
Process Plant Layout Optimization: Equipment
Allocation

Gleb Belov1, Tobias Czauderna1, Maria Garcia de la Banda1,
Matthias Klapperstueck1, Ilankaikone Senthooran1, Mitch Smith2,

Michael Wybrow1, and Mark Wallace1

1 Monash University, Faculty of Information Technology, Australia
{name.surname}@monash.edu

2 Woodside Energy Ltd., Australia

Abstract. Designing the layout of a chemical plant is a complex and
important task. Its main objective is to find a most economical spatial
arrangement of the equipment and associated pipes that satisfies con-
struction, operation, maintenance and safety constraints. The problem
is so complex it is still solved manually, taking multiple engineers many
months (or even years) to complete. This paper provides (a) the most
comprehensive model ever reported in the literature for spatially arrang-
ing the equipment, and (b) a Large Neighbourhood Search framework
that enables complete solvers explore much larger neighbourhoods than
previous approaches to this problem. The two contributions are part of a
system being developed in collaboration with Woodside Energy Ltd. for
arranging their Liquefied Natural Gas plants. The results are indeed so
promising that Woodside are actively exploring its commercialisation.

1 Introduction

A chemical process plant produces chemicals by transforming or separating ma-
terials as they pass through different equipment via connecting pipes [10]. These
plants are common in many industries, such as oil and gas, and are very costly to
design, build and maintain, requiring multibillion-dollar budgets. When design-
ing the layout of a new plant, the objective is to find a most economical spatial
arrangement of the equipment and associated pipes that satisfies construction,
operation, maintenance, and safety constraints.

High-quality layout can have a very significant impact on the cost of these
plants. It can considerably reduce the cost of the pipes and associated support
structures, which are known to take the largest share: up to 80% of the purchased
equipment cost or 20% of the fixed-capital investment [12]. It also greatly reduces
the total amount of space/volume needed, which is crucial for offshore plants.
However, finding high-quality plant layouts is remarkably difficult due to the
size of these plants and the complexity of the associated constraints. As a result,
layouts are still designed manually, taking multiple engineers many months (or
even years) to complete. This process is inefficient, costly and the results may
vary in quality, since they largely depend on the experience of the piping and

layout engineers. For this reason, Woodside Energy Ltd. funded our project to
explore the use of optimisation and visualisation technology in improving the
current layout design process for their Liquefied Natural Gas plants.

Due to the complexity of this problem, most methods published in this area
divide it into independently solved two phases: the first phase spatially places
the equipment, while the second routes the connecting pipes. However, these
methods (e.g., [6, 14, 17, 18]) are too simplistic to meet industry requirements
and/or do not scale. Our work aims to produce a comprehensive solution that
satisfies real-world needs. We reported a model for the pipe routing phase of the
problem in [3]. This paper presents two further contributions. The first one is the
most realistic model ever reported for solving the equipment allocation phase.
Prior to this, the most complete approach [6] only considered non-overlapping
constraints and the minimisation of approximate pipe lengths, elevation and
footprint. In addition to these, our model handles constraints on equipment
alignment, simplified maintenance access, and support structures. While vital
to model the real problem, all this (particularly the maintenance constraints)
considerably increases the complexity of the model and, thus, decreases the scal-
ability of the approach for complete search methods. The second contribution
helps in this regard: a Large Neighbourhood Search [16] (LNS) framework that
uses a modified neighbourhood definition and warm-start for several complete
solvers (via the MiniZinc [11] modelling language). The resulting framework is
highly efficient and can explore larger neighbourhoods than the only previous
LNS approach [18] for this problem.

The model and LNS framework are parts of a much larger system being
developed with Woodside Energy Ltd. This system aims at transforming the way
in which Woodside engineers approach plant-layout design, by allowing them to
get a global view of the plant layout quickly, and easily compare different design
decisions. As our experimental evaluation shows, our approach provides us with
the solution quality and scalability required for this application. The results are
so promising Woodside is actively exploring commercialisation of the system.

2 Literature Review

To solve the plant layout problem we are required to find 3D location coordinates
for the equipment and connecting pipes within a plant’s volume (referred to
as the container space), in such a way as to minimise the total cost of the
plant while, at the same time, ensuring its safety and correct functionality. For
small problem instances, one can apply integrated approaches (e.g., [14]) that
simultaneously place the equipment and route the pipes. For larger, more realistic
instances, current integrated approaches do not scale. For example, [14] fails to
find any solution for plants with just 10 pieces of equipment and 8 pipes.

As a result, methods to solve the plant layout problem often divide it into two
phases [6]. The first one finds the position and orientation of each piece of equip-
ment, minimising an approximate total cost for the plant. The second phase looks
for an optimal pipe routing to connect the already positioned equipment. There

2

has been a significant amount of research devoted to the first phase (e.g., [6, 14,
17, 18]), which is the focus of our paper. However, most methods are too simplis-
tic, concentrating mainly on (often 2D) non-overlapping constraints. No method
we know of considers maintenance access constraints, alignment constraints, or
the cost of (not) using provided support structures for elevated equipment.

