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Abstract

The growth in the application of computer simulation across the sciences,
and especially the application of artificial life techniques (agent-based
and individual-based modeling) to evolutionary biology and psychology,
the social sciences, epidemiology and ecology, raises many philosophical
questions. One basic question is: How can we learn about reality by sim-
ulating it? Attempts to answer that question revolve around the relation
between experimental procedure and simulation. We consider the rela-
tion between simulation and real-world experiment and find it to be the
identity relation.

Keywords: Computer simulation, epistemology of simulation, Monte
Carlo, homomorphism, validation, verification, experimentation.

1 The Scope and Limits of Computer Simulation

Computers have rapidly become the primary intellectual tool deployed by hu-
mans. This is natural. One of the first things students of computer science
learn is that computers are universal: within the range of computable func-
tions, there is simply nothing that computers cannot do. Every normal pro-
gramming language is, in fact, a universal Turing machine, as can be proved
easily by programming a simple universal Turing machine in that language.
This universality, coupled with the rapid expansion of computational power,
means that computers support almost everything that occurs in developed
economies. It also means that computers can be applied to nearly any intellec-
tual task, if not as an independent source of innovation, a use waiting at least
upon some considerable new developments in artificial intelligence, then as a
helpmate and support. Computers can be, and have been, applied to further
research in biology, chemistry, microphysics, macrophysics, economics, sociol-
ogy, art, music and philosophy. Computer simulation has become a reliable
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and regular contributor to investigation in each of these fields of endeavor,
and probably every science. This expanding reach of computation has led to
extreme reactions, including those who see computation as essentially inferior
to human inference, and these uses of computation as epistemologically sus-
pect, and those who see no bounds to computer application and who call for
a new epistemology to underwrite these activities.

Here we shall attempt to develop some ground between the more extreme
reactions to scientific computer simulations. In particular, we find consider-
ing the relation between computer simulations and scientific experiments to
be interesting and fruitful. Many within the new epistemology camp have
been suggesting that simulating “lies between” theorizing and experimenting
(Humphreys, 1993; Winsberg, 2003; Rohrlich, 1991); if simulation is part the-
ory and part experiment, then the old stories of how we learn about theory
from experiment can hardly apply. However, we do not agree with this “in-
betweenness” theory; rather, we suggest that the old stories about the growth
of scientific knowledge, whether right or wrong about science before the com-
puter, are equally right or wrong about current science.

1.1 What Computers Can’t Do

There is general agreement that (ordinary) computers cannot compute non-
computable functions, e.g., solving Turing’s Halting Problem or computing
the Busy Beaver numbers. To generate solutions to such problems comput-
ers would need to have access to infinite precision real numbers, for example,
which is something no finite digital machine can manage. There is not any
consensus about what this restriction really means, however. Some, such as
Penrose (1999), seem to think this implies that computers are significantly
inferior in potential computational ability to analog computers, such as hu-
mans. But for such a potential to be manifested, one must find an analog
means of taking advantage of infinite precision real numbers, which presup-
poses overcoming quantum limits and pervasive low-level thermal noise. Since
such limits have been operative throughout the entire evolutionary history of
humanity, and since human mental capacities have certainly evolved largely
for their adaptive value, it follows that human mentation as it currently exists
has no more ability to break the barrier of non-computability than does the
humble desktop computer. If there is potential to break through that barrier,
we can hardly expect unassisted evolution to find it. We find fully satisfactory
Turing’s original answer to a similar complaint put to the possibility of ma-
chine intelligence — that any formal system is constrained to a proper subset
of the truth by having a Gödel sentence true of it: who is to say we are any
different? Computers are limited. But only a fool can fail to see the many
severe limitations of humans.

If we find something that humans can do, then we have a prima facie case
that computers can do it too. If we are too stupid to figure out how to get
them to do it, that is a problem not attributable to them.
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2 What Is Simulation?

So, what are simulations? The PC game “The Sims” is a simulation: it sim-
ulates the life and times of various characters who worry about getting jobs
and cleaning toilets. Aircraft and naval piloting simulators simulate conditions
involved in normal and abnormal maneuvers of aircraft and ships. And Second
Life simulates a large range of human and non-human activities. Despite many
commentators on the philosophy of simulation taking these sorts of cases se-
riously (e.g., Frigg and Reiss, 2008; Humphreys, 2004; Kueppers et al., 2006),
in all of these simulations a human user plays an essential and central role,
which is not to the point in simulation science. It is also not to the point
that in ordinary language these processes are called simulations; that usage
is simply emphasizing that humans are being put into other-than-real-world
situations. Such simulations are not in general being used to expand our scien-
tific knowledge, and so they do not raise the epistemological questions we wish
to engage here. The simulations of interest to us here are those in which the
entire simulation occurs within a computer, as a computer process. Indeed,
we shall argue that the simulations of interest here are computer processes
which simulate other processes — whether chemical, ecological, astrophysical
or from whatever other scientific study.

2.1 A Definition of Simulation

A commonly used definition is:

Definition 1 A computer simulation is “the use of a computer to solve
an equation that we cannot solve analytically.” (Frigg and Reiss, 2008)

See also, for example, Humphreys (1991); Pritsker (1979); Kueppers et al.
(2006); Winsberg (2001).1 A comment of Reddy’s (1987, p.162) might be con-
fused with this kind of definition: “Simulation is a tool that is used to study the
behaviour of complex systems which are mathematically intractable.” That,
however, would be a confusion of an accidental with an essential property:
we use tools where they are useful, and not where they can be used but are
unhelpful.

Definition 1 itself, however, includes both too much and too little.2 Whether
“we” can or cannot solve an equation analytically is surely immaterial. For one
thing, that would render the term absurdly relative to the individual; for ex-
ample, many programs which for us would be simulations would not count as
simulations for a John von Neumann. For another, as new analytic techniques
become available, what once counted as a simulation may not any longer.

We do not want a concept of simulation which is relative to time, place
or individual calculational ability; we want a concept which is secured by a

1It is worth noting that Humphreys has retracted this view, finding the arguments of
Hartmann (1996) persuasive (Humphreys, 2004, p.108).

2This is a point originally made by Hartmann (1996).
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methodological role within science. But focusing on the positive side of the
definition, things only get worse.

