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Abstract. How to assess the performance of machine learning algorithms is a problem of
increasing interest and urgency as the data mining application of myriad algorithms grows.
The standard approach of employing predictive accuracy has, we argue rightly, been losing
favor in the AI community. The alternative of cost-sensitive metrics provides a far bet-
ter approach, given the availability of useful cost functions. For situations where no useful
cost function can be found we need other alternatives to predictive accuracy. We propose
that information-theoretic reward functions be applied. The first such proposal for assessing
specifically machine learning algorithms was made by Kononenko and Bratko [1]. Here we
improve upon our alternative Bayesian metric [2], which provides a fair betting assessment
of any machine learner. We include an empirical analysis of various Bayesian classification
learners, ranging from Naive Bayes learners to causal discovery algorithms.
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1 Introduction

As academic and industrial interest in machine learning and data mining continues to grow, the
problem of how to assess machine learning algorithms becomes more urgent. The standard practice
for supervised classification learners has been to measure predictive accuracy (or its dual, classifica-
tion error) using a fixed sample divided repeatedly into training and test sets, accepting a machine
learner as superior to another if its predictive accuracy passes a statistical significance test. This
represents an improvement over historical practices, particularly when the statistical dependencies
introduced by resampling are taken into account (cf. [3, 4]).

Nevertheless, there are a number of objections to the use of predictive accuracy, the most telling
being that it fails to take into account the uncertainty of predictions. For example, a prediction of a
mushroom’s edibility with a probability of 0.51 counts exactly the same as a prediction of edibility
with a probability of 1.0. We might rationally prefer to consume the mushroom in the second case,
but not the first. Predictive accuracy shows no such discernment. According to common evaluation
practice in machine learning and data mining every correct prediction is as good as every other.
Hence, we advocate that classification learners should be designed, or redesigned, so as to yieled
probabilistic predictions rather than catagorical predictions.

We believe a cost-sensitive assessment, favouring the machine learner which maximizes expected
reward is, in principle, the best way of evaluating learning algorithms. Unfortunately, finding
appropriate cost functions may be difficult or impossible. No expert may be available to provide
a suitable cost function; or the algorithms being assessed may be applied across an open-ended
variety of domains; or again the cost function may itself be evolving over time, as Provost and
Fawcett point out [5]. Provost and Fawcett use receiver operating characteristic (ROC) convex
hulls for evaluation independent of cost functions. This has the useful meta-learning feature of
selecting the best predictor for a given performance constraint, in the form of a selected false



negative classification rate. Unfortunately, the ROC curves underlying this method again ignore
the probabilistic aspect of prediction, as does predictive accuracy simpliciter.

Here we examine metrics which specifically attend to the estimated probability of a classifica-
tion, but are also independent of cost, and so easier to apply than cost-sensitive metrics; namely
information-theoretic measures and in particular, information reward (IR). We illustrate its ap-
plication in some empirical results comparing Naive Bayes with other classification learners, con-
trasting IR with predictive accuracy assessments.

2 Kullback-Leibler Divergence for Classification

There are two fundamental ingredients to gambling success, and we would like our measure to be
maximized when they are maximized:

Property 1: Domain knowledge, which can be measured by the frequency with which one is
inclined to assert correctly xi = T or xi = F — i.e., by predictive accuracy. For example, in
sports betting the more often you can identify the winning team, the better off you are.

Property 2: Calibration, the tendency of the bettor to put P (xi = T ) close to the objective
probability (or, actual frequency). That betting reward is maximized by perfect calibration is
proven as Theorem 6.1.2 in Cover and Thomas’s Elements of Information Theory [6].

With Property 1 comes a greater ability to predict target states; with Property 2 comes an
improved ability to assess the probability that those predictions are in error. These two are not in
a trade-off relationship: they can be jointly maximized.

If we happen to have in hand the true probability distribution over the target variables, then
we can use Kullback-Leibler divergence to measure how different the model’s posterior distribution
is from the true distribution. That is, we can use:

KLD(p, q) =
∑

x∈X

p(x) log
p(x)

q(x)
(1)

.
Kullback-Leibler divergence has the two properties of betting reward in reverse: that is, by

minimizing KLD you maximize betting reward, and vice versa. Clearly, divergence is minimized
when q = p, which also implies that the model is perfectly calibrated. But it also implies Property
1 above: there is no more probabilistic information to be had once you know exactly the true
probability distribution in the model. KLD, then, is an ideal metric for evaluating machine learning.
It has the severe drawback in practice of requiring that the true probability distribution be available,
which means there is no real learning problem. Nevertheless, KLD provides a useful benchmark
for assessing other metrics.