In addition, scalability is a difficult issue due to the high combinatorial nature
of the problem, given by the packing requirements. Approaches that use com-
plete methods (e.g., [6, 14]) quickly become prohibitive as the number of objects
grow. Others achieve scalability by giving up on completeness and, for example,
iteratively constructing layouts that extend an initial, incomplete plant with
more and more equipment [17], or using a quadratic force minimisation model
of the problem that tries to compress an initial (complete) layout by minimiz-
ing “forces” between connected pieces of equipment [9]. As near-optimality is
important for Woodside, we looked at LNS solutions to the problem and only
found [18], which uses LNS to solve a simple 2D version of the problem.

The closest commercial product for plant layout is ASD Global’s OptiPlant [1],
which performs automated pipe routing and can generate an initial 3D plant
layout from an equipment list. However, this product only deals with phase two
(pipe routing), requiring users to specify equipment positions.

3 Full System and Key Role of Constraint Programming

As mentioned before, this paper describes components of a much larger system
being developed in collaboration with Woodside Energy Ltd. The system has
a 2D visual interface (see Figure 1) for users to specify the input data needed
for the optimisation process. This information is stored in a JSON file and,
when users press the “Launch Optimisation” button, is sent to a C++ program
that generates the MiniZinc model for the first phase (described in this paper).
MiniZinc compiles this model to the target solver and executes it to obtain the
final positions and rotations of the equipment, writing these as additional entries
in JSON format. Then, the C++ program uses the stored solution to generate
a MiniZinc model for the second phase (described in [3]), compiles this to the
target solver and executes it to obtain the routing of every pipe, again storing
this in JSON format.

Once the equipment is placed and the pipes routed, a Python extension to
FreeCAD generates a 3D model of the solution with structural information for
navigating the equipment and pipes in the plant. An interactive 3D visualisation
of the 3D model (see Figure 2) enables engineers to explore the produced layout
collaboratively, evaluate and validate the proposed solution in a familiar way,
and compare different solutions. Now that our LNS framework can produce high
quality solutions in a relatively short amount of time (see Section 6), the aim is
to support engineers in interactively re-optimising a given solution.

The use of a constraint programming modelling language (MiniZinc) has been
critical to the success of our project for three main reasons. First, it has allowed
us to quickly modify the models and try different modelling alternatives. This

3

Fig. 1. Process Editor interface for plant engineers to specify all input data.

has been invaluable as our lack of knowledge regarding chemical plants often cre-
ated issues that were only resolved by constantly exploring model changes with
Woodside’s engineers. Further model changes occurred as Woodside’s engineers
became more familiar with the possibilities offered by optimisation technology
and we could increase the amount and quality of the constraints. Second, it has
allowed us to easily compare the efficiency of different solvers. This has been
particularly important since, as the models evolved, the efficiency of the solvers
varied greatly. Being able to quickly determine which solver is faster for the
current model allows us to give Woodside’s engineers the best efficiency. Finally,
it has allowed us to quickly build a system that far exceeds the capabilities
of those currently available both in the literature and commercially. As a re-
sult, Woodside engineers can now obtain one or more near-optimal layouts for a
plant significantly faster than before, and can already explore the consequences
of applying simple modifications to the data (e.g., costs and safety distances).

4 An Optimization Model for Equipment Allocation

The model provided in this paper describes the first phase of the process plant
layout problem. That is, determining the 3D position coordinates and the ori-
entation of the given equipment within a given container space, that (a) satisfy
safety, maintenance and alignment constraints and (b) minimise the costs of the
land needed (the footprint), the supporting equipment, and the connecting pipes
(see Figure 2 for a final solution to our small benchmark).

Our model considers the container space as a discretized cuboid with front-
left-bottom (FLB) corner at coordinates (0, 0, 0), and a (maximum) user-defined
length, width and height corresponding to axes x, y and z, respectively, where x×

4

Fig. 2. Visualisation of the final layout for Unit 1000 as a 3D model. Coloured boxes
indicate different kinds of maintenance access zones (e.g., purple are truck access).

y defines the footprint. The exact shape of each piece of equipment is abstracted
by a bounding box, also represented by the position of its FLB corner and its
user-defined (fixed) length, width and height. Boxes are positioned into one of
four different horizontal rotations around the vertical axis: 0◦, 90◦, 180◦ and 270◦.

Each nozzle connecting a pipe with diameter d to equipment b at a position
with centre p ∈ ZZ3 relative to the equipment box’s FLB corner, is represented
as a point located 3d units perpendicularly away from the surface containing p.
This roughly corresponds to the usual bend position of a nozzle segment. Every
pipe has a user-defined cost factor (per length of unit) that determines its cost.
In this phase, pipe length is approximated by the Manhattan distance obtained
from the position of its two connecting nozzles. The splitting of a pipe into two
(or merging of two pipes into one) is modelled by a special rotatable t-junction
box that inherits the pipe properties (e.g., size and safety distances).

User-defined safety distances between all equipment must be enforced. De-
fault safety distances are specified between equipment classes (each equipment
belongs to a class), and can be modified by providing a specific safety distance
between any two. Note that safety distances are directed : that from A to B,
where A is before B w.r.t. their projection on axis c, might be different than
that from B to A. This might be useful for expressing vertical relative posi-
tions, for example, between fin-fans and other equipment, as well as horizontal
positions from high-risk equipment in areas with well-defined wind directions.

