point. A default rule cannot by itself support a modus
tollens argument, unlike universal generalizations. It is curious, however, that the example used
to defend this feature of default logic relies entirely on a probabilistic insight (see Figure 7).

Presumably, the conclusion must be that the contrapositive rule must stand or fall on its
own merits. But this leaves us with the awkward question, What merits are those?

Insert Figure 7 about here

There surely are cases where a default modus tollens should work. There must be cases
where, whatever those merits are, they are sufficient for allowing both directions of inference.
Indeed, the birds-and-bees is one such case, since despite the occasional biochemical experiment,
discovering that something is an insect would strongly predispose us toward concluding that it is
not a bird. For a more homely example we can turn to the early 1991 baseball season. Consider
the rule, when Roger Clemens pitches, the Boston Red Sox win, or RC — Win. We had pretty
good evidence (if limited to the early season) that this was a good rule. Now suppose that it
was Clemens’ turn in the pitching rotation yesterday (sometime during early 1991). Then I
can conclude that Boston won yesterday. But it could be that I heard from someone that the
Yankees beat Boston 15-2. It would seem perfectly rational to conclude that Clemens did not
pitch in his turn. Default logic will not lead us to that conclusion, however. The fact is, if we
are given

(a) RC — Win

(b) RC

(c) - Win
then, contrary to the logicist view of default logic, any of the following conclusions are possible
(except for the second case, it is also assumed that Win has been retracted):

(1) = RC (Clemens missed his turn)
(2) Win (Our informant was unreliable)
(3) = [RC — Win] (Clemens’ arm is dead)

(4) (a)-(c) are OK  (The default conclusion was in error)

There is a perfectly good story potentially available for each of these conclusions. Which con-
clusion we accept ought rationally to depend on which story we think is most likely true. A
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mechanical retraction of the default conclusion, leaving the other options unconsidered, would
display a severe inability to assess either the quality of the evidence or the validity of the rules.
If we learn (b) or (¢) through a news report, we justifiably will give it more credence than if
we were to learn the same via the off-hand remark of someone at a bar. Likewise, we can have
direct or indirect evidence to support or weaken the rule (a). There is nothing in default logic
that addresses any of these issues—yet they are hardly inconsequential: the default retraction
of option (4) is senseless if any of (1)-(3) are well supported conclusions. In short, we need
means to assess the strength of support for all of the premises and the conclusion of a default
inference, as well as the support for the default rule itself. These are just the kinds of questions
that Bayesian methods have always attempted to address.

5 Some Possible Semantics for Default Rules

This brings to the fore the question of the relation between default rules and the correspond-
ing conditional probabilities. Sometimes the question has been put: Aren’t default rules just
probability statements in disguise? That probabilistic formulation is easily defeated, if it is
conceded that default rules are rules and that rules are neither true nor false. But this “victory”
for logicism is both trivially easy and trivial. It only pushes the problem back one step: Are
there any such rules? I prefer an alternate way of re-raising the issue: Is not a sufficiently high
conditional probability a necessary condition for the acceptability of some (or many) default
rules? I cannot here provide a full defence of the positive answer, but I shall outline such a
defence, while criticizing two popular alternative proposals for giving default rules a semantics:
typicality relations and the adoption of rules by convention.

5.1 Typicality, or Most Birds Don’t Fly

J. Terry Nutter (1990), objecting to the probabilistic understanding of defeasible inference,
points out that there are times when in fact most birds do not fly, namely during the spring
when most birds are unfledged. (This can surely be doubted on a variety of grounds, including
its hemispherical bias; but we can be charitable here, inasmuch as it could be true sometimes and
in some linguistic contexts.) Presumably, we should continue to accept and use the default rule
Bird — Flies; otherwise, her point would not be an objection to the probabilistic interpretation
of defaults, but a capitulation. But how can the statistical fact and the contrary default be made
compatible? Nutter’s answer is that the rule expresses a typicality claim: since the “typical”
bird flies—and Nutter cites unsurprising psychological evidence that people do treat flying birds
as more typical than flightless birds—the rule is a good one.?’ But good for what? It is one
thing to be good for, say, descriptively representing the way most people think, or for explaining
associative priming between concepts, but it is quite a different thing to say that the rule is
good as a normative guide for inference, which is all that we are concerned with here. Nutter’s
position applied to normative Al would amount to this: so long as typicality endorses it, infer
what you know is most likely false.?!

The object of inference to a conclusion is normally to build a model of the world that is
maximally useful in explaining, predicting, and maneuvering within that world. It is (nearly)
universally accepted that contradictions and errors are not good in themselves, and so we should
not endorse policies that are more likely than alternative policies to lead to error, when there
are no significant compensating virtues. It seems, therefore, that we must reject Nutter’s policy
of preferring improbable, “typical” conclusions over probable conclusions.

At first glance, my argument may appear circular. That is, the question before us is just
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whether default rules, when legitimate, are backed by probabilities. The counter has been made
that the semantics of default rules are to be understood in terms of typicality relations and that,
therefore, where there is a conflict between typicality and probability, the latter should go. 1
reject this argument because in such cases typicality is not backed by the requisite probabilities.
Of course, I could play that game with any proposed counterexample to probabilism and never
be shaken off of my carrousel. But circular arguments are not very convincing to unbelievers!?
However, my argument in a broader context is not circular. In rough outline it goes as follows.
There are independent arguments for believing that probability claims support inference. These
are specifically the various Dutch book arguments—demonstrating that by violating probability
theory you render yourself open to guaranteed losses from supposedly fair bets—and the good
sense that the Bayesian analysis makes of confirmation theory (see Howson and Urbach 1989
on both counts). These arguments, to support inference and not just deductive reasoning about
probabilities, need to be supplemented by arguments for probabilistic acceptance, which I do in
part below. The sum of these arguments, then, supports the claim that there are good indepen-
dent reasons for believing that probabilistic inference has wide applicability as a normative guide
to commonsense and scientific inference. No such arguments have been forthcoming to support
the rationality of inference based on typicality claims exzcept to the extent that such claims are
also supported probabilistically. There is no Dutch book argument for typicality-based inference.
What has been offered most commonly as supporting typicality-based inference is a collection
of cases which intuitively are cases of rational inference and which reflect our typicality judg-
ments. But, given that we have independent reason to believe that probabilities can support
such inference, if the probabilities in these cases are shown to run in the right direction, then
there would be no additional inferential work left over for typicality to do—and so, no reason
to believe that typicality supports normative inference.

