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Abstract

I consider three aspects in which machine learning and philosophy of science can il-
luminate each other: methodology, inductive simplicity and theoretical terms. I examine
the relations between the two subjects and conclude by claiming these relations to be very
close.
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1 Introduction

This special issue of Minds and Machines is the eventual outcome of the workshop “Machine
Learning as Experimental Philosophy of Science” organized by Hilan Bensusan and me for
the Twelfth European Conference on Machine Learning (ECML’01) and The Fifth European
Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’01). Here
I present the case I made at the workshop for considering the two disciplines to be very close
relatives indeed. The more substantive papers that follow develop that idea in a variety of
particular directions.

Machine learning studies inductive strategies as they might be carried out by algorithms.
The philosophy of science studies inductive strategies as they appear in scientific practice.
Although they have developed to a great extent independently, the two disciplines have much
in common. This is slowly coming to be recognized in a number of ways, at least by some Al
researchers. In particular, there has been substantial new interest in the relation between Al
and statistics, as evidenced by new conferences devoted to the subject as well as the profusion
of statistical subjects appearing in the major annual AT conferences Uncertainty in AIand the
International Conference on Machine Learning; and the relation between statistics and the
philosophy of science is of long standing (e.g., Reichenbach, 1949). What I shall argue here is
that the two disciplines are, in large measure, one, at least in principle. They are distinct in
their histories, research traditions, investigative methodologies; however, the knowledge which
they both ultimately aim at is in large part indistinguishable. Furthermore, it is appropriate
for them to begin to share research techniques as well.

In Computational Philosophy of Science (1988), Paul Thagard presented some similar
ideas. In particular, he emphasized that philosophies of scientific method, if they have any
merit, ought to be realizable in a computer program. As a minimal test of methodological
cogency, either normative or descriptive methodological proposals ought to be clear enough
and precise enough to be implementable in a universal computational device. It can be,
and has been (e.g., Dreyfus, 1992, Humphreys and Freedman, 1996), argued that many of



the skills which humans have, including the methodological skills employed by scientists, are
non-algorithmic. It would follow that Thagard’s minimal test of methodological cogency is
strictly incorrect. I do not believe that these anti-computational arguments succeed (see
Korb, 1996, and Korb and Wallace, 1997, respectively). But even supposing that they do,
meeting Thagard’s test would remain a valuable desideratum: implementation of a method-
ology is as good a demonstration of cogency as one can hope for, and provides a ready test
environment of the merits or demerits of the proposed method through computer simulation.
Such implementation therefore provides for an experimental philosophy of science that goes
beyond the empirical methods applied thus far within the philosophy of science, namely the
observation of laboratory life in the “new experimentalism” of Franklin (1990) and others and
the historical investigations of scientific practice, as in the work of Hacking (1983). There has
been important recent work putting methodological concepts into the practice of computer
programs, especially in the area of learning causal models (e.g., Glymour and Cooper, 1999;
Korb and Nicholson, 2004); thus, there is an existence proof of the feasibility of implementing
proposed methods.!

Since there have been advanced no successful arguments that anything crucial in scien-
tific practice is non-algorithmic (even though there are non-defeated arguments that this is
conceivable), and since there already are examples of the implementation of important and
useful inferential methods, I shall assume in the sequel that all of scientific method may be
implemented algorithmically. If this is wrong, then any considerations below will turn out to
apply to a (demonstrably non-empty) subset of human scientific practices.

2 Meta-learning and the search for scientific method

There are infinitely many possible inductive strategies. In his normative problem of induction,
David Hume (1739/1888) argued over 200 years ago that no single inductive strategy can
be universally better than all others; machine learning researchers have recently discovered
the relevance of this result (cf. Wolpert and Macready, 1995, and Schaffer, 1994), which
implies that no one machine learning algorithm (or, at any rate, no one algorithm with a
fixed “bias” — i.e., fixed learning parameters) can perform optimally with respect to every
learning problem (or, in every possible world). Here I shall assume that Hume’s problem
of induction is not solvable; although I do not know that that is so, there is apparently
substantial evidence that it is so. The meta-learning problem is, having given up on finding
a universal learning algorithm, to attempt to find heuristics or algorithms for selecting an
optimal inductive algorithm (or bias) given a particular learning problem. Of course, the
meta-learning problem cannot itself be fully soluble on our assumption, for the meta-learning
algorithm, conjoined with the individual algorithms amongst which it is selecting, would solve
Hume’s problem. Nevertheless, assuming that there is some pattern to the relation between
problem types and the inductive algorithms that are usefully employed on them, we can hope
to learn that pattern just as well as we can hope to learn first-order patterns in the first place.
This meta-learning work in machine learning can be applied to the descriptive problem of
induction: identifying how, as a matter of fact, human scientists go about their inductions.
What distinguishes epistemologists from philosophers of science is their view of just what
it is to attempt to understand human knowledge of the world. Philosophers calling themselves
epistemologists tend to view philosophy as an analytic, a priori enterprise, believing that we
can answer the important philosophical problems (or “dissolve” the more perplexing philo-

