Chapter 5

Handling Large Bayesian Networks

5.1 Introduction

We have presented a Bayesian network model for information retrieval in the previous chapter. This chapter presents discussion on issues associated with the practical implementation of the model. Implementing an information retrieval system using a Bayesian network is not a straightforward task. Exact inference algorithms for a Bayesian network such as Pearl’s algorithm have been shown to be NP-hard [Cooper90]. Thus, approximation techniques need to be considered in order to implement the model in practice. Before we discuss the issue of implementing the Bayesian network using an exact algorithm, first we will illustrate the use of the exact algorithm in a retrieval process (section 5.2). Following this example we will discuss possible problems that may occur during implementation if we strictly follow Pearl’s algorithm or use the basic model presented in chapter 4. There are two main issues to be considered, namely the complexity of the computation and the indirect loop.

The complexity of computation is caused by the size of the link matrix. The link matrix size in an information retrieval network is determined by the number of index terms contained in a document. Documents with more than 30 index terms are common in a document collection. Therefore, the total size of the link matrices for the collection will be generally very large. We propose an approximation method involving the addition of a virtual layer into the network [Indrawan96] This method provides the solution to the problem of computation complexity without losing much of the accuracy required by the network to perform the retrieval. Existing approximation methods such as node deletion, link deletion and layer reduction do not provide adequate accuracy in modeling the retrieval task. We will discuss these different methods and compare them with our proposed method in section 5.3.

The indirect loop problem in the network occurred when evidence relevance feedback is used. We will discuss the existing solutions to the indirect loop problems in section 5.4. The discussion includes the methods of clustering, conditioning and sampling. The main problem with these existing methods lies with their own individual computational complexity. This complexity prevents us from adopting these methods for the information retrieval. We propose a new method involving the use of an intelligent node [Indrawan98]. This method provides for much less complex computation than the existing methods, thus providing a good solution to the indirect loop problem. We present this new method of handling the indirect loop in section 5.5.

5.2 An Illustration of an Exact Algorithm

As we discussed in chapter 4, we have adopted Pearl’s algorithm to carry out the inference process in our model. There are two main approaches to inference algorithms, namely the exact and approximate approaches [Henrion90] and Pearl’s algorithm falls into the former category. An exact algorithm defines the complete probability distribution of the propositions in the network, and as such is computationally intensive. The approximate approach on the other hand uses some estimation techniques to estimate the probability distribution in the network. To illustrate the use of Pearl’s algorithm in our model, consider an example of retrieval in a small network depicted by figure 5-1.

[image: image1.wmf]q

similarity

information

retrieval

image

feedback

D

1

D

2

D

3

0.7

0.4

0.4

0.7

0.3

0.5

0.4

0.6

0.8

Figure 5‑1 A network example of a retrieval process.

We assume that we know the values of the link weights for each link in the document network and that these links were derived from the index term distribution in the collection using equation 4.1 (chapter 4). We also assume that a user has found that the index term information carries more weight than does the index term retrieval. Therefore their links are assigned weights, for example, 0.7 and 0.4 respectively. If the user is not willing to assign the weights themselves, approximate weights can be derived from the distribution of index terms in the collection such as the tf*idf value. Note that the query is submitted as a natural language query and it is not restricted to one sentence. Thus it is possible that an index term occurs more than once in the query, ie. tf >1 for that term. The idf value for index terms is derived in the same way as in document network, that is the number of documents containing the index term in the collection.

The retrieval process is started by instantiating the query node q. The effect of this new evidence in the network is then passed onto its children, that is onto the nodes information and retrieval. The value P(information=true|q=true) is given by the weight of the link that connects the two nodes. Thus, using the weight-sum link matrix (see section 4.3.1), we have the following link matrices for the nodes information and retrieval respectively:

Linformation=
[image: image2.wmf]ú

û

ù

ê

ë

é

7

.

0

0

3

.

0

1

Lretrieval=
[image: image3.wmf]ú

û

ù

ê

ë

é

4

.

0

0

6

.

