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Abstract. Recently, [16] showed that the nogoods inferred by learning
solvers can be used to improve a problem model, by detecting constraints
that can be strengthened and new redundant constraints. However, the
detection process was manual and required in-depth knowledge of both
the learning solver and the model transformations performed by the com-
piler. In this paper we provide the first steps towards a (largely) auto-
matic detection process. In particular, we discuss how nogoods can be
automatically simplified, connected back to the constraints in the model,
and grouped into more general “patterns” for which common facts might
be found. These patterns are easier to understand and provide stronger
evidence of the importance of particular constraints. We also show how
nogoods generated by different search strategies and problem instances
can increase our confidence in the usefulness of these patterns. Finally,
we identify significant challenges and avenues for future research.

1 Introduction

Lazy Clause Generation (LCG) [11, 3] is a powerful solving technique that com-
bines the strengths of Constraint Programming and SAT solving. It works by
instrumenting finite domain propagation to record the reasons for each prop-
agation step, thus creating an implication graph like the ones built by SAT
solvers [9]. This graph is used to derive nogoods (i.e., reasons for failure) that are
recorded as clausal propagators and propagated efficiently using SAT technology.
The combination of constraint propagation and clause learning can dramatically
reduce search and greatly improve performance (e.g., [14, 15]).

Shishmarev et al.[16] have shown that the nogoods inferred by a learning
solver when executing a model may be used to design model transformations that
improve its execution. In hindsight, this should have been expected: a nogood is
introduced when the propagation achieved by the constraints in the model is not
strong enough to avoid a failure during search. By identifying the nogoods that
caused the biggest search reduction and connecting them back to the constraints
in the model, Shishmarev et al. were able to improve propagation for two models.
This was achieved by modifying the model constraint that generated the nogood,
and by adding a new redundant constraint (suggested by the nogood).

Inferring useful redundant constraints for a given model is extremely difficult.
Thus, using nogoods to achieve this and to strengthen the constraints already



in the model is an exciting new approach with significant potential. However,
Shishmarev et al. used a manual method to infer model improvements based
on the inferred nogoods. Further, the inference required in-depth knowledge of
the learning solver and of the transformation performed (in this case by the
MiniZinc [10] compiler) to the user’s model to become the input to the target
solver. In this paper we perform the first steps towards a semi-automatic process.
In particular, we show how the nogoods can be automatically renamed, simpli-
fied, connected back to the constraints in the model, and grouped into more gen-
eral patterns for which common facts might be found. These patterns are easier
to understand by (expert) modellers than the raw nogoods, and their associated
facts can help these modellers find useful modifications to the model. Addition-
ally, we show how the generation of nogoods using different search strategies and
instances of a problem can be used to increase our confidence in the usefulness
of these patterns. We show the potential of the approach with two case studies,
and finish by identifying some of the significant challenges with which we are
still faced, and some avenues for future research that may help resolve them.

2 Background

Constraint Programming: A constraint problem P is a tuple (C,D, f), where
C is a set of constraints, D a domain which maps each variable x appearing in C
to a set of values D(x), and f an (optional) objective function. Set C is logically
interpreted as the conjunction of its elements, and D as the conjunction of unary
constraints x ∈ D(x), for each variable x appearing in C. A literal of P is a
unary constraint whose variable appears in C. A constraint solver starts from a
problem P ≡ (C,D, f) and applies propagation to reduce domain D to D′ as a
fixpoint of all propagators for C. If D′ is equivalent to false (D′(x) is empty for
some variable x), we say P is failed. If D′ is not equivalent to false and fixes all
variables, we have found a solution to P . Otherwise, the solver splits P into n
subproblems Pi ≡ (C ∧ ci, D

′, f), 1 ≤ i ≤ n where C ∧D′ ⇒ (c1 ∨ c2 ∨ . . . ∨ cn)
and where ci are literals (the decisions), and iteratively searches these.

The search proceeds making decisions until either (1) a solution is found, (2)
a failure is detected, or (3) a restart event occurs. In case (1) the search either
terminates if the model has no objective function f , or computes the value of f ,
sets a bound for the next value of f to be better (greater or smaller, depending on
f) and continues the search for this better value. In case (2), the search usually
backtracks to a previous point where a different decision can be made. In case
(3) the search restarts, possibly incorporating new constraints previously learnt.

Lazy Clause Generation: LCG solvers [11, 3] extend CP solvers by instru-
menting their propagators to explain domain changes in terms of equality (x = d
for d ∈ D(x)), disequality (x 6= d) or inequality (x ≥ d or x ≤ d) literals. An
explanation for literal ` is S → `, where S is a set of literals (interpreted as a con-
junction). For example, the explanation for the propagator of constraint x 6= y
inferring literal y 6= 5, given literal x = 5, is {x = 5} → y 6= 5. Each new literal
inferred by a propagator is recorded together with its explanation, forming an
implication graph. Whenever the search reaches a failure, LCG solvers use the
implication graph to compute a nogood N , that is, a set of literals (interpreted as



a conjunction) that represents the reason for the failure and cannot be extended
to a solution. Then, they add its negation (¬N , a set of literals interpreted as
their disjunction) as a clausal propagator and backtrack, resuming the search.
These learnt clauses ensure the search cannot fail again for the same reasons.