!Note that I would prefer to distance myself from Slezak’s slightly premature announcement of the same
(Slezak, 1989), since that was in reference to Langley et al.’s (1987) work on the program BACON, which
for many reasons does not embody a serious methodology for real science — for example, it copes with noisy
measurements only in an egregiously ad hoc fashion.



sophical “puzzles”) by better understanding the interrelations between relevant linguistically
accessible concepts — hence, Strawson’s (1999) unsatisfying “dissolution” of the problem of
induction. Philosophers of science tend to see philosophy of science as a meta-science, as
the (perhaps supertheoretical) scientific study of science. Many of them practice within de-
partments of the history and philosophy of science (HPS) and actively seek to use historical
case studies to inform their philosophical theories. And yet it is natural to have reservations.
Giere (1973) raised the question of whether or not the HPS approach is just committing the
naturalistic fallacy, by attempting to found the ought of science on its is — or its was. To the
extent that philosophy of science itself aims at descriptive knowledge of human science, the
objection does not apply. And even where normative knowledge is aimed at, knowledge which
will allow us to judge some scientific proposals as preferable to others, it can be argued that
the history of science provides relevant inductive evidence in showing us many clear examples
of failures and some clear examples of successful inductions. Laudan (1987), in particular, has
suggested that our knowledge concerning the most appropriate scientific method be relativized
to particular goals, and that it then can be obtained by induction on the history of science.
One could take this project further by considering experiments with different methods instead
of using only available historical observations. Whereas conducting grand experiments in the
philosophy of science by employing competing teams of scientists is hardly a realistic option,
the application of Thagard’s criterion by implementing competing inductive algorithms com-
putationally enables for the first time in history the experimental philosophy of science via
computer simulation (as well as, perhaps surprisingly, an experimental ethics; see Mascaro,
Korb and Nicholson, 2001).

Thus, we see that the meta-learning project in machine learning and the methodology
project in the philosophy of science are one and the same, at least insofar as they are (or
might be) directed at the problems raised by human science. Furthermore, computer simu-
lation of problem environments and algorithms engaged in learning about them, which is a
common technique in machine learning, opens up the possibility for philosophy of employing
experimental methods, in addition to the observational and historical methods employed in
the past.

3 Inductive Simplicity

Ockham’s principle asserts that we should not multiply entities beyond necessity. Applying
this to induction, we should aim for the simplest theory possible, that is, the simplest theory
which can reasonably be held to account for the evidence. This contrasts markedly with the
idea that optimal inductions best “save the phenomena”, or a naive “inference to the best
explanation”, or in statistical theory the idea of adopting that model which maximizes the
likelihood on the data. With such approaches we ignore the complexity of our theories and
suppose that the only epistemological criterion of value is “explanatory power” — how closely
the data are represented by the theory. It has been well established in both statistics and
in machine learning that the result of such over-attention to the data in hand is overfitting:
the additional complexity accepted into our hypotheses in order to precisely fit the data in
fact is fitting measurement noise, with the result that the complex model “accounts” for
the existing data (with noise), but by incorporating spurious theory it fails to be optimal
in accounting for new data, i.e., predictive power. In consequence, even if we are using a
counsistent, (statistically) unbiased estimation technique, so that it is guaranteed to converge
on the truth in the (infinite) limit, in sample sizes short of that limit, the technique can be well
and truly beaten by an alternative respecting Ockham (see Dai, Korb, Wallace and Wu, 1997,
for an example of this). In Bayesian terms, such approaches to inference maximize likelihood
to the neglect of the prior probability of theories; hence, they are insufficiently sensitive



to the posterior probability of theories, since that depends on both prior and likelihood.
Bayesian inference can be put into 1-1 correspondence with minimum encoding approaches to
computational induction, where simplicity is equated with shorter message lengths and higher
probabilities (see, e.g., Solomonoff, 1964; Georgeff and Wallace, 1984). Such inference puts
Ockham’s Razor into application.

Ockham’s Razor in this form receives whatever support accrues to Bayesian principles
for scientific induction, which is not negligible (e.g., Howson and Urbach, 1993; Korb, 1992).
Other considerations in its favor may also be raised. In a machine learning context, where
induction implies some search of the space of hypotheses, there is no serious alternative to
employing some variety of simplicity metric to govern the search: typically the space is infinite,
even if enumerable, so hypotheses to be examined are constructed by the algorithm during the
search, necessitating the examination of simpler hypotheses first since the alternative program
would not halt.?2 There is also a more direct case to be made for simplicity. If complexities
in our hypotheses are introduced prior to any pressure on their behalf in the evidence, then
they have been introduced without any empirical guidance. So there will be no more reason
to believe that they correspond to reality than that any fantasy does. On the other hand, if
we are conservative a la Ockham in introducing complexities, then each additional complexity
will have been introduced only when the evidence actually justifies it (or, at least, when it
appears to justify it). Assuming that we are sufficiently conservative and that our inductive
technique does converge on the truth in the limit (and that the evidence does not happen
to mislead us in some particular case), then by applying Ockham’s Razor, we may err by
having too simple a theory to correspond to reality — which would imply having too small an
evidential base, and so be a rectifiable error — but we will never err by having too complex
a theory.