0

1

Link matrices also have to be created for node D1, node D2 and D3. Since these nodes have more than one parent node, the link matrices for these nodes need to reflect the possibility that only one parent is true or that multiple parents are true. To capture these possibilities we can combine the weight-sum and or approaches to link matrix. That means that the probability of all parent=true is given by considering all the possible combinations of true parent nodes. Using this approach, we can calculate the probability of the child node given that the parent node is true or false in the document network as follows:

P(D1|similarity=true)=0.4

P(D1|image=true)=0.7

P(D1|similarity,image=true)=0.4*(1-0.7)+(1-0.4)*0.7*0.4*0.7=0.82

Or

P(D1|similarity,image=true)=1-(1-0.4)(1-0.7)=0.82

LD1=
[image: image4.wmf]ú

û

ù

ê

ë

é

82

.

0

7

.

0

4

.

0

0

18

.

0

3

.

0

6

.

0

1

P(D2|image=true)=0.3

P(D2|information=true)=0.5

P(D2|retrieval=true)=0.4

P(D2|image,information=true)=1-(1-0.3)(1-0.5)=0.65

P(D2|image,retrieval=true)= 1-(1-0.3)(1-0.4)=0.58

P(D2|information,retrieval=true)=1-(1-0.5)(1-0.4)=0.7

P(D2|image,information,retrieval=true)= 1-(1-0.3)(1-0.5)(1-0.4)=0.79

LD2=
[image: image5.wmf]ú

û

ù

ê

ë

é

79

.

0

65

.

0

58

.

0

6

.

0

7

.

0

5

.

0

3

.

0

0

21

.

0

35

.

0

42

.

0

4

.

0

3

.

0

5

.

0

7

.

0

1

P(D3|retrieval=true)=0.6

P(D3|feedback=true)=0.8

P(D3|retrieval,feedback=true)=1-(1-0.6)(1-0.8)=0.92

LD3=
[image: image6.wmf]ú

û

ù

ê

ë

é

92

.

0

8

.

0

6

.

0

0

08

.

0

2

.

0

4

.

0

1

If we assume that there are 2000 index terms in the collection, the prior probability for the nodes similarity, image, feedback is equal to 1/2000 or 5*10-4.

Instantiating node q thus results in:

P(similarity)= 5*10-4
P(retrieval)=0.4

P(image)= 5*10-4
P(feedback)= 5*10-4.

P(information)=0.7

Using the appropriate link matrix we can calculate

P(D1|q) = 0.4(5*10-4)(1-5*10-4) + 0.7(1-5*10-4)(5*10-4) + 0.82(5*10-4)(5*10-4)

= 0.203

P(D2|q) = 0.3(5*10-4)(1-0.7)(1-0.4) + 0.5(1-5*10-4)0.7(1-0.4) +

0.7(1-5*10-4)0.7*0.4 + 0.6(5*10-4)(1-0.7)(1-0.4) +

0.58(5*10-4)(1-0.7)0.4 + 0.65(5*10-4)0.7(1-0.4) +

0.71(5*10-4)0.7*0.4

= 0.406

P(D3|q) = 0.6(1-0.4)(5*10-4) + 0.8*0.4(1-5*10-4) + 0.92*0.4(5*10-4) = 0.320

Therefore, the relevance ranking of the documents for the retrieval network depicted in figure 5-1 for query q is document D2, document D3 and followed by document D1.

In order to implement the evidence feedback, the document nodes which are found to be relevant by the user are instantiated. For example, suppose the user found that they are actually looking for information retrieval articles that discuss image retrieval through similarity and the possibility of using the relevance feedback to improve the retrieval. In this case they might chose documents D1 and D3 as the relevant documents. To recalculate the belief in the documents node, we instantiate nodes D1 and D3. When we instantiate these nodes, this new evidence will influence the belief in the nodes similarity and image due to document D1, and in nodes retrieval and feedback due to document D3. Because the link qretrieval meet tail-to-tail in node q, any change in the belief in nodes information or retrieval will require the recalculation of belief in the node q (see the heuristic check for the independence assumption in section 3.4.2). As a result an indirect loop exists in the network when the evidence feedback approach to relevance feedback is used. In other words, the network now becomes multi-connected.
information and q
When a local propagation algorithm like Pearl’s which is devised to handle singly connected networks is used in a multi-connected network, failure may occur in one of two ways. Firstly, it is possible that an updating message sent by one node cycles around the loop and causes the same node to update again. This will repeat indefinitely, preventing convergence of the propagation. Secondly, even if the propagation does converge, the posterior probability may not be correct due to the algorithm’s independence assumption which does not hold for multi connected networks. We therefore need to adopt some method that enables us to break this loop so that the network becomes singly connected and hence allows use of Pearl’s algorithm. To achieve this we need to look at the independence assumption of the network and approximation methods.