It’s true that computer simulation began with the work of von Neumann,
Metropolis and others working out ways of computing solutions to equations
required for the development of the hydrogen bomb. This lead to such pro-
cedures as “Metropolis sampling”, Monte Carlo (MC) integration and Monte
Carlo methods in general. Monte Carlo integration is a method of numeri-
cally solving an unanalysable (or difficult to analyse) integral;3 it does so by
averaging pseudo-randomly selected values of the function in question. One
can think of it as throwing darts at a board where the curve is drawn and
using the frequency of darts under the curve as an estimate of its area. MC
integration contrasts with numerical quadrature, which sums the areas of rect-
angles bounding portions of the curve. Nobody talks of the latter as simula-
tion, but it solves equations just as well as the MC approach (at least given
moderately well-behaved curves and low dimensionality). However, under the
definition above quadrature counts as simulation. And, if MC integration were
to be counted as simulation, we can’t see any reason to deny the application
to numerical methods generally, since they are all about solving things with
computers that we cannot solve in our heads.

However, we think it is far preferrable to deny that equation solving is
simulation and reserve that term for (computer) processes which mimic rele-
vant features of a dynamic physical process under study (which is Hartmann’s
definition (Hartmann, 1996, p.83); see also (Zeigler, 1976; Pritsker, 1984)).
Racynski and Bargiela (2007) have recently put this nicely in their first sen-
tence: “To put it simply, computer simulation is a process of making a com-
puter [process] behave like a cow, an airplane, a battlefield, a social system, a
terrorist, [an] HIV virus, a growing tree, . . . or any other thing.”

2.2 Dynamic versus Static

Frigg and Reiss (2008) have objected to the idea that simulations are inher-
ently dynamic, being processes that model other processes. It does not matter,
according to them, that the computer process takes time, so long as it repre-
sents time: “[A]ll that matters is that the computer provides states that come
with a time index.. . . If . . . we have a computer that can calculate all the states
in no time at all, surely we don’t feel we lose anything.”4

It is, of course, true that if the computer process encodes a representation
of all the time steps of the target process, whether simultaneously or not,
then it contains all the information that a simulation would carry or convey.
However, it hardly follows that it is a simulation. For example, we might have

3Note, however, that unanalysability is not a part of anyone’s definition of Monte Carlo
methods; it’s just that analysable integrals are analysed instead!

4We should like to point out that, despite our differences on some particular issues, and
especially the definition of simulation, Frigg and Reiss (2008) present a parallel argument to
our own, in particular advancing our shared claim that the epistemology of simulation is the
epistemology of experimentation.
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function state(cond,i) which returns the simulated process’s i-th state, given
initial condtions cond. This function contains all the information contained in
the simulation; indeed, by iteration it could be used to run the simulation.
However, we can equally well use it to run all sorts of processes which are not
the simulation, for example, the states indexed by the Fibonacci sequence.

For a more homely example, a similar point can be made about a feature
film sliced into individual frames and put in an album: the album is not the fea-
ture film. The album contains all and only the information within the movie.
But a movie moves, an album does not; and the album will remain not-movie
until someone splices it back together. The methodologically relevant point is
that one can poke a computer process and then see what happens. That is at
least part of the point when people note that simulations embody aspects of
experimentation. But if the process is already completed, one cannot poke it.
There is no experimental side to things, even if the computer program incor-
porates all the information of the original simulation. Since the information is
in there, presumably there is some way of extracting the same information as
one would from experimenting with a simulation; but it would not be by some
intervention which mimics experimentation. One might well say, along with
Frigg and Reiss (2008), that since all the information is there, none of this
matters. But keeping some connection with ordinary language and ordinary
semantics is necessary, and calling a photo album a movie is just silly.5

2.3 Artificial Life Simulations

A final, and we hope decisive, objection to Definition 1 is that there have arisen
very large regions of simulation research which are not plausibly described as
equation solving at all, covering at least the vast bulk of agent-based modeling
in artificial life and social simulation (which is our primary area of simulation
research) and individual-based modeling in ecology (Grimm and Railsback,
2005). Although some equations will inevitably describe some characteristics
of such simulations, it is at most unusual for the solution of equations to be
the motivating factor in such investigations. The motivation is more typically
the investigation of high-level properties of the system which emerge from an
explicitly defined lower level of simulation. Some example motivations are:

• Demonstrating a feasible mechanism for the Baldwin effect in evolution
(Hinton and Nowlan, 1987)

• Showing that flocking behavior can result from independent decision-
making throughout a flock (Reynolds, 1987)

• Determining the minimal space requirements for beech forests to survive
5For a final analogy, you might consider Hans Moravec’s proposal for life-extension: down-

loading the information content of your brain into a disk and “waiting” for technological
development to support “your” reanimation. We suggest the incredulity this idea induces in
most people is simply rational.
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in isolated patches (Grimm and Railsback, 2005, section 1.2.2 & section
6.8.3)

• Finding conditions supporting or underminining the main postulated
mechanisms for the evolution of dimorphic parental investments in off-
spring (Mascaro et al., 2005)

• Investigating the effectiveness of different possible public health interven-
tions in response to a smallpox epidemic (Eidelson and Lustick, 2004)

If the philosophy of simulation is not to be left behind by the science of simu-
lation, Definition 1 must be abandoned. Therefore, we shall adopt Hartmann’s
definition, but rendering it more explicit.

2.4 Another Definition of Simulation

One immediate benefit of Hartmann’s definition is that it rules out the virtual
reality scenarios directly: since the human user (trainee) is a necessary ingre-
dient, these are not computer simulations. We will nevertheless now drop the
word “computer” and talk about simulation most generally, as this will help us
understand the relation between the epistemology of simulation and the epis-
temology of experiment. Our proposed semi-formal rendition of Hartmann’s
mimicking account is:

Definition 2 S is a simulation of P if and only if

1. P is a physical process or process type

2. S is a physical process or process type

3. S and P are both correctly described by a dynamical theory T containing
(for S; parenthetically described for P ):

• an ontology of objects OS (OP ) and types of objects Ψi(x) (Φi(x))

• relations between objects Ψi(x1, . . . , xn)(Φi(x1, . . . , xn));
hence, there are states of the system, s

• dynamical laws of development (possibly stochastic):
fS(s) = s′ (fP (s) = s′)

In other words, both the simulation S and the target of the simulation P are
physical processes with a common dynamical theory T . Computer simulations
are then easily defined as:

Definition 3 S is a computer simulation of P if and only if

1. it is a simulation of P

2. and it is a computer process or process type.
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An immediate objection to Definitions 2 and 3 might occur to you. It is
symmetric: according to this, we could just as well use the sun to simulate our
astrophysical programs as vice versa! This clearly won’t do; our simulations,
whether computer based or not, are surely intrinsically simpler than their
targets of study. To use a metaphor of Giere’s (1999) (borrowed from Borges
(1954)), if we were to construct a map of the earth on a 1:1 scale, it’s true
that we could more accurately measure distances using this very fine resolution
map than using cruder maps, but, obviously, all the other advantages of maps
would be lost. (Borges’ characters start shifting domicile from reality to map!)
The problems with symmetry are both practical and theoretical. Theoretically,
whatever one’s view may be about the nature of scientific explanation and
theories, it’s entirely clear that they some how summarize features of the
world. Computer scientists would say they compress information about the
world. In short, they are shorter than any direct, exhaustive description of
their objects.

