Problem 1 (5 marks)

Simplifying $O(3m^4 + m^3)$ yields: Answer: 2

1. $O(3m^4 + m^3)$
2. $O(m^4)$
3. $O(4m^7)$
4. $O(m^3)$

Problem 2 (5 marks)

e^n \in \Omega(5\log n) Answer: 1

1. True
2. False

Problem 3 (5 marks)

$n \log n \in o(n^2)$ Answer: 1

1. True
2. False

Problem 4 (5 marks)

$O(\frac{n^3}{3n \times 3n^2})$ is equal to: Answer: 1

1. $O(1)$
2. $O(n)$
3. $O(n^3)$
4. None of the above
Problem 5 (5 marks)

\(O((4n^{3/2} + 2n) \times (n - n^{1/2}))\) is equal to: Answer: 3

1. \(O(n^2)\)
2. None of the other answers
3. \(O(\sqrt{n^5})\)
4. \(O(4(n^{5/2} - n^2))\)

Problem 6 (5 marks)

A heuristic evaluation function which is bounded above by a cost function is called: Answer: 4

1. good
2. optimal
3. inadmissible
4. admissible

Problem 7 (5 marks)

A heuristic search algorithm Answer: 1,2,3

1. is oxymoronic (paradoxical)
2. may be susceptible to local optima
3. is sometimes faster than exhaustive search
4. always grows subexponentially in time complexity

Problem 8 (5 marks)

The following are strategies for escaping local optima in greedy search: Answer: 1,3,4

1. Random restarts
2. Multiplying \(h\)
3. Averaging \(h\) over a local region
4. Lookahead search
Problem 9 (5 marks)

There is a homomorphism from \(\langle \{0, 1\}, \lor, \text{On} \rangle \) to \(\langle \mathbb{N}, +, \text{Odd} \rangle \). Answer: 2

1. True
2. False

Problem 10 (5 marks)

How is continuous time represented in Discrete Event Simulation? Answer: 2

1. It isn’t
2. By varying additions to time induced by event completions
3. By stepping a clock
4. None of the above

Problem 11 (10 marks)

Using permutations of city labels (numbers) to represent candidate solutions to TSP, write a pseudo-code algorithm to enumerate the search space. Write its best case and worst case time complexity using \(\Omega \) and \(O \), respectively.

Problem 12 (10 marks)

Using permutations of city labels (numbers) to represent candidate solutions to TSP, write a pseudo-code algorithm to perform a greedy search of this search space. Write its best case and worst case time complexity using \(\Omega \) and \(O \), respectively.

Problem 13 (5 marks)

All NP-Hard problems are NP-Complete. Answer: 2

1. True
2. False
Problem 14 (5 marks)

If $P=NP$, then all problems are polynomial time. Answer: 2

1. True
2. False

Problem 15 (10 marks)

The closed form of

$$\sum_{1 \leq i \leq n} 2^i$$

is: Answer: 3

1. $2^{n+1} - 1$
2. $\frac{n(n+1)}{2}$
3. $2^{n+1} - 2$
4. None of the above

Problem 16 (10 marks)

The closed form of

$$\sum_{1 \leq i \leq n} i2^i$$

is: Answer: 2

1. $(n - 1)2^{n+1} - 2$
2. $(n - 1)2^{n+1} + 2$
3. $2^{n+1} - 2$
4. None of the above