The remaining question is whether in Nutter’s case the probabilities do flow in the right
direction. The answer depends, of course, on whether one believes that—under the particular
circumstances—the default rule is right. The psychological evidence cited does not support
Nutter’s case so far as normative inference is concerned. The intuition that the rule is fine as is
may perhaps withstand the point that persistent inference to known or probable falsehoods will
do severe epistemic and economic damage, but it is certainly not an intuition that I share. (I
would be happy to make bets with Terry Nutter come springtime about birds flying, assuming
that she will put her money where her defaults are!)

Other than outright rejection of the default rule, there are at least two other responses
to Nutter’s example that, depending upon context, may be reasonable: (a) It could be that
conversational implicature—the implicit conventions governing some context of discourse (cf.
Grice 1975)—sometimes rules out certain non-standard cases: i.e., if unfledged birds were meant
to be within the domain of discourse, they would have to be explicitly identified. If unfledged
birds are not even in the domain of discourse, then the conditional probability for flight will be
quite high all year around. Thus, both the conditional probability and the default rule point in
the same direction. (b) Within a specific context, the rule may refer to species rather than to
individuals, in which case again the conditional probability will remain high. Clearly this will
not always be the right interpretation, for sometimes we talk about species and sometimes we
talk about individuals.?

5.2 Convention, or Birds Shall Fly

Nutter (1990) extends the above objection to the probabilistic account of default inference by
reference to the many-splendored nature of defaults: It is not merely the case that probabili-
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ties cannot account for typicality-based generalizations, but there is a large variety of default-
supporting generalizations; probabilistic generalizations are only one such kind, the (or many,
or some) other kinds cannot be accounted for in terms of probability (cf. also Reiter 1987). All
of the following varieties have been discussed in this connection at some point:

e Typicality Generalizations: Birds fly.

e Fuzzy Generalizations: Basketball players are tall.

Causal Generalizations: Drunks have poor reactions.

Linguistic Conventions: Birds fly.
e Normative Principles: Consider defendants innocent until proven guilty.

e Methodological Rules: Assume things are as they appear to be.

Each of these appear to support defeasible inference. There may be some dispute about the
merits of the examples I have selected, but if they are accepted, then in each case the conclu-
sions they endorse are surely nonmonotonically retractable on the basis of conflicting additional
evidence. It is not necessary for Bayesian Al to claim that all of these varieties of rules must
be amenable to probabilistic analysis; nor do I claim that. But I do claim that the two cat-
egories most popularly drawn upon by default logicians are so amenable, namely typicality
generalizations—dismissed above—and linguistic conventions.?*

John McCarthy has proposed (1986) that we interpret default rules as expressing conventions
that govern discourse. No such convention, for example, “requires that most birds fly. Should
it happen that most birds ... cannot fly, the convention may lead to inefficiency but not incor-
rectness” (p. 91). This stands on its head my use above of Gricean implicature to rule non-fliers
out of the domain of discourse. My point there was that in that case implicature can make the
statistical facts break the right way. But McCarthy is surely also right that our conventions do
not guarantee that the statistical facts will go the right way—and that the interesting question is
what to say about cases where the two diverge. If in fact most birds do not fly, then maintaining
the default rule in the face of contrary statistical evidence will obviously lead to inefficiency:
we will have to nonmonotonically repair a good deal of inferential damage. But then, just as
obviously, McCarthy is wrong to say that the rule will not lead to incorrectness. He is probably
relying here on the trite point that the rule itself is not false and ignoring the fact that most
conclusions reached by following that rule are false. One can ignore the falsehoods and stress
the inefficiency only on the implausible assumption that all the falsehoods will be uncovered and
repaired without serious harm being done. However, on precisely the same grounds that applied
to typicality-based rules, the statistical facts require us to revise any convention-based default
rules that go astray: ignoring those facts is known to lead not just to inefficiency, but also to
wrong explanations and predictions, and in general to a wrong model of reality. A minimal, reg-
ulative concept of rational norms constrains our conventions to reflect accurately “the statistical
reality that compelled the design and use of these conventions,” as Pearl puts it (1988, p. 478).

The argument from many-splendored defaults appears to have a good point to make, that
there is rule-based defeasible inference that cannot be explained or modeled probabilistically.
Yet the two examples that have been touted most prominently fail to make that case: typicality
generalizations and linguistic conventions appear to support default inference only when the
corresponding conditional probability backs that inference. Adding in causal generalizations and
foundational principles, these are just the kind of generalizations needed to build an empirical
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world view, and so provide an appropriate platform for building an autonomous, Bayesian
intelligence.

6 Lessons from the Lottery Paradox

We have seen that there are serious difficulties in the way of providing a purely qualitative
account of inductive learning as defeasible inference. However, there has apparently been a
brick wall lying in the path of any alternative attempt to represent inductive learning using
probabilistic acceptance: the lottery paradox. Roughly put, the lottery paradox points out
that a simple identification of the acceptability of an inductive conclusion with high probability
appears to confuse a low chance of winning a fair lottery with no chance of winning it, leaving
inexplicable how a lottery could ever be won.

