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1. INTRODUCTION

Program analysis is the process of statically—i.e., at compile-time— inferring in-
formation about run-time properties of programs. Generally, the purpose of the
process is to use this information to perform optimizations which improve some
characteristics of the program or its execution. Abstract interpretation [Cousot
and Cousot 1977] allows the systematic design of correct data flow analyses through
formalization of the relationship between analysis and semantics. The idea is to
view data flow analysis as a nonstandard semantics defined over an abstract domain
in which the usual domain of values has been replaced by a domain of descriptions
of values, and the operations are replaced by corresponding abstract operations
defined on the new domain of descriptions.

This paper studies the application of abstract interpretation to the problem of au-
tomatic program parallelization, in the context of logic programs. We believe that
logic programming offers a particularly interesting case study for automatic paral-
lelization. On one hand, this programming paradigm poses significant challenges to
the parallelization task, which relate closely to the more difficult challenges faced
in imperative language parallelization [Bacon et al. 1994]. Such challenges include
highly irregular computations and dynamic control flow (due to the symbolic na-
ture of many of their applications), nontrivial notions of (semantic) independence,
the presence of dynamically allocated, complex data structures containing pointers
(logical variables), and having to deal with speculation. On the other hand, this
paradigm also facilitates the study of parallelization issues. Logical variables are
actually a quite “well-behaved” version of pointers, in the sense that no castings or
pointer arithmetic (other than array indexing) is allowed. Thus, pointers in these
languages are not unlike those allowed, for example, in “clean” versions of C. In
addition, similarly to functional languages, logic languages allow coding the desired
algorithm in a way that reflects more directly the structure of the problem. This
makes the parallelism available in the problem more accessible to the compiler. The
relatively clean semantics of logic programming languages also makes it compar-
atively easy to use formal methods, such as the abstract interpretation approach
subject of this paper, and prove the transformations performed by the paralleliz-
ing compiler both correct and efficient.! This paper proposes and proves correct a
methodology for the application of the results of abstract interpretation-based data
flow analysis in automatic parallelization of logic programs (using the “indepen-
dent and-parallelism” model and strict independence—see, for example, [Conery
1983; DeGroot 1984; Hermenegildo and Rossi 1995] and their references). It also

1See [Hermenegildo 1997] for a more extended discussion of the relationships between paralleliza-
tion techniques used for logic programs and those used for other programming paradigms.
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reports on the implementation of the methodology and a number of analyzers, their
integration in a compiler, and the study of their effectiveness for the application
considered.

Much work has been done using the abstract interpretation technique in the
context of logic programs (e.g., [Mellish 1986; Bruynooghe and Janssens 1988;
Debray 1989; Marriott and Segndergaard 1989; Bruynooghe 1991; Debray 1992] and
their references). However, only a few studies have been reported which examine
the performance of analyzers in the actual optimization task they were designed
for (notable exceptions are [Warren et al. 1988; Marien et al. 1989; Van Roy and
Despain 1990; Taylor 1990; Santos Costa 1993; Getzinger 1993]). This article also
contributes to fill this gap.

Data flow analysis seems to be crucial in the context of automatic parallelization
of programs within the independent and-parallel model. Unfortunately, little work
has been reported on the complete task of global analysis-based compile-time au-
tomatic parallelization of logic programs within that model. In a previous study
[Warren et al. 1988; Hermenegildo et al. 1992], we have reported on a first set of
experiments in abstract interpretation-based program parallelization. This study
was interesting in that, to the best of our knowledge, it represented the first actual
application of abstract interpretation reported within logic programming. How-
ever, being essentially a feasibility study for the abstract interpretation technique,
that work had several shortcomings: it included only one domain (a simple depth-
K/sharing domain); it used a relatively simple basic parallelizer and analyzer; it
presented the results only in terms of program simplifications; and the correctness
of the approach was never shown. Furthermore, it was not explained how and when
the information inferred by the analyzers was used. Since then, several new par-
allelization algorithms [Muthukumar and Hermenegildo 1990b] and sophisticated
abstract analyzers (i.e., domains and the associated abstract functions) relevant to
the application have been proposed [Sondergaard 1986; Jacobs and Langen 1989;
Codish et al. 1991; Muthukumar and Hermenegildo 1991; 1992; Codish et al. 1995].
Furthermore, a complete parallel platform [Hermenegildo and Greene 1991], a set, of
performance evaluation tools [Ferndndez et al. 1996], and a second-generation anal-
ysis framework [Muthukumar and Hermenegildo 1990a; 1992] have become available
to us for experimentation.

We report on a detailed study of the application and effectiveness of program
analysis using abstract interpretation in the parallelization of logic programs. We
first propose and prove correct a novel methodology for the application of the
inferred information to the parallelization task, via a parametric domain. A number
of well-known approximation domains are then selected and the transformation
into the parametric domain defined. The transformation directly illustrates the
relevance and applicability of each abstract domain for the application. Both local
and global analyzers are then built using these domains and embedded in a complete
parallelizing compiler. Then, the performance of the domains in this context is
assessed through a number of experiments. A comparatively wide range of aspects
is studied, from the resources needed by the analyzers in terms of time and memory
to the actual benefits obtained from the information inferred. Such benefits of
analysis are evaluated not only in terms of accuracy, i.e., the ability to determine
the actual dependencies among the program variables, but also of effectiveness,

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 2, March 1999.



192 . F. Bueno et al.

measured in terms of code reduction and also in terms of the ultimate performance
of the parallelized programs, i.e., the actual speedup obtainable with respect to the
sequential version.

The analyzers we use were defined to track classical properties of logic program
variables: groundness, freeness, linearity, and sharing, which are interesting in sev-
eral optimizations, including parallelization. A program variable is said to be
ground if it is bound (at run-time) to a term which has no variables—a ground
term. It is said to be free if it is bound to a variable term (or unbound). It is linear
if it is bound to a term in which any variable occurs only once—a linear term.
Finally, two (or a set of) program variables are said to share if they are bound to
terms which have variables in common. While groundness, freeness, and sharing
are useful for detecting independence, linearity improves the accuracy of sharing
and, therefore, the propagation of groundness and freeness.

Five relatively sophisticated abstract domains are used in our evaluation: the
ASub domain defined by Séndergaard [1986] for inferring groundness, (pair) sharing
and linearity information, the Sharing domain defined by Jacobs and Langen [1992]
for inferring groundness and (set) sharing information, the Sharing+Freeness domain
defined by Muthukumar and Hermenegildo [1991] for inferring groundness, (set)
sharing and freeness information, and the domains resulting from the combination
of the ASub and Sharing domains, and also ASub and Sharing+Freeness domains, as
presented by Codish et al. [1995]. The Sharing and Sharing+Freeness domains were
defined specifically for the parallelization application. One of the main objectives
of ASub was to accurately infer variable aliasing information for garbage collection
optimization, which is also useful in parallelization. Finally, the combined domains
were defined in order to further improve the behavior of their components.

We would like to point out that our main aim is not to perform a comparison
among different global analyzers, but rather to devise a flexible methodology for
applying “state-of-the-art” abstract analyzers in the automatic parallelization of
logic programs, and evaluating the results. The use of several global analyzers
based on different abstract domains with different levels of accuracy and complexity
is motivated by the fact that this allows us to also study the relationship between
accuracy, efficiency, and usefulness.

The rest of the article is structured as follows. Section 2 summarizes the ap-
plication in hand: and-parallelization of logic programs. Section 3 describes the
structure and task of the “annotators”—the actual parallelizers which interface
with the analyzers—and proposes the actual interface itself. Section 4 proves the
correctness of the general framework described in the previous section. Section 5
then presents the different domains, and proposes a method for casting the informa-
tion encoded by each domain in terms of the defined interface for the parallelization
process. Section 6 introduces global and local analyzers based on these domains,
describing the framework they are embedded in. Section 7 briefly describes the
evaluation environment—i.e., the parallelizing compiler and the evaluation tools
used for performing some of the experiments, and Section 8 describes the experi-
ments and presents the results obtained from those experiments. Finally, Section 9
presents our conclusions and suggestions for future work.
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2. THE APPLICATION: AUTOMATIC AND-PARALLELIZATION

The two main types of parallelism which can be exploited in logic programs are
well known [Conery 1983; Chassin and Codognet 1994]: or-parallelism and and-
parallelism. Or-parallelism refers to the parallel exploration of branches in the
derivation tree corresponding to different clauses which match a given literal. This
kind of parallelism is specially useful when solving nondeterministic problems, i.e.,
problems whose solution involves a large amount of search. And-parallelism refers
to the parallel execution of (sequences of) literals (referred to as goals) in the
body of a clause. And-parallelism may appear in both nondeterministic and deter-
ministic programs, and it corresponds directly to the more “conventional” view of
parallelism present in other languages, as solving simultaneously independent parts
of the problem. Several models have been proposed to take advantage of such op-
portunities (e.g., [DeGroot 1984; Hermenegildo 1986a; Westphal and Robert 1987;
Warren 1987b; Biswas et al. 1988; Lin 1988; Ramkumar and Kale 1989; Gupta and
Jayaraman 1989; Szeredi 1989; Ali and Karlsson 1990] and their references).

Given the high potential for parallelism exhibited by logic programs, it is tempt-
ing to directly make use of all available parallelism by maximizing the number of
tasks scheduled for parallel execution. However, this can in some cases result in
a very significant slowdown, which is clearly in conflict with the final aim of par-
allelism: to achieve the maximum speed (effectiveness) while computing the same
solution (correctness). In practice, “maximum speed” may be difficult to achieve
or even define. Therefore, other concepts, such as ensuring “no slowdown” (guar-
anteeing that the parallel execution will be no slower than the sequential one) are
often used instead [Hermenegildo and Rossi 1995].

The objective can then be seen as determining which of all the opportunities for
parallelism available are not only correct but also profitable from the efficiency point
of view. It turns out that when or-parallelism is considered, and if all solutions
to the problem are desired, both correctness and efficiency can be guaranteed.?
This directly results from the inherent independence among the different branches
which are executed in parallel [Hermenegildo and Rossi 1995]. This simplicity
has contributed to the rapid development of parallel frameworks based on the or-
parallel models (e.g., [Warren 1987a; Lusk et al. 1988; Szeredi 1989; Lusk et al.
1990; Ali and Karlsson 1990] and their references). Furthermore, such models
can be easily extended to constraint logic programming (CLP), as shown by the
implementations of Van Hentenryck [1989] and McAloon and Tretkoff [1989]. The
associated performance studies have shown good performance for nondeterministic
programs in a number of practical implementations [Szeredi 1989; Ali and Karlsson
1990].

On the other hand, guaranteeing correctness and efficiency in and-parallelism is
less straightforward. The main problems are due to the fact that dependencies may
exist among the goals to be executed in parallel, because of the presence of shared
variables at run-time. It turns out that when these dependencies are present, ex-
ploitation of and-parallelism might not guarantee efficiency. Furthermore, if certain
“impure” predicates that are relatively common in Prolog programs are used, even

2Care also has to be taken in the case of programs containing impure literals like cuts and side-
effects.
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correctness cannot be guaranteed.

Assuming such a dependency among the set of goals to be executed in parallel is
detected, different alternatives have been proposed to solve the problem, resulting
in two main models. The stream and-parallelism model [Clark and Gregory 1986;
Ueda 1987; Taylor et al. 1987; Shapiro 1989; Saraswat 1989], runs dependent
goals in parallel. The variables that are shared by the parallel goals are used as
communication channels, and partial bindings of these variables are incrementally
passed as streams from the producer to the consumers. The main drawbacks of this
model are the overhead introduced by fine-grained variable-based synchronization
and the problems appearing in the implementation of backtracking in the presence
of nondeterminism. Therefore, many systems which exploit this type of parallelism
give up the built-in search capabilities ( “don’t know” nondeterminism) present in
logic programming.

The independent and-parallelism model sequentializes dependent goals [Conery
1983]. Thus, only goals which are independent are allowed to execute in parallel,
the rest being executed sequentially, preserving the order assumed by the sequential
model. The main drawback associated with this model is that a certain amount
of existing parallelism might be lost if independent goals cannot be detected accu-
rately. However, as shown in [Hermenegildo and Rossi 1995], such “independent
and-parallelism” has the advantages of fulfilling both the correctness and the effi-
ciency requirements and being amenable to an efficient implementation if combined
with compile-time analysis. Furthermore, it has been argued [Hermenegildo and
The CLIP Group 1994; Bueno Carrillo 1994; Bueno et al. 1998] that all forms of
and-parallelism in logic programs can be seen as independent and-parallelism, pro-
vided the definition of independence is applied at the appropriate granularity level.
For example, stream and-parallelism can be seen as independent and-parallelism if
the independence of “bindings” rather than goals is considered.

At this point it should be apparent that, in and-parallelism, automatic paral-
lelization is related closely to the detection of some notion of independence. Unfor-
tunately, detecting the dependencies among the different goals implies in general a
parallelization overhead. It is vital that such overhead remains reasonable. Several
models have been proposed in the literature, mainly differing in whether the depen-
dencies are detected exclusively at run-time [Conery 1983], exclusively at compile-
time [Chang et al. 1985], or by marking at compile-time selected literals and, when
independence cannot be determined statically, generating a reduced set of efficient
parallelization tests, to be checked at run-time [DeGroot 1984; Hermenegildo 1986a;
Lin and Kumar 1988; Hermenegildo and Rossi 1995].

The last approach reduces the independence checking overhead with respect to
fully dynamic models and achieves more parallelism than fully static models. How-
ever, the conditions generated if the approaches above are used as proposed are still
often too costly to compute at run-time. This is mainly due to the lack of adequate
analysis and optimization technology: simplification of expressions is done in an
“ad hoc” way; global data flow analysis is scarcely used; and thus usually only local
analyzers are considered. A more effective approach, proposed initially by R. War-
ren et al. [Warren et al. 1988; Hermenegildo et al. 1992] and developed further
in [Muthukumar and Hermenegildo 1990b], and [Cabeza and Hermenegildo 1994],
is to combine local analysis and run-time checking with global data flow analysis
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PARALLELIZING COMPILER

USER
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dependency analysis)

Dependency Info
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molog
granularity analysis
&-Prolog system
(Parallel)

Fig. 1. Parallelization process.

based on the technique of abstract interpretation [Cousot and Cousot 1977]. This
is the approach that we will study.