Apart from the indirect loop issue, another important issue to be considered during implementation is that of the overall size of the network. The investigation of reasoning with uncertainty using Bayesian network began during the development of diagnosis aids for medical applications [Fryback78, Cooper84, Heckerman85, Shwe90]. The model’s assumptions and inference algorithms were developed based on this medical diagnostic application. The size of the network in the medical diagnosis problem was relatively small compared to that of information retrieval. For example, the number of nodes involved in the Pathfinder
 is 63, whereas the smallest test collection available to information retrieval research (ADI collection contains 82 individual documents) requires around 900 nodes in a Bayesian network. In real life applications, the number of documents in an information retrieval collection may be more than one thousand. The big difference in the size of the networks occurs due to the increase in the number of propositions introduced to the network, and the size of the link matrices (which is dictated by the number of parent nodes of a child node). This increase in network size causes the computational complexity of the inference algorithm to increase accordingly.

The link matrices in a retrieval network are large due to the fact that most of collection will have documents that contains on average more than 20 index terms. With this number of index terms per document and the binary assignment of index terms to the document, we will have link matrices with numbers of elements > 220 for most of the document nodes. When all the documents in the collection are considered, the overall size of the link matrix will be large. Consider, an ADI collection with 82 documents and average of 25 index terms per document - the total size of the link matrix will be around 82225.

Another aspect that contributes to the increase in computational complexity is the fact that a retrieval network is a dense network whereby a large number of nodes share common children or parent nodes. Thus, any change in belief in an index term node may influence a large part of the network and cause intensive recalculation.

5.3 Reducing the Computational Complexity

Reducing the computational complexity can be achieved through the utilization of some approximation methods. There is a trade off between a Bayesian network model’s accuracy and its computation complexity. We need to choose carefully an approximation technique that enables us to reduce the computation space without sacrificing much of the accuracy. By loss of the accuracy we mean the event that the posterior probability of the approximate method is different from the exact algorithm posterior probability.

Approximation approaches to Bayesian network inference are not new. Many researchers have investigated the possibility of approximation techniques due to the complexity of exact match algorithms like those of Olmsted [Olmsted83], Pearl [Pearl88], Lauritzen and Spiegelhalter [Lauritzen88]. One of the common approaches to the approximation involves coarsening the state space [Chang91, Provan95]. The coarsening effect can be achieved through different ways, which are respectively node and link deletion, layer reduction and intermediate node layer addition.
5.3.1 Node and Link Deletion

One obvious way to reduce the complexity of a network is to delete the parent node and its links when we consider that its influence on its children nodes is minimal. Consider the example in figure 5-2.

[image: image7.wmf]W

1

W

2

W

3

W

1

W

2

W

3

W

4

Figure 5-2a Original network

Figure 5-2b Reduced network

P

1

P

2

P

3

P

4

C

1

P

1

P

2

P

3

C

1

C

2

C

2

W

5

W

6

W

6

Figure 5‑2 Reducing the network with node deletion.

Let W1,W2,…,W6 represent the link weights of the network in figure 5-2a. If we set a threshold value x, we can compare every link in the network with x and delete any link with link weight < x. Let us assume that W4 < x and W5 < x. Thus we can delete those links with weights W4 and W5. The result of this operation is depicted by figure 5-2b. Notice also, that node P4 is deleted from the network because it exists in the network solely due to a proposition explained by P(C1|P4), therefore its effect on other propositions in the network is lost when link W4 is deleted. This approach can be used for approximation in information retrieval systems with the proviso that caution needs to be taken in determining the threshold value.

