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Abstract. The use of Bayesian networks for modeling causal systems
has achieved widespread recognition with Judea Pearl’s Causality (2000).
There, Pearl developed a “do-calculus” for reasoning about the effects of
deterministic causal interventions on a system. Here we discuss some of
the different kinds of intervention that arise when indeterminstic inter-
ventions are allowed, generalizing Pearl’s account. We also point out the
danger of the naive use of Bayesian networks for causal reasoning, which
can lead to the mis-estimation of causal effects. We illustrate these ideas
with a graphical user interface we have developed for causal modeling.

1 INTRODUCTION

Little progress has been made in understanding the nature of causality in the
last 2500 years, after Aristotle made the first serious foray. David Hume made
some negative observations about what causality is not — pointing out, for ex-
ample, that causal relations are not directly observable. What causality may
actually be remains a perplexing problem, but progress has been made in re-
lating it to other concepts whose understanding appears to be more accessible.
The influential, and first, text on learning Bayesian networks from data, Causa-
tion, Prediction and Search (1993) [12], notably eschewed any attempt to define
the central concept, focusing instead on the relation between (undefined) causal
structure and probabilistic structure. More recently, Judea Pearl has used Bayes-
ian networks to make progress in understanding philosophical problems about
causal concepts, giving accounts of counterfactual reasoning [10], experimental
methods [9] and token causality [6, 7]. James Woodward, among others, is us-
ing Pearl’s account of causal intervention to improve upon an old philosophical
tradition, attempting to make sense of causality in terms of manipulation [14].
This convergence of artificial intelligence (automated Bayesian networks) and
philosophy is, we think, wholly to the good and promises to be fruitful for both
sides of the collaboration.

The philosophical use of Bayesian networks largely depends upon a causal
interpretation of the arc structure and the probabilistic interpretation of causal-
ity, stemming from the work of Patrick Suppes [13] and Wesley Salmon [11].
Although there is some dispute within the AI community about the merits of
the causal interpretation, most of this seems to be fueled by the observation



that any Bayesian network can be reordered back-to-front and still represent the
very same probability distribution, using Chickering’s arc reversal rule [3]. What
that observation ignores is that any such reordering can only lead from simple
to complex networks when they begin from a perfect map — that is, one whose
arcs are both necessary and sufficient for identifying a probabilistic dependency
in the system being modeled.! A causal interpretation of the Bayesian network
implies that we can use the network for causal reasoning and not just probabilis-
tic reasoning. And this further implies the ability to use such models to reason
hypothetically about the consequences of interventions. Thus, the difference be-
tween the “statistically equivalent” models Cancer < Gene — Smoking and
Smoking — Gene — Cancer may be determininable by experimentally setting
the value of Smoking, though not by any observation of the three variables.

Judea Pearl has notably discussed causal interventions and their modeling
with Bayesian networks in Causality [10]. There, he favors representing an in-
tervention on a variable C' by arc-cutting: by setting C' to a desired value and
cutting all arcs from its parents. He formalizes this approach in his “do-calculus.”
An alternative method is to introduce a new node I. as an additional parent of
C, where setting (or observing) I, to be TRUE models an intervention. Once the
alterations to the network are applied for either method of modeling interven-
tion, ordinary Bayesian network propagation rules can be used. The arc-cutting
method is in many ways simpler, but we suggest the simplicity comes at a price:
foregoing the possibility of modeling many situations realistically.

In this paper we describe extensions to these techniques for modeling inter-
ventions with Bayesian networks and especially (re)introducing indeterminism
into that modeling. We hope this will contribute to the collaboration of AI and
philosophy of science, as well as open up the wider practical application of Bayes-
ian networks. After a brief defence of indeterminism, we proceed by defining the
concept of intervention and presenting a classification system for different kinds
of intervention. We then discuss the concept of the effectiveness of an interven-
tion, and finally we describe our programmatic representation of interventions
and a GUI for managing them in a Bayesian network tool.