3. THE ANNOTATION PROCESS

In our approach (see also Section 7), the automatic parallelization process is per-
formed as follows (see Figure 1). First, if required by the user, the Prolog program
is analyzed using one or more global analyzers, whose purpose is to infer infor-
mation that is relevant for identifying independence. Second, since side-effects in
general cannot be allowed to execute freely in parallel, the original program is ana-
lyzed using a simple global analyzer which propagates the side-effect characteristics
of built-ins determining the scope of each side-effect, such as the one described in
[Muthukumar and Hermenegildo 1989a].? Finally, the annotators perform a source-
to-source transformation of the program in which each clause is annotated with
parallel expressions where conditions which encode the notion of independence are
used. This source-to-source transformation is referred to as the annotation process.
This process uses the information provided by the global analyzers mentioned be-
fore. Additionally, while annotating each clause, the annotators can also invoke
local analyzers in order to infer further information regarding the literals in the
clause.

The annotation process is divided into three subtasks (see Figure 2). The first
one is concerned with identifying the dependencies between each two literals in
a clause and generating the conditions (iconds) which ensure their independence.
The second task aims at simplifying such conditions by means of the information
inferred by the local or global analyzers. In other words, transforming the conditions
into the minimum number of tests which, when evaluated at run-time, ensure the
independence of the goals involved. Finally, the third task is concerned with the core
of the annotation process, namely the application of a particular strategy to obtain

3See also [Chang and Chiang 1989; DeGroot 1987; Gupta and Costa 1992] for other methods of
handling side-effects in the context of logic program parallelization.
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Fig. 2. Annotation process.

an optimal (under such a strategy) parallel expression among all the possibilities
detected in the previous step, hopefully further optimizing the number of tests.
If a parallel language is considered, as will be our case, it is possible to view the
parallelization process as a source-to-source transformation. Such a transformation
is called an annotation.

In the following we will briefly explain those steps in more detail, for the par-
ticular context of strict independence. Note that while the first and third steps
have been already studied in [Muthukumar and Hermenegildo 1990b; Muthukumar
et al. 1999] in terms of the parameterized notion of independence, the second,
and most important step from the point of view of practicality, has never been
formally described, and it has been usually performed in an “ad hoc” way. The
work in [Muthukumar and Hermenegildo 1990b; Muthukumar et al. 1999] studied
different heuristics for flattening dependency graphs into expressions suitable for
fork /join parallelism* but did not describe the test simplification process or the
impact of abstract interpretation, which is our focus here.

3.1 Identifying Dependencies

As mentioned before, the first step in the annotation process aims at identifying the
dependencies between each two literals in a clause and generating the conditions
which ensure their independence. The dependencies between literals can be repre-
sented as a dependency graph [Conery 1983; Chang et al. 1985; Kalé 1987; Jacobs
and Langen 1988; Lin 1988; Sarkar 1989; 1990; Muthukumar and Hermenegildo
1990b]. Informally, a dependency graph is a directed acyclic graph where each
node represents a literal, and each edge represents in some way the dependency
between the connected literals. A conditional dependency graph (CDG) is one in
which the edges are labeled with independence conditions. If those conditions are
satisfied, the dependency does not hold. In an unconditional dependency graph
(UDG) dependencies always hold, i.e., conditions are always “false.”

4In this kind of parallelism, also referred to as “Restricted And-Parallelism,” once the execution
of the selected parallel goals is initiated (fork), the execution of the rest of the goals is delayed
until all parallel goals are finished (join). Then, the execution proceeds as usual.
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Strict independence is arguably the most commonly used notion in independent
and-parallelism. The importance of strict independence lies in the fact that it allows
a priori detection of independence, i.e., it is decidable at run-time before executing
the goals. Thus, it can be used even when no information is provided by global
analysis. Furthermore, it can be translated into simple tests which can be evaluated
at run-time more efficiently than the tests obtained by more general independence
notions. For this reason the edges of the CDGs obtained are directly labeled with
such tests. In this section we will briefly present how to derive them. Many of these
concepts are already well understood and are present in different ways in [Conery
1983; DeGroot 1984; Chang et al. 1985; Hermenegildo 1986a; Kalé 1987; Lin 1988;
Jacobs and Langen 1988] and others. Here we will mainly follow the presentation
of [Hermenegildo and Rossi 1995], which offered the first formal results regarding
correctness and efficiency of the parallelization.

Two goals g; and gz are said to be strictly independent for a given substitution 6
iff vars(g10) N vars(g20) = 0, where vars returns the set of variables occurring in a
syntactic object.> A collection of goals is said to be strictly independent for a given @
iff they are pairwise strictly independent for 8. Also, a collection of goals is said to be
strictly independent for a set of substitutions © iff they are strictly independent for
every 0 € ©. Finally, a collection of goals is said to be simply strictly independent
if they are strictly independent for the set of all possible substitutions. This same
definition can also be applied to terms and substitutions without any change.

Ezample 3.1. Let us consider the two literals p(x) and ¢(y). Given 8 = {z/y}, we
have p(x)0 = p(y) and ¢(y)0 = q(y), so p(x) and ¢(y) are not strictly independent
for this substitution. However, given 6 = {z/w,y/v}, we have p(x)f = p(w) and
q(y)0 = q(v), so p(x) and ¢(y) are strictly independent for the given 6 because p(w)
and ¢(v) do not share any variable.

Note that if an object (term, goal, substitution, etc) is ground, then it is strictly
independent of any other object. Also, note that strict independence is symmetric,
but not transitive.

Given a collection of goals, we would then like to be able to generate at compile-
time a condition i_cond which, when evaluated at run-time, would guarantee their
strict independence. Furthermore, we would like that condition to be as efficient as
possible, hopefully being more economical than the straightforward application of
the definition. Consider the set of conditions which includes true, false, or any set,
interpreted as a conjunction, of one or more of the tests ground(z), and indep(z,y),
where x and y can be goals, variables, or terms in general. Let ground(z) be true
when z is ground and false otherwise. Let indep(z, y) be true when z and y do not
share variables and false otherwise.

Consider the goals g1, ...,g,. If no global information is provided, an example
of such a correct i_cond is {ground(x) | x € SVG} U {indep(z,y) | (z,y) € SVI},
where SV G and SVI are defined as follows:

5From a more implementation-oriented point of view, this corresponds to the following intuition:
two procedure calls or statements g; and g2 are strictly independent if the data structures that
g1 has access to do not contain any pointers to the data structures that g2 has access to, and
vice-versa (see [Hermenegildo 1997] for a more extended discussion of this issue).
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Table I. Example Parallel Goals and Associated Conditions

Goals | SVG | SVI | i_cond

a(w), b(x,y) 0 {(w,x), (w,y)} {indep(w, x), indep(w,y)}
a(w), c(z,y) 0 {(w,y), (w,2)} {indep(w,y), indep(w, z)})
b(x,y), c(z,y) {v} {(x,2)} {ground(y), indep(x,z)}

a, by, czy) | {y} | {(w,x),(w2),(x2)} | {ground(y), indep(v,x),
indep(w, z), indep(x,z) }

a(w)

Q

indep(w,Xx), indep(w,z),
indep(w,y) indep(w.y)
b(x.y) c(zy)

ground(y), indep(x,z)

Fig. 3. Conditional dependency graph.

—SVG ={v | 3i,j(i # j,v € vars(g;) Nvars(g;))};
—SVI ={(v,w) | v,w & SVG, 3i,7(i < j,v € vars(g;),w € vars(g;))}.

If the above condition is satisfied for substitution #, then the goals are strictly
independent for 6.

Ezxample 3.2. Consider the following sequence of literals in a program clause:
a(w), b(x,y), c(z,y). Table I lists all possible goals that can be considered for
parallel execution, their associated SV G and SV I sets, and a correct local i_cond
with respect to strict independence.

The left-to-right precedence relation for these literals can be represented using a
directed, acyclic graph in which we associate with each edge which connects a pair
of literals the tests for their strict independence, thus resulting in the conditional
dependency graph illustrated in Figure 3. This illustrates in a concrete example
the first step of Figure 2.

It is easy to see that, in general, a groundness check is less expensive than an
independence check. Thus, a condition, such as the one given, where some inde-
pendence checks are replaced by groundness checks is obviously preferable.

Note that, for efficiency reasons, we can improve the conditions further by group-
ing pairs in SV I which share a variable z, such as (z,y1),...,(x,y,), by writing
only one pair of the form (x, [y1,. .., yn]). By pursuing this idea further SVI can be
defined in a more compact way as a set of pairs of sets: SVI = {(V,W) | 3i,j(i <
3,V = wvars(g;) \ SVG,W = wvars(g;) \ SVG)}. In many implementations this
“compacted” set of pairs is less expensive to check than that generated by the
previous definition of SV I. However, in our experiments, and for simplicity, when
counting the number of independence checks generated statically we will use the
previous definitions of SVI.
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3.2 Simplifying Dependencies

The tests generated in the process described above imply the strict independence
of the goals for any substitution in which the tests are satisfied. However, when
considering the literals involved as part of a clause and within a program, the tests
can be simplified, since then strict independence only needs to be ensured for those
substitutions that can appear in that clause in the execution of the program. For
example, if the groundness of a variable x is known to be satisfied in all substitutions
appearing at some program point, then the test ground(x) is known to succeed at
run-time and can be eliminated from the set of run-time tests. Information about
the set of substitutions can often be determined (or, at least, safely approximated)
through local or global analysis. The second step in the annotation process aims at
performing such simplification by identifying tests which are ensured to either fail or
succeed with respect to the analysis information: if a test is guaranteed to succeed,
it can be reduced to true, thus eliminating the edge (i.e., the dependency); if a
test is guaranteed to fail, it can be reduced to false, yielding an unconditional edge.
Note that, once the set of tests has been simplified, its satisfaction for a substitution
# will ensure the strict independence of the goals only if the substitution belongs
to the set of substitutions that can appear at that program point.

Although this step is critical for the effectiveness of the approach, it has never
been studied in detail: while in the case of [Hermenegildo and Rossi 1995] the
simplification is explained by means of a simple example, [Warren et al. 1988;
Hermenegildo et al. 1992] just mention that it is based on the groundness and
independence mode information provided by the analyzer. As a result, and in the
particular case of strict independence, it has been traditionally assumed that the
simplification step just implies the following:

(1) translating the compile-time information into the independence and (possibly
negated) ground facts which are known to hold with respect to such informa-
tion,

(2) eliminating from the condition any ground test which explicitly appears in the
translated information,

(3) reducing to false the condition whenever a ground test appears explicitly negated
in the translated information, and

(4) eliminating from the condition any independence test whenever either this in-
dependence test or the groundness of at least one of the variables explicitly
appears in the translated information.

This is, for example, the simplification procedure applied in [Warren et al. 1988;
Hermenegildo et al. 1992]. However, we argue that this simple procedure can yield
a loss of accuracy whenever the compile-time information is able to approximate
more complex relationships among the groundness and independence characteristics
of the program variables. Let us illustrate this by means of an example.

Ezxample 3.3. Consider the sequence of literals in Example 3.2. Assume that our
compile-time information is able to approximate that indep(w,z) — indep(w,y),
but it cannot ensure whether indep(w, ) and indep(w,y) definitely hold or not. If
the simplification follows the process described above, the condition {indep(w, ),
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indep(w, y)} labeling the edge from a(w) to b(x,y) cannot be simplified. However,
it is clear that only indep(w, x) need be evaluated at run-time.

In this section we will formally define a more powerful procedure for the sim-
plification process. This general procedure is based on a richer domain (referred
to bellow as the domain of interpretation) to which the compile-time information
is translated, and a function (called improve) which exploits the relationships ap-
proximated by the domain.

Let W be a set of variables and ST (W) the set of tests over W that an inde-
pendence condition can consist of. For any clause C, the information known at a
program point 4 in C' can be expressed in what we call a domain of interpretation:
a subset of first-order logic,% such that each element x of the domain defined over
the variables in C' is a set of formulae (interpreted as their conjunction) containing
only tests of ST (vars(C)) and such that & I/ false. Additionally, some axioms may
be present in the domain, which state relationships among the elements of ST'(W).

Ezample 3.4. In the case of strict independence, we have ST (W) = {ground(zx)
| z € WU {indep(z,y) | {x,y} € W}. The domain of interpretation for each clause
with variables W will be denoted by GI (“groundness and independence”) and will
contain sets of formulae made from tests in ST (W) with the classical connectives
of logic. Additionally, there will be axioms which are assumed to be part of every
k€ GI:

k 2 {ground(z) — indep(x,y)|{z,y} C W} U {ground(z) < indep(z,z)|lz € W}.

For the sake of simplicity, in the rest of the article this formula will be assumed
to be part of any k € GI, although not explicitly written down. Thus, any time we
write kK = K, k should be interpreted as K augmented with the above set.

For any program point i of a clause C where a set of tests T; on the indepen-
dence of the clause variables is checked, the simplification of such test, based on an
element k; of the domain of interpretation over the variables of C, is defined as the
refinement of T; to yield T) = improve(T;, k;), where

if dt € T; s.t. k; = -t then false
improve(T;, k;) = < elseif k; T, then true
else  for someteT; {t} Uimprove(T; \ {t}, r; U {t}).

Note that there is an implicit choice on the selection of ¢ € T; in the above
definition. This choice can influence the result of improve. Consider GI, k; =
{ground(x) — ground(y)}, and T; = {ground(x), ground(y)}. By first selecting
ground(y) the final result is T} = {ground(x), ground(y)} = T;, whereas by select-
ing ground(zx) first the final result is T} = {ground(x)} C T;, which is simpler. We
will avoid such nondeterministic behavior by selecting first the tests which do not
appear in a consequent in any atomic formula of k;, then those with lower cost
at run-time (groundness in the case of GI), and then the rest. This will be done
following a left-to-right selection rule.

