On Open Problems in Biological Network Visualization
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Abstract. Much of the data generated and analyzed in the life sciences can be
interpreted and represented by networks or graphs. Network analysis and visual-
ization methods help in investigating them, and many universal as well as special-
purpose tools and libraries are available for this task. However, the two fields of
graph drawing and network biology are still largely disconnected. Hence, visu-
alization of biological networks does typically not apply state-of-the-art graph
drawing techniques, and graph drawing tools do not respect the drawing conven-
tions of the life science community.

In this paper, we analyze some of the major problems arising in biological net-
work visualization. We characterize these problems and formulate a series of open
graph drawing problems. These use cases illustrate the need for efficient algo-
rithms to present, explore, evaluate, and compare biological network data. For
each use case, problems are discussed and possible solutions suggested.

1 Introduction

In recent years, the improvement of existing and development of novel high-throughput
techniques have led to the generation of huge data sets in the life sciences. Since manual
analysis of this data is costly and time-consuming, scientists are now turning towards
computational methods that support data analysis.

The visualization and the visual analysis of biological networks are one of the key
analysis techniques to cope with the enormous amount of data. In particular, the layout
of networks should be in agreement with biological drawing conventions and should

* Corresponding author



draw the user’s attention to relevant system properties that might remain hidden other-
wise. While the approaches and the expertise of the bioinformatics, information visual-
ization, and graph drawing communities may be ideally suited for solving these prob-
lems, little research has been performed to solve the special layout and visualization
problems arising in the life sciences. Currently, most of the available software systems
for the visual analysis of biological networks (e.g., CellDesigner [11], Cytoscape [8],
VANTED [14], see also the review in [29]) provide only implementations of standard
graph-drawing algorithms such as force-directed or layered approaches. Nevertheless,
there are also some tools that offer specialist drawing algorithms more suitable for ap-
plications in the life sciences [5, 6,9, 10, 18].

In general, visualization methods for the life sciences should allow for the layout
and navigation of biological networks for both their static presentation as well as their
interactive exploration. Such methods need to adhere to constraints that originate from
recognized textbook and poster layouts (like [22, 24]), from generally accepted drawing
conventions within the life-science community as well as from standardization initia-
tives such as MIM (Molecular Interaction Maps) [20] and SBGN (Systems Biology
Graphical Notation) [2].

In this paper, we want to identify graph drawing problems originating in applied
bioinformatics and network biology. We start by presenting a characterization of com-
mon biological networks, describing their structure and semantics as well as the map-
ping of data onto network elements. Afterwards, we present a selection of use cases de-
scribing typical uses of biological network visualization. For each use case, we present
the problem as well as its relevance and discuss existing or possible straightforward so-
lutions as well as their drawbacks. The last section will present some conclusions. The
focus of this paper is less on presenting novel methods for these use cases, but more on
giving an overview about open problems to raise the awareness for the manifold tasks
in information visualization and graph drawing related to biological networks.

2 The Nature of Biological Network Data

Biological networks are used to communicate many different types of data. These data
can be encoded in the structure of the network as well as represented by the network lay-
out, or as graphical or textual annotations. The data itself may be primary data (i.e., di-
rectly measured), secondary data (i.e., derived, inferred, or predicted), or a mixture of
both. In this section, we discuss some common biological networks and the types of
attributes used to annotate them. Throughout the rest of this article, graphs will play
an important role when trying to represent biological networks. In fact, we will use
the terms graph and network synonymously when talking about the representation of
biological networks.

2.1 Types of Biological Networks

In the following subsection we will review various types of biological networks. This
listing of networks is by no means complete and includes only those networks that are
most central to research in systems biology.



Fig.1: A regulatory network representing the yeast cell cycle. The picture is taken from the
CADLIVE homepage (http://www.cadlive. jp/) and was originally published in [21].
Li and Kurata used their implementation of a grid-layout algorithm.

Gene-regulatory and signal-transduction networks use sets of directed edges to convey
a flow of information. While gene regulation (regulation of gene expression) occurs
within a cell and represents a regulatory mechanism for the creation of gene products
(RNA or proteins), signal transduction refers to any process that transports external
or internal stimuli (often via signal cascades) to specific cellular parts where a cell
response is triggered (e.g., gene regulation). While nodes in these networks represent
molecular entities (genes, gene products, or other molecules), edges represent a flow of
information (regulation or passing of a chemically encoded signal). Figure 1 gives an
example layout of a graph representing some part of a gene regulatory network.