4 Theoretical terms

Scientific theories commonly employ theoretical terms, like ‘electron’, ’gene’ and ’super-ego’.3
These terms have an inductive importance. Hempel’s “theoretician’s dilemma” (Hempel,
1958) suggested that theoretical terms are necessarily dispensable: if they are useful, then
they must lead to true observational consequences. But, if they do that, then by Craig’s
lemma (Craig, 1956), or alternatively by Ramsification (Ramsey, 1931), they can be eliminated
in favor of laws expressed in the observation language (or, per Ramsey, by theories in which
theoretical terms are replaced by bound variables). As Hempel noted, however, this possibility
is not a real one: in the case of Ramsification, there is no ground to claim that the new theory
is any more scrutable (or any less ontologically committed to theoretical entities, following
Quine on ontological commitment) than the old; whereas Craig’s procedure for eliminating
theoretical terms typically replaces a finite theory with a theory requiring infinitely many
axioms. So, in any case, the theoretical terms are at least heuristically necessary. Nor is there
any theoretical ground for claiming that they engage us in no ontological commitment.

Machine learning has dealt with theoretical terms from its beginning. BACON (Langley,
1987), limited as it was, nevertheless could generate new variables from old (e.g., observa-
tional) variables in order to discover more perspicuous natural laws. In automated causal
discovery, researchers are working on methods to learn models with latent variables. In clas-
sification research, the generation of theoretical terms is called constructive induction, which
is an active area of research.

*More complex hypotheses can be examined before simpler ones on any metric, but no more than a finite
number of times in any case.

3Theoretical terms are often introduced by contrast with observational terms. But that distinction is
problematic in many ways. I believe a more promising account of theoretical terms is one that simply considers
them as those terms introduced by a theory, as in the notion of T-theoreticity in Sneed (1979).



The machine learning of theoretical terms raises some new issues for philosophy of science.
In addition to the question of just how to generate theoretical terms, it poses the question
of how to justify their introduction — not in the sweeping way of Hempel’s dilemma, but
the concrete way of coming up with criteria for preferring one theory over another in the
inductive search through the hypothesis space. Machine learning thus makes specific the
otherwise general concerns of philosophy of science in introducing terms which refer to non-
observables.

5 Meta-evaluation

I have suggested a number of ways in which machine learning can aid the philosophy of science.
One area in which machine learning has clearly lagged behind both statistics and philosophy
of science is in coping with the meta-evaluation problem. That is the question of how to
judge the relative merits of one machine learning algorithm over another, which is the key
issue in meta-learning described above. Although there has been research in this area (e.g.,
Bensusan, 1999), the standard of practice in the field as a whole is abysmal (cf. Hoffman (ed.)
Empirical Methods in AI, IJCAI 1999 Workshop). Progress in Bayesian philosophy of science
and Bayesian computational statistics is very likely to find fruitful application in this problem
for machine learning.

In addition to the institutional and historical differences in tradition that separate philos-
ophy of science and machine learning, the subject matter of philosophy of science just appears
radically different from that of machine learning. Philosophers of science are attempting to
account for messy, obscure practices of scientists that are embedded in an extraordinarily rich
cultural context, while Al researchers are engaged in writing clean, crisp, clear-cut programs
implementing straightforward algorithms, yes? No.

It is true that AI has long supported a tradition of “logicism”, which sought to reduce all
AT problems to problems of axiomatization and theorem proving (see McCarthy, 1968, for a
classic expression of this point of view; see McDermott, 1987, and Korb, 1995, for two critiques
thereof). In a kind of self-inflicted reductio, this approach to Al failed to find any reason or
value in machine learning (Simon, 1983). However, the logicist tradition is clearly in the
decline. The more active research programs in Al today use artificial neural networks, genetic
algorithms, and probabilistic reasoning systems, all of which seek to implement inductive
inference which copes with uncertain information and complex environments. The ultimate
goal of Al is to produce an autonomous artificial agent which can cope with an a priori
unknown world; hence, providing competent machine learning is a strict precondition for
success.

Assuming that the pessimism of Dreyfus and other antagonists of Al is unwarranted, that,
regardless of the difficulty, the human context of scientific reasoning can ultimately be rep-
resented algorithmically and scientists’ inductive strategies can be implemented on universal
machines, then machine learning and the philosophy of scientific method will coalesce. The
case I am making is therefore not one of a marriage of convenience, nor of a love affair, but
of ultimately the most intimate relationship possible.
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