Chapter 7


Measuring the Effectiveness of Virtual Layer Model  

7.1 Introduction

The Bayesian network model for information retrieval is inherently computationally complex and requires some optimisation in order to make the model practically useful. The primary cause of this high computational complexity lies with the size of the link matrices. We have discussed several approaches that can be used to reduce the link matrix size in chapter 5, in particular the addition of a virtual layer.


In the virtual layer optimisation approach, the parent nodes are partitioned or classified into a number of groups. Each group is then attached to a virtual node and this virtual node in turn is attached to a document node. The choice of the clustering method applied to the virtual layer influences the retrieval performance directly, as shown in the experimental results presented in chapter 6. The two clustering methods (namely random and non-random) introduced in section 5.3.3 produce different retrieval performance, with the random clustering method produces the highest average precision.


Different clustering techniques result in different Bayesian network structures. The optimal clustering within the network will lead to the most efficient inference. In this chapter we will utilise a method by which we can measure the effectiveness of the classification or clustering, namely that of Minimal Message Length (MML). The objective of this method is to provide a means of measuring the complexity of modeling the virtual layer in Bayesian network for information retrieval. We use this method to determine the effectiveness of a classification model for Bayesian network nodes without performing intensive retrieval testing. Section 7.2 presents the background theory of this measurement method with the emphasis given to modeling with real valued parameters (the weights of the links are real values). Section 7.3 shows how the MML method can be used to measure the effectiveness of classification in our information retrieval application. We present an example of such a  calculation using one of the clustering methods generated by experiments on the ADI collection in section 7.4.

7.2 Minimum Message Length

The Minimum Message Length (MML) paradigm is introduced in [Wallace68].  In this paper, it is stated that a classification may be regarded as a method of representing more briefly the information contained in SD attribute measurements, where S is a set of items and D is a set of attributes. These measurements contain a certain amount of information which without classification, can be recorded directly as S lists of the D attribute values. If the items are now classified, then the measurements can be recorded by listing the following:

1.
The class to which each item belongs.

2.
The characteristics of the class.

3.
The deviation of each item from the characteristics of its parent class.

The best classification is suggested by the briefest recording of all the attribute information. In MML, the recording of the attribute information is achieved by regarding the attribute information as a message. 


Consider that we have some measurements from the real world and a set of models, M{m1,m2,…,mn}, that attempt to explain the measurement. MML assesses the effectiveness of each model mi  M by calculating the length of the message needed to explain the measurement. In other words, since this method is based on information theory, it calculates the length of the message required by a receiver to re-construct the information send by the sender during communication. The communication between the sender and the receiver in MML comprises two parts, namely:

1.
The message that describes the model. The model is usually the probability distribution of the data values.

2.
The message that describes the data values. This message can be constructed by using a code dictionary. The code dictionary can be easily constructed from the probability distribution defined in the model part.

The best or the optimum model is given by a model mi  M that produces the shortest message in describing the two-part message. There is a trade off between the model complexity and the size of the message length of data values. A complex model requires a long message to describe the model but requires only a short message to describe the data values. On the other hand, a simple model leads to a short message for the model description but a long message for the data values. It is asserted by MML that the model that produces the shortest overall message for both model and data values parts is the optimum model. 

Following Shannon’s law, the message length may be assumed to be  proportional to minus the logarithm of the relative frequency of the occurrence of the event which it nominates. More specifically, considering the difference in the nature of the attributes, the encoding is calculated as follows [Oliver94]:

1. Encoding an event that is equally likely to occur from N possible events requires a code length of 
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2.  Encoding an event which has the probability P requires 
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3.
Encoding a real value y sampled from a probability density f(y) with an accuracy of measurement 
. requiresbits.

Since we are dealing with real valued parameters in the clustering of the link weights, we will concentrate on discussing the encoding and calculation of message length for real valued parameters in the next section.

7.2.1 Encoding Real Valued Parameters
Assessing a model of a real valued distribution requires the description of the distribution using real valued parameters. Real valued parameters cannot be described to infinite precision in a finite message. Thus constructing the code dictionary for the parameter values involves some approximations. 


One method of approximation involves the construction of a code dictionary from a density function which is divided into cells, the number of which is called the accuracy of the parameter value ( AOPV). If the uniform density function is used, the width of the cells is given by 
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, where the parameter values are in the range [a,b]. Thus, to specify the cell to which  a parameter belongs requires 
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The message length, as stated, depends on the message length of the model and of the data. The model and data lengths of the message are directly influenced by the AOPV. The smaller the AOPV (i.e. the more accurate the measurement) , the shorter the message length for the data. However in this case, the model’s message length will be longer. The optimal message length is achieved when the shortest combined length of the model and the data message is obtained. The optimal message length can be approximated by calculating the expected message length, which is given by the following formula[Oliver94]:
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where


is the mean used to code the data values xi (i=1,...,N) .


is the standard deviation to code the xi.

s
is the unbiased sample standard deviation. 

s
is the sample standard deviation.


is the accuracy of the measurement of the data values xi.