Protein Interaction Networks represent physical interactions of proteins with each other
or with other binding partners such as DNA or RNA. The nodes in such networks rep-
resent proteins or sets of proteins. The time scale of protein interactions ranges from
very short, transient processes (for instance, pairwise protein interactions and phospho-
rylation or glycosylation events) to very long lasting, permanent formation of protein
assemblies (protein complexes) working as molecular machines. The interaction edges
are normally undirected, but may be directed in case of specific interaction (such as
activation) or of heterogeneous networks (e.g., protein-protein and protein-DNA/RNA
interactions), resulting in mixed graphs. Each node and edge may be annotated with ad-
ditional biological attributes like expression level, cellular localization, and the number
of interaction partners. For an example layout of a protein network, see Figure 2.
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Fig. 2: Visual representation of the GAL4 protein interaction subnetwork in yeast. The protein
nodes are colored by a shade gradient according to the expression value; green represents the
lowest, red the highest value, and blue a missing value. The node size corresponds to the number
of interactions. The shades and styles of the edges represent different interaction types; solid lines
indicate protein-protein, and dashed lines protein-DNA interactions. The graph was drawn with
Cytoscape [8] using its implementation of the spring-embedder algorithm.

Metabolic Networks describe how metabolites (chemical compounds) are converted
into other metabolites. Such a network is a hypergraph that is usually represented as a
bipartite graph G = (V1 U V4, E). The node set is partitioned into the set V; of metabo-
lite and enzyme nodes (enzymes catalyze the chemical reactions converting metabo-
lites) and V5 the set of reaction nodes. Large network posters (e.g., Nicholson’s [24]
and Michal’s [22] pathway maps) are available, and several projects created graphical
representations of metabolic networks and offer access to these graphs via web pages
(e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) [26] or the BioCyc collec-
tion [16]). The availability of these representations has established a de facto standard
for metabolic network drawings. These near-orthogonal drawings possess several char-
acteristic features, i.e., the main direction of reaction pathways is accentuated, relevant
subgraphs are placed close to the center of the drawing, substances and products of a
reaction are clearly separated, and co-substances are placed out of the main path close
to the reaction. Layout algorithms such as [17,27,28] obey established drawing styles
of these networks. Figure 3 shows an example layout of a metabolic network.

2.2 The Attributes of Network Elements

The visual representation of primary and secondary data that has been mapped onto
the elements of a biological network is an important research field. This is mainly
due to the following two facts: firstly, manual analysis of primary and secondary data



Fig. 3: Part of the glycolysis/gluconeogenesis pathway with additional data mapped onto some
nodes. Circles encode metabolites, rectangles represent enzymes catalyzing the reaction, and
rectangles with rounded corners denote other pathways. Solid and dashed lines represent reactions
and connections to other pathways, respectively. The pathway data was derived from KEGG [26],
and the graph was drawn with VANTED [14] in a style similar to the KEGG pathway picture.

has become virtually impossible as high-throughput analysis technologies have become
widely available in all the life sciences. Secondly, in recent years, it has become evident
that a deeper understanding of complex biological system such as cells, tissues or even
whole organisms can only be achieved if the findings of life sciences such as proteomics
or genomics are put into context.

The various types of primary data are defined by the different types of biochemi-
cal entities and experiments (e.g., time-series experiments or differential studies) and
entities that are the subjects of analysis, namely, gene sequences, transcripts, expres-
sion levels, proteins, protein concentrations, metabolites, metabolite concentrations, or
fluxes (of mass or information). The structure of the class of secondary data is, how-
ever, even more complex, and different categories of inferred, derived, or predicted
information can be distinguished such as results of correlation analysis or comparisons
of different biological states (e.g., healthy vs. diseased, before vs. after treatment with
a drug, different organisms). The data belongs to different data types, namely:

e nominal data such as sequence names or categories
e ordinal data such as ontologies, rankings, or partly ordered information
e scalar data such as comparisons or ratios

e categorized spatial data such as data points that refer to biological entities from
various parts or substructures of a cell.



The distinction between these categories is not clear in all cases. It should also be
mentioned that primary as well as secondary data are subject to uncertainties (measure-
ment errors, prediction confidences, etc.) and that the visualization of these uncertain-
ties is often desired.

3 Use Cases and Related Visualization Problems

This section contains a collection of typical use cases that arise in constructing and
viewing networks representing life-science data. Along with each use case, we present
a formalized description of the graph-drawing, information-visualization, or visual-
analytics problem behind the use case. Again, the list should not be interpreted as a
closed set but rather as an attempt to stimulate further research and to demonstrate that
there are many interesting and important visualization problems within the life sciences.