For the last thirty years, since Henry Kyburg, Jr. published it in (1961), many philosophers
and Al researchers have thought that the lottery paradox establishes the vacuity of probabilis-
tic inference by showing that it has an unwholesome proclivity to degenerate into out-and-out
incoherence.?® But that is a misunderstanding of the paradox, as Kyburg has argued himself.
The immediate reaction by various inductive logicians, such as Hintikka and Hilpinen (1966),
was to evade the paradox by imposing strong restrictions upon acceptance, beyond any quan-
titative confirmation level. But Kyburg, in his paper “Conjunctivitis” (1970), demonstrated
that these systems suffered a fate quite as bad as succumbing to the paradox: in effect, the
only statements that ended up being acceptable were the grand conjunctions of the observable
evidence. Being incapable of any generalization, indeed of any conclusion going beyond the evi-
dence, these systems suffered a total inductive collapse. Qualitative systems retreat even farther
from probabilistic acceptance. However, the paradox causes trouble for any system, qualitative
or quantitative, that would attempt induction—that detaches an ampliative conclusion from its
context (premises). Indeed, the trouble it causes for qualitative systems is the worse trouble—
appearing to be irreparable—while the trouble posed for a Bayesian system with acceptance is
at least manageable in principle. I will take John Pollock’s OSCAR (How to Build a Person
1989) and default logic for case studies. The response of the former to the lottery paradox is
again one of inductive paralysis—a paralysis that spreads throughout the system; the response
of default logic is little different.

The lottery paradox put more precisely requires a number of assumptions to get started.
Perhaps most prominently, it needs a probabilistic rule of acceptance. An acceptance rule is
supposed to warrant the belief in the conclusion of an inductive argument when that conclusion
achieves some sufficiently high level of probability. Given an acceptance level of 0.9, say, and
a million participants in a fair lottery, then I am warranted in concluding that my own ticket
i will not win; i.e., if we call this conclusion ‘=®;’, from the argument that shows P(-®;) =
1 —1075 (i.e., 0.999999), I can inductively conclude that —®;. While this may seem all right, it
is clear that we can draw the same conclusion for every player in the lottery. Hence, ~®q, ...,
—®1 goo,000- Having accepted one million assertions of failure, we can then conclude both

A —®; (by conjunction)
and

- A;j—®; (by fairness of the lottery)

that is, both that no one will win the lottery and that someone will win the lottery.
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This argument has been thought to provide a conclusive reason—in the form of a reductio ad
absurdum—to reject probabilistic acceptance and to turn instead to qualitative knowledge re-
presentations.?® But the paradox turns on more than acceptance: as Kyburg pointed out (1970),
the paradox requires other assumptions, including at least the following.

1. The Direct Inference Principle. If the frequency of property Q) in population P is r
and if an object aeP is randomly selected, then the probability that a is Q is r.27

2. The Weak Deduction Principle. If a statement is accepted, then its direct conse-
quences are acceptable as well.

3. The Weak Consistency Principle. No self-contradictory statement is acceptable.

4. The Conjunction Principle. If two statements are accepted, then their conjunction is
acceptable.

Kyburg took his paradox not to require a rejection of acceptance, but as an argument from the
principles of weak deduction and weak consistency to the inadequacy of the conjunction principle.
The conjunction principle entails the equivalence of weak deduction and deductive closure. And
it also forces the collapse of weak consistency, or any slightly stronger consistency requirement,
into the strong consistency principle that all finite conjunctions of our beliefs be self-consistent.
To some, the strong consistency principle is more obviously objectionable than probabilistic
acceptance: minimally, we have no working examples of strongly consistent intelligences. It is
clear enough that the conjunction principle is as central to the lottery paradox as is acceptance.

6.1 The Collapse of Collective Defeat

The lesson that John Pollock draws from the lottery paradox is not that probabilities provide
no reason to infer, but rather that what we have here is a case of collective defeat—that is,
none of the conclusions of the form —®; may be drawn because they collectively defeat each
other. It is Pollock’s stated objective to provide an account of inductive, defeasible reasoning
and thereby to facilitate the construction of a real artificial intelligence. He believes that this
objective can be fulfilled by laying down qualitative principles of reasoning, of which a principle
of collective defeat is fundamental. That principle states roughly that if we have a set of
defeasible conclusions where for each conclusion there is an argument from the other conclusions
(and background knowledge) to its negation, then, regardless of how long or complicated such
defeating arguments may be, none of the conclusions is warranted.

Specifically about the detached —®; in the lottery paradox Pollock says (1987, p. 494; my
emphasis): “Intuitively, there is no reason to prefer some of the [-®;] over others, so we cannot
be warranted in believing any of them unless we are warranted in believing all of them. But we
cannot be warranted in believing all of them,” because of the inconsistency. This is intended to
be an application of the principle of collective defeat; I shall call it Pollock’s Rule. Pollock’s Rule
can be seen as derivative from the conjunction principle—and viewing it in this light perhaps
makes it more plausible than otherwise. The contrapositive of the conjunction principle is: if
a conjunction is not acceptable, then not all of its conjuncts are acceptable. Of course, to
strengthen this contrapositive to allow, without restriction, the exclusion from our corpus of
belief of all of those conjuncts, as in Pollock’s Rule, would be absurd. But Pollock’s Rule is
restricted to cases where those conjuncts themselves have equal support. By the contrapositive
conjunction principle we must exclude some of those conjuncts; by equal support we cannot
prefer one conjunct over another; therefore, we appear to be constrained to exclude them all.
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This suspension of belief in the face of the lottery paradox has been found plausible before
(e.g., Cohen 1983, p. 249, Stalnaker 1984, pp. 91-92, Levi 1983, p. 255, and even Perlis 1987,
p. 188). But Pollock’s Rule, however plausible it sounds, fails to support a workable concept
of justified belief and therefore it fails to provide an adequate response to the lottery paradox.
This can be seen by observing that a reasonably close analogy can be drawn between the lottery
paradox and everyday reasoning situations. That is, one can “lotterize” just about any inductive
inference problem, and so, if using Pollock’s Rule, one will almost always be constrained to
indecision, even concerning the most ordinary, dull, unobjectionable inferences.

Consider a sequence of n coin flips of a fair coin. Any such sequence has a probability of
occurrence of (1/2)", which is, of course, a very low probability for large n. It seems, in advance
of flipping the coin, we should be able to state that the sequence that in fact turns up is highly
improbable. And so, we would be in a position to infer that the actual state of affairs would not
occur. But, naturally, we could say the same about any other sequence. Since some sequence
must occur, by Pollock’s Rule we cannot infer any of these conclusions. All that we need to
trigger Pollock’s Rule here, or anywhere, is a partition of the outcome space such that each
member of the partition has the same low probability of occurrence.