6Though the domain is here defined over a first-order language, its “variables” W, which are the
program clause variables, can be regarded as constants. Thus, the “first-order” formulation is
mere syntactic sugar for a truly propositional language.
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Table II. Example Simplified Conditions

K T improve(T, k)
ground(x) ground(x) true
—ground(z) ground(x) false
ground(x) — ground(y)  ground(z), ground(y) ground(x)
ground(z) — ground(y)  ground(y) ground(y)

indep(x,y) — ground(z) indep(z,y), ground(xz) indep(x,y)
indep(z,y) — —ground(z) indep(z,y), ground(xz) false

Ezxample 3.5. For the following x and set of tests T defined over the same sets
of variables the simplified set resulting from improve is shown in Table II.

The accuracy and the size (the number of atomic formulae for simple facts) of
each k depend on the kind of program analysis performed. In the next section we
will explain how to build this formula in the particular case of GI from the domains
of analysis used in our experiments.

The simplest kind of information which can be derived is that obtained by a
local analysis performed over each clause in isolation. This can be done based
on knowledge about the semantics of the built-ins and the free nature of the first
occurrences of variables. In the case of built-ins, their semantics implies certain
knowledge about substitutions occurring at the points just before and after their
execution. For first occurrences, it can always be ensured that the variable con-
cerned is not ground and does not share with others, up to the point where it first
appears.

Ezxample 3.6. The information derived by the above-mentioned sources can be
directly expressed in terms of elements of the GI domain.” The analysis of clause
C starts with F'vy, the set of variables not occurring in head(C'), and the formulae
for first occurrences of variables, thus

k1 = {—ground(z) | x € Fu1} U {indep(z,y) | x € Fv1,x # y,y € vars(C)}

and proceeds left to right with the body of C, g1, -+, gn. Assume we have obtained
kqi; then k;41 will be obtained from x; and g; in the following way:

—Fv41 = Fu; \ vars(g;)

—if g; is not a built-in K,11 = k; \ ({—~ground(x) | x € vars(g;)}U
{indep(z,y) | {z,y} Nvars(gi) # 0,{z,y} N Fvi;x = 0})

—if g; is a built-in, let x4, be the denotation of g; in GI. Then k41 = (ki \Incons)U
kg, where Incons is the minimum formula® such that (k; \ Incons) Uk, I/ false

Consider the sequence of literals in Example 3.2, augmented with a built-in: w is
x+1, a(w), b(x,y), c(z,y). The semantics of is/2 ensures that both x and w
are ground after the execution of this built-in. Since this information is downwards
closed (i.e., once satisfied it will continue to hold for the remainder of the forward
computation), the local analysis will be able to derive that this holds not only just

7As we will see, local analysis can also be performed by applying the abstract operations for the
domains that will be introduced in the following sections, but only within the scope of the clause.
For the sake of simplicity we have preferred to describe it here independently of the domains.
8This minimum inconsistent formula is computed specifically for each built-in.
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Fig. 4. Simplified dependency graph.

after the execution of the built-in, but also at every point in the clause to the right
of it. Thus k; D {ground(x), ground(w)} for all points ¢ > 1. If the above sequence
is the body of a clause whose head has only variable x, the information derived at
each clause point is the following:

—Fvi ={w,y, 2}, k1 = {~ground(w), ~ground(y), ~ground(z), indep(w, [x,y, z]),
indep(y, [z, z]), indep(z, )},

—ky is x+1 = {ground(w), ground(z)}, Incons = {~ground(w)}, Fvs = {y, z},
ke = {ground(w), ground(z), —ground(y), —ground(z), indep(w,|x,y,z]),
indep(y, [z, 2]), indep(z, )},

—Fvs ={y,z}, ks = {ground(w), ground(z), -—ground(y), -—ground(z),
indep(w, [y, z]), indep(y, [z, 2]), indep(z, x)} (note that although indep(w, x) has
been dropped at this point, it still follows directly from ground(z) or ground(w);
thus 3 is in fact equivalent to x2),

—Fvy = {z}, k4 = {ground(w), ground(z), ~ground(z), indep(w, z), indep(y, z),
indep(z,z)} (as before, indep(w,y) and indep(y, x), which have been dropped
at this point, follow directly from ground(xz) and ground(w), respectively, but
—ground(y) is definitely dropped; thus x4 is not equivalent to x3),

—Fvs = 0, k5 = {ground(z), ground(w)} (as before, indep(w, z) and indep(z, x)
follow directly from ground(x) and ground(w), respectively, but —ground(z) and
indep(y, z) are definitely dropped).

The CDG in Example 3.2 becomes, by applying the improve function with this
information, the one shown in Figure 4. Recall that edges labeled with true are
eliminated since the dependency is known not to hold.

Thus, from the information of an analysis, the dependencies previously identi-
fied can now be simplified, as shown in the example, by applying improve to all
edges in the CDG. For each edge (g;, g;) labeled I in the graph, ! is substituted by
improve(l, k;). With this simplified CDG the second subtask, i.e., building the par-
allel expression, is simpler. Furthermore, the improve function will also be applied
during this second subtask, as we will see.

3.3 Building Parallel Expressions

The third step in the annotation process aims at obtaining an optimal parallel ex-
pression among all the possibilities detected in the previous step, by applying a
particular strategy, and further optimizing the number of tests if possible. Differ-
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ent heuristic algorithms implement different strategies to select among all possible
parallel expressions for a given clause graph.

Parallel expressions will be built from a language capable of expressing and imple-
menting independent and-parallelism, such as the &-Prolog language [Hermenegildo
and Greene 1991]. &-Prolog is essentially Prolog, with the addition of the parallel
conjunction operator “&” (used, when goals are to be executed concurrently, in
place of “” —comma—, and binding stronger than it), a set of parallelism-related
built-ins, which include the groundness and independence tests described in the pre-
vious section, and a number of synchronization primitives which allow expressing
both restricted and nonrestricted parallelism. Combining these primitives with the
usual Prolog constructs, such as “->” (if-then-else), users can conditionally trigger
parallel execution of goals. For syntactic convenience an additional construct is also
provided: the Conditional Graph Expression (CGE). A CGE has the general form
(i_cond => goaly & goals & ... & goaly) where i_cond is a sufficient condition
for running goal; in parallel under the appropriate notion of independence, in our
case strict independence. &-Prolog if-then-else expressions and CGEs can be nested
to create richer execution graphs. As mentioned before, if a parallel language as &-
Prolog is considered, the parallelization process can be viewed as a source-to-source
transformation called annotation. Given a clause, several annotations are possible.

Example 3.7. Consider again the sequence of literals a(w), b(x,y), c(z,y) in
Example 3.2, whose graph appears in Figure 3. A possible CGE would be

a(w), (ground(y),indep(x,z)) => b(x,y) & c(z,y)
An alternative would be

(indep(w,x) ,indep(w,z) ,indep(x,z) ,ground(y)) =>
a(w) & b(x,y) & c(z,y)

Another alternative would be

indep(w, [x,y]) -> a(w) & b(x,y), c(z,y)
; a(w), (ground(y),indep(x,z)) => b(x,y) & c(z,y)

and so on.

Three different heuristic algorithms (annotators) are embedded in our system,
namely CDG, UDG, and MEL [Muthukumar and Hermenegildo 1990b].° The
CDG algorithm seeks to maximize the amount of parallelism available in a clause,
without being concerned with the size of the resulting parallel expression. In doing
this, the annotators may switch the positions of independent goals. UDG does es-
sentially the same as CDG except that only unconditional parallelism is exploited,
i.e., only goals which can be determined to be independent at compile-time are run
in parallel. MEL tries to find points in the body of a clause where it can be split
into different parallel expressions (i.e., where edges labeled “false” appear) without
changing the order given by the original clause and without building nested parallel
expressions. At such points the clause body is broken into two, a CGE is built for

9CDG stands for Conditional Dependency Graph; UDG stands for Unconditional Dependency
Graph; and MEL stands for Maximal Expression Length.
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Fig. 5. Simplified conditional dependency graph.

the right part of the split sequence, and the process continues with the left part.
The correctness of these three algorithms has been proved and their effectiveness
experimentally evaluated in [Muthukumar et al. 1999]. In the following we will
focus on the MEL algorithm, in the particular context of strict independence. The
reason for choosing the MEL algorithm is that it is the simplest, and therefore the
influence of the analysis information in the resulting parallel expressions is easier
to understand.

Once an expression has been built, it can be further simplified, unless it is un-
conditional. Based on local or global information, the overall condition built by
the annotation algorithm can possibly be reduced again following the same general
procedure introduced in the previous section.

Ezxample 3.8. Consider once more the sequence of literals in Example 3.2, aug-
mented this time with a different built-in (a unification): y = £(x,z), a(w),
b(x,y), c(z,y). We will not consider small built-ins such as y = £(x,z) for par-
allelization (as normally done by the local granularity control). Now the analysis
can derive {(ground(x) A ground(z)) < ground(y)} C k; for all points i > 1.

Let the literals be the body of a clause whose head has variables w, x, and z.
After identifying dependencies, the CDG is that of Figure 3, but after simplifying
them with a local analysis it will become the one in Figure 5.

If, for instance, the parallel expression obtained for the simplified CDG involves
all three literals, it will have the following condition:

y=f (x,2), (indep(w,x) ,indep(w,z) ,ground(y)) =>
a(w) & b(x,y) & c(z,y)

But since the groundness of y implies the groundness of both x and z and thus
their independence from any other variable, the condition can be further simplified
to

y = £(x,2z), ground(y) => a(w) & b(x,y) & c(z,y)

Ezxample 3.9. Figure 6 summarizes the three steps of the annotation process
for clause h(x,y,z):- p(x,y), q(x,z), s(z,w), assuming that global analysis
obtains k1 = {ground(z), ~ground(z),indep(y, z)}.

Note that more than the two alternatives shown in the figure are possible.

4. CORRECTNESS OF THE PARALLELIZATION FRAMEWORK

After having introduced the three steps of the parallelization process, we now show
its correctness. We start by recalling the operational semantics of CDGs, which has
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Fig. 6. Annotation process: A complete example.

been proven correct with respect to the sequential semantics of the corresponding
clause in [Muthukumar et al. 1999]. Then we show that the CDG resulting from
the simplification process is correct with respect to this semantics.

The (nonsimplified) conditional dependency graph of a clause expresses all inde-
pendent and-parallelism available in the clause at the goal level. Thus, it is possible
to define goal-level and-parallel models which work directly with such a graph. The
general model MEIAP (“Maximal Efficient Independent And-Parallelism”) consid-
ered in [Muthukumar et al. 1999] is based on this approach. It works as follows.
Let a node be ready if it has no incoming edges. Parallel execution of the goals
to which the graph nodes correspond is achieved by repeated application of the
following rules:

—Goal initiation: Consider nodes whose incoming edges have source nodes which
are ready. If the tests labeling all these edges are satisfied for the current store
¢, remove them all. Repeat until no edges are removed. Initiate all goals ¢ in
ready nodes by executing (g, c¢) in different environments.

—Node removal: Remove from the graph all nodes whose corresponding goals have
finished executing, and their outgoing edges. Add the associated answers to the
current store c.

The model is “maximal” in the sense that goals are run in parallel as soon
as they become independent of all nodes to the left (i.e., ready). However, this
requirement can be dropped, allowing a more general model in which ready goals
are ensured to be independent if run in parallel, but they are not actually required
to be run in parallel. In fact, even sequential execution is allowed. In particular,
given a nonsimplified graph, a CGE simply corresponds to a particular subset of
the allowed executions. This subset is precisely the one obtained following the
particular heuristic used by the annotator that built the CGE.

The MEIAP model has been proved correct (and efficient) with respect to se-
quential execution [Muthukumar et al. 1999] as long as ready nodes are pairwise
independent for the stores they are being executed in. This is true if the tests la-
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beling the edges ensure the independence of the literals in the stores in which these
tests are satisfied. Note that correctness is preserved even if the maximality con-
dition is dropped: ready nodes remain independent in the stores they are executed
in, even if these stores differ from the stores the tests were evaluated. The proof of
correctness is based on the special properties of the notion of strict independence
and, in particular, on the characteristics of the constraints that can be added to
the store by strictly independent goals.

We first show how the strict independence properties allow the correctness proof,
and then extend the correctness result to simplified graphs. As a consequence, the
CGEs obtained by the annotators from both nonsimplified and simplified graphs
are also guaranteed to be correct.

The following result is instrumental. It ensures pairwise strict independence of
a node gp4+1 and all (combinations of) nodes to its left for a store ¢, with the only
condition that for g,+1 to become ready it must be strictly independent for ¢ of
each node to its left, i.e., the nodes to the left of g,11 are not required to be also
pairwise strictly independent.

LEMMA 4.1. Consider the goals g1, -, Gn, gn+1- If gnt1 is strictly independent
of any gj,1 < j < n for store c, then gn41 is strictly independent of G for c, where
G is any possible sequence formed from gi,-- -, gn.

ProoF. Comes directly from the definition of strict independence. [

The following result ensures that if the tests for the pairwise strict independence
of a set of goals are satisfied in store ¢, they will also be satisfied in any subsequent
store ¢’ resulting from the execution of any of those goals in ¢, i.e., the goals are
also pairwise strictly independent for any ¢’. As a result, all ready goals remain
pairwise strictly independent even if they are not executed in parallel as soon as
they become ready.

LEMMA 4.2. Let g1,---,gn be a set of goals and t;; be the tests needed for ensur-
ing the strict independence of goals g; and g;, i # j. If the goals are pairwise strictly
independent for store c, they remain independent for any store ¢ resulting from the
execution of (G, c), where G is any possible sequence formed from {g1,- -, gn}, i.c.,
if every t;; is satisfied for ¢ they will also be satisfied for c’.