3.1 Visual Analysis of Data Correlation

Correlation graphs are frequently used as a means for visually expressing and exploring
complex forms of correlation within data. As a means for visually exploring data sets
within a life science context, the information contained within a data set is frequently
mapped as annotation onto a graph that represents one or more types of pathways.
Investigators are then interested in a graphical representation that highlights the inter-
relation between the connectivity structure of pairs or subsets of nodes in the original
network and their correlation. An example for an interesting correlation pattern would
be a set of nodes that is closely connected within the underlying graph but exhibits
only weak correlation in the data or vice versa. The represented connectivity structure
should include only statistically significant correlations, for instance, significant up- or
down-regulation of co-expressed genes or proteins. In particular, two or more nodes rep-
resenting biological entities with multiple annotations may be considered to correlate
if a minimum number of node annotations correspond with each other, e.g., regarding
genotype, time value or number of the biological replicates.

One possible way to attack this problem would be to model the correlation data
as a weighted graph. A weighted graph associates a label or weight with every edge
in the graph. The weights are typically integers or real numbers, as this is usually a
requirement induced by the algorithm applied to the weighted graph. We thus have a
given graph G; = (V, E;) (called nerwork in order to distinguish it from the correla-
tion graph) with correlation data that induces a second graph Gy = (V, E5) with edge
weights on the same set of nodes V. This gives us a simultaneous embedding problem.

In our case, the two given graphs typically do not have too many edges in common.
We seek either a layout of the union graph G = (V, E1 U E5), in which the given net-
work (1 and the correlations are clearly displayed, or two disjoint layouts, in which
the coordinates of the nodes in both layouts are identical. In the first case, a challenging
task is to provide a layout which clearly emphasizes the two different edge sets £ and
FE,. Often, a layout 7, of the graph G is given that has to be preserved as closely as
possible. In this case, there is a trade-off between preserving the mental map (i.e., each



user’s individual mental representation of a graph and his or her landmarks) and em-
phasizing the correlation structure. Possible solutions may either fix the layout given in
1, Or try to preserve the mental map by keeping the orthogonal relations, the topologi-
cal embedding (i.e., each node of the graph is mapped to a point in the plane and each
edge is associated with a curve segment between the points of its two end nodes), or the
layout of a backbone (a subgraph of the given graph that serves as an abstraction).

3.2 Visual Comparison of Similar Biological Networks

Conservation of biochemical function during evolution results in structurally similar
molecular subnetworks across different organisms and species. Uncovering relevant
similarities and differences or comparing networks in different states (e.g., diseased
vs. healthy), at different time points, or under various environmental conditions (for
example, temperature, pressure or substrate concentrations) supports the life-science
experts’ knowledge-discovery process, for example, by identifying disease-specific pat-
terns (biomarker discovery).

Given a set of graphs G, ..., Gy with a high degree of similarity between each
other, the task is to lay them out in a way so that the differences (or the similarities) are
highlighted. This problem can be attacked via simultaneous embedding, which requires
obtaining either a single layout of the union graph G = G U ... U G}, or k disjoint
layouts of the graphs G; (i = 1, .. ., k) such that the coordinates of all nodes common to
two or more subgraphs are the same. An alternative representation has been given in [7]
where the third dimension has been used to stack the k layouts above each other. In
these layouts, crossings between edges belonging to different graphs G; # G are either
completely ignored or counted as less important than “real” crossings. In the context of
biological networks and pathways, the stronger simultaneous embedding problem with
fixed edges occurs, which forces not only the nodes but also the edges occurring in
two or more graphs to be drawn identically. This guarantees that identical subnetworks
have an identical layout. Sometimes, it may be important to keep a mental map of
already given layouts of some of the graphs or their backbone structure. In any case, the
layouts must obey the given biological constraints concerning the specific network type.
Sometimes, the networks may be large, and it becomes desirable to hide some parts of
the network and to highlight only the specific points of interest. Points of interest may
be differences between the networks, but could also be important network structures
such as the main pathways in a metabolic network. Here, one possibility would be to
generate layouts in which the differences are all concentrated within only a few layout
areas, which, of course, represents an abstraction and fails to preserve a mental map.

3.3 Integrated Representation of Multiple Overlapping Networks

The different types of biological networks describe different functional aspects of the
whole cell, tissue, or organism in question. To get a deeper, system-wide understand-
ing, these networks need to be combined. For example, the enzymes acting in metabolic
networks are proteins and take part in protein interaction networks. It is thus becoming
increasingly common to integrate these different types of networks into joint networks.



A good joint layout of these networks should reveal the interaction between these net-
works, for example, how specific nodes of the gene regulatory network activate or in-
activate whole subnetworks of the metabolic network. In order to simplify the identi-
fication of these subnetworks, mental map preservation on the level of the metabolic
network is helpful.