All of this is well taken, but it doesn’t follow that we need to acknowledge
the point formally, within our definition. Simulations are typically constrained
by both a lack of understanding of fine details of the objects of our simulations
and by a lack of time to wait for the implications of fine details to filter through
our simulations. Frequently, however, crude simulations are made less crude,
as advances are made in both our understanding of the physical systems and
in our computational capacities. If we were somehow to extend this advance
in resolution power indefinitely, we might begin to approach the 1:1 scale
contemplated by Giere. Admittedly, going all the way would be pointless.
However, that doesn’t mean that by going all the way we would no longer be
dealing with a simulation; a pointless simulation remains a simulation.

3 Homomorphic Simulation

So, for practical and theoretical reasons, we require that our simulations not
be as detailed as the processes we simulate. Instead we require that:6

Proposition 1 There should exist a homomorphism h from P to S.

Definition 4 A homomorphism h from P to S is a mapping h : P → S
such that

1. For every object x ∈ OP , h(x) ∈ OS.

2. For every relation Φ, Φ(x1, . . . , xn) is true of P iff h(Φ) = Ψ and
Ψ(h(x1), . . . , h(xn)) is true of S

3. For every state transition function f in P , f(s) = s′ iff fh(h(s)) = h(s′)
(or, for stochastic laws, the distributions over states should be identical)

6For a similar account, see Norton and Suppe (2001), although their account is somewhat
cluttered with a variety of idealized, averaged and approximate models.
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The application of homomorphisms to simulation, to be sure, should be
taken with a grain of salt. That is, it is an ideal and one which we are un-
likely actually to reach with non-trivial simulations. It is frequently noted in
the literature that our simulations often diverge from reality in small ways
and sometimes in large ways. Nearly every simulation diverges in at least this
way: digital computational processes cannot exactly simulate continuous time,
whereas real systems at least appear to develop in continuous time; thus, these
systems support relations (“in-between times”) that have no counterpart in
their simulations. Nevertheless, at least for most problems, time can be dis-
cretized to a fineness where this difference does not matter. The epistemologi-
cal problem is to sort out when the divergences do matter to inferences about
the real systems.

Our central epistemological proposal is that simulations can be tested for
adequacy by testing whether a homomorphism between the real and the virtual
system holds. In the simulation literature this is called “validation”.
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Figure 1: Testing for homomorphism.

3.1 Testing for Homomorphism (Validation)

By observing, or arranging for, the physical system P in state si and its sub-
sequent transition to state sj, we are enabled to test whether the simulation
undertakes in homomorphic initial conditions the like transition (or vice versa).
Validation can be thought of as parallel to confirmation. Instead of confirming
how well a theory represents reality, we are confirming how well a simulation
maps reality. As such, validation comes in degrees, as there will be more or
less severe tests possible for the adquacy of the mapping. Indeed, we would
assert that the degrees come in the form of prior and posterior probabilities
of the existence of a homomorphism, exactly as with ordinary confirmation
theory, were we to allow ourselves the diversion into more traditional issues in
the philosophy of scientific method.

Grimm and Railsback (2005, Chap 9) present a likely account of how val-
idation might proceed. They suggest first testing low-level submodels which
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3.1 Testing for Homomorphism (Validation)

By observing, or arranging for, the physical system P in state si and its sub-
sequent transition to state sj , we are enabled to test whether the simulation
undertakes in homomorphic initial conditions the like transition (or vice versa).
In Figure 1 this corresponds to checking that simulation S shows a transition
from h(si) to h(sj). Validation can be thought of as parallel to confirmation.
Instead of confirming how well a theory represents reality, we are confirming
how well a simulation maps reality. As such, validation comes in degrees, as
there will be more or less severe tests possible for the adquacy of the map-
ping. Indeed, we would assert that the degrees come in the form of prior and
posterior probabilities of the existence of a homomorphism, exactly as with
ordinary confirmation theory, were we to allow ourselves the diversion into
more traditional issues in the philosophy of scientific method.

(Grimm and Railsback, 2005, chap 9) present a likely account of how val-
idation might proceed. They suggest first testing low-level submodels which
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describe non-emergent phenomena in the simulation and only subsequently
looking at higher-level systems, including properties of the simulation that
emerge from interactions between submodels. At the higher levels we are con-
ducting simulated versions of controlled experiments (Grimm and Railsback,
2005, p.316): “We pose alternative theories for the individual behavior as the
hypotheses to be tested, implement each hypothesis in the [simulation], iden-
tify some patterns as the ‘currency’ [standard] for evaluating the hypotheses,
and then conduct simulations that determine which hypotheses fail to repro-
duce the patterns.” For example, the beech forest simulation was designed to
reproduce both the horizontal mosaic pattern of tree stands and the vertical
pattern of tree cover. But subsequently unplanned for patterns in the simula-
tion were discovered and put to good use (Grimm and Railsback, 2005, p.7;
our emphasis):

[The simulation] was so rich in structure and mechanism that it also
produced independent predictions regarding aspects of the forest
not considered at all during model development and testing. These
predictions were about the age structure of the canopy, spatial
aspects of this age structure, and the spatial distribution of very
old and large trees. All these predictions were in good agreeement
with observations, considerably increasing the model’s credibility.
The use of multiple patterns to design the model obviously led to a
model that was structurally realistic.

Other than the fact that this procedure is dealing with a computer sim-
ulation rather than directly with an ecological theory, there is no interesting
methodological difference between this and standard theory testing. A rich,
multi-patterned simulation offers a variety of opportunities for testing its con-
formity to the target process. And just as in standard confirmation theory
(Franklin, 1986, pp.123–129), the more varied the predictions of a simulation,
or the submodels used to make them, that are tested and confirmed against
reality, the greater our confidence that the simulation indeed maps that re-
ality. With a sufficient variety of such tests, testing diverse transitions under
diverse conditions, we may well be able to conclude that the simulation is, or
is not, homomorphic, either approximately or exactly.