PROOF. Let us reason by contradiction. Assume there is at least a test ¢ in some
t;; which is not satisfied in some store ¢’ which results from the execution of (G, c).
If t = ground(z), and t was satisfied for ¢, it must also be satisfied for any further
instantiated store. Thus ¢;; must contain at least a test like ¢ = indep(x,y). If
either x or y are ground in ¢, ¢t will also be satisfied in ¢/. Therefore, the variables
must be nonground in ¢. Since indep(z,y) fails in ¢/, some goal in G must have
introduced a dependency between them. Let us assume, without loss of generality,
that x belongs to g; and y belongs to g;. From pairwise strict independence and
the fact that x and y are nonground in ¢, z must only appear in g;, y must only
appear in g; (if  appears in other g, t;; must contain the test ground(x), and it
has to be true in ¢; the same reasoning applies for y), and no other goal can share
with o or y. Thus, no dependency between x and y can be introduced by any other
goal, and ¢;; must be satisfied. O
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The following result is directly obtained from the above two lemmas.

COROLLARY 4.3. Consider the set of goals g1, -+ -, gn and the store c. Let Ready
be the set of goals g; which are strictly independent of any g;,1 < ¢ < j for c.
Then, for every g; € Ready, the execution of g; in c is the same as the execution
of g; in any store obtained from the execution of (G,c), where G is any possible
sequence formed from elements of ({g1,- - - gj—1}UReady)\{g;}. And, in particular,
the answers are the same as in the corresponding sequential execution, i.e., the
execution of g; in the store obtained from (g1...gj—1,c).

This result provides the condition on which the proof of correctness of the MEIAP
model for nonsimplified graphs for a priori notions of independence is parameter-
ized. As a consequence, ready goals can be correctly executed following any strat-
egy, and, in particular, that one which a particular annotator chooses. However,
for simplified graphs we have to go a step further. The difference now is that con-
ditions between goals g; and g;, ¢ < j, might have been simplified with respect to
the information known to hold for the store obtained in the sequential execution
right before executing g;. Thus, the simplification might have been performed with
respect to the information inferred for a store very different to the one the goals
are determined as ready.

Ezxample 4.4. Consider again the sequence of literals w is x+1,a(w),b(x,y),
c(z,y) of Example 3.6. The simplified graph is that of Figure 4. In this case,
the original independence test {indep(z, z), ground(y)} labeling the edge between
b(x,y) and c(z,y), has been simplified to {ground(y)}. This has been possible
because x was known to be ground before the execution of the goals. However, it
is clear that although ground(y) is satisfied, for example, in store x = z Ay = 3,
the goals are not strictly independent for that store.

We have to ensure that the tests would be also satisfied in the stores the nodes
are determined as ready. The solution is provided by the following lemma.

LEMMA 4.5. Consider the goals g1, -, gn,gn+1 ond the store c. If for each
95,1 < j < n, the tests t; needed for ensuring the strict independence of goals
g; and gn+1 can be divided into t¢ and tc/, such that t¢ is satisfied in ¢ and t< s
satisfied in the store ¢’ obtained from (g1...gj—1,¢), then gni1 is strictly independent
of each goal g;,1 < j < n, forc, i.e., for each such g; the associated < is also
satisfied in c.

PROOF. Let us reason by induction. The base case is obvious: since ¢ and ¢/
are the same, ¢; must then be satisfied in ¢, and thus g; and g,41 are strictly
independent for c. Assume that the lemma is satisfied for goals ¢1,---,g;-1, and
let us now prove the induction step. By assumption of the hypothesis we have that
gn+1 is strictly independent of each goal g;,1 < ¢ < j for ¢, and that ¢; can be
divided into t¢ and tcl, such that t¢ is satisfied in ¢ and ¢ is satisfied in the store
¢’ obtained from (gi...g;—1,c). Now we have to prove that g; and g,1 are strictly
independent for ¢. Given the previous assumptions, this will be true if t¢' is true
in ¢. Let us reason by contradiction. If t¢' is not satisfied by ¢, there must be at
least a test ¢ in ¢ which is true in ¢ but not in ¢. If t = ground(zx), there must
be a goal g;, 1 < ¢ < j, which further instantiates z. If x appears in g;, ground(x)
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should also appear in ¢; and, by induction hypothesis, ground(z) must be satisfied
in ¢. If = does not appear in g;, by induction hypothesis, z must be independent
of any variable in g;, and thus g; cannot further instantiate z. Therefore, ¢ must
be indep(x,y). Since t is satisfied in ¢’ but not in ¢, 2 and y must be nonground
in ¢, and some goal g;, 1 < i < j, must have removed the dependency involved.
This is only possible by further instantiating the variables shared by = and y. Let
us assume, without loss of generality, that = belongs to g,+1 and y belongs to g;.
Following the same reasoning as before, x cannot be further instantiated by any g;,
and thus the dependency cannot be removed. Hence, t¢ should be true in ¢. O

FEzxample 4.6. Consider again the sequence of literals p(x,y),q(x,z),s(z,w)
of Example 3.9. As illustrated in the leftmost part of Figure 6, the tests t; =
{indep(z, 2), indep(z,w), indep(y, z), indep(y, w)} are needed for ensuring the strict
independence of goals p(x,y) and s(z,w), and the tests to = {ground(z),
indep(x,w)} are needed for ensuring the strict independence of goals q(x,z) and
s(z,w). If we assume that before executing any literal the store c satisfies the tests
in ky = {ground(x), ~ground(z),indep(y, z)}, then we can ensure that those in
t{ = {indep(z, ), indep(x, w), indep(y, z) } and t5 = {indep(x, w)/} are also satisfied
by ¢. Thus, according to 4.5, if the rest of the tests in t1 (i.e., t§ = {indep(y,w)})
are satisfied in any store ¢’ obtained from (nil,c) (i.e., ¢ = ¢), then they are also
satisfied in ¢, and thus p(x,y) and s(z,w) are strictly independent for c. This is
used for the generation of the second parallel expression in Figure 6. Also, if the
rest of the tests in ty (i.e., t§ = {ground(z)}) are satisfied in any store ¢’ obtained
from (p(x,y),c), then they would also be satisfied in ¢, and q(x,z) and s(z,w)
would also be strictly independent for ¢. However, ground(z) is known not to hold
for ¢ (or any ¢’), and thus we can ensure that q(x,z) and s(z,w) are not strictly
independent for c. This is also used in the generation of both parallel expressions
in Figure 6 by never considering the parallelization of q(x,z) and s(z,w).

As a result of the above lemma, we are able to ensure that if simplification of a
test occurs, then parallel execution of the goals involved can only occur in a store
in which the test would have been satisfied anyway. Thus, we can now prove that
the following result holds.

THEOREM 4.7 (CORRECTNESS OF IMPROVE). Consider the CDG obtained by
applying the notion of strict independence between goals {g1...gn}, possibly sim-
plified by improve with respect to information valid for the sequential execution of
state (g1...gn, ). Any execution obtained by applying the MEIAP model to the CDG
with initial store c is correct with respect to the sequential execution of (gi...gn,cC).

PRrROOF. Let us prove it by induction:

—Base case: Some goals in ready nodes are going to be executed in parallel in
the initial store c. Let t;; be the original conditions to be satisfied for the strict
independence of ready goals g; and g;,% # j. By definition of the model, for each
ready goal g; and each g;,1 < ¢ < j, the remaining tests after simplifying ¢;;
have been satisfied for ¢, and the tests eliminated by simplification are satisfied
in the corresponding sequential store. By 4.5, such eliminated conditions are
also satisfied in c. Thus, each ready goal g; is strictly independent of each goal
gi,1 <1 < j for c. In particular, ready goals are pairwise strictly independent
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for c¢. Therefore by 4.3, their parallel execution in c is correct with respect to the
sequential execution.

—Induction hypothesis: In any store ¢’ ready goals are pairwise strictly independent
for any store obtained by conjoining with ¢’ the constraints introduced by the
execution of any ready goal already running. This is satisfied after initiation of
the model (in the base case), thanks to 4.2.

—Induction step: Assume that at some point of the execution the current store is
¢/, and the set of ready goals is G,q. Then, after goal initiation, a new set of
ready goals Gpey is found. From the induction hypothesis, all goals in G4 are
pairwise strictly independent for ¢’. By definition of the model, for each ready
goal g; € Gpeyw and each goal g;,7 < j, the remaining tests after simplifying ¢;;
have been satisfied for ¢/, and the tests eliminated by simplification are satisfied
in the corresponding sequential store. By 4.5, such eliminated conditions are also
satisfied in ¢’. Thus, ready goals in GgjqUGpew are pairwise strictly independent
for ¢’. Therefore, by 4.3, their parallel execution in ¢’ is correct with respect to the
sequential execution. Also, by 4.2 they will also be pairwise strictly independent
for any store obtained by conjoining with ¢’ the constraints introduced by the
execution of any ready goal now initiated or already running, so the induction
hypothesis holds in any new store (after execution of some goals now initiated),
too. [

It is important to point out that the particular characteristics of strict indepen-
dence which allow these results are not shared by all independence notions. In
particular, although in traditional Logic Programming they are shared by all a
priori notions, they are not present in more general a posteriori notions. Let us
illustrate this point with an example.

Example 4.8. Consider the program

and the notion of search independence [Garcia de la Banda et al. 1993]. This is
an a posteriori notion, which states that two goals are independent for store c iff
the partial answers of the goals for ¢ are consistent. It is clear that the above goals
are pairwise search independent for store true. However, their parallel execution
in store true is not correct, since p(x,y) introduces a dependency that will affect
the parallel execution of the rest of the goals. This is directly related with 4.2,
since although the conditions for independence are satisfied for true, they are not
satisfied for the store obtained from the execution of p(x,y). The core of the
problem is that pairwise independence is not enough for ensuring the independence
when considering a posteriori notions. The independence has to be ensured not
only between each two goals, but also between each goal and the goal formed by
concatenating the rest of the goals to be executed in parallel.

Beyond correctness, efficiency of the MEIAP model can also be proven. Such a
proof is beyond the scope of this article. However, we will discuss some of the issues
involved. It turns out that a theoretical result on efficiency needs some additional
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assumptions. In the context of parallel execution of logic programs the theoretical
notion of efficiency used is that the parallel execution causes no slowdown with
respect to the sequential one, measured in terms of number of resolution steps (see,
e.g., [Hermenegildo and Rossi 1995; Garcia de la Banda 1994]). The first condition
to achieve this is that the independence conditions (iconds) guarantee that the
execution of an individual goal run in parallel does not produce more work than if
it was run sequentially. Beyond this, failure and backtracking over goals in parallel
expressions introduce additional complications. In particular, the proof assumes
that either the parallel goals can be proved not to fail or, if a parallel goal fails,
all other parallel goals which are executing at the same time and correspond to
literals appearing in the clause to the right of the literal of the failing goal, are
immediately killed. Also, it is necessary to assume that the execution scheduler
is “left-biased,” i.e., parallel goals are scheduled for execution in a left-to-right
fashion (see, e.g., [Hermenegildo and Rossi 1995] for details). Third, the (implicit)
reordering of goals which may incidentally happen when goals are run in parallel has
also subtle consequences on efficiency. Even in the case of a left-biased scheduler,
backtracking over parallel expressions which have been reordered and which have
multiple solutions may cause more work to be performed than in the sequential case
(see, e.g., [Garcia de la Banda et al. 1993]). Thus, the proof assumes that only goals
which do not have multiple solutions are reordered. Summarizing, and simplifying a
bit the discussion, parallel execution is guaranteed to incur no slowdown, provided
that the above-mentioned assumptions hold.

5. DOMAINS OF ANALYSIS

In this section we will briefly introduce the definition of each abstract domain
used in the experimental evaluation and its concretization function. Then we will
discuss in terms of the interface defined in the previous section the particular ways
in which each domain captures the information needed to simplify the conditions
in the parallel expressions.

5.1 ASub Domain

The domain ASub [Sondergaard 1986] was defined for inferring groundness, sharing,
and linearity information. The abstract domain approximates this information by
combining two components: definite groundness information is described by means
of a set of program variables D; = 2FVa": possible (pair) sharing information is
described by symmetric binary relations on PVar Dy = 2(PVarxPVar)

The concretization function, yagyuy : ASub — 25 where Sub is the set of
idempotent substitutions, is defined for an abstract substitution (G, R) € ASub as
follows: yasus(G, R) approximates all concrete substitutions 6 such that for every
(z,y) € PVar®, x € G = ground(z0); x # y Avars(z0) Nvars(yd) # 0 = = Ry,
and x R x = linear(z0).

Note that the second condition implies that whenever = # y if z R y then we
have that vars(zf) Nwvars(yd) = 0, and thus = and y are independent.

Let us now present the relation between ASub and the domain GI. Consider an
abstract substitution A; € ASub for program point i of a clause C. The contents of
k; follow from the following properties of A\; = (G, R) over vars(C):
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—ground(z) if x € G
—indep(z,y) if v #y,z Ry

Note that in this case k; contains neither —ground(x) nor —indep(z,y) for every
{z,y} C wvars(C), and thus no tests in the CDG can ever be reduced to false with
only this information.

Ezample 5.1. Consider a clause C such that vars(C) = {z,y, z,w,v} and an
abstract substitution A = ({z}, {(z,w), (z,v)}). The corresponding x will be the
set {ground(x), indep(y, z), indep(y, w), indep(y, v), indep(w,v)}.

5.2 Sharing Domain
The Sharing domain [Jacobs and Langen 1989] was proposed for inferring groundness

and sharing information. The abstract domain, Sharing = 22PVar7 keeps track of
set sharing. The concretization function is defined in terms of the occurrences
of a variable U in a substitution 0: occs(0,U) = {z € dom(0)|U € vars(z0)},
where dom() is the domain of the function 6. If oces(0,U) = V then 6 maps the
variables in V' to terms which share the variable U. The concretization function
VSharing : Sharing — 25ub g defined as follows:

YSharing(A) = {0 € Sub | YU € Var. occs(0,U) € A}.

Intuitively, each set in the abstract substitution containing variables v1,...,v,
represents the fact that there may be one or more shared variables occurring in
the terms to which vq,...,v, are bound. If a variable v does not occur in any set,
then there is no variable that may occur in the terms to which v is bound, and
thus those terms are definitely ground. If a variable v appears only in a singleton
set, then the terms to which it is bound may contain only variables which do not
appear in any other term.