Modelling: We distinguish between a constraint problem model, where the in-
put data is described in terms of parameters (i.e., variables that will be fixed
before the search starts), and a particular model instance, where the values of
the parameters are added to the model. Constraint models are usually defined
in a high level language, such as Essence [4] or MiniZinc [10], and their instances
are compiled into a flattened format, where loops are unrolled into the appro-
priate set of constraints, and global constraints are potentially decomposed into
a representation suitable for the selected solver. Note that the compiler may
introduce new variables and constraints during this flattening process, and the
solver can also introduce further variables and constraints during its execution
of the instance. The nogoods of an LCG solver will consist of literals that refer
to this fully flattened and decomposed instance of the problem. This makes their
analysis in terms of the high-level model particularly challenging.

Paths: We use the concepts of variable paths [6] and constraint paths [7], which
assign a unique identifier to each variable and constraint appearing in a flattened
instance. They allow us to connect the flattened variables and constraints to the
model’s source code. Each identifier describes the path the compiler took when
compiling a MiniZinc instance (that is, a MiniZinc model and its input data) to
FlatZinc, from the actual model to the point where a new variable or constraint
is introduced. For example, the following is a (simplified) constraint path:�� ��14:12-15:61 forall:p1=1,p2=6

�� ��14:36-15:60 ->
�� ��14:37-14:74 /\

�� ��14:37-14:74 clause

Each of its components has two parts: four numbers denoting the span of
text in the MiniZinc model that the expression came from (with format from
line:column-to line:column); and a textual description of what the expression
represents. The above path represents a clause that was inserted into the final
FlatZinc, as a result of encoding a negated (thus the clause part) conjunction
/\ appearing in the left hand side of the implication (->) that appears in the
forall loop from lines 14− 15, with index variables p1=1 and p2=6.

3 Towards Automation: the freepizza case

Shishmarev et al. [16] demonstrated how the clauses learnt by an LCG solver can
be used to improve a model. To achieve this, they executed the model using the
LCG solver Chuffed [2], replayed its search decisions (in the same order) using the
non-LCG solver Gecode [13], merged the two resulting search trees, counted the
number of nodes explored by Gecode that were not explored by Chuffed, and
assigned them to the learnt clause(s) that helped Chuffed fail before Gecode.
This formed a ranking of all clauses based on the total number of search nodes
avoided by each clause, with the top-ranked clauses being the most effective for
reducing search. Finally, they manually inspected the 10 most effective clauses
to learn information that could help improve the model.

This section introduces several techniques for automating part of the process
described in [16] using MiniZinc (the techniques can, however, be applied in other



modelling languages). We use one of their case studies (free pizza) to illustrate
the manual process on a hard problem (Chuffed only solved 1 of 5 instances in
the 2015 MiniZinc Challenge [17]), and the issues faced when automating it. In
this problem customers get pizzas either by paying for them or by using vouchers.
Each voucher (a, b) allows customers to get b number of pizzas for free if they
pay for a number of pizzas, and none of the b pizzas are more expensive than the
a ones. A customer who has m vouchers and wants n pizzas aims to minimise
the amount paid for the n pizzas. Their MiniZinc model (called freepizza) is:

1 int: n; set of int: PIZZA = 1..n; % number of pizzas wanted
2 array[PIZZA] of int: price; % price of each pizza
3 int: m; set of int: VOUCH = 1..m; % number of vouchers
4 array[VOUCH] of int: buy; % buy this many to use voucher
5 array[VOUCH] of int: free; % get this many free
6
7 set of int: ASSIGN = -m .. m; % i -i 0 (free/paid with voucher i or not)
8 array[PIZZA] of var ASSIGN: how;
9 array[VOUCH] of var bool: used;

10
11 constraint forall(v in VOUCH)(used[v]<->sum(p in PIZZA)(how[p]=-v) >=buy[v]);
12 constraint forall(v in VOUCH)(sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]);
13 constraint forall(v in VOUCH)(sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]);
14 constraint forall(p1, p2 in PIZZA)((how[p1] < how[p2] /\ how[p1]= -how[p2])
15 -> price[p2] <= price[p1]);
16 int: total = sum(price);
17 var 0.. total: objective = sum(p in PIZZA)((how[p] <= 0)*price[p]);

Lines 1–5 introduce the parameters: numbers n and m, an array for the
pizzas’ prices, and two arrays for vouchers s.t. (buy[i],free[i]) represents the
ith voucher (a, b). The next three lines define two arrays of decision variables:
used[v], which is true iff voucher v was used; and how[p], which is v if pizza p
was free thanks to voucher v, is 0 if p was paid for and not used in any voucher,
and is -v if p was paid for and used to get free pizzas with voucher v.

Constraints start in line 11, which states that if voucher v was used, then the
total number of pizzas bought and assigned to v must be greater than or equal to
the number of pizzas required by it. Line 12 states similar information but in the
opposite direction: the total number of pizzas bought and assigned to voucher v
must be less than or equal to used[v]*buy[v]. Together they constrain the total
number of pizzas bought for v to be equal to buy[v], if used. The constraint in
line 13 states that the total number of free pizzas obtained thanks to voucher
v must be smaller than or equal to the number of free pizzas allowed by v if
used (used[v]*free[v]). The last constraint states that if there are two pizzas
p1 and p2 assigned to the same voucher with p2 being free and p1 being paid
for (given how[p1] < how[p2] and how[p1] = -how[p2]), then the price of p2
must be lower than or equal to that of p1. Finally, the objective function is
defined as the sum of the prices of the pizzas that are bought.