The existence of an approximate homomorphism is crucial : it underwrites
the relevance of the simulation for the system being simulated and, in par-
ticular, its use both for explaining events in the real world and in predicting
them.

As noted, homomorphisms may exist at a variety of levels of resolution.
The level of resolution of the homomorphic simulation depends upon two major
points:

1. How well do we (think we) understand P? How detailed a theory do we
have to test?

2. Pragmatic constraints upon our simulation (e.g., how much time can we
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spend waiting).

The levels of potential simulation may lie upon one-another Shrek-like, as
in an onion (see Figure 2):
At the top-level is a simulation with such a small ontology that nothing useful

spend waiting).

The levels of potential simulation may lie upon one-another Shrek-like, as
in an onion:
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Figure 2: The simulation onion.

At the top-level is a simulation with such a small ontology that nothing
useful can be simulated. Below the actual simulation are more detailed poten-
tial simulations which are unused for such reasons as: the theory describing
such detail has not been invented; the simulations at that level of detail are
impractical; the level of detail describes events of no interest to us.7

4 Simulations as Experiments

Many people have been attracted to the idea that simulations have no empir-
ical side to them and, in particular, that they are basically revved-up thought
experiments. Oreskes et al. (1994), Axelrod (1997), Di Paolo et al. (2000) and
others claim that simulations cannot be used to acquire any empirical knowl-
edge about the world, directly or indirectly. Rather, simulations are limited
to extending our understanding of the theories being simulated, by exploring
their deductive consequences. Di Paolo et al. (2000), for example, examine
the Hinton and Nowlan (1987) simulation study of the Baldwin effect — the
acceleration of genetic evolution via learning by individuals in a population
(Baldwin, 1896). Prior to that study, the Baldwin effect had been given little
attention; it sounded too much like a Lamarckian process and the mechanism
for fixing learned behavior genetically was not understood. The simulation of
Hinton and Nowlan (1987) changed that by producing a plain, easily inspected
mechanism, which demonstrably exhibited the Baldwin effect. Di Paolo et al.

7In other words, this kind of account is very far from requiring the “perfect mimesis” of
isomorphism that Winsberg (2003, p. 116) claims is implied.
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Figure 2: The simulation onion. (Smaller layers indicate fewer details, but
greater generality.)

can be simulated. Below the actual simulation are more detailed potential sim-
ulations which are unused for such reasons as: the theory describing such detail
has not been invented; the simulations at that level of detail are impractical;
the level of detail describes events of no interest to us.7

4 Simulations as Experiments

Many people have been attracted to the idea that simulations have no empir-
ical side to them and, in particular, that they are basically revved-up thought
experiments. Oreskes and others claim that simulations cannot be used to ac-
quire any empirical knowledge about the world, directly or indirectly (e.g.,
Oreskes et al., 1994; Axelrod, 1997; Di Paolo et al., 2000). Rather, simulations
are limited to extending our understanding of the theories being simulated, by
exploring their deductive consequences. Di Paolo, Noble and Bullock (2000),
for example, examine the Hinton and Nowlan (1987) simulation study of the
Baldwin effect — the acceleration of genetic evolution via learning by indi-
viduals in a population (Baldwin, 1896). Prior to that study, the Baldwin
effect had been given little attention; it sounded too much like a Lamarckian
process and the mechanism for fixing learned behavior genetically was not
understood. The simulation of Hinton and Nowlan (1987) changed that by
producing a plain, easily inspected mechanism, which demonstrably exhibited

7In other words, this kind of account is very far from requiring the “perfect mimesis” of
isomorphism that Winsberg (2003, p.116) claims is implied.
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the Baldwin effect. Di Paolo et al. (2000) argue that this is essentially a the-
oretical, deductive use of simulation, making plain what was implicit in the
theory. While it is clear that simulations can be used to explore the deductive
consequences of theories, it is not clear that that is the only role they may have
in empirical science. Nor is it clear that Hinton and Nowlan’s mechanism was
in any sense implicit in Baldwin’s theory. We now proceed to argue that they
have potentially every role that experiments may have in empirical science.

4.1 A Comparison with Real Experiments

To further our claim that simulation studies share epistemology with tradi-
tional scientific experiments, we can consider Allan Franklin’s experimental
strategies (Franklin, 1990). Franklin emphasizes that his strategies are neither
exclusive of other strategies nor exhaustive. Nevertheless, they provide a good
indication of what happens in physical experiments; we annotate the list with
reference to simulation studies (Franklin, 1990, p.104):8

1. Experimental checks and calibration, in which apparatus reproduces the
known phenomena

2. Reproducing artifacts that are known in advance to be present
Regarding 1 and 2, reproducing known phenomena is a standard check
of adequacy in simulation studies.

3. Intervention, in which the experimenter manipulates the object under
observation
The relative ease of manipulating simulations is one of their key advan-
tages in experimental studies.

4. Independent confirmation using different experiments
In simulation research there is always an opportunity to test very differ-
ent kinds of initial conditions, and sometimes an opportunity to test the
operation of distinct subprocesses (Grimm and Railsback, 2005; Grimm
et al., 2005). Replication of simulation results using distinct simulations
is also a possibility (e.g., Axtell et al., 1996; Edmonds and Hales, 2005).

5. Elimination of plausible sources of error and alternative explanations of
the result
These are activities integral to both verifying and validating simulations.

6. Using the results themselves to argue for their validity
By this Franklin meant that an experiment may create results which are
highly unlikely to be artifacts of the measurement process or experimental
procedure and so by themselves support the claim that they reflect an
external reality. Similarly, simulation results may likewise be determined

8We have corrected Franklin’s “corroboration” with “confirmation”.
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to be highly unlikely to be due to bugs, not just because of steps in the
verification process, but also because of the results themselves.

7. Using an independently well confirmed theory of the phenomena to ex-
plain the results
This is one leg of our triangle of Figure 3 below.

8. Using an apparatus based on well confirmed theory
The apparatus here is the simulation, and associated software; verifica-
tion is part of the process of justifying the claim that it is based on well
confirmed theory.

9. Using statistical arguments
It has been frequently remarked that the use of, or rather the need for,
automated data analysis and data visualization techniques is a striking
feature of simulation research. Epstein and Axtell (1996), for example,
employ a variety of graphics to good effect.