Some equipment (such as the pipe rack) can support other equipment without
further capital costs. Thus, equipment might be positioned on the ground (at no
cost), on some other equipment (again at no cost), or “in the air”, representing
the fact that a supporting structure must be built. The cost of this structure
is approximated using the cost (per height unit) associated to each piece of
equipment (see bph below). Some equipment is allowed to protrude by a given

5

amount (its support margin) over the sides of its support box. If the amount is
negative, the box should be that far inside the support box’s sides.

Some equipment should be located at a certain minimal level above the base-
line of another. For example, a vessel might need to be a certain distance above
a pump, if its flow into the pump needs to satisfy the Net Positive Suction Head
(NPSH) regulation. We formulate the corresponding constraint in terms of min-
imal height differences. Note that they cannot be expressed by safety distances,
as the size of the lower object might be larger than the elevation distance.

Some equipment has particular maintenance access requirements, such as the
need to be accessible from above/below, or by a truck (requiring a big empty
space to be attached to it and accessible from the road). The former is modelled
by a constraint that ensures no other equipment is positioned above or below.
The latter is modelled using additional (slave) boxes that satisfy the require-
ments in terms of size and location relative to the (master) equipment boxes.
Currently, our model handles three types of relative locations:

– Rigid (fixed) attachment : slave is at a specified position relative to the mas-
ter and the whole combination rotates together. Examples: access must be
provided to a particular side of the equipment.

– Rotatable attachment : as before, but slave can rotate around the master.
Example: access must be provided to any side of the equipment.

– Multi-zone disjunctive attachment : slave located in one of the given zones
and orientated as the master. Example: aligning a pipe header to a pump
group can be modelled by attaching one or several zone boxes to the pump
group and requiring the header to be in one of these zones.

The rest of the section provides a summary of the parameters (input and
derived data), variables, constraints and objective function used in our model.

4.1 Input and Derived Data

Input Index Sets.

– B = {1, . . . , NB}: set of boxes that need to be allocated.
– P = {1, . . . , NP}: set of pipes that connect the equipment.
– MAZ ⊂ B: subset of boxes that are maintenance access zones.
– BSupp ⊆ B∪{NB+1}: subset of boxes that can support other boxes without

further construction costs (NB + 1 represents the ground).
– AT T ZN ⊂ B: subset of multi-zone attachment zones.

We currently assume there are two nozzles per pipe, and use input set P to
construct the set NZ = {(p, k)|p ∈ P, k ∈ {1, 2}} of nozzles. We also use index
set OH = {1, 2, 3, 4} to represent rotations {0◦, 90◦, 180◦, 270◦}, respectively.

Input Data.

– W
0

i ∈ ZZ×3: x, y and z sizes of box i ∈ B while in horizontal rotation 0◦.

6

– XFLB
LB

i , XBRT
UB

i ∈ ZZ3: lower bound of the FLB corner of box i ∈ B,
and upper bound of its back-right-top (BRT) corner, respectively. Often
determined by the container space.

– BOHi ⊆ OH: set of allowed horizontal orientations for box i ∈ B.
– bsdHi,j , bsd

V
i,j ∈ ZZ: horizontal and vertical directed safety distances, respec-

tively, between boxes i, j ∈ B.
– NPSH: set of tuples (i, j, h), where i, j ∈ B and h ∈ ZZ, indicating that the

base of box j must be above the base of i by at least h units.
– suppMrgi ∈ ZZ: support margins for box i ∈ B.
– bphi ∈ ZZ: height support penalty for box i ∈ B, in $ per height unit.
– batti ∈ {0, 1, 2, 3}: attachment type of box i ∈ B, where 0 indicates none, 1

rigid, 2 rotatable, and 3 multi-zone.
– batmi ∈ B: attachment master box of slave box i ∈ B (batmi = i if batti = 0).
– batpi ∈ ZZ3: attachment point of box i ∈ B relative to its master’s FLB

corner in orientation 0◦, for rigid and rotatable attachment types.
– Batzi ⊂ B: set of possible location zones (i.e., boxes, typically fromAT T ZN)

for the FLB corners of slave box i ∈ B with multi-zone attachment.
– nzBoxi ∈ B: master box of nozzle i ∈ NZ.

– nzPoz
0

i ∈ ZZ3: position of nozzle i ∈ NZ in its master box (orientation 0◦).
– plci ∈ ZZ: cost factor for pipe i ∈ P, in $ per length unit.
– fpcc ∈ ZZ, c ∈ {x, y}: cost factor for perimeter length and width, respec-

tively, in $ per length unit.

4.2 Decision Variables

A solution to an instance of our model is expressed in terms of the values of the
following decision variables (the first two groups functionally define all others):

– rFi ∈ BOH〉: final orientations of each box i ∈ B.

– XFLBi, XBRT i = XFLBi + W ∈ ZZ3 positions of the FLB and BRT
corners of each box i ∈ B, respectively.