Table 1 shows the top 10 clauses found in [16] for freepizza with data:

n = 10; m = 4; price = [70, 10, 60, 65, 30, 100, 75, 40, 45, 20];
buy = [1, 2, 3, 3]; free = [1, 1, 2, 1];

Each clause is interpreted as the disjunction of its literals. For example,
the clause ranked 4th, {how[5]6=-3,how[3]6=3}, states that pizza 3 cannot be
obtained for free using voucher 3 by paying for pizza 5 with that voucher (this
might be easier to see in its equivalent form ¬(how[5]=-3 ∧ how[3]=3)).



Table 1. Taken from [16]: Most effective learnt clauses in freepizza

Rank Reduction Clause

1 3425 how[1]=-1 how[2]=-1 how[3]=-1 how[4]=-1 how[5]=-1
how[1]=-2 how[2]=-2 how[3]=-2 how[4]=-2 how[5]=-2

how[6]≤0 how[6]≥3
2 2068 how[7]≤2 how[7]≥4 how[1] 6=-3 how[1]≥-2
3 1712 how[4]6=3 how[1]=-3 how[2]=-3 how[3]=-3 how[4]=-3
4 1636 how[5]6=-3 how[3]6=3
5 1636 how[8]6=-3 how[3]6=3
6 1636 how[9]6=-3 how[3]6=3
7 1636 how[10]6=-3 how[3]6=3
8 1489 how[6]≤2 how[6]≥4 how[1] 6=-3 how[1]≥-2
9 1404 how[5]6=-3 how[4]6=3 how[4]≤2

10 1403 how[10]6=-3 how[4]6=3

3.1 Renaming literals

The clauses in Table 1 are already the result of significant manual interpretation
and analysis. For example, the 4th clause came from renaming (and simplifying)
solver-level clause {X INTRODUCED 4 6=-3, X INTRODUCED 2 6=3, X INTRODUCED 2 ≤2},
where the names X INTRODUCED 4 and X INTRODUCED 3 were introduced by the
MiniZinc compiler for the model variables in array positions how[5] and how[3],
respectively. Thus, our first step towards automation is to transform clauses to
refer to model-level variables and expressions. For simple renamings as in the
example above, we could instrument the MiniZinc compiler to keep a map from
solver-level to model-level names. New variables may, however, also be intro-
duced when flattening expressions. For example, the compiler may introduce an
auxiliary variable for the result of an addition, or the result of flattening a let
expression. Connecting such variables back to model-level names is more com-
plex. We propose to do this by using variable paths [6]. Consider, for example,
the literal X INTRODUCED 244 =true, which appears in one of the clauses generated
by Chuffed for freepizza. As variable X INTRODUCED 244 does not correspond
directly to any model-level variable, the compiler produces the following path:�� ��14:12-15:61 forall:p1=1,p2=6

�� ��14:36-15:60 ->
�� ��14:37-14:74 /\�� ��14:37-15:74 clause

�� ��14:58-14:74 =
�� ��14:58-14:74 int lin eq

The final entry in the path shows the location in the model of the expression that
corresponds to X INTRODUCED 244 : line 14, columns 58–74, which has expression
"how[p1]= -how[p2]". The path also shows that the expression is located within
the forall that spans lines 14:12-15:61, within the implication (->) that spans
lines 14:36-15:60, within the conjunction (/\) that spans line 14:37-14:75, within
the clause that the negated conjunction was encoded as, and within the =
that spans line 14:58-14:74. Since the path ends with an int lin eq constraint
(integer linear =), we can deduce that the introduced variable is the Boolean
control variable for the reified version of expression "how[p1]= -how[p2]" in
the model. Since the path also records the values of loop variables p1 and p2,
these can be automatically substituted, yielding "how[1]= -how[6]"=true.



3.2 Simplifying literals and clauses

The readability of any clause can be further improved by simplifying its literals
based on their semantics. We do this in two different ways. First, we simplify
literals whose variables were introduced by the compiler, and which correspond
to Boolean expressions in the model, as follows:

positive: if the right-hand side of a literal is true (e.g. =true, =1, >=1),
and the left-hand side is a Boolean expression of the form e1op e2, where op
is a binary operator, then we can simply remove the right hand side.
negative: if the right-hand side of a literal is false (e.g. =false, =0, <=0),
and the left-hand side is a Boolean of the form x op v, where x is a variable,
op is a binary operator and v is an integer value, then we can negate the left
hand side and remove the right hand side.

For example, literal "how[1] < how[6]"=true becomes how[1] < how[6], and
literal "how[1]=-1"<=0 (which comes from the sum of reified equality constraints
in line 12 of the model) becomes how[1]6=-1. Simplifying literals with more
complex left-hand sides (i.e., arbitrary MiniZinc expressions), requires a deeper
integration with the MiniZinc compiler and is left for future work.

Second, we eliminate from each clause any literal that entails (i.e., implies)
other literals in the clause, since A∨B∨C is equivalent to A∨B, if C entails B.
This makes the clause easier to understand and, as shown in Section 3.4, makes it
easier to automatically detect clause patterns. We automatically simplify a clause
by applying the following rules to literals that operate on the same variable x:

6= a literal of the form x 6= v is entailed by any other literal x = v′ such that
v 6= v′ and any literal x ≤ v′ (x ≥ v′) such that v′ ≤ v (v′ ≥ v). Thus, those
other literals are eliminated. For example, clause {x = 1, x ≤ 1, x ≥ 4, x 6=
2, . . . } becomes {x 6= 2, . . . }.