N 
is the number of data values.

The first two terms in equation 7.1 represent the length of the message to describe the model and the last two terms represent the length of the message to describe the data.  The optimal AOPVs are given by [Wallace68]:
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(7.3)
In MML, the value of the AOPV depends upon the data which the message is describing. It is worth noting that the two part message used in MML may seem incomplete and that a three parts message (AOPV, model, data) is required. However, Wallace and Freeman (Wallace87) showed that in many cases a three parts code is not necessary, and hence we will use a two part message calculation in identifying the effectiveness of the virtual layer model being used to optimsed our Bayesian network. 

7.3. Measuring Effectiveness of Virtual Layer Model with MML
In the classification of index terms for the virtual layer approach to Bayesian networks optimisation, the following assumptions are made:

1.
The index terms are assigned independently to documents in the collections.

2.
The weights assigned to the links between the index term nodes and document nodes are normally distributed within a document collection.

3.
The index terms cannot be assigned to more than one cluster or group, i.e. the clusters are disjoint.


We will now consider how the MML method may be used to judge the effectiveness of the clustering method employed in constructing the Bayesian network with virtual layers. There is some prior knowledge that is communicated between the receiver and sender at the start of the transfer process, thus they will not be included as part of the message. In our MML model of index term clustering for the virtual layer, the prior knowledge consists of the following:

1.
The total number of  link weights to be classified.

2.
The number of attributes per term, which is equal to 1 (i.e. the link weight values).

3.
The nature of the attribute distribution, which is continuous. 

4.
The range of the mean used to code a link weight xi (range).

5.
The range of the standard deviation to code xi (range).

6.
The accuracy measurement 
7.
The total number of groups in the classification.


Using the assumptions and prior assumptions stated above, we can calculate the complexity of the index term cluster as follows:

Given n clusters c1, c2, c3, …, cn  (with respective link weights xi  for a document d)j, and that all the clusters are disjoint, the total expected message length over the n clusters  is calculated as:
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The expected message length for the individual clusters is calculated using the equation 7.1. The accuracies of parameter value (AOPVs) for the mean and the standard deviation for the cluster are estimated using the equation 7.2 and 7.3 respectively. The range are determined through prior knowledge, therefore they will be the same for all the clusters.
 and the accuracy measurement  and range
The best clustering method generates the shortest E(MessLen),or in other words, given two clustering methods C1 and C2 , C1 is a more efficient clustering method compared with C2 if 
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7.4 Illustration of MML Calculation for Index Term Clusters


Consider the following clusters produced by the random classification method (see section 5.3.3) for a document (doc-1) in the ADI collection as shown in figure 7-1. For this document, the random clustering method produces 8 clusters which each cluster having a  different mean and standard deviation. The difference in the value of the standard deviation will cause a difference in the value of the AOPV (the accuracy of measurement). In turn, this difference in standard deviation will influence the  complexity of the model and the total message length.
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Figure 7-1 Clusters for doc-1 in ADI collection using the random clustering method.

To calculate the expected message length of GROUP 1, the range can be estimated as 0.01 as this is our accuracy of measurement. Using these values and taking N = 9 (the population of this cluster), we can calculate the AOPVs and E(MessLen) of GROUP 1 as follows:
 is also taken as 1 and  can be estimated as 1 since the possible values of the link weights in our network lie between 0 to 1. The range
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Note that the optimal value for  is the unbiased estimate of the standard deviation [Wallace68]. Following the above procedure, E(MessLen) for the remaining clusters can be calculated. The E(MessLen) values for these groups are shown in table 7-1.

GROUP
Model length
Data length
E(MessLen)

1
9.54
35.29
44.83

2
6.95
46.92
53.88

3
6.25
43.79
50.05

4
10.01
28.77
38.78

5
5.55
46.61
52.16

6
7.11
40.36
47.47

7
5.62
46.34
51.96

8
6.05
44.61
50.66

TOTAL
57.08
332.69
389.79

Table 7-1 Expected Message Length for doc-1 using the random clustering method.

We now consider the output of another clustering method, shown in figure 7-2, which clusters link weights with similar values (i.e. values such that the difference between the value and the group mean is less than some threshold difference). 
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Figure 7-2 Clusters for doc-1 in ADI collection using the non-random clustering method.