3 Information-theoretic Metrics

3.1 Good’s Information Reward

The original information reward (IR) was introduced by I.J. Good [7] as fair betting fees — the
cost of buying a bet which makes the expected value of the purchase zero. Good’s IR positively
rewarded binary classifications which were informative relative to a uniform prior. IR is split into
two cases: that where the classification is correct, indicated by a superscripted ‘+’, and where the
classification is incorrect, indicated by a superscripted ‘−’.

Definition 1. The IR of a binary classification with probability p′ is

I+ = 1 + log2 p′ (for correct classification) (2a)

I− = 1 + log2(1− p′) (for misclassification) (2b)



IR has the range (−∞, 1). For successful classification, it increases monotonically with p′, and
thus is maximized as p′ approaches 1; for misclassification, IR decreases monotonically.

While the constant 1 in (2a) and (2b) is unnecessary for simply ranking machine learners, it
makes sense in terms of fair fees. When the learner reports a probability of 0.5, it is not commu-
nicating any information (given a uniform prior), and thus receives a zero reward. Ignoring the
constant 1, Good’s IR has a clear information-theoretic basis: it reports (the negation of) the num-
ber of bits required in a message reporting an outcome of the indicated probability. Thus, a certain
message requires no bits at all, whereas a certainly false message can never be communicated
successfully, requiring an infinitely long message.1

Our work generalizes Good’s to multinomial classification tasks, while also relativizing the
reward function to non-uniform prior probabilities.

3.2 Kononenko and Bratko’s Metric

The measure introduced by Kononenko and Bratko [1] also relativizes reward to prior probabili-
ties. Furthermore, it too is nominally based upon information theory. This foundation is seriously
undermined, however, by their insistance that when a reward is applied to a correct prediction
with probability 1 and an incorrect prediction also with probability 1, the correct and incorrect
predictions ought precisely to counterbalance, resulting in a total reward of 0. This conflicts with
the supposed information-theoretic basis: on any account in accord with Shannon, a reward for
a certain prediction coming true can only be finite, while a penalty for such a certain prediction
coming false must always be infinite. Putting these into balance guarantees there will be no proper
information-theoretic interpretation of their reward function.

We nevertheless agree that the kind of cost-neutral reward we are attempting to identify here
needs to be relativized to prior probability. Otherwise, there is no way to avoid rewarding a learner
which slavishly mimicks frequencies in a training set and no way to penalize algorithms which
simply fail to learn from such frequencies.

Kononenko and Bratko introduce the following reward function, where p′ is the estimated
probability and p is the prior:

I+

KB
= log p′ − log p (for p′ ≥ p) (3a)

I−
KB

= − log(1− p′) + log(1− p) (for p′ < p) (3b)

This measure is assessed against the true class only. Since the probabilities of other classes are not
considered, in multinomial classification a miscalibrated assessment of the alternative classes will
go unpunished. It follows that KLD fails to be minimized. For all these reasons we do not consider
the Kononenko and Bratko function to be adequate.2

3.3 Bayesian Information Reward

The idea behind fair fees, that you should only be paid for an informative prediction, is simply
not adequately addressed by Good’s IR. Suppose an expert’s job is to diagnose patients with
a disease that is carried by 10% of some population. This particular expert is lazy and simply
reports that each patient does not have the disease, with 0.9 confidence. Good’s expected reward
per patient for this strategy is 0.9(1 + log2 0.9) + 0.1(1 + log2 0.1) = 0.531, so the expert is
rewarded substantially for the uninformed strategy! The expected reward per patient we should
like to see is 0, which the generalization below provides. Good’s IR breaks down in its application
to multinomial classification: any successful prediction with confidence less than 0.5 is penalized,

1 Some have complained about infinite rewards rendering the resultant arithmetic of reward trivial. But it
is not the arithmetic at fault in any such case, it is the predictor expressing an unfounded, miscalibrated
and absolute confidence in its prediction which is at fault. There is no information-theoretic substitute
for a negatively infinite reward in such cases.