≥ (≤) a literal of the form x ≥ v (x ≤ v) is entailed by any other literal x ≥
v′ (x ≤ v′) s.t. v < v′ (v > v′). Thus, we only keep the literal with the
lowest (highest) bound. For example, clause {x ≤ 1, x ≤ 2, x ≥ 3, x ≥ 4, . . . }
becomes {x ≤ 2, x ≥ 3, . . . }.

≤≥ if a clause contains two literals x ≤ v1 and x ≥ v2, s.t. v2 − v1 = 2, then
these two literals can be replaced by a single literal x 6= v2−1. For example,
clause {x ≤ 1, x ≥ 3, . . . } becomes {x 6= 2, . . . }.

Applying these rules to our clause {how[5]6=-3, how[3]6=3, how[3]≤2}
yields the one ranked 4th in Table 1: {how[5]6=-3, how[3]6=3}, since how[3]≤2
entails how[3]6=3, and is thus eliminated by the 6= rule.

Note that all simplifications are done after renaming the introduced vari-
ables. This is useful, as literals that reference different introduced variables may
later become a single literal. This happens often in freepizza as, for exam-
ple, the sum function expects integer variables, but in the model it is given
Booleans. Each Boolean variable is coerced by the compiler to be integer by
introducing a new integer variable and posting a bool2int predicate equating
the Boolean to the integer one. For expression sum(p in PIZZA)(how[p]=-v),
both the original Boolean variables and the introduced integer variables refer to



the expression "how[p]=-v" in the model. However, before renaming, the literals
may appear different (e.g., X INTRODUCED 45 =false and X INTRODUCED 53 <=0) even
though they mean the same thing (how[p]6=-v). By performing the simplifica-
tion after the renaming, both variables are known to be (or come from) a Boolean
expression, and are thus simplified to how[p]6=-v. Interestingly, if these simpli-
fications had been applied to the clauses in Table 1, Shishmarev et al. would
have realised that clauses 2, 8 and 9, can be further simplified to {how[7]6=3,
how[1]6=-3}, {how[6]6=3, how[1]6=-3}, and {how[5]6=-3, how[4] 6=3}.

3.3 Connecting clauses to the constraints in the model

One of the main achievements of Shishmarev et al. was to use the learnt clauses
to identify the need to strengthen the constraint in line 14 of the model. This
need was discovered by realising that some of the top clauses were direct con-
sequences of a single constraint; the one in line 14. To do this, Shishmarev et
al. manually linked the learnt clauses (or more accurately, their literals) to the
model constraints they were derived from.

To automate this step, we instrumented Chuffed to record the solver-level
constraint directly responsible for adding any literal to the clause database.
That is, for each explanation S → ` added by a constraint with identifier idc,
we record that ` was directly generated from idc. Then, when a clause Cl is
generated, we obtain the constraint identifier of each literal ` in Cl , ask that
constraint to provide us with the explanation S that was used to generate `, and
recursively apply the same method for all literals in S. This allows us to (lazily)
trace back all constraints involved in generating the literals of Cl .

For clause {how[5]6=-3, how[3]6=3}, our method identifies a single solver-
level constraint as responsible for all literals. Using constraint paths, we can trace
it back to the expression how[p1]=-how[p2] on line 14 of freepizza, with loop
variables p1=5 and p2=3. Thus, our automatic method successfully identifies the
line in which the constraint responsible for the clause appears. While connecting
the clauses to the model constraints via a textual path is already very useful,
it would be easier for users to get a visual connection. To achieve this, we have
modified the MiniZinc IDE to visually highlight the parts of the user’s model
responsible for a given clause (see Figure 1).

3.4 Finding patterns among clauses

At this point, our automatic method can make a clause clearer, simpler and
visually connect it to the constraints it came from. However, a single clause may
not be worth exploring, even if it led to a considerable search reduction. The
modeller may need stronger evidence to start what can be a lengthy exploration
(as clauses are in practice quite complex, even after renaming and simplification).
The evidence can be much stronger if several clauses with a similar pattern can
be found to have significantly reduced the search. For example, Shishmarev et
al. [16] focused on clause 4 ({how[5]6=-3,how[3]6=3}) not only because it was
one of the top clauses and it was short (and thus easier to understand), but
importantly, because it was part of several similar clauses in the top 10 (which
they identified as clauses 5, 6, 7, and 10).



int: n; set of int: PIZZA = 1..n; % number of pizzas
array[PIZZA] of int: price; % price of each pizza
int: m; set of int: VOUCHER = 1..m; % number of vouchers
array[VOUCHER] of int: buy; % buy this many to use voucher
array[VOUCHER] of int: free; % get this many free

set of int: ASSIGN = -m .. m; % i -i 0 (pizza is free/paid with voucher i or not)
array[PIZZA] of var ASSIGN: how;
array[VOUCHER] of var bool: used;

constraint forall(v in VOUCHER)(used[v]<->sum(p in PIZZA)(how[p] = -v) >= buy[v]);
constraint forall(v in VOUCHER)(sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]);
constraint forall(v in VOUCHER)(sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]);
constraint forall(p1, p2 in PIZZA)((how[p1] < how[p2] /\ how[p1]= -how[p2])
 -> price[p2] <= price[p1]);

int: total = sum(price);
var 0..total: objective = sum(p in PIZZA)((how[p] <= 0)*price[p]);

Fig. 1. Constraint responsible for learnt clause {how[5]6=-3, how[3]6=3}

It is easy to show that these five clauses share the same pattern: {how[A ]6=-B ,
how[C ]6=B }, where A and C are pizzas, and B is a voucher. For example, clause 4
can be obtained by mapping A /5, C /3, and B /3. In fact, with the simplifications
provided above, all clauses in Table 1 except 1 and 3 can be shown to share this
pattern and to come from the same constraint. Grouping clauses with the same
pattern can help modellers in two ways: (a) while individual clauses may not
seem to contribute much to the overall search reduction, a group of clauses with
the same pattern may do so; and (b) a pattern may identify a general constraint,
i.e., something that is true for a whole range of parameters, and may therefore
suggest a redundant constraint that can be added to the model.