In information retrieval systems, we discriminate between documents according to their relevance using the term weights because the link weights in our model are implemented using tf*idf weighting. This weighting is known to measure the scarcity of terms in the collection and it influences the precision level of retrieval [Sparck-Jones72]. Thus, documents containing index terms with high values of associated term weighting are assumed to be highly relevant. When we remove all the links with weights below the threshold value from the network, we actually reduce the term discrimination ability of the network because the range of the term weights is reduced. Therefore, with this approach we will not sacrifice system performance in terms of recall but may lose some performance in term of the precision. The question that remains is how much reduction in precision can we tolerate? The only way to check the degradation in the precision is by choosing an arbitrary threshold value and then examine the precision level of the reduced network model. The chosen threshold will vary from collection to collection due to the difference in their network structure.

This method is therefore appropriate for recall oriented systems. A recall oriented system aims in providing the best coverage of the concept required by the user without worrying too much about the position of those relevant documents in the retrieved documents list. However, it aims to retrieve all the relevant documents.

5.3.2 Layer Reduction

Node deletion may also be achieved through the layer reduction method [Provan95]. In this approach the nodes of a particular layer are deleted. The links that lead to and from these nodes are then joined to create the new links. This approach is illustrated by figure 5-3.

[image: image8.wmf]p

1

p

2

p

3

q

4

q

5

q

6

p

1

q

1

p

2

q

2

p

2

q

3

p

3

q

2

p

3

q

3

Figure 5-3a Original network

Figure 5-3b Reduced network

Figure 5‑3 Reducing the network by collapsed layer.

Consider a part of a larger network as depicted in figure 5-3a. It contains three layers and has two sets of link weights. The links p1, p2 and p3 connect the top and the middle layers, whereas q1 ,q2, q3 connect the nodes in the middle and the bottom layers. When the middle layer is collapsed, the reduced network is depicted by figure 5-3b. The effect of the nodes in the middle layer is replaced by the new combined link weights. For example, link p1 and q1 are now combined into link p1q1, i.e. the new weight of p1q1 can be calculated as the product of p1 and q1.

With this approach, the number of link weights and nodes are reduced. However the number of elements of the link matrix in the child node is actually increased because each node in the bottom layer will have more parent nodes compared with the original network. Moreover, if we collapse the index term layer in the document network of our model, we will lose the ability to produce document interconnectivity. In fact, if we reduce the network by taking out the index term layer from the document network, we will have a network that gives a retrieval function similar to that of using inner product with tf*idf weighting (see section 2.4.2). In other words, the retrieval function of the network will be equivalent to that of counting of the number of index terms shared by the query and the document. Thus, when we use this approximation technique, we are restricting the retrieval to a simple matching function.

5.3.3 Adding a Virtual Layer

We propose a new technique for reducing the computation complexity, namely adding a virtual layer to the network. In this approach, for a child node with number of parents greater than a specified maximum number of parents per node, the parent nodes are classified into a number of groups. Each group is then linked to a virtual node. These virtual nodes are then connected to the original child node. To illustrate the idea, consider the example of a network depicted in figure 5-4a. A child node in figure 5-4a has 100 parent nodes. If we only assign binary propositions to all the nodes in the network, we will have a link matrix with 2100 elements to calculate P(child). This is virtually impossible to implement in practice due to limitations of computer resources. If we divide the parent nodes into small groups and each group is linked into a virtual node and these virtual nodes are then connected into the child node, we can actually reduce the number of elements of the link matrix in the child node.

Figure 5-4b portrays our modified version of the network in figure 5-4a. In the modified network the 100 parent nodes are divided into 10 groups (with each group containing 10 nodes). In this example, we have 10 virtual nodes in the virtual layer.
The child node now only has 10 parents (the number of virtual nodes). Thus the number of elements in the link matrix of the child node has been reduced to 210. Each virtual node is linked to 10 parent nodes and will have a link matrix of the size 210. This makes the total size of the link matrices in the network 11x210. This is a dramatic reduction from the original size of 2100.