We might wonder why we should be concerned about drawing inductive conclusions within
such artificial environments as lotteries or n-length sequences of coin flips. The answer is that
we must be concerned about it, because we can typically partition inductive inference problems
in the way needed by Pollock’s Rule. Consider the practical problem of whether or not to take
an umbrella (for fear of rain, not sun) out on a walk tomorrow in the Sahara desert. We can
partition the possible states of the weather so that each member of the partition has roughly
the same, low, probability of occurring. Any continuous measurement scale that applies to the
weather will do, for example the temperature. Thus, it may be that the probability of its being
sunny and the high temperature being within 1/100th of a degree of 45 degrees Celsius is the
same as the probability of its being rainy and the high temperature being within 3 degrees of
30 degrees. It is always possible to generate some partition with the cells having roughly equal,
low probabilities of occurrence (see Figure 8). One minus this low probability is greater than
our acceptance level, by stipulation; that is, we will create a fine enough partition that the
probability of any member of the partition is sufficiently low. We are inclined to say then of any
such event that it will not occur, and so conclude, for example, = R3g. But again, there will be
weather tomorrow in the Sahara, so by Pollock’s Rule we are held to indecision.

Insert Figure 8 about here

Clearly, we can play the partition game with just about any inductive inference problem.
But perhaps that does not seem so bad; after all, the only conclusions we are obligated to avoid
here are the denials of very particular states of affairs. And deciding whether we need umbrellas
tomorrow does not hang on the temperature, but on the precipitation. That is, it seems open
to us to forge ahead with the ordinary, boring conclusion that it will not rain tomorrow in the
Sahara (—R) and so that we do not need our umbrellas. But there is a problem with this line
of thought: if we can conclude that it will not rain tomorrow, then surely we can conclude—
deductively this time—that it will not rain tomorrow with the temperature near 30 degrees (that
is, =R F —R3p; see Figure 9). Since any conjunction deductively implies its separate conjuncts
(this conjunction principle is not in doubt!), if we are obliged to refrain from inferring some
conjunct (—Rj3p), we are equally obliged to refrain from inferring any conjunction containing it
(=R). Therefore, we cannot conclude that it will not rain tomorrow—we cannot conclude —R;
in general, we cannot reject any set of events for fear of rejecting its component subevents.??
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Likewise, since the affirmation of a set of events implies the rejection of the events excluded (since
S F —R), we also—absurdly—cannot affirm that it will be sunny tomorrow, no matter how likely
that may be (short of certainty). In the end, we cannot draw any inductive conclusions.??

Insert Figure 9 about here

6.2 Diagnosis

As T argued above, Pollock’s Rule is best seen as derivative from the conjunction principle—it is
a specialized version of the contrapositive conjunction principle. But why should we believe the
conjunction principle? It’s clear that if we believe that probabilities provide inductive warrant,
then the conjunction principle cannot be right: the probability of a conjunction of independent
non-trivial propositions is guaranteed to be less than the probability of any conjunct. The
conjunction principle requires us to ignore this fact. Regardless of your attitude toward inductive
probabilities, the conjunction principle is inimical to any variety of induction: any inductive
conclusion will be less certain than its premises; those uncertainties tend to accumulate through
conjunction; the conjunction principle requires us to ignore this fact. (And, of course, these
facts remain when the inductive support for each conjunct is equal, which is Pollock’s special
case.) It therefore should be unsurprising that inference systems founded on the conjunction
principle, including Pollock’s, end up rejecting induction.

In short, Pollock’s attempt to dispatch the lottery paradox using a qualitative system endors-
ing the conjunction principle suffers from the very same defect that Kyburg identified twenty
years ago in quantitative systems endorsing the conjunction principle: it eliminates induction. A
philosophy which endorses the conjunction principle, therefore, can hardly serve as a framework
for developing an artificial intelligence that learns inductively about its world.

Perhaps this conclusion will surprise Mr. Pollock: in introductory moments, he quite sen-
sibly urges that “a reasonable epistemology must accommodate both” deductive and inductive
reasoning (1987, p. 481). One plausible reason that Pollock and others have been led to the
extreme of rejecting inductive inference is an exaggerated concern with the normativeness of
inference rules. Although I think naturalized epistemology goes too far in rejecting normative
concerns, it is also possible to go too far by imposing utopian standards. Pollock is explicit in
stating that his theory of warrant attempts to capture what an ideal reasoner would be justified
in believing. His ideal reasoner is simply “unconstrained by time or resource limitations” of any
kind (1989, p. 127). But it is not necessarily true that because such a reasoner is somehow an
idealization, we or our Al systems can somehow approximate it: it is not clear how, or that, an
epistemology for God has anything much to tell us about human or artificial epistemology. In
particular, it may be plausible to those who have such intuitions that the (presumably infinite)
conjunction of everything justifiably believed by God is itself justified for Him, but this is not
merely implausible for humans, of humans it is known to be false.

The preface paradox (a relative of the lottery paradox) is a nice statement of our limitations:
even though we may be justified in believing each individual sentence of a book that we write,
we would also be well justified to insert into the preface the statement that at least one (other)
sentence in the book is false. What we require is an epistemology of fallible beings, an epis-
temology that can deal with error and inconsistency. The impossibility of avoiding error was,
after all, precisely the original stimulus within AI for investigating defeasible inference. To as-
sume simultaneously that errors will never occur—as is required by the conjunction principle—is
somehow inconsistent. It is high time that we recognized the global inconsistency that plagues
the systems we are and the systems we build, and stop demanding that the next step in building

22



a person be to scale up from human to godlike proportions.