– W
F

i ∈ ZZ3: final sizes of each box i ∈ B according to its final rotation.
– relPosijc ∈ {0, 1} relative position variable (directed separation flag) for pair

of boxes i, j ∈ B along coordinate axis c ∈ {x, y, z}. It holds: relPosijc = 1
iff box j is after i in projection on axis c, obeying their safety distance.

– suppIdxi ∈ BSupp: supporting box of each box i ∈ B s.t., bphi > 0.
– suppCosti ∈ ZZ: computed support cost for each box i ∈ B.
– nzPosi ∈ ZZ3: absolute position of each nozzle i ∈ NZ.
– pLeni ∈ ZZ3: approximated length along each axis, for each pipe i ∈ P.
– fpsc ∈ ZZ, c ∈ {x, y}: footprint length and width, respectively.
– obj ∈ ZZ: objective function value.

4.3 Functions

The constraints in our model use the following five functions. Function getBoxSafety :
B × B × {x, y, z} → ZZ returns the minimal positive separation from box i ∈ B

7

to box j ∈ B along axis c:

getBoxSafety(i, j, c) =

{
bsdHi,j , c is x or y

bsdVi,j , c is z
(1)

Function hFindFLBCorner : ZZ3×OH → ZZ3 returns the new position of the
FLB corner of a box with sizes W = (Wx,Wy,Wz), once it is rotated according
to r. It uses the element constraint [2] to select a matrix column using r as index:

hFindFLBCorner(W, r) =

 0 Wy Wz 0
0 0 Wy Wx

0 0 0 0

·r

(2)

Note that the above function and several of the constraints defined later (e.g.,
(9) and (13b)) are non-linear and, thus, not directly supported by MIP solvers.
The MIP interface of MiniZinc [4] handles their MIP decomposition.

Function hRotateB : ZZ3 × OH → ZZ3 returns the new sizes of a box with
sizes W = (Wx,Wy,Wz), rotated according to r.

hRotateB(W, r) =

Wx Wy Wx Wy

Wy Wx Wy Wx

Wz Wz Wz Wz

·r

(3)

Function hRotateBWB : ZZ3×ZZ3×ZZ3×OH → ZZ3 receives the sizes W s

and Wm of boxes s and m, respectively, the point P where the FLB corner of
s is rigidly attached to m (relative to m’s FLB corner, which is always (0,0,0))
in their default orientation, and rotation r. Returns the relative position of the
FLB corner of s to that of m, once both are rotated by r around m’s centre.

hRotateBWB(W s,Wm, P , r) =Px Wmy − Py −Wsy Wmx − Px −Wsx Py

Py Px Wmy − Py −Wsy Wmx − Px −Wsx

Pz Pz Pz Pz

·r

(4)

Function hRotateBAB : ZZ3×ZZ3×ZZ3×OH×OH → ZZ3 receives the sizes
W s and Wm of boxes s and m, respectively, the point P where the FLB corner of
s is attached to m (relative to m’s FLB corner, which is always (0,0,0)) in their
default orientation, and two rotations rs and rm. For efficiency, it returns an
approximation of the relative position of the FLB corner of s relative to m, once
s and m are rotated according to rs and rm, respectively, around the centre of m.
The approximation is done by “shrinking” the master box to a square footprint,
which is acceptable as long as we attach spacious MAZ.

hRotateBAB(W s,Wm, P , rs, rm) =

bW rm
mx/2c − dw/2e

bW rm
my/2c − dw/2e

+0

+

hRotateBWB

W s,

 w
w

Wsz

 , P +

dw/2e − bWmx/2c
dw/2e − bWmy/2c

0

 , rs

 (5)

where w = min{Wmx,Wmy} is the minimum of the master’s horizontal sizes and

W
rm
m = hRotateB(Wm, rm) are the sizes of the master rotated according to rm.

8

Function hRotatePWB : ZZ3 × ZZ3 ×OH → ZZ3 receives a rotation r and a
point P rigidly attached to a box with sizes W . Returns the relative position of
P to the box’s FLB corner, once both are rotated by r around the box’s centre.

hRotatePWB(P ,W, r) = hRotateBWB(0,W , P , r) (6)

4.4 Constraints and Objective Function

Box sizes: can be obtained from the original sizes and the final rotations:

W
F

b = hRotateB(W
0

b , r
F
b), b ∈ B (7)

Box position: should satisfy the given bounds.

XFLB
LB

b ≤ XFLBb, XRBT b ≤ XRBT
UB

b , b ∈ B (8)

Box disjointness: only needs to be enforced between boxes that are not main-
tenance access zones (which are allowed to overlap), and are not attached to each
other. If we had equal safety distances, we could have enforced disjointedness
by using the diffn_k global constraint [2]. Since this is not the case, we enforce
the disjointness of boxes i, j ∈ B similarly to [6], as follows. First, we reify the
existence of the appropriate safety distance from i to j in each axis c as:

relPosijc = 1 ↔
True, i = j ∨ {i, j} ⊆ MAZ

∨ i and j are attached

∨ i ∈ AT T ZN ∨ j ∈ AT T ZN
XBRT ic + getBoxSafety(i, j, c) ≤ XFLBjc, otherwise,

i, j ∈ B, c ∈ {x, y, z} (9)

Then, for each pair of boxes i < j ∈ B, we demand the existence of such safety
distance in at least one coordinate direction, positive or negative:∨3

c=1 (relPosijc ∨ relPosjic) , i < j ∈ B (10)

This allows us to easily model the “none above/below” constraints by providing
big enough vertical separations (ensuring they do not fit above each other).