We define a pattern to be the most specific (or least) generalisation [12]
(MSG) of a set of clauses. To automatically obtain patterns, our method first
renames and simplifies each clause. Then, it sorts the literals in each clause by
variable name, operator and constant value. Finally, for all clauses that have the
same sequence of literal operators, and the same sequence of variable types, it
computes the MSG for all its subsets. For example, the following two (renamed,
simplified and sorted) clauses for our freepizza instance:
{how[1]=-1,how[2]=-1,how[3]=-1,how[4]=-1,how[6]6=1} and
{how[1]=-2,how[2]=-2,how[5]=-2,how[7]=-2,how[6]6=2}, have the same sequence
of literal operators (=,=,=,=,6=) and the same sequence of variable types (how[_
],how[_],how[_],how[_],how[_]). Our method computes the pattern {how[1]=-A

,how[2]=-A,how[B]=-A,how[C]=-A,how[6]6=A}, which can be mapped back to the
clauses by applying the name/constant maps {A/1,B/3,C/4} and {A/2,B/5,C/7},
respectively, where {B,C} are known to be pizzas and {A} a voucher. However, nei-
ther of the two clauses would form a pattern with {how[1]=-2,how[2]=-2,how[6]

6=2}, as they have a different number of literals, or with {how[1]=-1,how[2]=-1,

how[3]=-1,used[1]=true,how[6]6=1}, as they have different variable types.

Formally, each clause Cl is stored as a tuple (Id ,SeqLits,Red ,Cons) contain-
ing the clause identifier Id , its renamed, simplified and sorted sequence of literals
SeqLits, its associated search reduction Red , and the constraints Cons that gen-
erated it. A pattern Pt is stored as a tuple (PId ,PSeqLits,Maps,PRed ,PCons)
containing the pattern identifier PId , its sequence of literals PSeqLits, a set
Maps of tuples of the form (Map, Id), where applying Map to PSeqLits yields
the sequence of literals in the clause identified by Id , the total search reduction



PRed achieved by its clauses (the sum of the Red of each clause identified by
Maps), and the set of constraints Cons that generated any of its clauses (the
union of the Cons of each of the clauses identified by Maps).

Note that a clause may appear in many different patterns. In fact, this will
often be the case, as our algorithm can be seen as computing a pattern for each
subset of the set of (renamed, simplified and sorted) clauses that have the same
sequence of (a) literal operators and (b) variables types. The algorithm starts
with the set of renamed, simplified and sorted Clauses computed for a given
instance as described in previous sections, and an empty set of Patterns. Then,
for every clause Cl = (Id ,SeqLits,Red ,Cons) in Clauses, it does the following:

1. Transform Cl into pattern Pt = (PId ,SeqLits, {([], Id)},Red ,Cons), where
PId is a new identifier.

2. Set NewPatterns to ∅
3. For each pattern Pt ′ = (PId ′,PSeqLits,Maps,PReds,PCons) in Patterns

with the same sequence of literal operators and variable types as SeqLits:
(a) Find a most specific generalisation PSeqLits ′ for SeqLit and PSeqLits,

with associated mapping Map.
(b) Add (PId ′,PSeqLits ′,Maps ∪ {(Map, Id)},PRed + Red ,PCons ∪ Cons)

to NewPatterns.
4. Merge Patterns and NewPatterns.
5. Add Pt to Patterns.

Note that while the pattern Pt added in step 5 above is known to be different
from all others in Patterns (since Pt is essentially a clause and no two clauses
are identical), it is possible to have a pattern P1 in NewPatterns with a sequence
of literals identical (up to variable renaming Ren) to pattern P2 in Patterns. We
can detect this when merging Patterns and NewPatterns in step 4, and simply
merge P1 and P2 (by first applying Ren to them, and then computing the unions
of their mapping and constraint sets, and summing up their reductions).

Once all patterns are computed, our method ranks the results by the amount
of reduction associated with each pattern and presents it to the modeller. This
allows modellers to notice clauses that may not result in significant search re-
ductions when considered individually, but do when considered together.

3.5 Inferring facts for clause patterns

While patterns are a clearer way to condense the information provided by several
clauses, the insights obtained by Shishmarev et al. included information that
was not present in the clauses. For example, for clause {how[5]6=-3,how[3]6=3}
they considered the fact that pizza 3 is more expensive than pizza 5, and for
{how[1]=-1,how[2]=-1,how[3]=-1,how[4]=-1,how[5]=-1,how[1]=-2,
how[2]=-2,how[3]=-2,how[4]=-2,how[5]=-2,how[6]≤0,how[6]≥3}, the fact
that pizza 6 is more expensive than any other pizza in the clause.