6.3 The Retreat of Default Logics

The lottery paradox is not just an artifact of probabilistic systems, it is symptomatic of potential
troubles in any variety of ampliative, non-deductive system. It also gives rise to difficulties in
default logic, for example.?® We have to assume some applicable criterion of acceptability for
default rules, so let us say a default rule is acceptable if it expresses a typical property of a
class of objects and, for concreteness, that this means that when one learns how to classify
objects of that class (e.g., by ostensive definition) the property in question is usually to be
observed in the given exemplars (if ‘usually’ suggests that I am begging some question, just
substitute ‘almost always’ and rewrite the example below using the number of bird species we
in fact encounter). Then we can suppose that in a given linguistic community there are three
species of birds: Eagles, Penguins, and Hummingbirds. If these three are all equinumerous and
roughly evenly distributed, no species will be typical of birdhood; furthermore, it may well be
that the following three defaults are acceptable: Bird — — Eagle, Bird — — Penguin, Bird — —
Hummingbird. If we further assume it to be known that there are only these three varieties of
bird, then inconsistency threatens when one is presented with an arbitrary bird Tweety. The
inconsistency threatens, but does not actually arrive. If we use two defaults to conclude, say,
that - Eagle(Tweety) and — Penguin(Tweety), the rule for using defaults will prevent us from
concluding that = Hummingbird(Tweety) because that conclusion would be inconsistent with
our current (new) belief set. This way of evading inconsistency is not especially meritorious,
however. It leaves the default reasoner with some highly peculiar tendencies of thought. In the
given case, it will have defeasibly concluded that Tweety is a Hummingbird, since it can derive
that from its default conclusions. But that conclusion came on the basis of no information about
Tweety at all, beyond its being a bird. Should the default reasoner, for example, always apply
default rules in the same order, it will behave as though it has the rule Bird -+ Hummingbird—
even though it explicitly has the rule Bird — = Hummingbird! Indeed, what conclusions it
arrives at in situations of uncertainty will depend upon the arbitrary matter of the order in
which it considers its default rules. Default logic as it stands does not appropriately resolve the
lottery paradox.

What we have here, in fact, is the multiple extension problem all over again—but where it
bites. For, as we saw, the default system can conclude that Tweety is a Hummingbird by ordering
its consideration of default rules. By symmetrical reasoning we can have the default system infer
any other alternative result. In other words, there is a different default extension available for
each alternative default conclusion. As the differing content of these conflicting extensions
describes what the default system remains inconclusive about, no conclusion about Tweety will
be available. Etherington, et al. (1991) conclude in their recent discussion “since there is no basis
for determining which assumptions to forego, however, any is as good as another .... nothing
can be assumed about the individual tickets” in the lottery (p. 225). Although we have seen that
this kind of suspension of belief is wholly inadequate, it is hard to see how default logic alone
can support any induction more substantial—it appears committed to endorsing Pollock’s Rule.
It is trivial that everything is abnormal in some respect, otherwise it would not be a single thing;
if those respects in which the objects under consideration differ are governed by default rules (as
Poole 1991 argues is the normal case), then nothing short of direct observational knowledge of
their properties will suffice to rid us of indecision. Default logic is impotent to carry us beyond
direct, observational knowledge.

Some default logicians have suggested that such difficulties as we have encountered might be
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avoided by imposing a preference order upon default rules. We have already seen an example of
this in Touretzky’s system. That preference order was based upon syntactic relations between the
rules which are not satisfied by the bird-species rules, since they all have the same prerequisites.
But preferences can be imposed upon the default rules regardless, and some might think that
offers a way out of the arbitrariness brought on by the lottery paradox. However, there is no
apparent basis for preferring one of the bird rules over another, any more than there is a basis
for preferring one lottery ticket number over another. So the arbitrariness will remain, whether
or not it is formalized in an explicit preference ranking for default rules.

Another version of the lottery for default logic is given by considering a single default rule as
it applies over finitely many cases, rather than many rules applied to a single case, as above. Here
too we have problems. Default inferences are default precisely because they have exceptions—
that is, there is at least one member of the set of objects to which the default rule could be
applied, but for which this would result in an error. Since the set of potential objects here will
generally be finite, the situation for such a rule is isomorphic to a lottery with one or more
winning tickets (exceptions). In other words, being stuck in the lottery paradox is the normal
state of affairs, whether for the probabilist or for the default logician. So, the use of Pollock’s
Rule to suspend belief results in the suspension of virtually all inductive (default) inferential
processes.

What does default logic have to say about the conjunction principle? That is, are the default
conclusions arrived at indefinitely conjoinable? The definition of default proof given by Reiter
(1980, p. 99) allows the free deployment of any number of default conclusions in building up the
proof. Although this does not necessarily result in accepting their grand conjunction, it remains a
form of conjoint reasoning. Most natural would be to give our default conclusions the same status
as any other conclusion, making them available to all varieties of further reasoning. But granting
that our default conclusions are conclusions, and worthy of residing in our corpora of beliefs,
leaves the difficulty that the only constraint imposed is at the furthest reaches of such inference,
when a known local inconsistency would otherwise arise: we have seen that the consistency
requirement restrains the default logic system from careening straight into incoherence. That
restraint is necessary, but does not go far enough—it ignores again the cumulative uncertainties
of default conclusions. Defaults that are based upon other defaults cannot properly be regarded
as safe as the original defaults. That is just to say that the warrant we have for accepting default
conclusions is a matter of degree, it is a function of the kind and quantity of support for the
default conclusions that can be brought to bear. But measuring degrees of support based upon
the available evidence is a task that default logic ignores by design—in its restriction to purely
symbolic, non-numeric means. In attempting to represent defeasible inference, default logicians
have adopted a goal that is strictly incompatible with their logicist methods.

6.4 The Bayesian Alternative

Is all of this criticism of logicist approaches a tad unfair? What can quantitative methods offer
to solve these problems?

Bayesian AI does not have generally accepted solutions to these problems.?! What it does
have is an approach to solving them which does not immediately degenerate into confusion.
Given a probabilistic acceptance rule there is no requirement that the acceptances go so far
as inconsistency, nor even—as with default logic—to inconsistency’s door step. It is perfectly
reasonable to impose a probabilistic constraint on the acceptance of assertions within a specific
problem context. In the original lottery example, if our acceptance threshold was indeed 0.9, then
such a constraint might stop us from accepting an individual —=®; statement if the conjunction of
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it with previously accepted statements about the lottery (/\ j —|<I>j) A—=®; would have a probability
below 0.9.