2 We did, however, include it in the empirical evaluation of [2]. See also Figure 1.



even when the confidence is greater than the prior. Good’s fair fees are actually fair only when
both the prior is uniform and the task binary.

Here is the Bayesian metric we presented in Hope and Korb [2]:

Definition 2. The Bayesian IR for a classification into classes {C1, . . . , Ck} with estimated prob-
abilites p′i and prior probabilities pi, where i ∈ {1, . . . , k}, is

IR =

∑
i
Ii

k
(4)

where Ii = I+

i
below for correct classes and I−

i
for incorrect classes:

I+

i
= 1−

log p′
i

log pi

(for correct classification) (4a)

I−
i

= 1−
log (1− p′

i
)

log (1− pi)
(for misclassification) (4b)

A non-uniform prior p can be obtained any number of ways, including being set subjectively
(or arbitrarily). In our empirical studies here we simply use the frequency in the test set given
to the machine learner to compute the prior.3 This is because we have no informed prior to work
with, and because it is simple and unbiased relative to the learning algorithms under study.

Bayesian information reward reflects the gambling metaphor more adequately than does Good’s
IR. Book makers are required to take bets for and against whatever events are in their books, with
their earnings depending on the spread between bets for and against particular outcomes. They
are, in effect, being rated on the quality of the odds they generate for all outcomes simultaneously.
Bayesian IR does the same for machine learning algorithms: the odds (probabilities) they offer on
all the possible classes are simultaneously assessed, extracting maximum information from each
probabilistic classification.

Unfortunately this information reward fails to maximally reward perfect calibration, violating
our own Property 2!4 We provide a restricted proof of this.

Theorem 1. Given a batch classification learner (which does not alter its probability estimates
after seeing the training data) and a binary classification problem, IR (per Definition 2 above) is
not necessarily maximal when p′

i
= f , where f is the frequency of the target class in the test set.

Proof. Let S be a test set such that all data items have the same attributes (other than the binary
target class value). If the actual test set is not of this kind, we can partition it so that each subset
is; since the theorem holds of each subset, it will also hold for the union. To the classifier these
items are indistinguishable. S is split into S1 and S2 with all items in S1 belonging to the target
class and all items in S2 belonging to the complement class.

The average IR for machine learner M on items S is:

IR(M) = 1−
∑

i∈S1

log p′
i

|S| log p
−

∑

i∈S2

log(1− p′
i
)

|S| log(1− p)
(5)

Since M is a batch machine learner, it will respond with the same probability p′ to each item. So,

IR(M) = 1−
|S1| log p′

|S| log p
−
|S2| log(1− p′)

|S| log(1− p)
(6)

The fractions |S1|
|S| and |S2|

|S| approximate the true probabilities of being in S1 and S2 respectively,

so replacing these we get:

IR(M) ≈ 1− f
log p′

log p
− (1− f)

log(1− p′)

log(1− p)
(7)

3 We start the frequency counts at 0.5 to prevent overconfident probabilities.
4 Thanks to David Dowe for pointing this out.
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Fig. 1. Graphs comparing Information Reward (IR), new Information Reward (BIR) and Kononenko and
Bratko’s “Information Criterion” (KB) for a ternary class with (a) uniform prior and (b) prior of (.1, .45,
.45) with the first being the true class.

Since we want to find the maximum reward, differentiate with respect to p′ and set to 0:

dIR(M)

dp′
= −

f

p′ log p
+

1− f

(1− p′) log(1− p)
= 0 (8)

Thus:
f(1− p′)

p′(1− f)
=

log p

log(1− p)
(9)

The only way f can equal p′ is if p is 0.5, i.e., under a uniform prior, which is just the kind of
restriction we were attempting to eliminate.