When generalising a set of clauses to a pattern, these additional facts can
serve as conditions under which the pattern is indeed a valid (implied) constraint.
For example, let us again consider the pattern {how[A ]6=-B ,how[C ]6=B } or, in
implication form, how[A ]=-B → how[C ]6=B . This pattern is clearly not valid
for arbitrary values of A, B, and C. However, for all clauses that contributed



to the pattern (including clauses 2,4-10), it is true that pizza A is cheaper than
pizza C. This yields a valid constraint: if pizza A is cheaper than pizza C, then
for any voucher B, if we use A with voucher B, then we cannot get pizza C for
free with voucher B. We have thus inferred the following constraint, which can
be added to the model (expressed as the contrapositive of the statement above
to make it more similar to the original formulation):

constraint forall(A,C in PIZZA , B in VOUCH) ((how[A]=-B /\ how[C]=B)
-> price[C]<=price[A]);

This constraint is logically equivalent to line 14 of the model, but it provides
stronger propagation, since it explicitly states that we cannot get pizza C for
free with voucher B, rather than stating this requirement indirectly. The manual
analysis in [16] resulted in a different reformulation:

constraint forall(A,C in PIZZA) ((0 < how[C] /\ how[A]= -how[C])
-> price[C] <= price[A] );

While they are equivalent, the automatically derived constraint is at a lower
level of abstraction, as it is stated for each individual voucher B, rather than as
a general statement on the how variables. An interesting direction for future re-
search is how to enable the automatic approach to perform such generalisations.

Automating the extraction of these facts is challenging, since it requires find-
ing relations in the model’s parameters that are true for a set of clauses. We
have implemented an approach that extracts relevant facts for a certain pattern.
A fact is relevant for a pattern if it concerns objects from it, e.g., if it relates the
prices of pizzas mentioned in a pattern, or the buy and free values of a voucher
mentioned in a pattern. The algorithm proceeds as follows for each pattern:

1. Extract the objects in the pattern; e.g., {how[A]6=-B, how[C]6=B} refers to
pizzas A and C, and voucher B.

2. Extract parameter values relating to all objects referred to by the clauses in
the pattern. For the example above, infer prices for all pizzas A and C in any
clause of the pattern, and buy/free information for all vouchers B.

3. For the extracted parameters, infer facts as simple unary relations on the
objects, such as p[X] = 0, p[X] < 0 or p[X] = max(p), for each parameter p
that is indexed by the type of object X. When there are two objects X and
Y of the same type in a pattern, additionally infer facts as binary relations
such as p[X] = p[Y ], p[X] 6= p[Y ], p[X] ≤ p[Y ], p[X] = −p[Y ].

For the example with the most expensive pizza 6 above, we infer the fact
that price[A]=max(price) if a pattern exists where pizza A is the most expen-
sive one. For the example comparing two pizzas, we will infer that price[C]
> price[A] for all clauses in the pattern {how[A ]6=-B ,how[C ]6=B }. Since pat-
terns may contain many clauses, the extracted facts are unlikely to always be
true for all clauses. We therefore compute, for each extracted fact, the percentage
of clauses in the pattern that it matches, and only report facts that match above
a certain threshold. This is clearly a very incomplete and costly method, and it
will be interesting to pursue further research into how more general facts can be
extracted automatically in a reasonable amount of time.



3.6 Finding patterns across searches and across instances

Finding a pattern whose cumulative search reduction is significant for a given
instance, provides the modeller with some confidence regarding the importance
of the pattern and the possibility of generalising it to a model constraint. Con-
fidence will be stronger if clauses with the same pattern appear in different
instances of the same model, as this suggests the pattern and its associated
information holds across different input data and is, thus, more likely to be a
general property of the model. Confidence would also be stronger if the pattern
significantly reduced the search across different searches, as this would indicate
the associated model modification may lead to speed-ups for all those searches.

To achieve this we have implemented a simple algorithm that, for each in-
stance, takes the union of all clauses obtained by the given set of searches,
and then finds the patterns (and facts) associated to them. For each identified
pattern, it then computes the percentage of instances that have produced this
pattern (up to renaming). Applying this method to the results obtained with
several instances and searches of the freepizza model, we found that the pat-
tern {how[A]6=B,how[C]=-B,how[D]=-B,how[E]=-B,how[F]=-B,how[G]=-B} appears
in at least two instances and most of their searches, with information price[A]>

price[C],price[A]>price[D],price[A]<price[E],price[A]<price[F], and price[

A]>price[G], having percentages between 79% and 55%. The pattern states that
if pizza A is free with voucher B, then one of the other pizzas needs to be paid for
with the same voucher. It is a weaker version of clause 1 in Table 1 and indicates
that pizza A can never be obtained for free by paying the cheaper pizzas. The
fact it appears so often suggests exploring a new constraint that, for each pizza
p, considers the subset of pizzas cheaper (or more expensive) than p.

Note however that the absence of a clause in a particular execution does
not mean the clause (and thus its associated pattern) is not valid. We therefore
need to be somewhat cautious when considering the importance of the patterns
obtained by the above method. Alternatively, we could modify our method to
do something similar to that of [8], by testing for each pattern Pt that does not
appear in some of the executions, whether at least one of its instantiations holds.

4 Preliminary Case Studies

While automating the method, we discovered new examples where the approach
is applicable. This section explores two such cases.