2 INDETERMINISTIC CAUSAL MODELS

One curiosity of the collaboration between AI and philosophy of science thus
far is a widespread agreement that, at bottom, these networks are deterministic,
despite that fact that they are explicitly probabilistic models. Pearl, for one, is
adamant that a deterministic conception of causality is required and for three
reasons [10, pp. 26-7]:2

1. Determinism is intuitive.

! Granted, this claim has not yet exactly been proved in the literature. Indeed, it
is demonstrably false in cases of measure zero, that is, cases where parameters in
the network must be given an ezact value for the network to be a perfect map.
However, outside of measure zero cases, the relation between network minimality
and causality is very clear empirically and, we believe, susceptible to compelling
arguments. Presenting these, however, would take us beyond the scope of this paper.

2 For a philosopher voicing the same opinion see, for example, [2].



2. Counterfactuals and causal explanation can only be made sense of given a
deterministic interpretation.

3. The deterministic interpretation is more general, since any indeterministic
model can be transformed into a deterministic model.

Whether determinism is intuitive or not, we shall leave to the reader. How-
ever, we note in passing that there is a growing consensus amongst philosophers
of science that such intuitions are insufficient reason for dismissing the proba-
bilistic analysis of causality, which is explicitly indeterministic. Pear]l has been
collaborating with Joseph Halpern in developing an important account of causal
explanation [6, 7]; we hope, however, that an indeterministic account of causal
explanation is not actually impossible, since we are developing one.

As for Pearl’s last point, it is undeniable that any Bayesian network can be
converted into a deterministic model. The point, however, is empty, since equally
every deterministic system can be represented as an indeterministic system. Even
were things otherwise, it would remain deniable that the deterministic version
is the proper vehicle for interpreting the original. We illustrate with a simple
three-variable model which is linear (the simplest kind of Bayesian network).
Structurally we have: X — Z « Y. The more common way to write linear
models is with equations of this type:

Z=a1X+a2Y+U

Here, a; is a coefficient representing the degree of dependency of Z upon X
and as the dependency of Z upon Y. But, Z is not a strict function of any of
X or Y or the combination of the two: there is a residual degree of variation,
described by U. U is variously called the residual, the error term, the disturbance
factor, etc. Whatever it’s called, once we add it into the model, the model is
deterministic, for Z certainly is a function — a linear function, of course —
of the combination of X, Y and U. Does this make the physical system we
are trying to model with the equation (or, Bayesian network) deterministic?
Well, only if as a matter of fact U describes a variable of that system. Since as a
matter of actual practice U is typically identified only in negative terms, as what
is “left over” once the influences of the other parents of Z have been accounted
for, and since in that typical practice U is only ever measured by measuring
Z and computing what’s left over after our best prediction using X and Y,
it is simply not plausible to identify this as a variable of the system. What is
represented by U is everything that either is unknown about this system or else is
unknowable about this system, the ineradicable indeterminism in its fundamental
relationships. Any justification for bundling all such unknowns and unknowables
into a “known” variable can only lie in an a priori argument for determinism. But
since indeterministic worlds are describable and, for all we can see, consistent,
such an a priori argument would be ruling out a posteriori possibilities, which is
something any reasonable a priori theory should not aspire to do. In short, the
identification of causal models with their deterministic counterparts has been
achieved only by presumption.?

3 To convert any deterministic system into an indeterministic system, simply remove
the error terms. If there are none, the system is surely correctly described as deter-
ministic, but that is no bar to representing it with an indeterministic system having
only extreme probability parameters.



3 OBSERVATION VERSUS INTERVENTION

Unfortunately, while the causal interpretation of Bayesian networks is becoming
more widely accepted, the distinction between causal reasoning and observa-
tional reasoning remains for many obscure. This is particularly true in applica-
tion areas where the use of regression models, rather than Bayesian networks, is
the norm, since regression models (in ordinary usage) simply lack the capability
of modeling interventions.

We illustrate the difference between intervention and observation with a sim-
ple example. Figure 1 presents a three-variable causal model of coronary heart
disease (CHD) risk, which is loosely based upon models of the Framingham
heart disease data (e.g., [1, 4]). As is normal, each arrow represents a direct and
unerasable causal connection between variables. Two contributing factors for
CHD are shown: hypertension (HT; elevated blood pressure) at age 40 and HT
at age 50. The higher the blood pressure, the greater the chance of CHD, both
directly and indirectly. That is, hypertension at 40 directly causes heart disease
(in the terms available in this simplified network of three variables!), but also
indirectly through HT at 50. In this simplified model, the direct connection be-
tween HT at 40 and CHD between 50 and 60 represents all those implicit causal
processes leading to heart disease which are not reflected in the later HT.