Clearly, at a phenomenological level, simulation research is very akin to
traditional experimental research. But this does not demonstrate that at an
“epistemological level” they are again alike.

4.2 The Epistemology of Simulation

There are two acknowledged steps to justifying claims that a simulation is
informative of the real world:

Verification: Determine whether the simulation correctly implements the
theory being investigated,

• e.g., by performing design verification, debugging the simulation,
and consistency checks.

Validation: Determine whether the simulation as implemented conforms to
the target process.9

• This is testing for the existence of a homomorphism, by comparing
simulation results with the target process and vice versa.

These steps are portrayed graphically in Figure 3. A theory T has been de-
veloped for the type of physical process P .10 A range of token processes,
P1, . . . , Pn instantiate that type. And a simulation has been developed for those
processes and/or the process type, leading to simulation processes S1, . . . , Sm.
We can think of the computer program used to launch the simulation pro-
cesses as a process type S, not depicted in the figure. This situation presents

9From a history of the philosophy of science perspective, these uses of “verify” and “val-
idate” are backwards. However, this usage comes from the software engineering tradition.

10Incidentally, we are favorably inclined towards the semantic interpretation of scientific
theories (Suppe, 1977), but nothing in our account hangs directly upon that.
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Figure 3: Verification, validation and confirmation triangle.

as a process type S, not depicted in the figure. This situation presents us with
a triangle with three legs of possible justificatory test for the relevance of
simulation S to its target P : whether the theory T represents the reality P

(confirmation); whether S properly implements T (verification); whether S

corresponds to P (validation). Each test can be carried out independently
of the others. Once any two tests have been conducted, and assuming their
outcomes are not in dispute, then the third test becomes irrelevant, since we
then know everything there is to know about the relations between T , P and S.
This explains a range of observations previously made about simulation. Given
verification, S can be manipulated to investigate the implications of T (this is
the “S as thought experiment” above). Again, given verification, determining
that there is a homomorphism between P and S is tantamount to confirmation;
given validation, S can be used in exploratory theorizing as well as predicting
the consequences of intervening in P systems; given confirmation, failures of
correspondence between P and S indicate verification failures. When any two
justificatory steps have been successful, the Sk are just as much instantiations
of P as are the Pi: they all provide supervenience bases for that type of physical
process.

4.3 Experiments as Simulations

An obvious rebuttal to the claim of epistemological sameness between ex-
periments and simulations is: “Unlike simulations, when you’re testing the
real-world at least you know what you’re testing is real ! You can’t be testing
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us with a triangle with three legs of possible justificatory test for the relevance
of simulation S to its target P : whether the theory T represents the reality
P (confirmation); whether S properly implements T (verification); whether
S corresponds to P (validation). Each test can be carried out independently
of the others. Once any two tests have been conducted, and assuming their
outcomes are not in dispute, then the third test becomes irrelevant, since we
then know everything there is to know about the relations between T , P and
S. This explains a range of observations previously made about simulation.
Given verification, S can be manipulated to investigate the implications of T
(this is the “S as thought experiment” above). Again, given verification, de-
termining that there is a homomorphism between P and S is tantamount to
confirmation; given validation, S can be used in exploratory theorizing as well
as predicting the consequences of intervening in P systems; given confirma-
tion, failures of correspondence between P and S indicate verification failures.
When any two justificatory steps have been successful, the Sk are just as much
instantiations of P as are the Pi: they all provide supervenience bases for that
type of physical process.

4.3 Experiments as Simulations

An obvious rebuttal to the claim of epistemological sameness between ex-
periments and simulations is: “Unlike simulations, when you’re testing the
real-world at least you know what you’re testing is real ! You can’t be testing
the wrong thing!” Morgan (2002), for example, claims there is an inferential
gap between simulation and reality that doesn’t exist between real-world ex-
periments and real-world target systems. This is a seductive thought, but it is
wrong. The inferential gap is always there in any scientific study. It is nearly

13



an everyday occurrence to hear about some medical study in which the ex-
perimental groups turn out to be unrepresentative of some target population.
And it is an old joke that experimental psychology has accumulated a large
body of evidence about the psychology of college students.

We previously observed that, following our Definition 2, the targets of
our computer simulations — the physical processes in the world — might
be construed as simulations (but not computer simulations) of our computer
processes, even if that is not pragmatic. The general point is that some (non-
computer) physical processes may be used to simulate others. For example,
scale models built with clay and water are used to assess water flow and
tidal action; or, wind tunnels are used to assess aeordynamic flows. Again, of
course, the simpler and smaller processes are generally said to be simulations
of the more complex and larger processes which are the targets of investiga-
tion. Which is the simulation is, in the first instance, driven by which process
is wanting to be understood. But other factors play a role, including accessi-
bility, ease of intervening in the process, and the ethics of intervening in the
process. If there is a single process, and not a process type, of interest, and if
it is accessible, etc., then there may be no recourse to a simulation: a simple
intervention in the target process may be attempted. There is then no infer-
ential gap, because the studied system is also the target system. Engineering
applications and most treatments by medical doctors are of this type. If our
interest spans an entire type of process, and if we are not looking for a specific
outcome other than learning about that type, then a direct examination of
all instances of the type is unlikely to be possible. In that case, we shall have
to simulate the process type of interest with another that is more accessible.
For example, we might use a sample of adult humans in Australia today to
simulate the category of all adult humans across all of time and space. This is
the common practice in medical research. Similarly, we might be interested in
physical conditions immediately after the Big Bang, but have little prospect
of directly measuring them; instead, we might simulate such conditions us-
ing high-intensity collisions of subatomic particles. Again, Galileo famously
tested his telescopes on terrestrial objects to gain support for his inferences
concerning celestial objects (Chalmers, 1982, p.72). While there are many com-
plications and nuances to each of these stories, in all these cases and all such
experiments we are using one physical process, or type of process, to simulate
another. And, in all such experiments, there is the same potential for things
to go wrong, for the experiment to be uninformative, because the experimen-
tal subject fails to simulate the target subject, because the homomorphism
between reality and experimental process fails.