Minimal height separation constraints: they demand the base of box j to
be above the base of box i by at least h units:

XFLBiz + h ≤ XFLBjz, (i, j, h) ∈ NPSH (11)

Support constraints: Box i ∈ B with positive height support cost (bphi > 0)
is considered as being supported by another box j ∈ BSupp \ {NB + 1} (not the
ground) if i’s “core footprint” is contained in the footprint of j:

suppIdxi = j ↔{
XFLBic + suppMrgi ≥ XFLBjc ∧XBRT ic − suppMrgi ≤ XBRT jc

}
,

c ∈ {x, y}, i ∈ B, bphi > 0, j ∈ BSupp \ {NB + 1} (12)

9

The chosen form of the constraint implies that the support objects cannot be
stacked if they already support something (as suppIdxi can only have one value).
For efficiency, the domain of suppIdxi should be a priori reduced if possible.
Finally, the support costs penalize being higher than the support object:

suppCosti ≥ 0, (13a)

suppCosti ≥ bphi

(
XFLBiz − (XFLB·z ++(0))suppIdxi

)
, i ∈ B : bphi > 0

(13b)

which assumes the ground at level 0. This allows the modelling of objects that
overlap with their supports, as it is the case with the equipment placed in racks.

Box attachment and MAZ: For a rigidly attached box (attachment type
battb = 1), its FLB corner is computed from that of the master and the position
of the attachment point, once rigidly rotated with the master to its final position.

XFLBb = XFLBbatmb
+ hRotateBWB(W

0

b ,W
0

batmb
, batpb, r

F
b), ∀b : battb = 1

(14a)

Moreover its final orientation must be equal to that of its master batmb:

rFb = rFbatmb
, b ∈ B : battb = 1 (14b)

For rotatable, attached boxes (battb = 2), where the master has a square
footprint, the modelling is the same as (14a). For rotation around a non-square-
footprint master, we only provide an approximation (see hRotateBAB):

Xb = Xbatmb
+ hRotateBAB(W

0

b ,W
0

batmb
, batpb, r

F
b , r

F
batmb

),

b : battb = 2, W
0

batmb,1
6= W

0

batmb,2
(15)

For multi-zone attachment (battb = 3), we require the slave’s FLB corner to be
in one of the specified zones (boxes in Batzb) and the rotation to be the same
as that of the master (batmb). This translates into the following system:

rFb = rFbatmb
, (16a)

∃i ∈ Batzb : XFLBb ∈ [XFLB
′
i, XFLB

′
i + W i], b : battb = 3 (16b)

where

XFLB
′
i = XFLBi + hFindFLBCorner(W

0

b , r
F
b), i ∈ Batzb (16c)

are the location zones’ origins corrected for the slave’s rotation.

Pipe symmetry. A set of pipes S ⊂ P might need to be symmetric, e.g., due
to restrictions on the associated equipment. Our phase one model approximates
pipe symmetry by demanding the nozzle distances pLenp of all pipes p ∈ S to
be equal. Actual symmetry is enforced during pipe routing in the second phase.

Pipe cost approximation: uses the nozzle positions, which are computed
using its master box’s position and orientation:

nzPos(p,i) = XFLBnzBox(p,i)
+

hRotatePWB
(
nzPos

0

(p,i),W
0

nzBox(p,i)
, rFnzBox(p,i)

)
, p ∈ P, i ∈ {1, 2} (17)

10

This allows us to compute the pipe end differences and their absolute values:

pLenp = |nzPos(p,2) − nzPos(p,1)|, p ∈ P (18)

Footprint cost approximation: similar to [6], we approximate footprint cost
by penalizing perimeter length. We measure the footprint as including all physi-
cal boxes (i.e., no MAZ and zones) and, for each direction x or y, we only include
boxes whose corresponding coordinate is not a priori fixed, as follows:

fpsc = max{XFLBbc|b ∈ BFc} −min{XBRT bc|b ∈ BFc},
where BFc = {b ∈ B|XFLBbc 6≡ const} \MAZ \ AT T ZN , c ∈ {x, y}

Objective function: sum of the piping, footprint and support costs.

obj =
∑

p∈P,c∈{x,y,z} plcppLenpc +
∑

b∈B suppCostb +
∑

c∈{x,y} fpcc ·fpsc (19)

Optimisations: We reduce the domain of each suppIdxi by removing boxes
that are either too small to support box i, or (for a given neighbourhood) known
to be located in a different area of the plant. We remove any non-overlapping
constraints for pairs of boxes known not to overlap (for a given neighbourhood).