Figure 2(a) shows the results of observing no HT at age 50. The probability
of CHD has decreased from a baseline of 0.052 to 0.026, as expected. But what if
we intervene (say, with a medication) to lower blood pressure as in Figure 2(b)?
The probability is reduced by a lesser amount to 0.033. By intervening on HT at
50 we have cut the indirect causal path between HT at 40 and CHD, but we have
not cut the direct causal path. That is, there are still implicit causal processes
leading from HT at 40 to CHD which the proposed intervention leaves intact.
Observations of low HT at 50 will in general reflect a lower activation of those
implicit processes, whereas an intervention will not. In short, it is better to have
low blood pressure at 50 naturally than to achieve that by artificial means—and
this causal model reflects these facts.

A real-world example of people getting this wrong is in the widespread use of
regression models in public health. To assess the expected value of intervention
on blood pressure at age 40, for example, regression models of the Framingham
data have been used [1, 4]. If those models had exactly the same structure as
ours, then (aside from being overly simplistic) there would be no actual problem,
since HT at 40 being a root node there is no arc-cutting needed. However, the
models actually used incorporate a reasonable number of additional variables,
including parents of HT at 40, such as history of smoking, cholesterol levels,
etc. By simply observing a hypothetical low blood pressure level and computing
expected values, these models are being used for something they are incapable
of representing.’ The mis-estimation of effects may well be causing bad public
policy decisions.

4 Unerasable means that, no matter what other variables within the network may be
observed, there is some joint observational state in which the parent variable can
alter the conditional probability of the child variable. In case this condition does



Fig. 2. The hypertension causal model where HT at age 50 is (a) observed as low (b)
set to low.

4 DEFINING AN INTERVENTION

In ordinary usage, an intervention represents an influence on some causal system
which is extraneous to that system. What kind of influence we consider is not
constrained. It may interact with the existing complex of causal processes in
the system in arbitrary ways. For example, a poison may induce death in some
animal, but it may also interact with an anti-toxin so that it does not. Or again,
the action of the poison may be probabilistic, either depending on unknown
factors or by being genuinely indeterministic. Also, an intervention may impact
on multiple factors (variables) in the system simultaneously or be targeted to
exactly one such variable. In the extant literature of both philosophy and com-
puter science there seems to have been an implicit agreement only to consider
the very simplest of cases. In that literature, interventions are deterministic, al-
ways achieving their intended effect; and their intended effect is always to put
exactly one variable into exactly one state. As a consequence, interventions never
interact with any other causes of the targeted variable, rather their operation
renders the effect of those other parents null. While such a simple model of in-
teraction may be useful in untangling some of the mysteries of causation (e.g.,
it may have been useful in guiding intuitions in Halpern and Pearl’s study of
token causation, [6, 7]), it clearly will not do for a general analysis. Nor will it

not hold we have an unfaithful model, in the terminology of [12]. We will not be
considering such models here.

5 In order to be capable of representing interventions we require a graphical represen-
tation in which the parental effects upon an intervened-upon variable can be cut (or
altered). This minimally requires moving from ordinary regression models to path
models or structural equation models, and treating these in the ways suggested in
this paper.



do for most practical cases. Medical interventions, for example, often fail (pa-
tients refuse to stop smoking), often interact with other causal factors (which
explains why pharmacists require substantial training before licensing), often im-
pact on multiple variables (organs) and often, even when successful, fail to put
any variable into exactly one state (indeterminism!). Hence, we now provide a
more general definition of intervention (retaining, however, reference to a single
target variable in the system; this is a simplifying assumption which can easily
be discharged).

Definition 1 An intervention on a variable C in a causal model M transforms
M into the augmented model M' which adds I. — C to M where:

1. 1. is introduced with the intention of changing C'.
2. 1. is exogenous in M'.
3. I. directly causes (is a parent of) C.

We take it that interventions are actions and, therefore, intentional. In partic-
ular, there will be some intended target distribution for the variable C', which we
write P*(C). I, itself will just be a binary variable, reflecting whether an inter-
vention on C' is attempted or not. However, this definition does not restrict I.’s
interaction with C’s other parents, leaving open whether the target distribution
is actually achieved by the intervention. Also, the definition does allow variables
other than C' to be directly caused by I.; hence, anticipated or unanticipated
side-effects are allowed.