[image: image9.wmf]Parents nodes

Parents cluster 1

Virtual Layer

Child node

Child Node

Parents cluster 10

1

2

100

1

10

91

100

1

10

Figure 5-4a. Original network

Figure 5-4b. Modified network

with virtual layer

Figure 5-4 Network with virtual layers.

The computing resources available for implementing the Bayesian network dictate the choice of the maximum number of parents per node. Since information retrieval systems are used mostly interactively, some small experiments may need to be performed to find an acceptable response time for a query with the maximum number of parents per node is adjusted accordingly.

The number of virtual layers is not limited to one. Once the limit has been determined, we can distribute the index term nodes into a number of groups. The total number of layers depends on the total number of the index terms to be distributed and the limit on the maximum number of parents per node. If the number of virtual nodes is greater than the specified limit, then these virtual nodes need to be grouped together as were the index term nodes. This process of grouping and introducing new layers continues until all the nodes in the network have a number of parent nodes less than the specified limit. The optimum network is obtained when we have a symmetric distribution of nodes in the network. For example, consider our previous situation where a child node has 100 parent nodes. If we have set the limit=15 parent nodes, it is better to have 10 groups with 10 members for each group rather than having, say, 6 groups of 15 members and one group of 10 members.

The virtual node acts as a summary node for a group of parent nodes. That means that the weight of the link that connects the virtual node and the child node has to capture summary information about the distribution of the parent nodes. One obvious way to achieving this is to take the group average of the original parent-to-child links and assign this average to the link virtual-to-child. The link weights of parent-to-virtual links are modified by dividing the original link weight by the group average.

Another possible approach is to normalise this virtual-to-child link by assigning the maximum weight of parent-to-child links in the group to the virtual-to-child link and modify the original parent-to-child link in the group by dividing them by the maximum weight of the group.

The two approaches can be described as follows:
Let

v be a virtual node to introduced,

p1, p2, p3,…,pn be parent nodes connected to v,

c be a child node,

w1, w2, w3,…, wn be the weight of the links p1->c, p2->c,..., pn->c respectively

u1, u2, u3 be the weight of link p1->v, p2->v,..., pn->v

wv be the weight of link v->c

The weight, wv of the link v->c using the average approach will be:

[image: image10.wmf]n

w

w

w

w

n

v

...

2

1

+

+

=

(5.1)

The weight, wv of the link v->c using the max approach will be:

[image: image11.wmf])

,...,

,

max(

3

2

,

1

n

v

w

w

w

w

w

=

(5.2)

The weight, ui of the link pi->c will be:

[image: image12.wmf]n

i

for

w

w

u

v

i

i

£

£

=

1

'

(5.3)

The average and the maximum approaches give different ramifications for information retrieval systems. Firstly, we look at the effect of taking the average approach. Since we are averaging the value of the groups and assigning the nodes randomly into the groups, we would have a similar wv for different virtual nodes in the network. Note that we assign the value of tf*idf into the wi and a high value of tf*idf is associated with high level of importance conferred on an index term for finding the relevant documents. Therefore, the effect of index terms with high term weight values on the calculation of P(d) may be reduced if there are index terms with low weight values in the same group. As a result, a document which contains these high tf*idf index terms may lose its relative superiority compared with a document which has low term weight but belongs to a group with a higher weight average. This means we cannot interpret the probability in a document node as the absolute value of the document’s probability in matching the user’s request, but rather we should see it as a relative ranking value in comparison with other documents in the collection. In the worst case, the precision may be affected and may even decline.

The maximum approach on the other hand always ensures that index terms with high term weight value will not be much affected by the nodes with low weight values in the group. This can be done by assigning the maximum tf*idf of the group to wv. Since we assign the maximum value of the group to the virtual node-to-child link, we ensure that the index terms with high term weight values play a major influence in estimating the probability of a document’s relevance to the user’s request. A document with high term weight value of index terms will not be undervalued as in the average approach. Thus, with this approach the probability values on the document node will be a closer approximation of the absolute probability of relevance to the user’s query compared to the average approach.