In short, “studying proximate systems as stand-ins for target systems of
interest . . . pervades all science” (Frigg and Reiss, 2008). The epistemology of
computer simulation is the same as the epistemology of experimentation for the
simple reason that all experiments are simulations and computer simulation
experiments are just a special type.
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4.4 Special Epistemology

Regardless of our arguments and proposed interpretation of the epistemology
of simulation, various philosophers of science have claimed that computer sim-
ulation is a new methodology demanding a new epistemology (e.g., Winsberg,
1999, 2003, Humphreys, 2004, p.54). Computer simulation is certainly a new
methodology, involving new tools and techniques. Expertise in experimental
physics is hardly interchangeable with expertise in physics simulation. But
what additional reasons have been advanced for demanding a new epistemol-
ogy? Some of the features of simulation said to require new epistemological
thinking are:

• Visualization. Coupling computer simulations with visualization, includ-
ing animations, is very common; indeed, computer simulation is being
used specifically to create artistic animations (e.g., McCormack, 2005).
Humphreys (2004, pp.111–114) seems to think that the use of visualiza-
tion is a defining characteristic of simulation, which is clearly going too
far. For example, in our discussion below of our simulation of parental
investments, we have not found it necessary to include any graphics or
imagery, nor would our argument be weakened had we never produced
any. Regardless, Frigg and Reiss (2008) are surely right that the im-
portance of visualization in coping with massive amounts of data is a
property that simulation shares with experimentation.

• Approximation. All computer simulations, short of simulations isomor-
phic to the target process, of course, are approximate. But this again is
no unique property of computer simulation. There are many examples of
the use of physical experiments which are known to distort the properties
of target systems. Wind tunnels are used to investigate aerodynamics,
however their walls introduce “unnatural” turbulence which can affect
the process under study (Norton and Suppe, 2001). Some such distortion
is true of any scale model and, more generally, of any physical system
not strictly identical to the target system.

• Discretization. Something which may well be distinctive about computer
simulations is that they are housed within discrete von Neumann ma-
chines. We’ve already mentioned that time must be represented as a
sequence of time steps, whereas real processes do not step through time.
More generally, any state variable must be represented with some finite
degree of precision, implying misrepresentation of real numbers. How-
ever, once again, this point of potential epistemological concern general-
izes to experimental apparatus quite generally: although in a real-world
experiment both the experimental and target processes may well both
be continuous processes, the experimenter will have no way of taking
advantage of that (in either manipulation or observation) beyond some
finite degree of error.
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• Calibration. Typically simulations have various parameters that need to
be calibrated so as to reproduce known phenomena of the real system.
For example, in a simulation of the evolution of group selection the
strength of altruistic behavior needed to be adjusted to produce a stable
population of altruists (Appalanaidu, 2007). This might suggest that
you can get whatever result you want by recalibrating your simulation.
It’s implausible that science constructs reality according to its wishes,
despite the more extreme views of social constructivists, but it’s far more
plausible that computer scientists can construct virtual reality according
to their wishes. We accept that there is some danger here; the flexibility
of universal computation can cover many faults of theory, if allowed to
do so. However, we again assert the parallelism between simulation study
and experimental study: given the validation of structural properties of
a simulation, the calibration of parameters of the simulation can only
push the results so far and not infinitely far. Such calibration serves the
identical purpose with calibration in physical experiment, that of finding
the settings which support previously observed measurements of a target
system under given initial conditions, and so supporting the claim that
measurements under new conditions will be informative.

5 Example Simulation: The Evolution of Parental
Investment

We would like to illustrate some of the issues that have arisen with an artifi-
cial life simulation. Such simulations have received considerably less attention
in the philosophical literature than Monte Carlo estimation, yet they are be-
coming much more prominent in the work of biologists and social scientists,
usually under the rubric “agent-based” or “individual-based” modeling. Here
we discuss an example of evolutionary ALife simulation, one of a number we
have used to investigate issues in the theory of evolution which have been
contentious and which resist any easy recourse to ordinary experimental test
(Mascaro et al., 2005). Because of the contentiousness of these issues and be-
cause of the complexity of the real systems being hypothesized about, it is not
likely that these simulations can soon resolve the problems addressed. How-
ever, it should be clear that there is potentially a rich field of patterns to
validate such homomorphisms as we can create.

Our simulation is an agent-based evolutionary ALife simulation. This means
that there are agents with a phenotype (behavior) arising from an interac-
tion between a heritable genotype and their environment. The agents’ behav-
ioral repertoire includes reproduction, when suitable mates are present and
when their level of health is sufficient. Offspring are created by chromosomal
crossover and mutation and receive an initial donation of health from each
parent. The health of agents is a function of their foraging abilities, their lev-
els of activity and how much health they donate to offspring. When an agent’s
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health drops to zero, the agent dies. The agent will die regardless when it
reaches its maximum life span.

We used this simulation to investigate various hypotheses proposed to
explain the evolution of dimorphic sex-linked traits and, in particular, why
parental investments differ between males and females, with females charac-
teristically (but not universally) investing more in their offspring than males
(Trivers, 1972). In order to do this, the amount of health investment in off-
spring was a heritable, sex-linked trait in our simulation; we also simulated
variable gestation terms. (For further details of our simulation see Mascaro
et al., 2005.)

5.1 Hypotheses

We designed simulation experiments to test three widely discussed explanatory
hypotheses for the evolution of differing parental investments:

1. Concorde hypothesis: The sex that makes the greater initial investment
has the more to lose and is thus the sex more likely to evolve further
investment (Trivers, 1972). Thus, differential investments may arise by
chance and then be fixed by subsequent evolution.

2. Desertion hypothesis: The sex which has the first chance to desert an
offspring (leaving it with the other parent) will do so (Dawkins and
Carlisle, 1976). For example, in many fish it is the male who looks after
the offspring; since males must wait for females to spawn their eggs
before fertilizing them, females have the first opportunity to desert. Since
fertilization occurs inside the female in mammals, males have the first
opportunity to desert and, indeed, generally invest less.

3. Paternal uncertainty hypothesis: The sex which is less certain of being
the parent of an offspring will invest less in its (apparent) offspring, par-
ticularly in species where females go through a gestation period (Trivers,
1972).

5.2 Experiments

5.2.1 Concorde Hypothesis

Dawkins and Carlisle (1976) attacked Trivers’ first hypothesis above, suggest-
ing it involves fallacious reasoning of the sort used to defend continued spend-
ing on a project based on sunk costs rather than on future potential. They used
the then topical example of continuing government spending on the Concorde
supersonic airliner, “justified” by prior extravagent waste on the project. It
seems unlikely that the forces of evolution, unlike the forces of government,
would succumb to such fallacious reasoning, rather than responding to the
better supported principle of evolving traits to maximize expected fitness. As
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we agreed with Dawkins and Carlisle’s reasoning, we fully expected our sim-
ulation of the Concorde hypothesis to fail to establish or sustain dimorphic
parental investments.