4.1 Case Study 1: Redundant constraints

Our semi-automated approach allowed us to discover a redundant constraint
that can be added to a model of the Grid Colouring problem. A grid colouring
is a colouring of an n ×m grid x, where no sub-rectangle of the grid has all of
its corner cells assigned the same colour. A simplified version of the MiniZinc
model for this problem is presented below. The loop on lines 4 − 8 enumerates
all sub-rectangles of the grid, and states that at least one pair of orthogonally
adjacent corners must be assigned distinct colours.



1 int: n; int: m; % Width and height of grid
2 array [1..n,1..m] of var 1..min(n,m): x; % Colour in each cell
3
4 constraint forall(i in 1..n, j in i+1..n, k in 1..m, l in k+1..m)(
5 ( x[i,k]!=x[i,l] \/ x[i,l]!=x[j,l]
6 \/ x[j,k]!=x[j,l] \/ x[i,k]!=x[j,k]) );
7
8 solve minimize max(x); % Number of colours used

Looking at the clauses produced for instances of this problem, we found a
frequent, high-ranking pattern with literals {x[A,B]6=x[A,C],x[A,B]6=x[D,B], x

[A,C]6=E,x[D,B]6=E,x[D,C]6=E}. One interpretation of the pattern states that if
corner x[A,B] is the same colour as x[A,C] and x[D,B], then one of x[A,C],x[D,B]
or x[D,C] must be assigned a different colour. Upon examination, it became clear
that the constraints in the model only indirectly compared diagonally adjacent
corners. To address this weakness, we added the following constraints:

constraint forall(i in 1..n, j in i+1..n, k in 1..m, l in k+1..m)
((x[i,l]=x[j,k] /\ x[i,l]=x[j,l]) -> (x[i,k]!=x[i,l]))

These constraints did not improve Chuffed’s performance but did improve
Gecode’s significantly. Table 2 shows Gecode’s solve time (in seconds) and node
count for several instances of the original model and the modified one. The
number of extra constraints result in Gecode spending more time at each node
but the added propagation leads to faster solve times.

4.2 Case Study 2: Strengthening model constraints

Our method also helped us discover a constraint in the time-changing graph
colouring problem model that could benefit from domain (rather than the com-
monly used bounds) consistency [1]. In this problem, the given initial colouring
of a graph must be transitioned to a given final colouring. The transition re-
quires a certain number s of steps, each performing at most k modifications to
the colours while maintaining a valid graph colouring. The objective is to first
minimise the number of steps required, and then the number of modifications.

The following shows an extract from the MiniZinc model we used, which
appeared in the annual MiniZinc Challenge as tcgc23. The model takes as input,
among others, the maximum number k of transformations per step, and sets the

3 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/
tc-graph-color

Original Modified
n m time (s) nodes time (s) nodes
5 5 0.10 34,987 0.07 5,452
5 6 0.13 35,223 0.09 5,468
6 6 0.55 131,661 0.29 16,773
6 7 1.53 9,484,042 0.77 37,727
7 7 65.47 11,565,900 23.15 904,148

Table 2. Gecode’s solving time for different instances of the Grid Colouring problem.



maximum number of steps max_s to 10. It has an array of decision variables, where
a[i,n]=j represents the colour j of node n in step i, and a decision variable s

representing the final number of steps. The constraint displayed states that in
every non-final step i, the sum of all transformations must be less or equal to k.

int: k; % maximum colour changes per step
int: max_s = 10; % maximum number of steps
array [STEPS ,NODES] of var COLORS: a; % Colours of nodes at each time step
var 2.. max_s: s; % final number of steps
...

51 constraint forall(i in 1..max_s -1)

52 (i < s -> sum (n in NODES) (
�� ��a[i,n] != a[i+1,n] ) <= k);

53 ...

Our method identified pattern {a[A,B]6=a[A+1,B], a[A,B]=C, a[A+1,B]6=C}

as interesting, since its clauses are highly ranked across different searches of
different instances and, when combined, are responsible for a large search re-
duction. Further, the pattern is short (and thus easy to understand) and all its
clauses come from a single model constraint (which often indicates lack of ex-
pected propagation by the constraint). Upon examination, we felt the pattern
stated something so simple it should have already been captured by the prop-
agation of the model constraints. The first literal, derived from the expression
highlighted on line 52, represents the result of a reified not-equals constraint.
The literal is true when the variables take different values. If this is false, the
remaining literals state that either the variables both take the value C or they
take some other value (this becomes clear when presented in implication form:
{a[A,B]=a[A+1,B] ∧ a[A,B]6=C → a[A+1,B]6=C} and {a[A,B]=a[A+1,B] ∧
a[A+1,B]=C → a[A,B]=C}). While this information is obvious, the fact that
the associated nogoods were being reported by the solver indicated propagation
was not performing as expected. We then realised that the implementation of a
reified not-equals constraint in Chuffed is bounds consistent rather than domain
consistent. To resolve this, we manually modified the model to add the following
information:

48 array [1.. max_s -1,NODES] of var bool: aa;
49 constraint forall (i in 1..max_s -1, n in NODES)
50 (aa[i,n] <-> forall (c in COLORS) (a[i,n]=c <-> a[i+1,n]=c));
51 constraint forall (i in 1..max_s -1)
52 (i < s -> sum (n in NODES) ( (not aa[i,n] ) ) <= k);
53 . . .