5 CATEGORIES OF INTERVENTION

We now develop this broader concept of intervention by providing a classification
of the different kinds of intervention we have alluded to above. We do this using
two “dimensions” along which interventions may vary. The result of the inter-
vention is the adoption by the targeted variable of a new probability distribution
over its states (even when a single such state is forced by the intervention, when
the new probability distribution is degenerate), whether or not this achieved
distribution is also the target distribution. To be sure, the new distribution will
be identical to the original distribution when the intervention is not attempted
or is entirely ineffectual. This special case can be represented

Py (Clwe, 1) = Py (Clme) (1)
where 7, is the set of the original parents of C.
Dimensions of Intervention

1. The degree of dependency of the effect upon the existing parents.
(a) An entirely independent intervention leads to an achieved distribution
which is a function only of the new distribution aimed for by the inter-
vention. Thus, for an independent intervention, we have

P (C|7T07 Ic) = P* (C) (2)



(b) A dependent intervention leads to an achieved distribution which is a
function of both the target distribution and the state of the variable’s
other parents.

An independent intervention on C simply cuts it off from its parents. Depen-
dent interventions depend for their effect, in part, on the pre-existing parents
of the target variable. The dependency across the parents, including the new
I., may be of any variety: linear, noisy-or, or any kind of complex, non-linear
interaction. These are precisely the kinds of dependency that Bayesian networks
model already, so it is no extension of the semantics of Bayesian networks to
incorporate them. Rather, it is something of a mystery that prior work on inter-
vention has ignored them.

2. Deterministic versus stochastic interventions.
(a) A deterministic intervention aims to leave the target variable in one
particular state — i.e., the target distribution is extreme.
(b) A stochastic intervention aims to leave the target variable with a new
distribution with positive probability over two or more states.

A deterministic intervention is by intention simple. Say, get Fred to stop
smoking. By factoring in the other dimension, allowing for other variables still
to influence the target variable, however, we can end up with quite complex
models. Thus, it might take considerable complexity to reflect the interaction of
a doctor’s warning with peer-group pressure.

The stochastic case is yet more complex. For example, in a social science
study we may wish to employ stratified sampling in order to force a target vari-
able, say age, to take a uniform distribution. That is an independent, stochastic
intervention. If, unhappily, our selection into experimental and control groups is
not truly random, it may be that this selection is related to age. And this relation
may induce any kind of actual distribution over the targeted age variable.

Any non-extreme actual distribution will be subject to changes under Bayes-
ian updating, of course, whether it is for a targeted variable or not. For example,
a crooked Blackjack dealer who can manipulate the next card dealt with some
high probability, may intervene to set the next deal to be an Ace with probability
0.95. If the card is later revealed to be an Ace, then obviously that probability
will revised to 1.0.

Most interventions discussed in the literature are independent, deterministic
interventions, setting C' to some one specific state, regardless of the state of
C’s other parents. We can call this sort of intervention Pearlian, since it is the
kind of intervention described by Pearl’s “do-calculus” [10]. This simplest kind
of intervention can be represented in a causal model simply by cutting all parent
arcs into C' and setting C' to the desired value.

6 MODELING EFFECTIVENESS

There is another “dimension” along which interventions can be measured or
ranked: their effectiveness. Many attempted interventions have only some prob-
ability, say r, of taking effect — for example, the already mentioned fact that
doctors do not command universal obedience in their lifestyle recommendations.



Now, even if such an intervention is of the type that when successful will put
its target variable into a unique state, the attempt to intervene will not thereby
cut-off the target variable from its parents; it is not Pearlian. The achieved dis-
tribution will, in fact, be a mixture of the target distribution and the original
distribution, with the mixing factor being the probability r of the intervention
succeeding.

Classifying or ranking interventions in terms of their effectiveness is often
important. However, we have not put this scale on an equal footing with the other
two dimensions of intervention, simply because it is conceptually derivative. That
is, any degree of effectiveness r can be represented by mixing together the original
with the target distribution with the factor r. In case the intended intervention
is otherwise independent of the original parents, we can use the equation:

Pryr(Clme, 1) = r x P*(C) + (1 — 1) x Par(Clne) (3)

This being a function of all the parents of C, it is a subspecies of dependent
interventions.