Let us now present the relation between Sharing and the GI domain. Consider an
abstract substitution A; € Sharing for program point 7 of a clause C. The contents
of k; follow from the following properties of \; over vars(C):

—ground(z) if VS e N : x ¢S

—indep(z,y) if VS e N :if €S theny¢g S

—ground(z1) A ... A ground(x,) — ground(y) if ¥vS € A\, : if y € S then
{z1,.. ., 2n} NS #£D

—ground(z1) A ... A ground(xz,) — indep(y,z) if VS € A; @ if {y,z} C S then
{z1,.. ., 2n} NS #£D

—indep(z1,y1) A ... Aindep(Tn,yn) — ground(z) it VS € X\, :if z € S then
Jj € [1=n]7 {l'j,yj} cs

—indep(z1,y1) A ... Nindep(xn, yn) — indep(w, z) if VS € A; : if {w,z} C S then
Jj € [1=n]7 {l'j,yj} cs

The meaning of each implication in k; can be derived by eliminating the required
sets in \; so that the antecedent of the implication holds, and looking for the new
facts ground(z) or indep(x,y) in the updated abstract substitution, which now
become true. For example, in the fifth rule, all sets in which both z; and y; appear
have to be eliminated in order to satisfy indep(x;,y;). If z does not appear in any
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other set, the independence of these variables will imply the groundness of z. As in
ASub, no tests in the CDG can ever be reduced to false with only this information.

Ezample 5.2. Consider a clause C for which vars(C) = {z,y,z,w,v} and the
abstract substitution A = {{y}, {z,w},{z,v}}. The corresponding x will be the
set {ground(z), indep(y, z), indep(y,w), indep(y,v), indep(w,v), ground(z) <
ground(w) A ground(v), indep(z,v) A indep(z,w) — ground(z), indep(z,v) —
ground(v), indep(z,w) — ground(w)}.

Note that in the above example x contains all the information derived in Exam-
ple 5.1 plus the information provided by the power of the set sharing for groundness
propagation, in contrast with that of the pair-sharing representation. On the other
hand, the linearity information present in ASub usually provides more accurate
sharing. This is because whenever a program variable is known to be linear, we
can ensure that no sharing is created among the variables in terms that variable is
unified to. For example, if the unification x = f(y, z) appears in the program and x
is known to be linear, we can ensure that no sharing between y and z is created due
to this unification. Otherwise, sharing between y and z will have to be assumed.

5.3 Sharing+Freeness Domain

The Sharing+Freeness domain [Muthukumar and Hermenegildo 1991] aims at infer-
ring groundness, sharing, and freeness information. The abstract domain approx-

imates this information by combining two components: one, Sh = 22pvar, is the
same as the Sharing domain; the other, Fr = 2FV2" encodes freeness information.
The concretization function g, : Fr — 290 is defined as follows: vrr(Apr) ap-
proximates all concrete substitutions ¢ such that for every x € PVar : if x € Ay,
then free(z0).

Let us now present the relation between this domain and the domain GI. Con-
sider an abstract substitution A; € Sharing+Freeness for program point i of clause
C. The contents of k; follow from the following simple albeit crucial property of
Ai = (Ash, Apr) over vars(C):

—-ground(x) if x € Ay,

In this case k; allows the simplification of conditions which will always fail. This
provides additional precision to that which comes out of the synergistic interaction
between the two components of Sharing+Freeness.

Furthermore, other information is obtained by combining the above with that
obtained from the sharing component Ay, € Sharing, as in the previous section.
For example, —indep(z,y) can be obtained from —ground(z) and indep(z,y) —
ground(z). This allows us to also establish the following assertions:

—indep(z,y) if y € Ay and VS € Ay, s if y € S thenz € S

—ground(zq1) A ... Aground(z,) — —indep(y, z) if z € Ay, and IS € Ay, such that
{y,2} CS and VS € A, : if {y,2} NS = {z} then {z1,...,2,}J NS #0

—indep(z1,y1) A ... Nindep(xn, yn) — —indep(y, z) if z € Ay and IS € Ay, such
that {y,z} € S and VS € Ay, @ if {y, 2} NS = {z} then 3j € [1,n], {z;,y;} C S

The intuition behind each implication is that by updating the abstraction \; so

that the antecedent holds a new abstraction is obtained in which the consequent
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holds.

Ezample 5.3. Consider the same clause C' as in Example 5.2 and the same
sharing component \sp, = {{y},{z,w}, {z,v}}. Consider the freeness component
Arr = {w}. The corresponding x will be the result of adding {—ground(w)} to the
formula obtained in the previous example. This information, in addition to that
derived by Asp, makes k b —ground(z) and k b —indep(z,w). Using this infor-
mation, any test labeling an edge of a CDG including ground(w) or ground(z) or
indep(z,w) can be reduced to false.

Note that in the example above —ground(z) was derived even though z & Ay,.
This is a subtle characteristic of the Sharing+Freeness domain which gives it a
significant part of its power. Furthermore, although not directly related to strict
independence, the Sharing+Freeness abstract domain is also able to infer definite
nonfreeness for nonground variables: if in the example above, v were also an element
of A, then z would be ensured to be bound to a term not only nonground, but also
nonfree. This characteristic is of use in applications such as analysis of programs
with dynamic scheduling [Marriott et al. 1994], nonstrict independence [Cabeza
and Hermenegildo 1994], etc.

It is clear that the Sharing+Freeness domain subsumes the Sharing domain and
that it is more powerful than ASub in describing the groundness and independence
relationships among program variables. However, it would be an error to think
that Sharing+Freeness is more accurate than the ASub domain. In fact, as shown in
[Codish et al. 1995], the two domains are incomparable, their accuracy depending
on characteristics of the analyzed program. Furthermore, the empirical evaluation
performed there showed that ASub is usually more accurate.

However, as we will see in the evaluation results, this fact does not preclude the
Sharing+Freeness domain from often being more useful for automatic parallelization
than ASub. The reason for this comes directly from the combination of the power
of the set-sharing abstraction and the freeness information. Set sharing does not
only allow groundness propagation by approximating information similar to that
abstracted by the Prop domain'® [Marriott and Sgndergaard 1989], but also allows
establishing relationships among the groundness and independence characteristics
of the variables. Freeness allows inferring nongroundness information; in combi-
nation with set sharing it allows propagating such nongroundness information and
inferring definite sharing (i.e., ~indep(z,y) facts). Note that such power cannot
be obtained by combining freeness, pair sharing, and Prop, since the relationship
between groundness and independence would be lost in some cases.

Example 5.4. Consider the following clause:
P(X,Y,Z,V) T X = 3, y = f(Z,V), q(), r(...),

Assuming it is called with the abstraction of the empty substitution, the abstract
substitution of each domain at the point of calling q is as Table III shows. The
information inferred in terms of GI is also given.

10Prop approximates definite groundness dependencies by means of positive Boolean functions
closed under intersection.
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Table ITI. Example Abstract Substitution Information
ASub ([2], [(y, 2), (y, v)]) implies

ground(z), indep(z,v)
Sharing [y, 2], [y, v]] additionally implies

ground(y) < ground(z) A ground(v)

indep(y, z) — ground(z)

indep(y,v) — ground(v)

indep(y, z) A indep(y, v) < ground(y)

Sharing+Freeness | ([[y, 2], [y, v]], [z, v]) additionally implies

—ground(z), —ground(v) and thus:
—~ground(y), ~indep(y, ), —indep(y, )

Note that with respect to the domain GI, the information provided by each
abstract domain is comparatively more elaborate than the previous one.

5.4 Combined Domains

As mentioned before, we have also considered for evaluation the analyzers resulting
from the combination of the domains ASub and Sharing, on one hand, and ASub and
Sharing+Freeness, on the other. The domain combination, presented by Codish et
al. [1995], is based on the reduced product approach of Cousot and Cousot [1979]. In
this approach domains are combined simply by, at each step in the analysis, inferring
the information for each domain and then removing redundancies. The advantage
of this approach is that it allows us to infer more accurate information from the
combination without redefining neither the abstract domains nor the basic abstract
operations of the original domains. As a result not only is a proof of correctness
of the new analyzer unnecessary, but also the gain in accuracy obtained by simply
removing redundancies at each step is significant, as shown in [Codish et al. 1995].

The information approximated by the combined domains can be used in the sim-
plification task by simply translating the information inferred by each domain into
the GI domain, conjoining the resulting s, and applying the techniques described
in previous sections.

6. PROGRAM ANALYSIS

As mentioned in the introduction, abstract interpretation of logic programs al-
lows the systematic design and verification of data flow analyses by formalizing
the relation between analysis and semantics. Therefore, abstract interpretation is
inherently semantics sensitive, different semantic definition styles yielding different
approaches for program analysis. For logic programs we distinguish between two
main approaches, namely bottom-up analysis and top-down analysis. While the top-
down approach propagates the information in the same direction as SLD-resolution
does, the bottom-up approach propagates the information as in the computation of
the least fixpoint of the immediate consequences operator Tp. In addition, we dis-
tinguish between goal-dependent and goal-independent analyses. A goal-dependent
analysis provides information about the possible behaviors of a specified (set of)
initial goal(s) and a given logic program. In contrast, a goal-independent analysis
considers only the program itself.
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In the process of automatic parallelization we are interested in inferring accurate
information regarding the substitutions affecting these goals in any proof which can
be constructed with the given clause in the given program. It seems that a top-down
analysis framework performing goal-dependent analysis is the most appropriate for
this task. However, it is important to note that recently a number of studies have
extended the area of applicability of both the bottom-up and top-down frameworks
and their relations with goal-dependent and goal-independent analysis [Giacobazzi
1993; Codish et al. 1994; Codish et al. 1997]. In this study we have used a top-
down, goal-dependent framework, namely the abstract interpretation system PLAIT,
mainly because of the more mature state of its implementation.

6.1 Global Analysis: The Abstract Interpretation Framework PLAI

The PLAI abstract interpretation system is a top-down framework based on the
abstract interpretation framework of Bruynooghe [1991] with the fixpoint opti-
mizations described in [Muthukumar and Hermenegildo 1992]. Although a detailed
description of this system is outside the scope of this article, we will point out sev-
eral features which are relevant to our study, as they either allow efficient analysis
or a more effective parallelization.

The framework is based on an abstraction of the (SLD) AND-OR trees represent-
ing the execution of a program for a given set of entry points. An entry point is a
literal and a description of the possible values of the arguments of external calls to
the literal. Such descriptions can be given for example using the abstract domains
supported. The abstract AND-OR graph allows the framework to provide informa-
tion at each program point, a feature which is crucial for many applications (such
as, for example, reordering, automatic parallelization or garbage collection). For
each given goal and abstract call substitution, PLAI builds a node in the abstract
AND-OR graph and computes its (possibly many) abstract success substitution(s).
Note that, in doing this, PLAI computes the specialized versions (also referred to
as multivariants) for each goal, thus allowing for a quite detailed analysis. The
current implementation of the framework allows the user to choose between ob-
taining a transformed program showing all variants generated for each clause and
the particular information inferred for each program point, or the original program
in which the information for different variants is collapsed into one by means of
the upper bound operation of the particular abstract domain. Note that, since
the framework treats (and takes advantage of) programs in nonnormalized form,
different call formats of the same literal (e.g., p(1), p(x)) yield different goals.

The analysis algorithm is as follows. For each pair of goal and abstract call sub-
stitution for this goal, and for each clause matching the goal, the corresponding
entry abstract substitution for the clause is computed, which yields the call sub-
stitution for the first literal in the clause body. The body is then traversed by
recursively applying the same algorithm: the success substitution of each goal is
the call substitution of the next one. The success substitution of the last goal is the
exit substitution of the clause. The definition considers each literal and call sub-
stitution (and clause!!) distinctly, and therefore naturally captures multivariants.

111t is possible to produce an abstract success substitution for each applicable clause, or to collapse
all resulting substitutions for all clauses of a predicate into a single one. This choice is essentially

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 2, March 1999.



216 . F. Bueno et al.

The substitutions computed are stored in a so-called memo table. The memo table
is also used to keep track of information necessary for the fixpoint computation
inherent to the analysis.

PLAT implements a highly optimized fixpoint algorithm, defined in [Muthuku-
mar and Hermenegildo 1989b; 1990a; 1992] (similar to the algorithm independently
proposed in [Le Charlier et al. 1993]), based on a distinction between recursive and
nonrecursive predicates. Briefly, the analysis proceeds as follows. First, a prepro-
cessing of the program is performed to fold disjunctions and determine recursive
predicates; then the core of the analysis starts. Nonrecursive predicates are ana-
lyzed in one pass. For the recursive predicates, nonrecursive clauses are analyzed
first and once, and the result is taken as a first approximation of the answer. If no
nonrecursive clause is found, the least domain element “bottom” is taken as first
approximation. Then, a fixpoint computation for the recursive clauses starts. The
number of iterations performed in this computation is reduced by keeping track of
the dependencies among nodes and the state of the information being computed.
In some cases the fixpoint algorithm is able to finish in a single iteration (i.e., in
only one pass), even if there are recursive predicates, thanks to this information.

The whole computation is domain independent. This allows plugging in different
abstract domains, provided suitable interfacing functions are defined. Let Sub® be
an abstract domain. The domain-dependent functions are as follows:

—project : Sub® x Literal — Sub®, such that project(), g) is the projection of A
over vars(g);

—call_to_entry : Sub® x Literal x Literal x Literal™ — Sub®, such that the output
of call_to_entry(A, g, h, B) is the entry substitution for clause h:-B corresponding
to call substitution A after unifying h = g, projecting the result over the variables
in h, and extending the result so that it approximates the values of the new
variables in B;

—exit_to_success : Sub® x Literal x Literal — Sub®, such that the output of
exit_to_success(\, g, h) is the success substitution for goal g corresponding to exit
substitution A after unifying h = g, and projecting the result over the variables
in g;

—extend : Sub® x Sub® — Sub®, such that extend(A, A.) is an extension of A to
vars(Ae) (where vars(A) C vars(A.)) which is consistent with A..