This method is similar to the non-random clustering method (discussed in section 5.3.3.1) except that it does not breakdown further clusters that have population larger than the allowable number of parents per node (limit). We need to adopt this change in order to generalise the example and avoid complications inherent in comparing non-hierarchical and hierarchical clustering schemes. The message lengths for the clusters produced by this method are given in table 7-2.

GROUP
Model
Data
E(MessLen)

1
9.88
16.44
26.32

2
12.85
75.73
88.59

3
7.36
7.44
14.80

4
8.85
10.11
18.96

5
12.07
123.04
123.04

TOTAL
51.01
232.76
271.71

Table7-2 Expected Message Length for doc-1 using the non-random clustering method.

We note that model complexity for individual clusters is higher on average for the non-random approach compared with the random approach. However, the fact that the data values (link weights) in individual clusters in doc-1 are similar (by virtue of the clustering method itself) results in a much shorter message length of the data part of the total message length produced by this method compared with that produced by the random clustering method. Moreover, the cost of having more groups in the random clustering method also overshadows the simplicity of this model. Therefore, the total message length required to describe the clustering in the random method (389.79 bits) is longer than that of the non-random method (271.71 bits). 

The observations of the behaviour of the expected message length on all the documents, shows that the random clustering method always produces a longer message than the non-random clustering method. However, it constantly produces similar message length for individual clusters within the document (see Appendix C for the full list of all expected message length of documents in ADI collection
). 

The experimental results in chapter 6 (see figure 6-10) showed that the random clustering method performs better in the average precision by 0.32% but performs relatively worst at the low recall level (10% to 50% recall). Observing the message length produced by the two methods, we can derive the relations between the performance of the methods in terms of recall and precision with the nature of the virtual layer models' message length in the following ways:

· A virtual layer model that can produce identical expected message length for the individual cluster in layer will produce a higher average precision than virtual layer model that produces distinct expected message length for the individual cluster. 

· A virtual layer model that produces shorter expected message length will produce higher precision in the low recall level, but not necessarily produce a higher average precision. 

Considering the relations stated previously, we can conclude that the shortest expected message length for a virtual layer model may be optimised in terms of computation complexity, however, it does not lead to a higher average precision in information retrieval context. In information retrieval context, to produce a high average precision, the virtual layer model has to produce similar expected message length for the individual cluster. The similar in expected message length for the individual cluster, in fact, is a measure of the "symmetry" of the model. This symmetry, as we suggested in chapter 5, will produce the optimum performance for the virtual layers created using the random clustering method. 

On the other hand, a virtual layer model that produces shorter message length, such as that of non-random clustering method, will produce higher precision at a low recall level. Hence, it still has some benefit when it is used for the precision oriented system. 

7.5 Summary

In this chapter, we have used a model based on Minimal Message Length (MML) to evaluate the effectiveness of the virtual layer model to find the optimum Bayesian network. It is important to clearly clarify the meaning of "optimum" according to the objective of the systems. In an information retrieval context, the optimum model may be considered as the model that can produce the highest average precision or the model that can produce the most efficient computation. The MML model suggests that the computation complexity is optimised when the clustering method which produces the shortest expected message length and the average precision is optimised by the model that produces similar expected message length for individual cluster in the virtual layer. The virtual layer model that produces the shortest expected message length may not be optimum in terms of average precision but it will be optimum in terms of computation complexity and vice versa. 

 
We have shown that for ADI collection, according to this evaluation method, the random clustering method provides a more optimised clustering than the non-random method in term of average precision because the random clusters in the virtual layers produces similar expected message length for the individual clusters. The results of the evaluation agree with the experimental results presented in chapter 6, the random clustering method produces 0.32% higher average precision than the non-random clustering method. The non-random clustering method ,however, is still beneficial for precision oriented systems because it produces higher precision at low recall level and is optimum in terms of computation complexity. 

Some consideration also has to be taken regarding the preprocessing required to generate the clusters. The preprocessing required in the non-random clustering method is more costly in terms of computation compared with that of random clustering.method This is counterbalanced by the fact that this preprocessing only occurs once at the time of building the document collection, and thus the high computational cost of the preprocessing for the non-random clustering methods will be offset by more efficient inference during the retrieval process. In terms of recall and precision, the choice of clustering is still based on the overall objective of the information retrieval system. In this respect, recall oriented systems will benefit more from the random clustering method and the precision oriented systems will benefit more from the non-random clustering method.

� The list in Appendix C shows that index terms in each document in ADI are classified into a number of groups. Each group produces almost identical expected message length value in the random clustering method. On the other hands, each group produces varied expected message length value in the non-random clustering method.
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