4 Information Reward Corrected

A new metric IRB retains all the virtues introduced previously, while also being maximal under
perfect calibration. For classification into classes {C1, . . . , Ck} with estimated probabilities p′

i
and

priors pi, where i ∈ {1, . . . , k}:

IRB =

∑
i
Ii

k
(10)

where Ii = I+

i
for the true class and Ii = I−

i
otherwise, and

I+

i
= log

p′i
pi

I−
i

= log
1− p′i
1− pi

Clearly, when p′ = p, the reward is 0. IRB also retains an information-theoretic interpretation:
the measure is finitely bounded in the positive direction, since prior probabilities are never zero,
and misplaced certainty (i.e., when the probability for the true value is 0) warrants an infinite
negative reward. Finally, correct probabilities are now rewarded maximally in the long run. The
proof of this is omitted; however, it is structurally similar to the proof in Section 3.3 and is available
in [8, §10.8].

Figure 1 illustrates the score awarded by Information Reward, the new Bayesian Information
Reward (BIR) and Kononenko and Bratko’s “Information Criterion” (KB) for a ternary class.
The horizontal axis shows the confidence in the true class (with the other two classes deemed
equally likely). Note the kink in the KB metric where p′ = p; this reflects its failure to support an
information-theoretic interpretation. The old IR and IRB are nearly indistinguishable given the
uniform prior (in Figure 1a), but IR diverges radically from typical information measures under
the non-uniform assumption of Figure 1b).



5 Empirical Evaluation

Our empirical evaluation focuses on machine learners that form Bayesian models, partially in
response to recent work showing the surprising power of Naive Bayes learners and their relatives
(e.g., [9–11]). We test learners with artficial data generated from models that specifically favour
the simpler Bayesian learners. The machine learners were all implemented in Java, using the Weka
data mining suite [12].

1. Naive Bayes (NB) is the simplest Bayesian learner; it assumes each attribute is independent
of the others, given knowledge of the target class. Despite the strong assumption, it routinely
performs well on many well known datasets [2]. We use an algorithm for Naive Bayes that
incorporates Gaussian estimation for continuous attributes [13].

2. Tree Augmented Naive Bayes (TAN) [10] adds an additional tree-like dependency struc-
ture to Naive Bayes, thus each attribute may have one parent from amonst the other attributes,
in addition to the target class. This method is complicated by the task of searching amongst
attribute dependency structures. We use the algorithm presented by [14], with continuous
attributes discretized using the technique of [15].

3. Averaged One Dependence Estimators (AODE). One dependence estimators are Naive
Bayes variants where one attribute is nominated to be a parent of all the others, in addition to
the standard naive dependence on the target class. Webb et al. [9] present a technique where
an average over all possible ODEs is used for prediction. This introduces a favourable bias in
the evaluation, since it is well known that averaging predictors perform better than predictors
based upon selecting a single model; nevertheless, we ignore this bias here. Again, continuous
attributes are discretized using the technique of [15].

4. Causal MML (CaMML) is a Bayesian network learner which uses Minimum Message Length
[16] to rank causal structure [17]. We use CaMML’s best model to predict the target class given
a test instance’s other attributes. Continuous attributes are discretized in the same way as TAN
and AODE.

5. J48. We also include Weka’s J48, an implementation of Quinlan’s C4.5 [18].

5.1 Empirical Study: Bayesian Models

For this experiment, we use artificially generated data from a series of Bayesian model types. Three
model types are chosen, each designed to favour a particular machine learner: Naive Bayes, TAN or
AODE. Thus, we see how the learners perform when their assumptions are broken, in comparison
with when those assumptions are exactly matched.

Out of our set of machine learners, CaMML generates models with greatest complexity. Given
the standard convergence results for Bayesian learners, CaMML must better or equal every other
machine learner in the limit. Similarly, AODE’s and TAN’s models are more complex than the Naive
Bayes model, and given sufficient data they should perform at least on par with Naive Bayes. This
implies a converse phenomenon. At low levels of data, and if the learner’s representations include
the true model, the simpler learner should outperform the more complex, because complex machine
learners converge to their optimum models slower, due to a larger search space.

To test the threshold at which a simpler model outperforms the more complex, we generate three
sets of models, based upon the underlying models of Naive Bayes, TAN and AODE respectively.
We also systematically vary the amount of training data given to each learner.

Below we describe the experimental design in detail, then discuss the individual differences
between model types and analyse the results.