Table 3 shows solve times for instances of the original and modified model.
Three different search strategies with a 5 minute time limit were executed. The
strategies were the fixed strategy defined in the model, Chuffed’s free search
strategy, and, one that alternated between the two. The results show the con-
straint can improve Chuffed’s solving performance on some (but not all) in-
stances of the problem. For a traditional CP solver with a domain consistent
reified not-equals constraint, these extra constraints will slow down propaga-
tion, and an annotation indicating the need for domain propagation would be
preferred. This shows the need for the modeller’s input.



Fixed Free Alternate
Instance Original Modified Original Modified Original Modified

k5 5 48.48 40.54 83.68 86.20 66.65 86.62
k9 39 ∞ ∞ ∞ ∞ 262.28 295.16

k10 31 ∞ ∞ ∞ ∞ 78.35 63.81
k10 34 23.66 21.18 80.65 91.60 77.57 69.59
k10 41 1.67 1.99 17.80 19.60 3.15 3.25

Table 3. Solving times for different instances of tcgc2 using different search strategies.

5 Status and Limitations

The semi-automatic method presented in the previous sections is a significant
improvement over the manual method presented in [16], making it much easier
and effective to explore the impact of the clauses learnt by a learning solver, and
the possible model modifications these clauses suggest. However, the current
implementation still has important limitations that are worth exploring. Here
we present some of these limitations and point to possible ways to address them.

Variable Paths: Our approach for reconstructing expressions based on paths is
purely textual. Thus, the paths for variables added by the compilation of a func-
tion/predicate call currently appear connected to the names of the parameters
or the local variables of the function/predicate. For example, a decomposition
of the alldifferent(array[int] of var int: x) predicate (from the MiniZinc li-
brary) will contain expression x[i]!=x[j]. If the model contains a call to this
predicate, such as alldifferent(y), our purely textual approach would not be
able to rename x to y in any clauses resulting from this constraint. Therefore,
modellers cannot distinguish between different invocations of the same predicate.

We plan to address this limitation by using the MiniZinc compiler to hoist
local variables and parameters to be expressed in terms of the top level model
variables where possible, to apply simplification rules, and to deduce accurate
information about the types of expressions we have extracted.

Finding patterns: Our current implementation has three main limitations.
First, to compute the patterns of a given model we must manually provide the
names of the decision variables that can appear in the literals, their possible val-
ues and their types. This is needed to correctly (a) parse the clauses produced
either by Chuffed or by our path-based renaming process, and (b) obtain the
most specific generalisation for two clauses. This manual step can be resolved
by integrating our method with the MiniZinc compiler, so that the required in-
formation can be extracted directly from it. Second, our current implementation
can only handle very simple expressions in the clause literals, even though the
paths for introduced variables can result in complex ones.

Finally, and importantly, the current implementation of the most specific
generalisation of a pattern is very limited, as it (a) only matches sequences of
literals that have the same sequence of operators and variable types, and (b)
only matches the ith literal in each pair of clauses. Due to (a) we might miss



a relationship between clauses that have different numbers of literals but share
a parametric pattern. For example, clauses {w[1]<3,w[2]<3}, {w[1]<3,w[2]<3,w

[3]<3} and {w[1]<3,w[2]<3,w[3]<3,[w4]<3}, share the pattern {w[x]<3| x ∈ 1..

n}. Due to (b) we might miss patterns that were obscured by the sorting or
renaming of literals. For example, for clauses {w[10]=1,w[20]=2} and {w[40]=2,

w[50]=1} we currently only find a pattern with sequence of literals {w[A]=B,w[C

]=D}, and maps {A/10,B/1,C/20,D/2} and {A/40,B/2,C/50,D/1}, while matching
the first and second literal of each clause would yield a more specific pattern
with sequence: {w[A]=1,w[B]=2} and maps {A/10,C/20} and {A/50,C/40}. More
sophisticated algorithms (such as the anti-unification of [5]) can handle different
numbers of literals or matching any literals with the same operator. However,
given the computational cost, it might only be worth it for top-ranking clauses.

Finding facts: This is one of the most difficult and interesting areas for future
research. As described above, our current implementation blindly collects all
simple relations between the parameter values that can be associated to objects
appearing in a clause. While the resulting information is a small subset of the
knowledge space, it is still costly to compute. Furthermore, other knowledge
may be missed (e.g., arbitrary parametric expressions not explicitly present in
the original constraints), which could help modellers understand the origin of
the clause and point to better ways to improve the model.

6 Conclusions

This paper presented improvements to and steps towards the automation of the
methods presented in [16]. In particular, we have shown how the literals in learnt
clauses can be automatically renamed, simplified and both textually and visu-
ally tied back to the parts of the model they originated from. This will make
it easier for modellers to understand the clauses. We have then shown how the
resulting clauses can be grouped by generic patterns, and how to derive infor-
mation regarding the objects present in these patterns. Further, we have shown
how these patterns can be inferred across searches and across instances. This
will help modellers determine the likelihood of a pattern being generalisable to
the model to either strengthen a constraint or as a new, redundant constraint.
We have also shown how the information associated with the patterns will help
modellers determine the particular strengthening that should be applied, or the
new constraint that should be added. We have provided two new case studies
that show the applicability of the approach. Finally, we have identified several
significant challenges our method still faces, and potential avenues for future
research. We believe that by further automating this methodology, and poten-
tially taking advantage of other learning solvers (such as cuts in MIP solvers),
we will be able to provide tools that significantly simplify the task of finding
model refinements for users of the MiniZinc toolchain.
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