We need a representation of combined networks in which the conventional layouts
(there may be several different ones) of each of these networks need to be respected.
Moreover, some groups of nodes in one network may belong to groups of nodes in
another network. This mapping (which may bea 1 : 1, 1 : n, or n : m mapping)
needs to be displayed in the layout. We consider the case of integrating two networks,
in which the involved mapping partners can be viewed as a cluster in a cluster graph
C = (G,T) of cluster depth 2. Using this approach, the problem may be attacked via
the following formalized problem.

We are given two cluster graphs C; = (G1,71) and Cy = (Go,T») with G; =
(Vi, E;) (i = 1,2) and cluster depth 2, and a mapping function ¢ : C; — Ca, where C;
denote the clusters in G;. Generate a layout 7(G) of the union graph G = G; U Gy U
G|[F)], where F denotes the edges induced by the mapping, respecting the clusters as
well as the conventional layouts of each of these networks. In the simpler case when
the graph G5 is highly disconnected (e.g., Eo = 0)), we may prefer a solution in which
the connected components of G2 are integrated into a layout of GG1. In this case, we do
not require to respect the root clusters in the problem mentioned above. Sometimes, the
layout of G may be given. If this is the case, there is often a trade-off between sticking
to the given layout as closely as possible (or trying to preserve a user’s mental map or
the backbone of the original graph) and obtaining a better representation of Gs.

3.4 Visualization of Sub-cellular Localization

Cells consist of distinct compartments, subcellular locations, separated from each other
by membranes. Examples for these are the cytosol, the nucleus, the mitochondria, or
chloroplasts in plants. The membranes enclosing a compartment separate parts of the
biological networks as well. Different partitions of the network will be localized in
different subcellular locations and hence cannot interact with each other directly. It is
thus essential for an understanding of the network’s function to integrate that spatial
information into the layout of the network. The required localization data may be either
already contained in data sets derived from experiments, may be extracted from external
sources, or may be predicted.

Given a network G = (V, E) and additional localization annotation for the nodes
in V, we search for a layout that reflects the topographical information of G and that
conforms to the drawing conventions for that type of network. It should, of course, be
at the same time aesthetically pleasing. Note that the subcellular localization does not
just give a clustering of the nodes, for example, a specific relative position of the cellu-
lar compartments may be implicitly given by the biological morphology. If G reflects
a flow of mass or information, the direction of the flow also needs to be displayed by,
e.g., hierarchical layering of the nodes. A simple representation of a cross-sectional cut
through a cell would be a stacking of layers as in [5]. In a layout that is inspired by
biological morphology, subgraphs of the network should be arranged according to their



subcellular localization in such a fashion that the physical structure of the compartments
delimiting these subgraphs becomes evident [9,23]. In order to increase the user’s ac-
ceptance of such layouts, it may be necessary to resemble the (manually generated)
layouts from established projects like BioCarta [1]. Using a layered drawing approach
has the inherent flaw that mass and information may only pass freely between members
of neighboring layers.

3.5 Visualization of Multiple Attributes

Analyzing data in a life-science context often requires the consideration of multiple data
attributes. One example for this would be the analysis of several time-series data sets in
the context of a biological network. This is frequently done in order to better understand
the dynamic behavior of a biological system. The combined representation of such time-
series data and a corresponding network should allow investigators to gain new insights
concerning the underlying system, such as co-regulated elements and their connection
within the network. Such an analysis can, for example, be achieved by mapping the data
onto the nodes of a network, see Figure 3 where time-series data from two series (day
and night) were mapped on parts of the network (cp. enlarged nodes).

Mapping the given data onto nodes and/or edges is one possibility of solving the
problem. It is also the simplest and most straight-forward one but has the general prob-
lem that simple use of small visualizations that replace, for example, the node represen-
tations is most of the time not sufficient, as a visual comparison of such small graphics
in a large graph becomes very quickly infeasible. Furthermore, one has to consider that
the attributes involved may belong to various types of data. Each data type needs spe-
cific requirements for its visual representation [12]. The challenge here lies in finding a
harmonic combination of visual representations for mixtures of different data types.