From the user point of view, it is sufficient to specify the particular abstract
domain desired. This information is passed to the fixpoint algorithm, which in
turn calls the appropriate abstract functions for the given abstract domain. The
definitions of the abstract functions for the domains we have studied can be found in
[Muthukumar and Hermenegildo 1991; 1992] for the Sharing and Sharing+Freeness
domains, and are derived from the unification algorithm of [Codish et al. 1991] for
the ASub Domain.

6.2 Local Analysis

A definition of local analysis more general than that of Example 3.6, can be given
in terms of abstract interpretation. For this, we use the abstract functions over

related to the level of detail at which the analysis information is desired.
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the abstract domains of global analysis. Let Sub® be an abstract domain. The
functions used are, in addition to those defined above, the following:

—call to_success_builtin : Sub® x Literal — Sub®, such that the output of
call to_success_builtin(A, g) is the success substitution of built-in g with call sub-
stitution A;

—top_exit_value : Sub® x Literal — Sub®, such that top_exit_value(A,g) (where
vars(\) C vars(g)) is the “topmost” substitution in the lattice (Sub®, C) such
that A C top_exit_value(), g), but it still preserves the information of A\ which
is downwards closed (i.e., which is preserved in forward computations), and
vars(top_exitvalue(A, g)) C vars(g).

These functions are domain dependent and are part of the interface for abstract
domains to the domain-independent fixpoint computation framework of PLAI. Es-
sentially, local analysis proceeds by starting from a “safe” abstract substitution at
the entry of the clause and progressing left-to-right through the clause body literals
(but without going into the procedures that are being called). The entry substi-
tution used is the “topmost” substitution for the variables in the clause head plus
the abstraction of the empty substitution for the free variables of the body. For
each literal, if it is a built-in, its analysis is left to the abstract domain function
for built-ins. Otherwise, a “topmost” abstract substitution for the literal, which is
coherent with the call abstract substitution of this literal, is taken. This is also left
to a domain-dependent function.

More formally, given a clause C' = h:-B, where B = (g1, ...,¢gn), local analysis
is the result of a function local_analysis(h, B) = {\1,..., Ant1}, where each )\; is
the abstract call substitution of each g;, and A, 41 is the success substitution of g,.
This function is defined as follows:

local_analysis(h, B) = {\1} Ulocal_entry_to_exit(A1, B)
where A1 = call_to_entry(top_exit_value(bottom, h), h, h, B)

1] if B=c¢
local _entry_to_exit(A, B) = ¢ {A2} Ulocal_entry_to_exit(Aa, (ga, - -, gn))

if B={g1,.--,9n)
where A2 = local_body_goal (), g1)

local body_goal (), g) = extend(local call to_success(N, g), N)
where X = project(}, g)

call to_success_builtin(A, g) if g is a built-in

local call to-success(A, ) = { top_exit_value(A, g) otherwise

Although the above definition is itself domain independent, the results achievable
heavily rely on the abstract domain used. A suitable domain which yields similar
results to the first definition given in Example 3.6 for strict independence is the
Sharing+Freeness domain. In fact, with the Sharing+Freeness domain better results
are obtained, as it is able to handle propagation of properties (see Section 5), which
is not the case in the first presentation of local analysis.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 2, March 1999.



218 . F. Bueno et al.

abstract interpreter I
v

binding info

Annotator (local
dep. analysis)

& - Prolog

Side-effect analysis

Granularity analysis|

PWAM Compiler I

PWAM code

SUN Sequent
multitasked Wil | parallel

y v——

VisAndOr visualizer
IDRA execution analyzer

Fig. 7. Evaluation system.

7. EVALUATION ENVIRONMENT

In this section we will briefly describe the &-Prolog system [Hermenegildo and
Greene 1991] in which our evaluation has been performed. The run-time system of
&-Prolog can generate traces of the parallel execution of programs, which can then
be used to visualize or analyze such executions. A tool for analyzing the parallelism
available in a program from such traces, IDRA, is also described.

7.1 The &-Prolog System

This system comprises a parallelizing compiler aimed at uncovering goal-level, re-
stricted (i.e., fork and join) independent and-parallelism and an execution model/
run-time system aimed at exploiting such parallelism. The run-time system is based
on the Parallel WAM (PWAM) model, an extension of RAP-WAM [Hermenegildo
1986a; 1986b], itself an extension of the Warren Abstract Machine (WAM) [Warren
1983]. It is a complete Prolog system, based on the SICStus Prolog implementation,
offering full compatibility with the DECsystem-20/Quintus Prolog (“Edinburgh”)
standard. In addition, the &-Prolog language extensions provide basic facilities for
expressing parallelism at the source level. Prolog code is parallelized automatically
by the compiler, in a user-transparent way (except for the increase in performance).
Compiler switches determine whether or not code will be parallelized and through
which type of analysis. Alternatively, parallel code can be written by the user, the
compiler then checking such code for correctness.

As shown in Figure 7, the &-Prolog parallelizing compiler is composed of sev-
eral basic modules which correspond directly to the steps of our parallelization
methodology: global (and local) analyzers inferring information that is useful for
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the detection of independence, side-effect and granularity analyzers inferring infor-
mation which can yield the sequentialization of independent goals for reasons of
efficiency or maintenance of observable behavior, annotators which parallelize the
Prolog programs using the information provided by the analyzers, etc. The par-
allelized programs can be executed within the run-time system using one or more
processors.

7.2 IDRA: Ideal Resource Allocation

As mentioned before, one of the main aims of this work is to evaluate the usefulness
of the information provided by the analyzers using the speedup obtained with re-
spect to the sequential program as the ultimate performance measure. This can be
done quite simply by running the parallelized programs in parallel and measuring
the speedup obtained. However, this speedup is limited by the number of processors
in the system and the quality of the scheduler and thus does not necessarily provide
directly useful information regarding the quality of the annotation per se. In order
to concentrate on the available parallelism itself, it is more desirable to determine
the speedups for an ideal scheduler and an unbounded number of processors while
still taking into account real execution times for the sequential parts and scheduling
overheads. IDRA [Ferndndez et al. 1996] is an evaluation environment which has
been designed for this purpose.

The &-Prolog system can optionally generate a trace file during an execution.
This file is an encoded description of the events that occurred during the execution
of a parallelized program. Examples of such events are parallel fork, start goal,
finish goal, join, etc. Events are labeled with a precise timestamp. Since &-Prolog
generates all possible parallel tasks during execution of a parallel program, even if
there are only a few (or even one) processor(s) in the system, all possible parallel
program graphs, including a fairly good estimate of their exact execution times,
can be constructed from this data. IDRA takes as input (a) a real execution trace
file of a parallel program run on the &-Prolog system over one processor and (b)
the time for the (sequential) execution of the original sequential version of the same
program, which is used as the unit of measure (1) in the speedup graphs. With
these two inputs, it computes the curve of achievable speedup with respect to an
increasing number of processors, and using ideal scheduling.

Note that although such “ideal” parallel execution is essentially a simulation, it
uses as data a real trace execution file. Real execution times of sequential segments
and all delay times are taken into account (including not only the time spent in
creating the agents, distributing the work, etc., but also the interruptions of the
operating system, etc.), and therefore it is possible to consider the results as a very
good approximation to the best possible parallel execution. The approach is similar
in spirit to that of AndOrSim [Shen and Hermenegildo 1991}, which was shown to
produce speedups which closely matched those of the real &-Prolog implementation
for the numbers of processors available on the systems in which &-Prolog was run,
in that speedups are constructed from data from a real execution. Arguably, the
method used in IDRA is potentially more accurate, since the unit of measure in
AndOrSim was number of resolutions while IDRA uses actual execution time. In
fact, the speedups provided by IDRA do correlate well with those of the actual
execution.
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Table IV. Performance of IDRA

Benchmark | Query Number of Processors
1 2 3 4 5 6
ann pa(3) speedup | 1 | 1.81 | 2.65 | 3.22 | 3.81 | 4.26
IDRA 1| 180 | 2.68 | 3.28 | 3.95 | 4.53
fib pmain(10) | speedup | 1 | 1.81 | 2.52 | 3.13 | 3.87 | 4.37
IDRA 1| 199 | 297 | 3.95 | 491 | 5.85
gfib pmain(10) | speedup | 1 | 1.82 | 2.70 | 3.38 | 4.23 | 4.65
IDRA 1| 196 | 2.89 | 3.81 | 4.40 | 5.04
mmatrix pm(13) speedup | 1 | 1.93 | 2.82 | 3.80 | 4.61 | 5.56
IDRA 1| 198 | 294 | 3.90 | 4.80 | 5.69
gsortapp pas(b) speedup | 1 | 1.76 | 2.24 | 2.55 | 2.77 | 2.81
IDRA 1| 176 | 2.27 | 2.58 | 2.81 | 3.02

Table IV illustrates this point by comparing the speedups obtained with the &-
Prolog system on a Sequent Symmetry multiprocessor for a number of programs'?
with the speedup figures computed by IDRA from traces of a parallelized program
which has been run on a single processor. Logically, IDRA speedups should be an
upper bound for the real system, and it is the case that the speedups predicted by
IDRA are always larger than those achieved by the actual system. It can be ob-
served, however, that in some cases IDRA estimates are quite close to the observed
speedups, while in others a slight divergence with the number of processors is ob-
served. This is the case mostly for programs that have very fine granularity, which
makes the nonoptimal scheduling of the real system have a more significant impact.
This can be observed by comparing the results for the two versions of “fibonacci,”
one of which has been annotated to perform run-time granularity control and thus
creates large grain parallelism. The results for this case are much closer to those of
IDRA.

8. EXPERIMENTAL RESULTS

In this section we present the results of the comparison among the five analyzers
(abstract domains and associated abstract functions) currently embedded in PLAT:
ASub, Sharing, Sharing+Freeness, and the combinations of ASub with Sharing and
ASub with Sharing+Freeness. The aim is to determine the accuracy and effective-
ness of the information provided by the analyzers in their application to automatic
program parallelization, as well as the efficiency of the analysis process itself. In the
experiments, no global task granularity control is performed, i.e., the compiler par-
allelizes as many tasks as possible which are identified as (potentially) independent.
However, as mentioned before, some limited knowledge about the granularity of the
literals, in particular the built-ins, is applied at the local (clause) level. Essentially,
the only kind of built-ins allowed to be run in parallel are metacalls in which the
called (user) literal can be determined statically. Also, side-effect built-ins and
procedures are not parallelized.

It could be argued that the experiments are somewhat weak due to the lack of a
“best” parallelization with which to establish the comparisons. However, there are
many problems when trying to determine what the optimal parallelization might
be. One could think that a parallelization “by hand” performed by the programmer

12Benchmarks used in the evaluation will be further described in Section 8.1.
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Table V. Benchmark Profiles

|| Bench. || AgV | MV | Ps | Non | Sim | Mut | Gs ||
aiakl 4.58 9 7 42 57 0 9
ann 3.17 14 65 43 20 36 73
bid 2.20 7 19 68 31 0 27
boyer 2.36 7 26 73 3 23 29
browse 2.63 5 8 12 62 25 9
deriv 3.70 5 1 0 | 100 0 1
fib 2.00 6 1 0 | 100 0 1
graduat 5.00 13 75 83 16 0 85
grammar 2.13 6 6 100 0 0 7
hanoiapp 4.25 9 2 0 100 0 3
mmatrix 3.17 7 3 0 | 100 0 3
msbib 4.19 30 | 110 65 35 0 | 330
occur 3.12 6 4 25 75 0 4
palin 4.18 7 5 20 80 0 7
peephole 3.15 7 26 46 7 46 28
progeom 3.59 9 9 33 66 0 13
gplan 3.18 16 46 39 32 28 51
gsortapp 3.29 7 3 0 100 0 4
query 0.19 6 4 100 0 0 4
rdtok 3.07 7 22 31 27 40 30
read 4.20 13 24 54 12 33 47
tak 7.00 10 1 0 | 100 0 1
warplan 2.47 7 29 51 31 17 36
witt 4.57 18 7 42 35 22 96
zebra 2.06 25 6 66 33 0 7

would be the best. However, for complex programs (as many of those used in our
experiments), it turns out that the automatic parallelization often does better than
what we have been able to do by hand in a reasonable amount of time. Furthermore,
it is not always easy to prove that a parallelization performed by the programmer is
correct. Additionally, such parallelization might not take into account all possible
information, as, for example, information regarding the granularity of the goals,
since, in general, such information depends on the size of the particular arguments
given as input. In fact, the best possible parallelization depends on the input
and requires using a run-time simulator which runs the program in all possible
parallelization schemes, selecting the best from the results obtained in those real
executions. However, for most programs this is not practical. Thus we will not
attempt to compare parallelizations against an “ideal,” but rather we will perform
relative comparisons.

8.1 Benchmark Programs

A wide range of programs has been used as benchmarks.'®> The benchmarks range
from very simple (toy) programs to real application programs. Among the former,
bid computes an opening bid for a bridge hand; boyer is the classical theorem

13Both system and benchmarks are available either by ftp at clip.dia.fi.upm.es, or from
http://www.clip.dia.fi.upm.es, or by contacting the authors.
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prover in Gabriel’s benchmarks; browse is a parser, also from Gabriel’s bench-
marks; deriv performs symbolic differentiation; £ib computes the Fibonacci num-
bers; grammar generates/recognizes a small set of English; hanoiapp solves the
Towers of Hanoi problem (with append); mmatrix multiplies two matrices; occur
checks occurrences of sublists within lists of lists; palin, from D.H.D. Warren, rec-
ognizes palindrome sentences; qsortapp is the quick-sort algorithm (with append);
query performs simple database queries (from D.H.D. Warren); tak computes the
Takeuchi function, and zebra is the classical puzzle. More elaborate programs are:
aiakl, which is part of an abstract interpreter developed at SICS (the Swedish
Institute for Computer Science); ann is the &-Prolog MEL annotator; peephole is
the SB-Prolog peephole optimizer; progeom builds a perfect difference set of some
given order; gplan is the query scheduler of CHATS80; rdtok is O’Keefe’s pub-
lic domain Prolog tokeniser; read is Warren and O’Keefe’s public domain Prolog
parser; warplan, also from D.H.D. Warren, computes plans for a robot to perform
actions in a defined world, and witt is a conceptual clustering algorithm developed
as an example application by students at UPM. Finally, we have also studied two
programs which are applications, currently in use: graduat was developed at New
Mexico State University and is used to check whether the credits earned by a stu-
dent are enough for obtaining the degree; msbib was developed at UPM and is used
to merge and translate into several formats bibliography files.