Experimental method For statistical analysis, we regard each model type as a separate experi-
ment, with the experimental design identical for each model type. For each experiment we sample
the space of appropriate models (the exact details are described below). Each model has 4–8 at-
tributes (including the target attribute), with each attribute having 2–5 values. The probabilities
in each attribute are determined randomly. We sample forty models and perform a two-factor
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Fig. 2. (a) An example Naive Bayes model. (b) Summary of results for the Naive Bayes experiment
(confidence intervals at 95% are shown).
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Fig. 3. (a) An example TAN model. (b) Summary of results for the TAN experiment (confidence intervals
at 95% are shown).

repeated measures ANOVA, in order to provide a statistical test independent of our Bayesian as-
sumptions. The two factors are (1) machine learner applied (we test Naive Bayes, TAN, AODE
and CaMML) and (2) amount of training instances we pass to each learner (the amounts are 50,
500 and 5000). The training set sizes are chosen to represent small, medium and large datasets,
while keeping the size of the analysis to a minimum. It is advantageous to use a repeated measure
ANOVA because this design controls for the individual differences between samples (where each
model is considered a sample).

We use information reward on a single test set of 1000 instances for each model to measure
the ‘treatment’ of each machine learner at different ‘doses’ (amounts of training data). We don’t
report accuracy nor Kononenko and Bratko’s measure, for the reasons we argued in Sections 1
and 3.2. Where we report confidence intervals, these have been adjusted by the Bonferroni method
for limiting the underestimation of variance [19].

Naive Bayes models Naive Bayes models (shown in Figure 2a) follow the assumptions governing
the Naive Bayes learner; each attribute is conditionally independent of each other, given the target
variable. This is the simplest model type we use in this evaluation, so we expect that all learners
will perform reasonably.

Figure 2b shows the performance of the machine learners for each amount of training data.
Note that Naive Bayes, TAN and AODE perform similarly for each level. Unsurprising, as they
all share the (correct) assumption that the target class is a parent of all other attributes in the
model. For small amounts of data, CaMML performs significantly worse than the other learners: it
cannot reliably find the correct model. As more data become available, it finds the correct model
and achieves a similar score to the other learners.

Tree Augmented Naive models TAN models (see Figure 3a) are formed by creating a tree-
like dependency structure amongst the (non-target) attributes, then making them all directly



!"#$$

%&&

’

%&&

(

%&&

)

!"#$$

%&&

’

%&&

(

%&&

)

!"#$$

%&&

’

%&&

(

%&&

)

*+,’-)

*+,’-)

*+,’-)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

50 500 5000

In
fo

rm
at

io
n 

R
ew

ar
d

Training Instances

NB
AODE

TAN
CaMML

Fig. 4. (a) An example AODE model. (b) Summary of results for the AODE experiment (confidence
intervals at 95% are shown).

dependent upon the target class. This is more complicated than the Naive Bayes model above.
Each model we generate has a random tree structure amongst the non-target attributes.

Surprisingly, TAN is not the best learner with low amounts of training data: AODE stands
superior for low amounts of training instances. This is likely because AODE has a richer represen-
tation than Naive Bayes (i.e., with averaged predictions), yet doesn’t need to search for the tree
structure. Once there are enough data both TAN and CaMML seem to find the right structure and
thus both outperform AODE. This demonstrates the added difficulty of model selection. Although
TAN assumes the correct model type, it still has to find the particular tree structure for each
model, thus TAN’s performance is dependent on its search capabilities.

Naive Bayes, with its inaccurate assumptions, is clearly inferior to the other learners once an
adequate amount of training data is given.

Averaged One-Dependence models AODE forms a series of n models where, in the ith model,
attribute i is the parent of each other (non-target) attribute. Similar to Naive Bayes, each attribute
is also directly dependent on the target (shown in Figure 4a). Thus, each AODE model is a hybrid
of several ODE models, with each model having equal chance to be selected from when sampling
the model for data.

This hybrid model seems to be very difficult for the machine learners to learn, with the infor-
mation reward ranging from −0.3 to 0.1. Recall that a reward of zero corresponds to a machine
learner which finds no associations amongst the non-target attributes, returning the observed fre-
quency of the target class as its estimate, and it takes more than 50 training instances to achieve
a score higher than zero! The likely reason is that the process for selecting a model to sample from
is hidden from the learners: it’s a hidden (or confounding) variable, of significant impact.