A possible solution lies in the use of so-called preattentive features [12]. A preat-
tentive feature is a visual property of a picture or drawing that can be very rapidly and
accurately detected by the low-level human visual system. Therefore, users do not have
to focus their attention onto one specific part of a drawing in order to understand its ba-
sic visual properties. Another possibility is to use an additional view separated from the
original network view for displaying the attributes. This idea is based on standard coor-
dinated and multiple view visualization techniques. Drawbacks of this method are the
need to add connections between the views as well as the spatial distance between both.
This is usually done using brushing-and-linking techniques that are used to highlight,
select or delete subsets of elements by pointing to specific elements. When multiple
views of the same data are used simultaneously, brushing is typically associated with
linking, i.e., brushing of elements in one view affects the same elements in other views.
First results that try to compare both approaches [31], i.e., multiple views and attribute
integration, cannot be directly used in our complex case of biochemical networks.

3.6 Visualization of Flows and Paths in Networks

The qualitative and quantitative distribution of mass and signal flows (fluxes) within a
biological network has to be analyzed under consideration of uncertainties in the data.
The flow along certain paths may change over time (time-series of measurements) and



the paths through the network may be numerous so that not all of them can be dis-
played. Investigators are, in such cases, primarily interested in the main paths through
the network, i.e., those paths that possess a statistically significant flow and transport
a considerable percentage of the overall flow through the entire network, and in the
metabolites and reactions that are involved in these paths.

The given network, together with quantitative and qualitative information about the
flow of mass or information (edge weights), may be a potentially very large one. For di-
rected graphs such as metabolic networks, the layout must reflect the hierarchical nature
of the flow, preserve layouts for subnetworks originating from textbook representations
as closely as possibly, adhere to general drawing conventions, and, at the same time,
focus on the relevant parts of the network, e.g., paths that at a certain point in time
transport a large part of the flow. These main paths thus have to be visually emphasized
(e.g., placed at the center of the layout and drawn as straight lines) and the distribution
of the fluxes within the network have to be depicted, for example, by using different
edge widths or colors.

If the dynamic change in the flow over time also needs to be visualized, smooth ani-
mations between layouts are required to preserve the user’s mental map. In the past, this
problem was mainly covered by software visualization techniques, especially by algo-
rithm animation. In information visualization, solutions for showing flows and paths in
networks are relatively rare and mostly limited to special cases or domains, to visualize
communication flows in social networks [25].

3.7 Exploration of Hierarchical Networks

Biological networks often comprise several thousands nodes and edges. To support the
exploration of such large and complex structures, the entire network is usually broken
down in a hierarchical manner into pathways and subpathways. Investigators commonly
focus on (sub)pathways in a region of interest and explore their relation to other path-
ways. However, due to the many connections between different pathways, an abstract
overview-like picture of all pathways interconnections as well as an interactive naviga-
tion from a set of pathways to other connected or related pathways is often desired.
Given a huge biological network, methods for the biologically meaningful visu-
alization of selected subsets G, ..., G (e.g., pathways) and their interrelations, as
well as techniques for the navigation within the network are needed. In order to allow
the user to keep his orientation during exploration of the network, the layout changes
resulting from a user interaction (e.g., selection of an additional pathway) should be
small, and context information needs to be represented in an appropriate way. Expand-
and-collapse mechanisms thus need to be incorporated into layout algorithms such that
drawing conventions and the mental map are preserved. These operations could be re-
stricted to certain levels of abstraction, e.g., by only collapsing/expanding semantically
meaningful substructures like pathways. One of the main challenges is that layouts for
such subnetworks as well as their relative position to each other may be pre-specified.
This layout information needs to be preserved as closely as possible. As these networks
are too large to be laid out nicely as a whole, an overview graph or a representation of
the backbone could be defined by reduction or abstraction that covers the topologically
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or semantically relevant features of the network, thus helping the user in navigating
through the network.

The subsets Gy, . .., Gy do not need to be disjoint but may partially overlap. This
poses an additional challenge for the visualization problem: Either the duplicate com-
ponents are merged, which complicates the task of mental map preservation, or it has
to be clearly emphasized that they represent the same biological entity.

4 Conclusions

Biological networks play a crucial role in systems biology. Many universal as well as
special-purpose tools and libraries are available for laying out and drawing graphs in
order to help visually investigating these networks. However, these tools either do not
adhere to the special drawing conventions and recognized layouts in biology or are not
adequate for handling large graphs.

The use cases presented here reveal graph drawing as well as information visual-
ization problems arising in the biological domain. While we present possible solutions
to these problems, we also consider this paper a challenge to the graph drawing com-
munity and people working on network visualization in systems biology as well as
the life sciences. The problems described here are far from being solved for all practi-
cal scenarios and certainly merit further attention. Developing improved solutions will
require custom state-of-the-art graph-drawing approaches, and more importantly, col-
laboration between researchers from graph drawing, information visualization, visual
analytics, and the life sciences. We hope that this paper encourages such collaborations
and presents interesting research directions in these fields.
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