It will now be asked: if we are retaining such probabilistic information, why bother with
qualitative acceptance? The answer must be, briefly, that with qualitative acceptance, we en-
able the deployment of qualitative inference, planning and decision making methods which have
substantial computational advantages over their quantitative counterparts (cf. Harsanyi 1985).
Nor are such advantages necessarily lost by imposing a probabilistic threshold upon the con-
junction of statements accepted within a problem context—for heuristic means might be used
for estimating their joint probability and avoiding a breach of the probabilistic threshold.

Another natural question is, How can the Bayesian system select one —®; to accept when it
has nearly a million others—quantitatively identical—to choose from? If indeed there is nothing
to distinguish one from the others, beyond its index, then I must agree with the suspension of
belief. But the mere fact that there is no probabilistic distinction does not settle the matter.
Typically there is a problem context to the inference—there will be one or more tickets of
particular interest (e.g., mine). Or we may be concerned about some larger class of tickets
collectively (e.g., rain vs. sun in the Sahara). The pragmatic concerns of dealing with a problem
that suggests the deployment of qualitative reasoning resources must come into play before
probabilistic acceptance can have any point.

As Etherington, et al. (1991) have complained, the fact that reasoning is directed by prag-
matic concerns has been largely neglected in the construction of nonmonotonic formalisms. They
go on to apply that point to the usual qualitative mechanisms for handling nonmonotonicity.
By such means default logic and the other nonmonotonic formalisms can avoid the kinds of
embarrassment we have looked at above, for if our concern is with Tweety’s flying abilities, we
need not be obliged to render simultaneously default verdicts on the flying abilities of all other
birds. Thus, a properly scoped default logic need not be burdened with the peculiar tendencies of
thought that both unrestrained default systems and unrestrained probabilistic systems suffered
from.

Explicit consideration of pragmatics is then a way out of the lottery paradox for qualitative
systems just as much as for Bayesian systems. There is good reason, however, for not following
Etherington et al. in backing this fix to default logic. Restricting the scope of default reasoning to
a particular set of objects and group of properties, while avoiding paradox, does not respond to
the difficulty underlying the paradoxes—the accumulation of uncertainty in reasoning conjointly
with mulitple ampliative conclusions. In other words, the risk of error—something Etherington
et al. recognize as relevant, to their credit (p. 231)—is sensitive to the depth and complexity of the
conjoint reasoning, which may be left unconstrained by limiting its scope alone.>?> The application
of a probabilistic threshold, or its heuristic counterpart, to such underlying conjunctions provides
the missing sensitivity.

Etherington et al. conclude that for problems involving a broad scope probabililty theory is
appropriate, while nonmonotonic logics “seem better suited to reasoning about small numbers
of cases” (p. 232). If it be acknowledged that it is not the number of cases of interest but rather
the number of inferences and their relative frailty, then this is surely a reasonable conclusion.
Scoped and truncated default logic may be one of those qualitative methods that those of us
constrained to suboptimality (i.e., all of us) must rely upon; and so default logic may find a
useful place within the cognitive realm as one among many inferential mechanisms. But the
scope of probability theory is nonetheless the entire range of inductive thought: it is only the
low probability of error (or its low expected cost) that underwrites even such limited applications
of default logics.

25



The most natural Bayesian alternative to scoped default reasoning is to replace default
rules by conditional probabilities and to replace default inference by probabilistic acceptance.
Bayesian AI can respond to the pressures of computational complexity by employing scoped
deductive reasoning, or other qualitative reasoning, to the statements accepted. The scope
involved will be determined in part by the pragmatics of the situation and in part by the operative
probabilistic threshold (which itself must be sensitive to pragmatic issues, especially the expected
cost of making an error in one’s reasoning; cf. Kyburg 1965). Whether that threshold has been
breached may be determined by examining the joint probability of what has been assumed
or, if that probability is not readily available, by heuristic methods. The ideal result would
be a hybrid reasoning system that uses probabilities where that is computationally feasible
and acceptance-cum-qualitative methods otherwise. There must be at least three limitations
imposed upon the acceptance rule for such an inference mechanism: (1) The pragmatic context
must call for acceptance. If, for example, the problem is one of taking or not taking an explicit
bet—a context which demands probabilistic reasoning—there is every reason not to detach a
statement from its probability. (2) Within a particular problem context, the joint probability of
accepted statements (whether determined heuristically or fully normatively) should stay above
an appropriate threshold. (3) When, despite all precautions, inconsistency arises, the system
must be capable of sophisticated belief revision, including the retraction of previously accepted
statements.

7 Conclusion

Qualitative inference systems, if they are intended to apply to inductive problems, must address
the lottery paradox, every bit as much as quantitative systems. The minimal requirement of
weak consistency requires them to not just succumb to the paradox. But the goal of supporting
general induction requires a rejection of the conjunction principle. Indeed, it is clear that none
of our normative principles of inference can be read as applying without restriction or limit.
Qualitative inference systems, to be viable candidates for modeling inductive inference, must
then supply reasoned limits on conjunction (and the application of any other inference rules) that
do justice to our concept of cognitive agency—that are, for example, not so severe as to render
anything like the scientific inductions that we do impossible. However, qualitative methods do
not appear to have the resources necessary for that task.

The reasons for constraining conjunction include the avoidance of local inconsistencies—
which is a reason that qualitative systems can take advantage of, as default logic does. But we
also saw in the case of default logic that such a constraint is insufficient. I propose instead that
we adopt a hybrid approach: a model of a cognitive agent that allows the use of probabilistic
information to support induction combined with qualitative methods of inference, including a
restricted ability to conjoin prior inductive conclusions. Such a model has promise for avoiding
both inductive paralysis in the face of uncertainty and computational paralysis in the face of
complexity.