It is still puzzling that the machine learners other than CaMML score worse than zero for low
amounts of training data. The answer seems to lie in each learner’s assumptions: Naive Bayes,
TAN and AODE each assume a model where all attributes depend on the target, regardless of
whether this model decreases performance. CaMML is not beholden to any particular model, and
thus is free to choose no association at all. This conservatism wins out, even against Naive Bayes
with small datasets. After enough training data, AODE (the only learner that can really model
the data properly) obtain an advantage over the other learners.

5.2 Empirical Study: UCI Archives

To supplement the evaluation on artificial data, we now evaluate a host of datasets from the
standard UCI archives, and also from the Naive Bayes research literature (e.g., [9]). We choose



these datasets so our results can be more easily compared with other empirical evaluations in the
literature.

There are numerous pitfalls to avoid when performing a large empirical evaluation involving
real-world datasets (see [20, 3] for commentaries). Briefly, the standard use of paired t-tests to
determine significant difference is undermined by dependencies introduced by resampling data.
Since resampling is an unfortunate necessity, we use the 5 × 2cv test [4] which reduces Type 1
error to an acceptable level. This method introduces a special paired-t formula, calculated by
repeating a two-fold cross-validation five times. We slightly alter the technique by stratifying the
cross-validation folds, thereby increasing its statistical power. All significance tests are performed
at the two-tailed p < 0.05 level.

The raw results are lengthy, so we show them in Appendix A. Confidence intervals are omitted
because the 5 × 2cv test only provides pairwise significance comparisons. These comparisons are
shown in Tables 1 and 2. Columns show individual machine learners with each row devoted to
a dataset. The cells of the table contain the names of the machine learners deemed significantly
inferior to that column’s machine learner.

Dataset Naive Bayes J48 CaMML AODE

adult AODE, TAN
anneal

balance-scale J48, AODE, TAN TAN
bcw J48
bupa
chess

cleveland J48
crx TAN TAN

echocardiogram
german J48
glass
heart

hepatitis
horse-colic TAN AODE

house-votes-84
hungarian NB

hypothyroid AODE
ionosphere TAN TAN

iris CaMML
labor-neg

led J48, AODE
letter-recognition TAN

lung-cancer AODE, TAN
mfeat-mor TAN

new-thyroid J48
pendigits TAN

post-operative AODE, TAN
promoters J48

ptn J48, CaMML
satellite AODE, TAN
segment

sign AODE, TAN
sonar TAN TAN
syncon J48

ttt AODE, TAN TAN
vehicle
wine

Table 1. Information reward results for all learners on the datasets. Columns represent winners, cells
losers. E.g., NB performed significantly worse than all other learners on the “hypothyroid” dataset.



Dataset Naive Bayes J48 CaMML AODE

adult AODE AODE
anneal

balance-scale J48, CaMML, AODE, TAN
bcw
bupa
chess CaMML CaMML

cleveland J48
crx

echocardiogram J48, CaMML, AODE, TAN
german J48, CaMML
glass
heart J48

hepatitis J48, TAN
horse-colic TAN TAN

house-votes-84
hungarian J48, CaMML

hypothyroid
ionosphere TAN

iris CaMML
labor-neg

led J48
letter-recognition CaMML, TAN TAN

lung-cancer
mfeat-mor TAN CaMML, TAN

new-thyroid J48
pendigits TAN

post-operative AODE, TAN AODE, TAN
promoters J48

ptn J48, CaMML
satellite
segment

sign CaMML, AODE, TAN AODE, TAN
sonar
syncon J48

ttt AODE, TAN AODE, TAN TAN
vehicle CaMML, AODE
wine

Table 2. Accuracy results for all learners on the UCI archives. Columns represent winners, cells losers.
E.g., NB performed significantly worse than all other learners on the “sign” dataset.

Upon initial analysis of the results, it seems quite clear that Naive Bayes is clearly inferior to
the other Bayesian learners. Also, when Naive Bayes beats J48, it is almost certain that the other
Bayesian learners will also be superior. In fact, the information reward results invariably show
this property amongst the datasets presented. Perhaps this is because the underlying model for
these datasets is different from that assumed by decision trees. For decision trees the target class is
dependent (in a symptomatic sense) on all the other attributes. For Naive Bayes, TAN and AODE
the opposite is true: the target class is seen as the root cause for the other attributes. CaMML has
the advantage in that it can choose whichever model is more appropriate.