In practical modeling terms, to represent such interventions we maintain two
Bayesian networks: one with a fully effective intervention and one with no inter-
vention. (Note that the first may still be representing a dependent intervention,
e.g., one which interacts with the other parents.) There are then two distinct
ways to use this mixture model: we can do ordinary Bayesian net propagation,
combining the two at the end with the weighting factor to produce new poste-
rior distributions or expected-value computations; or, if we are doing stochastic
sampling, we can flip a coin with bias r to determine which of the two models
to sample from.

7 REPRESENTING INTERVENTIONS

Any Bayesian network tool can be used to implement interventions just by gen-
erating the augmented model manually, as in Section 4. However, manual edits
are awkward and time consuming, and they fail to highlight the intended causal
semantics. Hence, we have developed a program, the Causal Reckoner, which
runs as a front-end to the BN tool Netica [8] 7.

The Causal Reckoner makes Pearlian interventions as easy as observing a
node and implements more sophisticated interventions via a pop-up, and easy
to use, GUL The mixture modeling representation of effectiveness (§6) is imple-
mented via a slider bar, and the target distribution is set by gauges. The full
scope of possible interventions is not yet implemented (e.g., causally interactive
interventions), as this requires arbitrary replacement of a node’s CPT.

Our program provides better visualization and intervention features than any
other we have seen. Indeed, Genie [5] is the only program with similar capabilities
that we know of; it has the feature of ‘controlling’ nodes to perform Pearlian
interventions. Our visualization for basic interventions is shown in Figure 2(b) in

5 Alternatively, decision nodes can be used to model Pearlian interventions, since their
use implies the arc-cutting of such interventions. However, that is an abuse of the
semantics of decision nodes which we don’t encourage.

" The software can be downloaded from: http://www.datamining.monash.edu.au/cgi-
bin/cgiwrap/mdmc/run-cvstrac.cgi/causal /wiki.



Fig. 4. (a) The hypertension causal model where a stochastic medical intervention has
been made. In (b) an observation has also been entered.

Section 3. The node is shaded and a hand icon (for “manipulation”) is displayed.
We don’t show the intervention node, simplifying and saving screen space.

When visualizing less than fully effective interventions, it is useful to report
extra information. Figure 3(a) shows a 90% effective intervention intended to
set low blood pressure at age 50. The target distribution is shown to the right
of the node’s actual distribution, which is a mixture of the original and target
distributions. In the hypertension example, the intervention can be interpreted
as a drug which fails in its effect 10% of the time. A drug with a weaker effect
is shown in Figure 3(b).

Even a fully effective intervention can result in an actual distribution that
deviates from the target distribution. This can happen when the intervention
is stochastic, since other observational evidence also must be incorporated. Fig-
ure 4(a) shows the hypertension example given a fully effective stochastic in-
tervention. Take a drug that sets the chance of low blood pressure to 95%,
irrespective of other causal influences. This particular drug reduces the chances
of CHD from 0.052 to 0.038. But what if the patient gets CHD anyway? Fig-
ure 4(b) shows that under this scenario, it is less likely that the drug actually
helped with hypertension, since people with hypertension are more susceptible
to CHD than others.

In short, the Causal Reckoner provides a GUI for mixing observations and
interventions seamlessly. We can take existing networks in any domain and in-
vestigate various intervention policies quickly, without the trouble of creating
new nodes and manually rewriting arbitrarily large CPTs.

8 CONCLUSION

Recent research exploring the causal interpretation of Bayesian networks has
been very fruitful. However, the theory needs to find its way into practical appli-
cation. For that purpose, tools such as the Causal Reckoner are needed to make



it easy to model causal interventions and reason about their consequences and
more difficult to make blunders, such as substituting an observational value for
an intervention value.

In addition to these virtues of our work, we believe the nearly universal ten-
dency to focus on deterministic models and deterministic interventions, while
in part motivated by a healthy preference for the simple, either dismisses whole
regions of potentially important applications or else invites new blunders in
oversimplifying them. By taking seriously the indeterminism of the probabilistic
relations in Bayesian networks, we have readily found a variety of intervention
models that Pearlian interveners have yet to consider, including partially effec-
tive interventions, stochastic interventions and causally interactive interventions.
Furthermore, it is clear that a great many real systems exhibit just these features.
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