5 Overall Approach and Implementation

LNS is a meta-heuristic search method that, from an initial seed solution, iter-
atively relaxes part of the current solution and re-optimises the corresponding
sub-problem obtaining a new solution. Our implementation uses a C++ program
that, in each iteration, creates a new MiniZinc model for the neighbourhood,
compiles it and executes it with a CP or MIP solver, using warm-starts when
possible. The following describes these steps in more detail.

Constructing a seed solution: In order to have some control over the
amount of time invested in finding a seed solution, we take two steps. First, we
run the chosen solver until a feasible solution is found. Then we warm-start the
same solver with that solution and run it with a given time limit.

Selecting the boxes to be relaxed: When relaxing a solution, and given
input parameters L ≤ U , our LNS first selects a subset of boxes BNBH ⊂ B that
will be relaxed (i.e., allowed to move freely) as follows: First, as long as we have
not yet selected L boxes, a new box i is selected from set B and added to set
BNBH. For sequential LNS, i is a next biggest equipment box (starting from a
new one for each BNBH); for random LNS, i is selected randomly. Next, all slave
boxes attached to i and all boxes connected to i via pipes are added to BNBH,
stopping if its cardinality reaches U . We repeat the process until the minimum
number L of boxes is reached. This is different from [18] which constructs BNBH
by choosing the boxes based on various probabilistic selection schemes, from
random to those considering the number of box connections, the cost of the box,
or all boxes connected to the selected links.

Defining the neighbourhood: Once BNBH is selected, we define the neigh-
bourhood of the current solution (subset of solutions to be explored in this iter-
ation) by fixing the orientations of all boxes not in BNBH, and tightening their

11

separation constraints (10). The tightening is done for all pairs of boxes i, j ∈
B\BNBH such that i < j, by enforcing their relative position along one of the six
directions where they were most separated in the last solution. That is, by setting
relPosabc = 1 for one of the six tuples in {(a, b, c)|{a, b} = {i, j}, c ∈ {x, y, z}},
one with the maximum value for XFLBbc − XBRT ac − getBoxSafety(a, b, c).
The other five relative position variables (and, consequently, their reification
constraints (9)) for i, j are omitted, significantly simplifying the model and en-
hancing the solution space. This differs from the neighbourhood described in [18]
for a 2D version of the problem, which also fixes the relative position variables of
each pair of boxes not in BNBH, but does so for all four possible separation di-
rections. By fixing only the largest-separation relation variable, our LNS obtains
larger neighbourhoods and simpler models.

6 Evaluation

We have evaluated the practicality of our system by executing it as an 8-thread
process on an Intel(R) Core(TM) i7-4771 CPU @ 3.90GHz on two benchmarks.
The first one extends the default benchmark of [3], which models the acid gas
removal-1100 unit of an existing plant, by adding maintenance access zone boxes
and pipe t-junctions, yielding 39 boxes and 47 pipes. The second benchmark is
new and models the combined dehydration-1300 unit, mercury removal-1500
unit and propane circuit of the liquefaction-1400 unit of the same plant. We be-
lieve this is the largest plant layout benchmark ever considered in the literature.

Its container cuboid is sized 250× 100× 40m length by width by height, dis-
cretized by 200mm, yielding 1250× 500× 200 position points along axes x, y, z,
respectively. It has 85 pipes in P, with diameters Dp between 50 and 1400 mil-
limetres, and 76 boxes in B including: 12 columns and vessels, with heights
between 1.5 and 26 meters; 2 heat exchanger groups and 8 individual heat ex-
changers including 4 fin-fan blocks (the groups have size 22×4×6m, while the
sizes of the individual ones range from 6.5×1.5×1.5m to 173×15×5m); 1 source
and 9 sink points connecting the equipment to the outside; 2 pipe racks of size
75×15.5×18m and 186×15.5×18m, where levels at heights 3, 6, 9, and 12m
provide support without cost; a pump group of size 4×1×4.5 and two compres-
sors of sizes 9×3×3 and 7×5.5×5.5m; 3 general equipment of sizes 7.5×5.5×5.5,
12×10×39 and 25×27×13m; 2 small mixers of size 0.7×0.6×0.6m each; 7 strain-
ers of sizes from 1×0.5×0.5 to 5.5×1.5×1.5m; 17 pipe t-junctions; and 10 main-
tenance access zones (4 truck, 4 landing and 2 extract zones).

The use of MiniZinc allowed us to try several solvers, including two state-of-
the-art MIP solvers (Gurobi 7.5.2 [7] and IBM ILOG CPLEX 12.8 [8]) and the
two CP solvers that gave the best performance for phase two in [3] (Chuffed [5]
and Gecode 6.0 [15]). For MIP solvers we warm-start the solver on each neigh-
bourhood, i.e., the last solution is not “destroyed” [13] by demanding a strictly
better objective value, but provided as a solution hint to the solver [7, 8]. This
considerably sped-up MIP by allowing the efficient solving of much larger neigh-

12

Table 1. Unit 1100 with 20 LNS iterations and Unit 1300+ with 50 LNS iterations

First Solution
Sequential LNS Random LNS

Restart End (after LNS) Restart End (after LNS)

Solver
Time
(sec)

Total
Cost
(103)

Time
limit
(sec)

Obj
(UB)
(103)