It’s clear that our basic simulation must favor some combined level of
investment from both parents, since investment is necessary for offspring to
achieve a level of health required for reproduction and since over-investment
will be punished by an inability for the parents to further reproduce. However,
the basic simulation offered no advantage to one sex or the other for differential
investment, as is clear from the random walk in the relative size of sex-linked
investments that results from running it.

In order to test the Concorde hypothesis, the simulation needed to be set
up with the initial condition that a randomly selected sex starts with a higher
investment than the other. Otherwise, the basic simulation was unchanged.
The result was that all parental investments rapidly converged on 1/2 the
level of combined investment optimal for the basic simulation. As the simu-
lation incorporates all and only the basic ingredients of evolution, two sexes
and parental investments, this seems to be a clear experimental refutation of
Trivers’ conjecture; alternatively, assuming the falsity of that conjecture was
not in doubt, this is a clear experimental support for the adequacy of our basic
simulation.

5.2.2 Desertion Hypothesis

To test the desertion hypothesis we allowed parents to invest health for an
evolvable period after birth, contingent upon their maintaining contact with
their offspring. The child needed a minimum total investment period; if one
parent quit investing before that minimum, the other parent was forced to
make up the difference as required by the offspring. Furthermore, females had
a fixed minimum investment period in addition to an evolvable variable period,
making up their total investment period. Males only had an evolvable variable
period, allowing them an opportunity to desert first. Thus, if the hypothesis
is correct, then average investment periods should lengthen for females and
shrink for males, when they are initialized to be roughly equal. In most of
our simulation runs there was a clear diminution of investment periods for
males, although they did not drop to zero; female investment periods were
reliably sustained by evolution well above the fixed minimum. Under some
circumstances male and female investments would not diverge, such as when
the females could not make up the difference or when agent mobility was re-
duced, so the opportunity to desert failed to arise. In summary, our simulation
appears to have supported Dawkins and Carlisle’s hypothesis that an earlier
opportunity to desert combined with a fixed minimum amount of parental
investment will result in sexual dimorphism.
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5.2.3 Paternal Uncertainty Hypothesis

We tested the paternal uncertainty hypothesis by fixing the probability of
paternity as a parameter of the simulation. Mothers always invested in their
own offspring. However, males were chosen by the mother to invest in her
offspring, according to the probability of paternity. In other words, if the pa-
ternity probability was set at 1, then the female always chose the true father
for investment; if 0, then the female never chose the true father; and otherwise
she chose males randomly, but with a probability of paternity fixed by the
simulation parameter.

We’re sure the reader can anticipate our results at this point. In simulations
where the paternity parameter was 0, health investments by “fathers” were
largely altruistic, and the investment level evolved downwards.11 On the other
hand, the parameter 1 resulted in maintaining high levels of investment and
intermediate parameters resulted in intermediate levels of investment evolving.

5.3 Parental Investments

None of our experimental work with parental investment is particularly pro-
found. We implemented a basic, straightforward simulation framework suit-
able for testing theories about parental investment, and then we implemented
straightforward, clear mechanisms for each hypothesis, enitrely in accord with
Grimm and Railsback’s account of simulation as an experimental inquiry. The
result is we have two candidate explanatory mechanisms and one which is
unviable. There are, of course, other conceivable explanations for the evolu-
tion of dimorphic investments, which can be tested likewise. And moving on
from demonstrating viable mechanisms for evolution to asserting the correct-
ness of one or another hypothesis as an explanation for any actual case of
dimorphic investments will require, minimally, investigations establishing the
existence of a corresponding (homomorphic) mechanism in the real system and
the non-existence of other processes which would negate or overwhelm it. So,
what we have done with our simulations here is modest: we have made clear
which of these three mechanisms is capable of being incorporated in legitimate
explanations, in circumstances reasonably close to those we have simulated.

6 Conclusion

The experimentation with computer simulations that has become a promi-
nent feature in the sciences is more than experimentation in name only. It
is full-blooded experimentation. It carries problems, techniques and methods
which are clearly new, such as debugging methods. It carries with it problems,

11Since mobility is a factor in our simulations, there was in fact kin selection pressure in
favor of sustaining some level of investment. That is, even though the designated fathers were
never the true fathers, they were more likely to be near relatives than unselected (because
distant) agents.
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techniques and methods which are old, as well, such as figuring out which
statistics to capture to obtain an informative view of what is happening. None
of the issues raised in this paper to this point actually identify any interesting
limitation on computer simulation or the need for any new epistemology. The
difficulties with sorting out the epistemology of experimental science are not
yet adequately resolved; but there is no reason to believe that that episte-
mology won’t have rich enough resources to accommodate what scientists are
today doing with their computers.

The limits of computer simulation are, thus far, the limits of Turing com-
putation. We know some of what lies beyond those limits, what has been called
hypercomputations (Copeland, 2002), computations which, for example, infini-
tary machines can deal with. Despite the pessimism of Dreyfus, Penrose and
Humphreys (Dreyfus, 1992; Penrose, 1999; Freedman and Humphreys, 1999),
and many others, however, we have been given no reason to believe that hu-
man mental capacities are beyond the capabilities of Turing computability.
In consequence, the prospects for the “ultimate” simulation, that of the hu-
man brain — completing the practical goal of producing a genuine artificial
intelligence, are very real, if also rather distant.

References

Appalanaidu, C. (2007). Group selection: An investigation into the poten-
tial for the evolution of virtual ecosystems. Clayton School of IT, Monash
University. Honours Thesis.

Axelrod, R. (1997). The Complexity of Cooperation: Agent-Based Model of
Competition and Collaboration. Princeton, NJ: Princeton University Press.
Suggests that agent-based modelling (not specifically simulation) is used to
substitute for deduction, when formal mathematics can not generate appro-
priate conclusions and is a kind of intuitive technique.

Axtell, R., R. Axelrod, J. M. Epstein, and M. D. Cohen (1996). Aligning sim-
ulation models: A case study and results. Computational and Mathematical
Organization Theory 1, 123–141.

Baldwin, M. J. (1896). A new factor in evolution. The American Naturalist 30,
441–451.

Borges, J. (1954). Historia Universal de la Infamia. Buenos Aires: Emece.