Taking results from amongst the three advanced Bayesian learners (TAN, AODE and CaMML),
AODE seems to outperform the others a surprising amount of the time. TAN never beats AODE,
and only beats CaMML on the ‘ptn’ dataset. A possible reason for this is the problem of model
selection. TAN and CaMML must search large model spaces for the best fitting model, and thus
will likely perform poorly if a suboptimal model is chosen. AODE provides good estimates by
choosing a family of models, more complex than Naive Bayes yet simpler than TAN, and averaging
over them, thus avoiding the model selection.



In comparing accuracy versus information reward, we can see that the results commonly differ,
with the ‘sign’ dataset showing the largest reversal on significance results: accuracy reports that
J48 is better than any other machine learner on this dataset; information reward rates J48 as worse
than TAN, AODE and CaMML. For more comprehensive reports comparing these two measures
empirically, see [21, 2].

6 Conclusion

We have reviewed a number of metrics for the evaluation of machine learners. Accuracy is too crude,
optimizing only domain knowledge while ignoring calibration. Kullback-Leibler divergence, on the
other hand, is ideal — so ideal it is inapplicable to real-world data. Other information-theoretic
metrics were found wanting, including our prior information reward metric. We have developed
a new metric which is shown to be maximized under the combination of domain knowledge and
perfect calibration. This information reward evaluates learners on their estimate of the whole class
distribution rather than on a single classification. In rewarding calibration, it provides a valuable
alternative to cost-sensitive metrics when costs are unavailable.

We applied information reward to Bayesian machine learners using artificial data in order to
find when one is superior to another. We found that more powerful learners such as CaMML can
pay a performance penalty when there is a sparsity of data. Indeed, we found that under some
conditions, it is better to not model the data at all: sometimes zero information reward is the best
you can do. We also confirmed that avoiding model selection can lead to superior predictive results,
e.g., AODE’s superior performance with TAN models.

Finally, we compared accuracy and information reward on some real world datasets and found
results can be reversed. The differing verdicts, and the theoretical superiority of information-
theoretic metrics, make a good case for a general change in experimental practices in machine
learning studies.

Future Work. While we have developed some telling theoretical criticisms of predictive accuracy,
the Kononenko-Bratko metric and (implicitly) ROC measures, we are aware that many will remain
unconvinced by theoretical arguments. We are developing a ‘meta-metric’ to evaluate these and
other evaluation functions empirically — one which is not biased towards Bayesian metrics. This
should allow us to test all these metrics and more empirically and, we hope, provide even more
telling support for Bayesian Information Reward.
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A Raw Scores

A.1 Information Reward

Here are the raw results for Information Reward. No bounds are given on the results because the
5x2cv method [4] only produces pairwise significance results. These are shown in Table 1.

dataset Naive Bayes J48 CaMML AODE TAN

adult 7.22980 7.83770 7.96496 7.87052 7.88208
anneal 6.78609 7.35020 7.30007 7.69314 7.66789
balance 5.62249 4.84739 5.43315 5.44021 5.41536

bcw 5.82035 5.51422 5.82631 5.91234 5.82281
bupa 3.88562 3.17644 4.07791 4.08645 4.08642
chess 4.33390 4.20745 4.18040 4.35184 4.37450

cleveland 4.46802 3.74239 4.57949 4.66777 4.56869
crx 5.50976 6.23944 6.41087 6.37981 6.24681

echocardiogram 3.15361 2.63586 3.06695 3.14662 3.11833
german 5.15109 4.32249 5.25952 5.28885 5.23247
glass 4.24639 4.70175 5.21894 5.33640 5.23926
heart 4.03220 3.40950 4.06098 4.16457 4.10956

hepatitis 1.60088 1.48358 1.62095 1.80062 1.66564
horse 4.28402 4.82144 4.82625 4.81158 4.49184
house 4.60104 5.08948 5.18538 5.13808 4.72888

hungarian 4.59802 4.34745 4.62318 4.77714 4.66284
hypothyroid 0.59064 0.67239 0.68895 0.66254 0.65027
ionosphere 3.31030 3.82483 4.10966 4.07039 3.83852