Notes
1. Here I am following C.S. Peirce’s account of ampli[fijative inference (1940, pp. 180-181):

All our reasonings are of two kinds: 1. FEaxplicative, analytic, or deductive; 2. Am-
plifiative, synthetic, or (loosely speaking) inductive. In explicative reasoning, ....
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But synthetic reasoning is of another kind. In this case the facts summed up in the
conclusion are not among those stated in the premisses. They are different facts, as
when one sees that the tide rises m times and concludes that it will rise the next time.
These are the only inferences which increase our real knowledge, however useful the
others may be.

I must point out that Ronald Loui (1991) has recently come out with a different account
of ampliative inference, one which distinguishes inferences that use non-formalizable methods
(“Ampliative inference is the result of rational nondeterministic nonmonotonic computation”;
p. 153) rather than one which distinguishes inferences that encompass new information. Loui’s
definition, however interesting, loses out on precedence and in any case fails to capture the more
general concept of induction that I am interested in here.

2. But then we are endowed with a rich background in most problem contexts, so that we
need not rely upon such simple forms of induction.

3. No doubt my definition of induction will continue to strike some as odd. Indeed, the
definition of induction as inference from the particular to the general stems from Aristotle. Such
forms of inference, however, do not do justice to the varieties of inferential methods to be found
in scientific practice, according to the general (if not universal) consensus among philosophers
of science in this century. Even Aristotle did not claim the sufficiency of enumerative induction,
supplementing it with ‘intuitive inductions’ (cf. Kneale’s discussion of these points in 1949,
pp. 24-48; or Black 1967). In the end, of course, it is a matter of choice what meaning we take
for ‘induction’. But the differences between the various inductive methods (by my definition) are
minor compared to those between induction and deduction, and so it is appropriate to emphasize
this latter distinction.

4. Howson and Urbach (1989) provide an excellent survey of that literature, from an
unabashedly Bayesian point of view. Glymour (1980) launched an influential assault upon
Bayesianism; an anthology of responses is Earman (1983). Earman (1992) provides an intriguing
discussion of the issues, which does not quite decide whether to be Bayesian or not. Glenn
Shafer’s writings may be sampled to obtain another anti-Bayesian viewpoint (see, for example,
Shafer 1985; a Bayesian response is Korb 1994). Finally, a recent attack on Bayesian conditioning
is Bacchus, Kyburg, and Thalos (1990), responded to in Korb (1992b).

5. Here I join forces—in a limited way—with connectionists in opposing ezclusive reliance
upon qualitative, symbolic reasoning. Their objections have often been aimed at Newell and
Simon’s Physical Symbol System Hypothesis. That hypothesis rules out the use of reasoning
based upon real-valued variables (cf. their requirement (3), p. 116), and so is antagonistic to
probabilism in principle (if not in practice, when limited-precision arithmetic renders the full
range of reals no more accessible to the probabilist or connectionist than to the logicist).

6. By normative AI T mean research directed at the production of any artificially intelligent
system, as opposed to descriptive AT which aims at modeling natural intelligence—what Simon
calls computational psychology.

7. Although we can hardly expect floppies to be used for such copying, we have been
given no reason to believe that—once we understand our brains—we would be unable to either
alter existing brains or construct new ones having the information possessed by someone else
(disregarding ethical considerations).

8. McCarthy himself does not confuse product and process. Rather, he asserts that (1968,
p. 405)

. in order for a program to be capable of learning something it must first be capable
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of being told it .... Once this is achieved, we may be able to tell the advice taker
how to learn from experience.

The initial thought here is dubious; certainly the biological model suggests that learning can pre-
cede language (and therefore telling). But I am probably nit-picking: no doubt what McCarthy
has in mind is that representations are required for learning, so we should first concentrate on
developing adequate representations, which could then just be inserted into our computer sys-
tem. But in any case there is no reason to be optimistic about McCarthy’s next step. That the
system has means to represent (describe, reason about, etc.) learning procedures does not mean
that the system has means to ezecute such procedures. However, it is true that in Lisp (the Al
language of McCarthy’s invention) procedures and data have the same form of representation.
Therefore, by telling the Advice Taker the right statement (i.e., procedure), the Advice Taker
can “learn” how to learn. But this is just to require that we humans solve the problem of
machine learning in the first place—by coming to know what procedure to feed into the Advice
Taker—which is just another way of saying that the theorem-proving, rote-learning Advice Taker
has nothing much to teach us about machine learning. I.e., the Al problem remains unsolved
until we come up with the missing learning program.

9. While humans may operate in this way, it is not strictly necessary that contradictory
statements be accepted—which is what we typically mean by an inconsistent system—but only
that they be jointly contemplated by the reasoning system.

10.  When I claim here that birds fly, I will normally intend this to be understood as
asserting that individual birds within the domain of discourse are capable of flight. It is a
reasonable presumption that there are contexts of discourse that render the inference in the text
both reasonable and non-monotonic. Following a principle of charity regarding the claims of
default logicians, I will not explore the many possible contexts of discourse where the inference
would be either unreasonable or monotonic (such as interpreting “birds generally fly” as the
universal “all birds fly”).

11.  Since there is no decision procedure for consistency in first-order logic, any practical
implementation of default logic will have to rely upon a heuristic search for inconsistency in K
U {JUS(d)}-

12. In this context the denial of A — B means A — — B, in contrast to the negation, which
would be = (A — B).

13.  Of course, ‘Nixon is a Republican’ is not a universal generalization, but to let the
example go through we could replace ‘Nixon’ by some uniquely identifying description of Nixon
and get a universal statement.

14. Intuitively, an extension K* of K is any deductively closed (the intended meaning of
the suffix ‘*’) superset of K that is consistent (if K was) and that has new content added only
through default proof and that cannot be extended further using default rules (i.e., it is the
smallest fixed point of the default implication operator).

15. It is worth noting, however, that any logic which treats universal generalizations and
default rules alike (as does Pearl’s default logic, Pear]l 1989) will be unable to make use of the
inconsistency above, and will be constrained, apparently, to decide the case as ambiguous.