Table V attempts to provide good insight into the complexity of the benchmarks
which should be useful for the interpretation of the results:

—AgV, MV are respectively the average and maximum number of variables in each
clause analyzed (dead code is not considered);

—Ps is the total number of predicates analyzed;

—Non, Sim, and Mut are respectively the percentage of predicates which are non-
recursive, simply recursive, and mutually recursive;'*

—Gs is the total number of different goals solved when analyzing the program, i.e.,
the total number of syntactically different calls.

The number of variables in a clause affects the complexity of the analyses because
the abstract functions greatly depend on the number of variables involved. Note
that when abstract unification is performed, the variables of both the subgoal and
the head of the clause to be unified have to be considered. Therefore, the number
of variables involved in an abstract unification can be greater than the maximum
number of variables shown in the table. The number of recursive predicates af-
fects the complexity of the fixpoint algorithm, possibly increasing the number of
iterations needed.

8.2 Efficiency Results

Table VI presents the efficiency results in terms of analysis times in seconds (Sparc-
Station 10, 55MHz, HyperSPARC processors, SICStus 2.1, native code). It shows
for each benchmark and analyzer the average times out of 10 executions. The com-
pilation times for SICStus 2.1 are also shown for reference. In the following, S (Set

14Simply recursive refers to predicates whose recursive cycles only contain that predicate. Mutu-
ally recursive refers to predicates whose recursive cycles contain two or more predicates.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 2, March 1999.



Effectiveness of Abstract Interpretation in Automatic Parallelization of LP : 223

Table VI. Analysis Times

Benchmark Average of 10 runs

program SICStus C. | S | P | SF | PxS | PxSF |
aiakl 0.13 0.20 0.43 0.22 0.32 0.37
ann 1.26 | 19.40 5.54 | 10.50 | 16.37 17.68
bid 0.32 0.32 0.27 0.36 0.46 0.56
boyer 0.79 3.56 1.38 4.17 2.91 3.65
browse 0.30 0.13 0.17 0.15 0.21 0.24
deriv 0.14 0.06 0.05 0.07 0.09 0.11
fib 0.03 0.01 0.01 0.02 0.02 0.02
graduat 3.95 | 47.42 0.97 1.79 | 17.02 3.72
grammar 0.19 0.08 0.05 0.11 0.13 0.18
hanoiapp 0.11 0.03 0.03 0.04 0.06 0.07
mmatrix 0.05 0.03 0.03 0.03 0.04 0.05
msbib 2.01 0.70 2.16 0.90 1.11 1.38
occur 0.24 0.04 0.03 0.05 0.06 0.07
palin 0.15 2.26 0.23 0.62 0.52 0.67
peephole 0.97 5.45 2.54 3.94 7.00 7.45
progeom 0.17 0.14 0.13 0.17 0.22 0.27
gplan 1.21 1.54 | 11.52 1.84 2.60 3.36
gsortapp 0.06 0.04 0.05 0.05 0.08 0.09
query 0.19 0.03 0.02 0.05 0.07 0.12
rdtok 0.49 1.93 1.44 2.26 2.14 3.88
read 0.81 2.09 1.89 2.35 2.99 3.51
tak 0.05 0.02 0.02 0.02 0.02 0.04
warplan 0.58 | 15.71 5.02 8.71 | 15.74 17.68
witt 1.35 1.98 | 16.24 2.26 2.87 3.42
zebra 0.17 0.14 0.10 0.19 0.29 0.42
Arith. mean 0.63 4.13 2.01 1.63 2.93 2.76
Ratio 1.00 6.57 3.20 2.60 4.67 4.39
Geom. mean 0.30 0.38 0.30 0.36 0.49 0.58
Ratio 1.00 1.27 1.00 1.18 1.63 1.92

sharing) denotes the analyzer based on the Sharing domain; P (Pair sharing) de-
notes the analyzer based on the ASub domain; SF (Set sharing+Freeness) denotes
the analyzer based on the Sharing+Freeness domain; and PxS and P xSF denote
the analyzers based on the combination of P with S, and P with SF, respectively.

The results in Table VI suggest that the analysis process is reasonably efficient
(recall that all the analysis code is written in Prolog). Typically, the analysis takes
less than 3 seconds. The longest execution (Sharing for graduat) takes 47.42 sec-
onds, which is still not unreasonable, considering the complexity of the benchmark.
The analyzers take from only 5% more time than SICStus 2.1 compilation to emu-
lated code, to around 25 times for the most costly. On the average, global analysis
takes from the same to 6.57 times more than a straightforward clause to clause
compilation of the same code. Some analyses (particularly when using the Sharing
domain) are specially costly and skew the arithmetic means. We have observed
that this occurs precisely in the cases in which the analysis is not being able to
derive accurate information, which generally means that the abstract values being
manipulated are very large. This suggests that in actual use of the compiler a
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bound should be kept on the size of the abstract values, and performance traded
for precision (which is probably being lost anyway) in those cases in which such
sizes are above a given threshold (this is technically referred to as a “widening” in
abstract interpretation).

Regarding the comparison among the different analyzers, it seems difficult to
derive a clear pattern of behavior from the results shown in the table. The reason
is the high number of parameters involved which, for simplicity, are not included
in the table: number of specializations, number of recursive and mutually recursive
predicates, number of iterations in each computation, number of variables involved
in each abstract unification, etc. However, when the above-mentioned parameters
are taken into account, quite interesting conclusions can be derived from Table
VI. For example, in the cases in which such parameters have similar values (bid,
deriv, fib, hanoiapp, mmatrix, occur, qsortapp, and tak), the analysis time
reflects the relative complexity of the analyzers: the abstract operations of the
Sharing+Freeness analysis are more complex than those of Sharing (since it has an
additional component), and these in turn are much more complex than those of
ASub.

However, in general the trade-offs are much more complex than implied by the
complexity of the abstract operations. The important intervening factor is accu-
racy. An accurate analysis generally computes smaller abstract substitutions, thus
reducing the time needed for the abstract operations. Accuracy also greatly affects
the fixpoint computation: its absence usually results in more iterations, special-
izations, etc. This effect can be observed in a number of cases in which the lack
of groundness propagation in the ASub analyzer greatly affects efficiency: aiakl,
gplan, msbib, and witt. In these benchmarks, the total number of iterations within
fixpoint computations for ASub is approximately 6.5 times that of the other ana-
lyzers, and in the last two benchmarks the number of specializations increases by
2.5 times. Conversely, there are other cases (e.g., ann, boyer, graduat, palin, and
warplan) in which the Sharing or the Sharing+Freeness analyzers take much longer
than ASub due to the lack of (accurate) linearity information. In all the cases these
shortcomings are alleviated in the corresponding combined domains [Codish et al.
1995], so that the time is less than the expected sum of the times of each original
component.

Table VII presents efficiency results in terms of memory consumption. For each
benchmark and analyzer it shows the number of kilobytes for the global stack
segment (showing the size and number of terms created) and the dynamic database
(showing the amount of data asserted, including, e.g., the memo table) created
in the process. All measurements have been made disallowing garbage collection
during the analysis. Corresponding results for the local stack, choice-point stack,
and trail have been obtained but are not included. The reason is that for the local
stack the amount of memory used is negligible compared to those of global stack
and database (never more than 69 Kbytes, and usually less than 10). Also, the
number of choice-points created and backtrackings performed is negligible.

Comparing the time spent and the memory consumed in the analysis process
it is clear that one accurately follows the other, i.e., high memory consumption
often indicates a long execution time and vice versa. This is especially true when
considering the global stack, where most of the memory consumption takes place. It
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Table VII. Analysis Memory Usage

Bench. Global Stack Database

Program S | P | SF | PxS | PxSF S | P | SF | PxS | PxSF
aiakl 139 313 168 240 306 12 17 24 17 29
ann 11417 3228 | 6283 | 10872 12387 || 305 | 238 | 402 407 545
bid 154 133 201 261 366 22 25 39 29 46
boyer 2221 752 | 2774 1810 2432 88 54 | 131 80 127
browse 72 85 86 132 160 12 15 20 17 25
deriv 37 33 48 65 85 5 6 9 6 10
fib 4 4 8 8 15 2 2 4 3 4
graduat 38164 757 | 1839 | 17015 5218 325 | 136 | 211 164 259
grammar 49 31 81 89 130 5 4 8 6 9
hanoiapp 19 18 28 35 52 3 3 7 4 8
mmatrix 17 16 24 31 43 3 3 5 4 6
msbib 703 2288 956 1167 1572 220 | 895 | 390 319 494
occur 25 22 33 43 59 4 5 8 6 9
palin 1551 163 438 369 511 37 10 25 14 23
peephole 3341 1599 | 2524 4957 5570 108 97 | 152 141 195
progeom 88 80 120 155 212 9 11 19 13 22
gplan 714 8872 1039 1478 2258 88 | 233 172 127 224
gsortapp 30 26 39 52 69 4 4 7 5 8
query 18 13 34 40 93 4 3 6 4 7
rdtok 754 513 | 1039 991 2094 99 71 | 148 92 172
read 1103 958 | 1410 1899 2520 68 72 | 120 86 138
tak 7 7 15 14 28 5 6 9 6 10
warplan 9605 3364 | 5552 | 11382 13301 112 89 | 137 145 193
witt 973 | 12484 | 1331 1766 2470 108 | 293 | 236 148 274
zebra 74 43 131 183 335 18 15 39 23 44

is interesting to observe that memory consumed in the database (where the memo
table is stored) is almost negligible compared to that of the global stack, and it
is heavily related to the number of specializations which occur in each analysis.
The fact that the analyzers do not consume much database space has been a big
surprise considering the heavy use of the memo table performed during the analysis.
Since global stack consumption is quite related to the size of the substitutions each
analyzer handles, it can be concluded that the size of the (representations of the)
abstract substitutions dominates the consumption of memory (and time) by the
analyzers. Nonetheless, the more specializations and fixpoint iterations, the more
substitutions the analyzer has to handle, and this, as already mentioned, depends
on the accuracy inherent to each domain.

8.3 Effectiveness Results: Static Tests

One way to measure the accuracy and effectiveness of the information provided
by analyzers is to count the total number of CGEs obtained, the number of these
which are unconditional, and the number of groundness and independence tests
in the remaining CGEs, which provides an idea of the overhead introduced in the
program. The results are shown in Table VIII and Table IX. Benchmarks have been
parallelized using the MEL annotator in the following different situations: without
any kind of information (“N” in the table), with information from the local analysis
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Table VIII. Results for Effectiveness—Static Tests

Bench. Total CGEs Uncond. CGEs
Program N] L] S[PJSF|[NJLJ[S]P]SF]PxS]PxSF
aiakl 2 2 2 2 2 000 O 2

ann 28 | 14 | 26 | 26 | 12 0] 0|]0] O 0

bid 8 6 8 8 5 0] 0|3 |5 5

boyer 3 2 3 3 2 0]0]0| O 0

browse 9 5 5 5 4 000 O 0

deriv 5 4 4 4 4 0] 0|0 4 4

fib 1 1 1 1 1 0] 1|1 1 1
graduat 23 7|22 | 22 6 0]0]2]|3 6
hanoiapp 1 1 1 1 1 00|00} O 1
mmatrix 2 2 2 00| 0] 2 2

msbib 30 | 18 | 24 | 24 | 17 0] 12| 2 17 4 |
occur 3 3 2 2 2 0] 1|1 2 2

palin 2 1] 2 2] 1]]oJoJo]Jo] o | 1
peephole 11 2 (11| 11 2 001 1 1

qplan 31 (20|31 |31 18]Jo]o[3][3]16 6 |
gsortapp 1 1 1 1 1 00|00} O 1

read 1 2 2 1 0]0]|1 1 1

tak 1 1 1 1 1 0] 1|00 1
warplan 16 | 11 | 14 | 14 9 0] 1|00 1

witt 39 (24 39| 39| 24 0| 2|5 | 5| 22 11
zebra 4 3 3 3 2 0] 1|1 1 1

(“L”), and with that provided by each of the global analyzers. The results for the
combined analyzers are in all but five cases as good as those for the best of the
analyzers combined. Only the exceptions are shown in the tables. Note that to
obtain the results we inhibited local analysis completely when using global analysis
in order to measure the power of the global analyzers alone (in practice either only
local or both types of analysis would be enabled).

To have an overall idea of the effect of each of the analyzers, Table X shows the
arithmetic means of the number of (conditional and unconditional) CGEs (C), the
number of unconditional CGEs (U), the fraction of unconditional CGEs (U/C), the
number of ground and independence checks (G and I), and the fraction of ground
and independence checks with respect to conditional CGEs (G/(C-U) and I/(C-U),
where C-U gives the number of conditional CGEs).