Chalmers, A. F. (1982). What is this thing called science? St. Lucia, Qld:
University of Queensland Press.

Copeland, B. J. (2002). Hypercomputation. Minds and Machines 12, 461–502.

Dawkins, R. and T. Carlisle (1976). Parental investment, mate desertion and
a fallacy. Nature 262, 131–133.

20



Di Paolo, E. A., J. Noble, and S. Bullock (2000). Simulation models as opaque
thought experiments. In M. A. Bedau, J. S. McCaskill, N. H. Packard,
and S. Rasmussen (Eds.), Artificial Life VII: Proceedings of the Seventh
International Conference on Artificial Life, Cambridge, MA, pp. 497–506.
MIT Press.

Dreyfus, H. L. (1992). What Computers Still Can’t Do: A Critique of Artificial
Reason (3rd ed.). Cambridge, Mass: MIT Press.

Edmonds, B. and D. Hales (2005). Computational simulation as theoretical
experiment. Journal of Mathematical Sociology 29, 209–232.

Eidelson, B. M. and I. Lustick (2004). Vir-pox: An agent-based analysis of
smallpox preparedness and response policy. Journal of Artificial Societies
and Social Simulations 7 (3).

Epstein, J. M. and R. Axtell (1996). Growing Artificial Societies: Social Sci-
ence from the Bottom Up. Cambridge: MIT Press.

Franklin, A. (1986). The Neglect of Experiment. Cambridge University Press.

Franklin, A. (1990). Experiment, right or wrong. New York: Cambridge Uni-
versity Press.

Freedman, D. and P. Humphreys (1999). Are there algorithms that discover
causal structure? Synthese 121, 29–54.

Frigg, R. and J. Reiss (2008). A critical look at the philosophy of simulation.
Synthese. forthcoming.

Giere, R. (1999). Using models to represent reality. In L. Magnani, N. Nerses-
sian, and P. Thagard (Eds.), Model-Based Reasoning in Scientific Discovery,
pp. 41–57. New York: Kluwer.

Grimm, V. and S. Railsback (2005). Individual-based Modelling and Ecology.
Princeton: Princeton University Press.

Grimm, V., E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback,
H. Thulke, J. Weiner, T. Wiegand, and D. L. DeAngelis (2005). Pattern-
oriented modeling of agent-based complex systems: Lessons from ecology.
Science 310, 987–991.

Hartmann, S. (1996). The world as a process: Simulation in the natural and
social sciences. In R. Hegselmann, U. Müller, and K. Troitzsch (Eds.),
Modelling and Simulation in the Social Sciences from the Philosophy of
Science Point of View, pp. 77–100. Kluwer.

Hinton, G. E. and S. J. Nowlan (1987). How learning can guide evolution.
Complex Systems 1, 495–502.

21



Humphreys, P. (1991). Computer simulations. In Philosophy of Science As-
sociation 1990, Volume 2, pp. 497–506.

Humphreys, P. (1993). Numerical experimentation. In P. Humphreys (Ed.),
Patrick Suppes: Scientific Philosopher, Volume 2. Dordrecht: Kluwer.

Humphreys, P. (2004). Extending Ourselves: Computational Science, Empiri-
cism, and Scientific Method. Oxford: Oxford University Press.

Kueppers, G., J. Lenhard, and T. Shinn (2006). Computer simulation: Prac-
tice, epistemtology, and social dynamics. In J. Lenhard, G. Kueppers, and
T. Shinn (Eds.), Simulation: Pragmatic Construction of Reality. Dordrecht:
Springer.

Mascaro, S., K. B. Korb, and A. E. Nicholson (2005). An alife investiga-
tion on the origins of dimorphic parental investments. In H. A. Abbass,
T. Bossamaier, and J. Wiles (Eds.), Proceedings of the Australian Confer-
ence on Artificial Life, pp. 171–185.

McCormack, J. (2005). A developmental model for generative media. In M. S.
Capcarrere, A. A. Freitas, P. J. Bentley, C. G. Johnson, and J. Timmis
(Eds.), Proceedings of the 8th European Conf. on Advances in Artificial
Life, pp. 88–97.

Morgan, M. (2002). Model experiments and models in experiments. In L. Mag-
nani and N. J. Nersessian (Eds.), Model Based Reasoning: Science, Tech-
nology, Values, pp. 41–58. Springer.

Norton, S. D. and F. Suppe (2001). Why atmospheric modelling is good
science. In C. Miller and P. Edwards (Eds.), Changing the Atmosphere:
Expert Knowledge and Environmental Governance, pp. 67–105. Cambridge,
MA: MIT Press.

Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994, February). Verifica-
tion, validation and confirmation of numerical models in the earth sciences.
Science 263 (5147), 641–646. 2003-02-17 A fairly strong position against
simulation contributing to knowledge.

Penrose, R. (1999). The Emperor’s New Mind : Concerning Computers,
Minds, and the Laws of Physics (2nd ed.). Oxford: Oxford University.

Pritsker, A. A. B. (1979). Compilation of definitions of simulation. Simula-
tion 33, 61–63.

Pritsker, A. A. B. (1984). Introduction to Simulation and SLAMII. John
Wiley & Sons.

Racynski, S. and A. Bargiela (2007). Modeling And Simulation: Computer
Science of Illusion. Research Studies Pr.

22



Reddy, R. (1987). Epistemology of knowledge-based systems. Simulation 48,
161–170.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral
model. Computer Graphics 21, 15–34.

Rohrlich, F. (1991). Causal discovery via MML. In PSA 1990, Volume II, pp.
507–518.

Suppe, F. (1977). The Structure of scientific theories. Urbana: University of
Illinois Press.

Trivers, R. L. (1972). Parental investment and sexual selection. In B. Camp-
bell (Ed.), Sexual Selection and the Descent of Man, pp. 136–179. London:
Heinemann.

Winsberg, E. (1999). Sanctioning models: The epistemology of simulation.
Science in Context 12, 275–292.

Winsberg, E. (2001). Simulations, models, and theories: Complex physical sys-
tems and their representations. In Proceedings of the 2000 Biennial Meetings
of the Philosophy of Science Association (Supplement to Philosophy of Sci-
ence), Volume 68, pp. S442–S454.

Winsberg, E. (2003). Simulated experiments: methodology for a virtual world.
Philosophy of Science 70, 105–125.

Zeigler, B. (1976). Theory of Modeling and Simulation. New York: Wiley-
Interscience.

23