Gap
(%)

End
Time
(sec)

Obj
(UB)
(103)

Gap
(%)

Time
limit
(sec)

Obj
(UB)
(103)

Gap
(%)

End
Time
(sec)

Obj
(UB)
(103)

Gap
(%)

U
n
it
1
1
0
0 CPLEX 13 751

30 728 24.90 186 561 2.46 30 728 24.90 220 618 11.54
60 673 18.75 260 556 1.60 60 673 18.75 188 558 1.97
120 654 16.42 294 556 1.66 120 654 16.42 275 555 1.53
180 572 4.46 303 558 2.07 180 630 13.17 370 557 1.81

GUROBI 18 660

30 585 6.48 146 550 0.53 30 585 6.48 122 555 1.53
60 567 3.53 173 550 0.53 60 567 3.53 152 555 1.53
120 567 3.53 234 550 0.53 120 567 3.53 212 555 1.53
180 567 3.51 295 550 0.53 180 567 3.51 276 555 1.53

U
n
it
1
3
0
0
+ CPLEX 146 2721

60 2698 47.23 3818 1597 10.87 60 2525 43.60 3901 1658 14.11
300 2336 39.06 3967 1657 14.10 300 2277 37.48 4152 1652 13.84
600 2283 37.63 4348 1654 13.93 600 2229 36.13 4446 1613 11.74

GUROBI 611 2480
60 2105 32.37 4174 1614 11.79 60 2164 34.20 4273 1553 8.35
300 1980 28.11 4453 1552 8.24 300 2038 30.14 4492 1555 8.47
600 1785 20.22 4739 1600 11.02 600 1849 23.01 4888 1609 11.53

bourhoods than in [18]. Note that only the variable values are provided for a
warm start.

Table 1 provides the results for our two benchmarks (denoted as Unit1100 and
Unit1300+) using the MIP solvers, with parameters L=15 and U=20 for building
the neighbourhoods. For each solver and type of neighbourhood, it shows the
time in getting the first solution and its associated objective value (×103); the
objective value and associated gap of the solution found by the warm-started
solver with the given timeout (30, 60 and 120 seconds for Unit1100, and 60,
300 and 600 for Unit1300+), and the objective value and associated gap of
the solution found after performing all LNS iterations (20 for Unit1100, 50 for
Unit1300+). Note that the gap shown is computed using the best lower bound
found in any run. For Unit1100 this is the optimal value, 546797, which is found
by Gurobi in 802 seconds. For Unit1300+ it is 1440125.44 after two days of
computation with 8 threads, and might still be suboptimal.

In addition, Figures 3 and 4 show information regarding the value of the
objective function and the time (also in seconds) at which the associated solution
was found for each of the 20 and 50 LNS iterations summarised in the above Table
(all starting from the initial solution found by each solver). The rightmost figures
for each solver also show the solutions found by that solver without LNS in the
same time-frame. As the figures show, Gurobi consistently performs better than
CPLEX for our model, and seems to perform most efficiently when given a short
time to improve the initial feasible solution to build the seed. Its combination
with LNS allows us to provide Woodside engineers with high quality solutions
in under 2 minutes for Unit1100 and under 30 minutes for Unit1300+. This is
quite pleasing as it is well within the expectations of Woodside, not only for
obtaining a first solution, but also for performing interactive re-optimisations.
Still, we would like to reduce further the time taken for the second benchmark.

13

0 50 100 150 200 250 300
5

5.5

6

6.5

7

7.5

8
·105

T
o
ta

l
O

b
j

(c
o
st

)

CPLEX - Sequential LNS

0 50 100 150 200 250 300
5

5.5

6

6.5

7

7.5

8
·105

GUROBI - Sequential LNS

0 50 100 150 200 250 300
5

5.5

6

6.5

7

7.5

8
·105

time (sec)

T
o
ta

l
O

b
j

(c
o
st

)

CPLEX - Random LNS

0 50 100 150 200 250 300
5

5.5

6

6.5

7

7.5

8
·105

time (sec)

GUROBI - Random LNS

Phase 1 only

Phase 1 restart 30s

Phase 1 restart 60s

Phase 1 restart 120s

Phase 1 restart 180s

Fig. 3. Intermediate MIP solutions for Unit1100 with and without LNS

Thus, we plan to explore the use of other neighbourhoods, in combination with
hierarchical approaches to decompose big plants.

The experiments with CP solvers were not as successful. For Chuffed we
were not able to get a first solution in 1 hour, even for the smaller benchmark
and trying with a variety of searches (free, model, alternating, etc.). Thus, we
seeded it with a solution from Gurobi. Then, the best results were obtained
when warm-started with an upper bound on the objective, allowed to alternate
between free/user-defined search (-f solving option), and the neighbourhood size
was reduced to 5–15. Even then, after 50 iterations it was only able to return an
objective of 574247 (and it took 4739 seconds). For Unit1300+ it never returned
a solution better than the seed. For Gecode we were again not able to find a first
solution for any of the two benchmarks, and seeding it with Gurobi (and setting
an upper bound for the objective function) did not produce any improvement,
perhaps due to its reliance on the search specified by the model.