Regarding the effectiveness of the information inferred by each analyzer, there
are two key issues to be studied: whether the results of the analysis are effective
in eliminating CGEs which have a test that will always fail, and whether they
are effective in eliminating tests that will always succeed, in other words, whether
the analysis information helps in reducing the overhead introduced to detect both
the absence and presence of parallelism. With respect to the first point, Tables
VIII and IX show that definite nongroundness and definite sharing, achieved in
the case of the Sharing+Freeness analysis due to the combination of sharing and
freeness, is quite effective. While Sharing and ASub can only help in eliminating
CGEs by identifying dead code (which is not parallelized) the local analysis (unable
to detect dead code) is able to eliminate more CGEs than either Sharing or ASub
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Table IX. Results for Effectiveness—Static Tests

Bench. Conditions: ground/indep

Program N | L | S | P [ SF [ PxS [ PxSF
aiakl 7/5 0/10 5/0 5/0 0/0

ann 76/129 14/36 | 60/38 | 60/19 | 6/14 | 60/18 |
bid 9/22 7/12 5/7 5/0 0/0

boyer 5/4 4/2 5/1 5/0 4/1 [ 4/0
browse 9/25 3/9 4/3 4/3 2/2

deriv 5/16 4/16 0/4 0/0 0/0

fib 0/4 0/0 0/0 0/0 0/0

graduat 47/122 7/51 35/45 | 35/0 0/0

hanoiapp 7/0 2/1 3/0 3/0 0/0

mmatrix 2/8 2/8 0/2 0/0 0/0

msbib 90/160 4/35 64/7 67/8 0/0 /0]
occur 2/9 2/5 0/1 0/0 0/0

palin 4/7 0/4 4/5 4/0 0/1 [ 0/0
peephole || 23/13 3/4 | 14/10 | 14/6 | 1/2

gplan 62/196 13/57 53/7 | 61/42 | 2/1 53/1 |
gsortapp 5/1 0/1 4/0 4/0 0/0

read 2/7 1/6 1/0 1/0 0/0

tak 6/6 0/0 3/0 3/0 0/0

warplan 28/22 14/11 | 25/15 | 25/11 | 11/7

witt 107/287 | 20/135 | 64/24 | 98/43 | 0/2 | 64/4 ]
zebra 8/221 | 5/251 | 2/7 2/6 | 0/6

Table X. Results for Effectiveness—Static Tests—Arithmetic Mean

Arithmetic Means
Analysis C | U | U/C | G | G/(C-U) | I | 1/(C-U) |
N 10.57 0.00 | 0.00 | 24.00 2.27 | 60.19 5.69
L 6.14 0.38 0.06 5.00 0.87 31.14 5.40
S 9.71 0.95 0.10 | 16.71 1.91 8.38 0.96
P 9.71 1.43 0.15 18.86 2.28 6.57 0.79
SF 5.57 4.00 | 0.72 1.24 0.79 1.71 1.09
PxS 5.44 2.88 | 0.53 9.29 3.61 2.00 0.78
PxSF 5.44 4.33 | 0.80 1.24 1.11 1.62 1.46

227

in a fair number of cases: ann, bid, boyer, graduat, msbib, peephole, gplan,

warplan, witt.

Sharing+Freeness proves to be the most accurate at this task,

giving always the least number of CGEs. We would like to point out that although
some elimination of CGEs was expected at the beginning of the study, the actual
impact of the results of this type of analysis is quite surprising: the Sharing+Freeness
analysis can reduce the number of CGEs in 18 out of 25 benchmarks (the complete
set used), and the reduction is often of half or more of the CGEs created without

analysis.

However, it is when considering the simplification of the conditions in the CGEs
that global analysis shows its power: even in the cases where Sharing or ASub
have to deal with more CGEs than the local analysis, the total number of tests is
usually less. Regarding the comparison among the different global analyzers, the
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Fig. 8. Effectiveness of global analysis. Dynamic tests: No/low speedups.

results show that ASub often performs better than Sharing (at least for independence
checks, though not for groundness) and that Sharing+Freeness is the best by far
in terms of effectiveness. This can sometimes come at a cost in analysis time.
However, in larger programs, even analysis time tends to favor Sharing+Freeness
because, despite the more complex abstract operations, the added precision tends
to reduce the size of the abstract values and the number of fixpoint iterations. The
effectiveness of Sharing+Freeness can be surprising when contrasted with the fact
that the sharing information provided by ASub is usually more accurate than that
of Sharing+Freeness, as shown in [Codish et al. 1995]. This apparent contradiction
is clarified when considering the link between the groundness and independence
information provided by the set-sharing information, already pointed out when
translating this information into the GI domain, which allows the annotators to
significantly simplify the tests for parallelization.

The combined analyzers always obtain at most the same number of tests as those
of the best of the analyzers combined, and, in a few cases, slightly better results are
obtained. The number of tests obtained by ASub is reduced when combined with
Sharing in four cases: ann, msbib, gplan, and witt. This is not surprising, since the
last two are in the class of programs for which ASub loses information. In the cases
of ann and msbib, the advantage is due to the ability of the Sharing domain to infer
independence of two variables from the independence of others, an ability which
ASub lacks. The number of tests obtained by ASub is reduced when combined with
Sharing+Freeness in two cases: palin and boyer. In both of them an independence
check is eliminated, thanks to the more accurate linearity information provided by
ASub.
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Fig. 9. Effectiveness of global analysis. Dynamic tests: Low/medium speedups.

8.4 Effectiveness Results: Dynamic Tests

An arguably better way of measuring the effectiveness of the annotators is to mea-
sure the speedup achieved: the ratio of the parallel execution time of the program
(ideally for an unbounded number of processors) to that of the sequential program.
This ideal parallel execution time has been obtained using the simulation tools
described in Section 7. Because of the computational cost of the measurement
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Fig. 10. Effectiveness of global analysis. Dynamic tests: Good speedups.

environment used, the programs have been run on quite small data, and thus the
speedups obtained will be, expectedly, low: speedups are highly dependent on input
data size in most of the considered benchmarks, and they can often be increased or
decreased almost arbitrarily by making the data set larger or smaller. Note, how-
ever, that we are not interested really in the maximum speedups obtained. Instead,
our real interest lies in the ratios between the resulting speedups with and with-
out abstract interpretation, and, within the latter, the relative performance of the
different domains. Furthermore, we are also interested in observing how effective
global analysis is in reducing the overhead due to run-time independence checking
when using conditional parallelization algorithms (such as MEL or CDG). One of
the disadvantages of conditional parallelization is that the run-time overhead can
actually lead to slowdowns specially when running on one processor. We would like
to observe to what extent such slowdowns can be reduced by applying information
obtained from global analysis. Note that slowdowns can be easily avoided by simply
using an annotator, such as UDG, which only generates unconditional CGEs—in
fact, UDG has been shown to achieve quite reasonable speedups in practice, while
guaranteeing no slowdowns [Bueno et al. 1994; Bueno Carrillo 1994]. However,
for the reasons mentioned above, we will present mainly results for conditional
parallelization using, in most cases, the MEL annotator.

Dynamic results for a representative subset of the benchmarks used are presented
in Figures 8-12. For each benchmark a diagram with speedup curves obtained with
IDRA is shown. Each curve represents the speedup achievable for the parallelized
version of the program obtained with the MEL annotator (unless otherwise stated),
in each one of the analysis scenarios studied in the static tests. A curve has been
labeled with more than one situation when either the resulting parallelized programs
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Fig. 11. Effectiveness of global analysis. Dynamic tests: ann / hanoiapp.

where identical or the differences among the speedups obtained were negligible (i.e.,
impossible to distinguish by looking at the graph).

The main conclusion from the dynamic tests is that data flow analysis is quite
effective in automatic parallelization. This is true not only in terms of reducing the
cost of conditional parallelism and allowing for more unconditional parallelism, but
also in preserving the sequential performance for nonparallelizable programs.

Regarding the relationship between the accuracy results and the effectiveness
results, we can conclude that speedups obtained for a given benchmark generally re-
flect the accuracy results. Accordingly, the overall results favor the Sharing+Freeness
analysis. However, there are exceptions to this. In particular, in the case of ann,
better results can be observed for all other analyzers except local!l The reason for
this is interesting: it is due to a particular clause being annotated in two different
ways. With most of the analyzers, a CGE with a groundness test is built. The
better information obtained by the Sharing+Freeness analysis allows eliminating
this groundness test because it will always fail, and a new CGE with a number of
independence checks is then built. It turns out that all tests will ultimately fail
at run-time. However, with Sharing+Freeness an independence test, which turns
out to be much more expensive, is performed. The other analyzers, which are
less accurate, do not eliminate the groundness test, which turns out to fail early
and thus give better performance. Both ASub and the local analysis perform as
well as Sharing+Freeness in some cases. Sharing also behaves sometimes as well
as Sharing+Freeness, but in those cases ASub performs well too. Thus, ASub also
proves to be quite powerful.

We have observed many other instances in which the results can depend criti-
cally on only a few checks out of the large collection that may appear in a par-
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Fig. 12. Effectiveness of global analysis. Dynamic tests: hanoiapp CDG and other annotators.

allelized program. In deriv, the important differences in speedups are due to
only four independence checks. In occur a significant difference can be observed
between Sharing+Freeness and no analysis that is due to only two groundness
and four independence checks. And in mmatrix the significant difference between
Sharing+Freeness and ASub is due to only two independence checks. No signifi-
cant difference in speedup is observed in aiakl and bid despite variations of ten
independence and five groundness checks respectively.

As mentioned before, studying the trade-offs among the different annotators is
beyond the scope of this study, and details can be found in [Bueno et al. 1994;
Bueno Carrillo 1994]. However, for completeness, we summarize herein some of the
main conclusions of that study: as expected, using UDG avoids slowdown situa-
tions, which makes it an obvious choice for completely automatic parallelization.
For example, using UDG the sequential performance is preserved for boyer while
excellent speedups are obtained for hanoiapp (as shown in Figure 12). The ob-
vious drawback is that sometimes unconditional parallelization results in smaller
speedups or even no speedup at all in some programs for which conditional par-
allelization achieves good parallel performance. This was observed, for example,
for ann in which all CGEs obtained contain at least one test, whose cost is small.
As a result, UDG obtains no speedups (and, of course, no slowdowns) while the
other annotators do produce useful speedups. Interesting differences were also ob-
served between MEL and CDG, which are illustrated for example in the curves for
hanoiapp (parallelized using MEL) and hanoiapp-cdg (parallelized using CDG)
shown in Figure 12. MEL correctly but inefficiently parallelizes a call to hanoi and
a call to append, while CDG parallelizes a call to hanoi with a sequence composed
of the other call to hanoi and a call to append. The latter results in much higher
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speedups.

9. CONCLUSIONS

We have studied the effectiveness of global analysis in the parallelization of logic
programs using strict independence. To this end, we have proposed and proved cor-
rect a methodology for the application in the parallelization task of the information
inferred by abstract interpretation, using a parametric domain. We have then se-
lected a number of well-known approximation domains, explained their translation
into the parametric domain, built analyses based on them, embedded such analyses
in a complete parallelizing compiler, and studied the performance of the resulting
system.

Although we have observed that reasonable speedups can be obtained in some
cases using only local analysis, our overall conclusion is that global data flow anal-
ysis based on abstract interpretation is indeed a very powerful tool in this applica-
tion. It allows not only to significantly reduce the number of run-time independence
checks and/or increase the amount of unconditionally parallel code, but it is also
quite successful at detecting sequential code statically, thus saving any wasteful
detection of sequentiality at run-time, for the cases in which conditional paral-
lelization is selected. Global analysis results in greatly increased speedups in most
cases if conditional parallelism is selected, and in all cases if unconditional paral-
lelism is selected instead. Global analysis also results in reduced slowdowns when
running conditionally parallelized programs on one processor (using the &-Prolog
run-time system unconditionally parallel programs typically show essentially the
same performance as sequential programs on one processor).

We have also concluded that the cost of global analysis can be reasonable even
for quite sophisticated abstract domains. We have observed that the increase in the
precision of the inferred information given often has the beneficial effect of reducing
the analysis time below that of simpler analyses, specially for larger and more com-
plex programs. We have also observed that large analysis times are related to large
abstract values (and, thus, memory consumption), which are in turn related to loss
of precision. Thus, it also follows from our results that analyzers should implement
a “widening” provision for trading execution time for precision, to be used in case
certain abstract value sizes go over a given threshold. This is particularly relevant
for the Sharing domain.

With respect to the abstract domains studied, we note the importance in our
application of nongroundness and definite sharing information, in addition to pos-
sible sharing and groundness. The Sharing+Freeness domain turns out to be quite
useful in this sense, offering quite good results in most cases. However, we have
also observed that in some cases the results from Sharing+Freeness can be improved
by coupling it with the ASub domain, a combination which gives the absolute best
results for the domains considered. ASub and Sharing gave reasonable and similar
overall results, with a relatively large advantage for one or the other in some cases.
Therefore, we can conclude that the “ideal” abstract domain (from the accuracy
point of view, and taking into account the domains studied) for detecting strict
independence would be one combining at least the following information: set shar-
ing, freeness (or some other form of nongroundness), and any information (such as
linearity or a depth-K abstraction) which could improve the sharing information.
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It is quite satisfactory to observe that the system built in the context of this
study can parallelize automatically programs ranging from small benchmarks to
applications. However, we feel that there is still potential for further improve-
ment. In our experience, larger programs tend to make more use of side-effects
and sometimes of obscure features of the source language or operating system. A
parallelizing compiler, and, especially, its global analysis phase, has to be able to
deal correctly and as accurately as possible with these uses. We have addressed
previously this problem for the case of logic programs [Bueno et al. 1996] (and
many of the solutions proposed are present in the parallelizer used in this study),
but this is an area that still requires additional work. Another important avenue for
improvement is the exploitation of more advanced notions of independence. One
such notion is “nonstrict independence” [Hermenegildo and Rossi 1995] for which
we have recently developed automatic parallelization technology based on global
analysis [Cabeza and Hermenegildo 1994]. Intuitively, this type of parallelism al-
lows parallelizing procedures that share variables (pointers) by observing that the
uses of such shared variables (pointers) do not “interfere.” Another avenue for
improving results is controlling the sizes of the tasks to be parallelized, which is
vital if executing in a distributed environment (see, e.g., [Lopez Garcia et al. 1996]
and its references). Another important potential avenue for improvement may be
to detect parallelism at other levels of granularity than the goal level used in our
study, as suggested in [Hermenegildo and The CLIP Group 1994; Bueno Carrillo
1994; Pontelli et al. 1997; Bueno et al. 1998]. Increased performance may also
be obtained by exploiting additionally other types of and-parallelism [Santos-Costa
et al. 1990; Gupta et al. 1991; Shen 1996] and or-parallelism [Ali and Karlsson
1990; Lusk et al. 1990]. Finally, we are also working on extending our results to
the automatic parallelization of CLP programs, using as a starting point the gen-
eralized notions presented in [Garcia de la Banda et al. 1993; Garcia de la Banda
1994; Garcia de la Banda et al. 1996].
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