16. If you do not like this silly story, then you may consider the following syllogism instead:

Most college students are adults
Most adults are employed
Most college students are employed

This is an example of “interacting defaults” (or, the problem of specificity) introduced to the
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literature in Reiter and Criscuolo (1981).

17. My thanks to John Winnie for pointing this out.

18. T am relying on the presentation of their argument in Besnard (1989, pp. 83-84).

19. Examination of the figure reveals, as Chris Wallace has pointed out to me, that there
is a far better rule available than At-Meeting(John) — — At-Meeting(Bob), namely

: = At-Meeting(Bob)
- At-Meeting(Bob)

i.e., we should always conclude that Bob is absent, if that conclusion is consistent with what
we know. This example shows that high conditional probability is not a sufficient condition for
(reason for) adopting a default rule: we want useful default rules and, in particular, default rules
that do not serve as well as some competing rule ought not to be employed.

20. It should be noted that the reading of default rules as expressing typicality is the
ordinary one in the literature of default and nonmonotonic logics, and is quite commonly thought
to be incompatible with the probabilistic interpretation of default inference. (Cf. for example
Reiter 1987, Etherington 1988, and Lukaszewicz 1990).

21. I do not know how Nutter comes down on the question of normative versus descriptive
Al so it is not clear that she would endorse any such anti-normative principle as a guide to
inference. As a statement about the cognitive psychology of humans, typicality-based inference
may be unobjectionable, but then it does not serve as an objection to probabilism within nor-
mative AI. Nutter’s writings provide evidence of both naturalistic and normative tendencies.
For a statement of the latter consider (1987, p. 374; my emphasis):

...designers of AI systems generally care less whether their systems “ought” to
believe their answers than how often those answers are right. For systems whose
judgements have practical consequences, we should measure and maximize that if
we measure anything.

This seems to imply the opposite of the anti-normative principle I have attributed to her.
And yet her bold assertion of the appropriateness of the default rule that birds fly under the
hypothetical condition that we know most birds do not fly is as plain as day (1990, pp. 34-
35). It may be that some convoluted consideration about normative versus descriptive contexts
can make simultaneous sense of these disparate statements, but that is not my concern here.
(And the possibly related point that the default rule does not express an assertion at all will be
handled in the discussion of McCarthy’s argument from linguistic conventions below.)

22. Of course, the situation is symmetric thus far. To the claim that typicality is a necessary
ingredient for certain kinds of default rules I might offer a probabilistic counterexample. To
manufacture one, if our environmental (non)policies have the effect of suddenly extinguishing
all the birds other than kiwis (sorry, Tweety), then on probabilistic grounds we could accept the
default rule Bird — — Flies. But the sudden extinction would have little (immediate) effect on
our understanding of ‘bird” and would certainly not have changed how we had previously learned
to think about birds. In other words, flying would remain prototypical. The default theorist
might object that for that very reason the new default must be rejected. But the default theorist
could hardly then make reference to the broader concern to minimize error—for minimizing error
requires paying attention to probabilities.

23.  Nutter (1990, p. 35) seems to think that this move never works, since species don’t
fly, only individuals do. However, when a normal person says that eagles are a flying species,
we understand perfectly well that a new kind of flight—one reserved for species—is not being
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entertained. (To be accurate eagles do not form a species; but calling them a species is as close
as I will come to biological accuracy in this paper.)

24. Regarding fuzzy generalizations, perhaps it is worth noting that default logic also does
not provide any analysis. In a default logic we can, of course, adopt a rule Basketball-Player
— Tall, but we can adopt a corresponding conditional probability as well, all without shedding
light on fuzziness or claiming to have an adequate semantics in either case. There is an odd
tendency in the literature to demand of Bayesians what is not demanded of others. For some
discussion of the remaining cases of default generalizations, see chapter 5 of Korb (1992b).

25.  This discussion of the lottery paradox reproduces material from Korb (1992a) by
permission of the Philosophy of Science Association.

26. Of course, rejecting probabilistic acceptance is not tantamount to endorsing qualitative
methods; that is, probabilistic acceptance has frequently been rejected by probabilists, most
notably by many Bayesians.

27. Direct inference, in a somewhat more general form, is the sole source of probabilities
in Kyburg’s system (see his 1974) and is widely accepted as one source of probabilities among
Bayesian philosophers as well.

28.  Talk of rejecting and accepting events or subevents is meant here as a convenient
shorthand for talk of rejecting and accepting propositions asserting the occurence of those events.
29.  Perhaps it is worth noting that normal statistical inference is also ruled out. For

example, in order to have reason to reject the null hypothesis, it is necessary that we be able
to assert prior to a statistical test that the outcome will not lie in the critical region on the
assumption of the null hypothesis. But since we can partition the outcome space into regions
each of which is as improbable as the critical region, Pollock’s Rule obliges us to refrain from
the normal statistical inference.

30. Perlis (1987), pp. 62ff., demonstrates the severe difficulties that the main nonmonotonic
formalisms encounter in dealing with the lottery paradox, including circumscription and modal
nonmonotonic logic.

31. Here I must confess that the criticisms I have adduced of qualitative approaches to defea-
sible inference do not leave only Bayesianism (with acceptance) whole—all quantitative means of
measuring support remain unscathed. But Bayesianism’s differences with the Dempster-Shafer
calculus and fuzzy logic are beyond the reach of this discussion. Likewise, although I suggest
reasons for acceptance, I cannot here explore my differences with that form of Bayesianism that
eschews all talk of the acceptance of hypotheses, prominently defended by Richard Jeffrey.

32. Whether this is so depends upon just what is meant by limiting the scope of default
logic. If the scope is constrained to a small set of objects of size k and a small number of binary
properties, say n, then however deep the reasoning it can jointly assume only 2"t* propositions
about them. But even with small n and % this point remains insufficient for supporting scoped
default reasoning without consideration of the joint probability of what is being assumed, which
will be sensitive for example to whatever probabilistic dependencies obtain between the different
assumptions.
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