7 Conclusions

We have presented the most realistic model ever described in the literature to
solve phase one of the plant-layout problem, which positions the equipment en-
suring it satisfies directional safety distances, equipment alignment, and various

14

0 1,000 2,000 3,000 4,000 5,000
1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9
·106

T
o
ta

l
O

b
j

(c
o
st

)

CPLEX - Sequential LNS

0 1,000 2,000 3,000 4,000 5,000
1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9
·106

GUROBI - Sequential LNS

0 1,000 2,000 3,000 4,000 5,000
1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9
·106

time (sec)

T
o
ta

l
O

b
j

(c
o
st

)

CPLEX - Random LNS

0 1,000 2,000 3,000 4,000 5,000
1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9
·106

time (sec)

GUROBI - Random LNS

Phase 1 only

Phase1 restart 60s

Phase1 restart 300s

Phase1 restart 600s

Fig. 4. Intermediate MIP solutions for Unit1300+ with and without LNS

types of (rigid, rotatable and multi-zone) maintenance access constraints in such
a way as to minimise the piping and support costs of all equipment and the overall
footprint of the plant. Making the model sufficiently realistic to satisfy industry
standards has been very challenging and considerably increased the search space
and, thus, the time taken by the solvers to find a high-quality solution. Thus,
we also developed and implemented an LNS framework that can explore larger
neighbourhoods than any previous approach for this problem, thanks to the use
of complete solvers able to explore the neighbourhoods efficiently. Our exper-
imental results show that the combination of MIP solvers with LNS provides
Woodside engineers with high quality solutions in under 2 and 30 minutes for
our two benchmarks, respectively. The use of a constraint programming mod-
elling language (MiniZinc) was critical to be able to modify the model as often
as required, and execute it with the most efficient solver for that model.

Acknowledgements. Funded by Woodside Energy Ltd and the Australian Re-
search Council grant DP180100151. We thank our Woodside collaborators, par-
ticularly Solomon Faka and Michelle Frayne, for the many useful discussions.

References

1. AMEC Paragon launches optimized FEED design process. Zeus Technology Mag-

15

azine, 4(2):1–3, February 2009.
2. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraint cata-

logue: Past, present and future. Constraints, 12(1):21–62, 2007.
3. G. Belov, T. Czauderna, A. Dzaferovic, M. Garcia de la Banda, M. Wybrow,

and M. Wallace. An optimization model for 3d pipe routing with flexibility con-
straints. In International Conference on Principles and Practice of Constraint
Programming. Springer, 2017.

4. G. Belov, P. J. Stuckey, G. Tack, and M. Wallace. Improved linearization of con-
straint programming models. In M. Rueher, editor, Principles and Practice of
Constraint Programming: 22nd International Conference, CP 2016, Proceedings,
pages 49–65. Springer International Publishing, 2016.

5. G. G. Chu. Improving combinatorial optimization. PhD thesis, 2011.
6. R. Guirardello and R. E. Swaney. Optimization of process plant layout with pipe

routing. Computers & Chemical Engineering, 30(1):99–114, 2005.
7. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual Version 7.0. Hous-

ton, Texas: Gurobi Optimization, 2016.
8. IBM. IBM ILOG CPLEX Optimization Studio. CPLEX User’s Manual. 2017.
9. Y. T. Kar and G. L. Shi. A hierarchical approach to the facility layout problem.

International Journal of Production Research, 29(1):165–184, 1991.
10. J.C. Mecklenburgh. Process Plant Layout. Halsted Press; John Wiley & Sons, New

York, 1985.
11. N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.

MiniZinc: Towards a standard CP modelling language. In C. Bessiere, editor,
Proceedings of the 13th International Conference on Principles and Practice of
Constraint Programming, volume 4741 of LNCS, pages 529–543. Springer-Verlag,
2007.

12. M. S. Peters and K. D. Timmerhaus. Plant design and economics for chemical
engineers. McGraw-Hill Book Company, New York, 5th edition, 2004.

13. D. Pisinger and M. M. Sigurd. Using decomposition techniques and constraint
programming for solving the two-dimensional bin-packing problem. INFORMS
Journal on Computing, 19(1):36–51, 2007.

14. A. Sakti, L. Zeidner, T. Hadzic, B. St. Rock, and G. Quartarone. Constraint
programming approach for spatial packaging problem. In C.-G. Quimper, editor,
Integration of AI and OR Techniques in Constraint Programming: 13th Interna-
tional Conference, CPAIOR 2016. Proceedings, pages 319–328. Springer, 2016.

15. C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and programming with
Gecode, 2017. www.gecode.org.

16. P. Shaw. Using constraint programming and local search methods to solve ve-
hicle routing problems. In International conference on principles and practice of
constraint programming, pages 417–431. Springer, 1998.

17. G. Xu and L. G. Papageorgiou. A construction-based approach to process plant
layout using mixed-integer optimization. Industrial & Engineering Chemistry Re-
search, 46(1):351–358, 2007.

18. G. Xu and L. G. Papageorgiou. Process plant layout using an improvement-type
algorithm. Chemical Engineering Research and Design, 87(6):780–788, 2009.

16