iris 5.86626 5.61783 5.77659 5.83336 5.82947
labor 3.60224 3.07112 3.10452 3.46798 3.72117
led 9.19016 8.78243 9.18342 9.17474 9.18229

letter 13.81702 14.07254 14.96533 15.22630 15.01995
lung 1.34683 1.71182 2.74738 1.35843 1.30984
mfeat 10.20241 9.89526 10.43757 10.39758 10.33721
new 3.92654 3.31574 3.87709 3.85632 3.87262

pendigits 13.21161 14.11380 14.42818 14.56372 14.46698
post 1.31190 1.25769 1.54332 1.26249 1.22681

promoters 4.02273 2.82232 4.12059 3.90486 4.02746
ptn 5.45322 4.33701 5.02789 5.48000 5.42786

satellite 9.84297 10.90947 11.80021 11.54662 11.08514
segment 9.82980 11.22429 11.39362 11.32126 11.25842

sign 10.36300 10.55098 11.01350 10.91561 10.87566
sonar 2.66956 2.09511 3.69163 3.61604 3.50905
syncon 8.88879 8.06741 9.16254 9.15553 8.92866

ttt 5.32365 5.18512 5.94521 5.43531 5.33428
vehicle 5.80541 7.13489 7.96226 7.94813 7.25499
wine 6.26350 5.56457 6.34221 6.35151 6.36883



A.2 Accuracy

Here are the raw scores for accuracy. No bounds are given on the results because the 5x2cv
method [4] method only produces pairwise significance results. These are shown in Table 2.

dataset Naive Bayes J48 CaMML AODE TAN

adult 0.83152 0.85894 0.86604 0.85034 0.85998
anneal 0.80779 0.88351 0.86414 0.95256 0.96280

balance-scale 0.88000 0.77792 0.75294 0.75933 0.76413
bcw 0.97167 0.93019 0.97282 0.96623 0.97224
bupa 0.53813 0.63300 0.54368 0.55182 0.55182
chess 0.85336 0.88277 0.80290 0.85845 0.86027

cleveland 0.82571 0.75178 0.81121 0.82571 0.82042
crx 0.77623 0.85478 0.85971 0.86086 0.85304

echocardiogram 0.73571 0.62899 0.65039 0.64578 0.64424
german 0.73739 0.7014 0.7242 0.73639 0.7292
glass 0.60467 0.73177 0.67757 0.70560 0.69626
heart 0.83555 0.76148 0.80222 0.82370 0.82222

hepatitis 0.84495 0.80516 0.79881 0.83483 0.82960
horse-colic 0.78423 0.82989 0.81739 0.825 0.81304

house-votes-84 0.89928 0.95079 0.94894 0.94112 0.90939
hungarian 0.82993 0.78503 0.78435 0.83741 0.83401

hypothyroid 0.97824 0.99152 0.98969 0.98640 0.98406
ionosphere 0.81833 0.88436 0.90144 0.91057 0.90089

iris 0.95066 0.94133 0.94000 0.94133 0.93999
labor-neg 0.89815 0.80307 0.79236 0.82450 0.91551

led 0.7408 0.718 0.7404 0.7398 0.739
letter-recognition 0.64079 0.84472 0.82464 0.86247 0.83667

lung-cancer 0.39375 0.40625 0.28125 0.375 0.3875
mfeat-mor 0.692 0.70639 0.6865 0.69049 0.6914

new-thyroid 0.97017 0.90423 0.94792 0.94698 0.94698
pendigits 0.85693 0.95311 0.95160 0.97210 0.95918

post-operative 0.63555 0.67999 0.71111 0.62444 0.61777
promoters 0.87924 0.75283 0.88679 0.84905 0.87735

ptn 0.45606 0.37347 0.32803 0.46256 0.45312
satellite 0.79512 0.85292 0.85302 0.88397 0.86700
segment 0.79757 0.95272 0.93818 0.93567 0.93783

sign 0.50717 0.82628 0.74895 0.71967 0.72692
sonar 0.69615 0.69519 0.68942 0.73557 0.73173
syncon 0.943 0.86200 0.97066 0.96399 0.94333

ttt 0.70835 0.82045 0.89457 0.74175 0.71607
vehicle 0.44113 0.70141 0.63380 0.67848 0.63995
wine 0.96404 0.89550 0.97191 0.97640 0.97752