The choice of normalising the parent-to-virtual with the average or the maximum of the group should be made according the implementation requirements of the system. The average approach may be used when the precision is not major consideration. The maximum approach on the other hand will suit systems which require high precision retrieval. Regardless of the choice of normalising approach we have to make, adding the virtual layer provides a practical layer reduction solution to the computational complexity problem through a drastic reduction in the size of link matrices. Moreover, our proposed method retains the semantic structure of the original network presented in chapter 4. This characteristic of our approach provides a more accurate approximation than the link and deletion approaches because these existing approaches reduce the network model to an inner product retrieval function.

The adoption of a better clustering mechanism for grouping the parent nodes can further increase the accuracy of our approximation method. We present one clustering algorithm that can be adopted in the next section. A method of assessing the goodness of the clustering method model will be presented in chapter 7.

5.3.3.1 Clustering the Parent Nodes

In the clustering described in the previous section, we ignored the link weight distribution in the network. The grouping is based on the sequence of the weights in the index file. With this random approach, the performance will depend on the sequence of the link weights to be classified. To avoid this dependency, we propose another simple classification that takes into consideration the distribution of the link weights.

In this non-random classification, we group similar link weights into a group. The similarity is measured by the difference between a link weight under consideration and the mean of a group of link weights. To generalise the proposed concept, consider a set of items that have some attributes and these items are to be classified into a number of groups. The clustering process involves examining an individual item and finding its most appropriate group. The similarity in our clustering is measured by the distance between the item’s attribute value from the means of the groups. Each time an item is examined, its attribute values are compared with the existing group’s mean. During the clustering process, an item may have several candidate groups because the difference between its attribute value and the group’s mean is still within the boundary of the maximum difference allowed (in our algorithm this difference is called significant level). The item however only can be assigned to one group. The best group for the item is the group with a group mean closest to the value of the items’s attribute. Our clustering algorithm is thus as follows:

TYPE item

{

id

TYPE INTEGER

attributeValue

TYPE FLOAT

}

TYPE population

{

total

TYPE INTEGER

noAttributes

TYPE INTEGER

individual

TYPE item

}

TYPE group

{

id

TYPE INTEGER

member

TYPE population

mean

TYPE float

}

TYPE class

{

totalIndividual

TYPE INTEGER

totalGroup

TYPE INTEGER

member

TYPE group

}

MAXITERATION

TYPE INTEGER

procedure cluster(input TYPE population, output TYPE class, significantLevel TYPE FLOAT, iteration TYPE INTEGER)

begin procedure

DECLARE /* Local Variables */

totalGroup

TYPE INTEGER

i,j,k

TYPE INTEGER

numberAttribs

TYPE INTEGER

found

TYPE INTEGER

candidateGroup

TYPE INTEGER

changes

TYPE INTEGER

newTotal

TYPE INTEGER

currentDifference

TYPE FLOAT

if iteration = MAXITERATION

then return 0

totalGroup=outputtotalGroup

for i=0 to i < outputtotalIndividual do

currentDifference = 0

found = 9999 /* Assign it to big number */

candidateGroup = 9999

for j=0 to j < outputtotalGroup do

/* Find an item in any group, at the same time find the fittest

group it belongs to */

/* find the fittest group */

numberAttribs = 0

for k=0 to k < inputnumberAttributes do

currentDifference=outputmember[j].mean[k]-

inputindividual[i].attributeValue[k]

if currentDifference < significantLevel

then

numberAttribute++

endif

enddo

if numberAttribute = inputnumberAttribute

then

if j found

then

candidateGroup = j

endif

endif

if found = 9999

for k=0 to k <outputmember[j].member.total do

if outputmember[j].member.individual[k].id

individual[i].id
 input
then

found = j
endif

k++

enddo

endif

j++

enddo

if found 9999 /* item has been assigned to a group */

then

if found 9999
 candidateGroup and candidateGroup

/* We have found a better group for this item */

then

/* Delete this item from old group*/

/* Add this item to a new group */

changes++

endif

else
/* If this a new assignment of an item to a group */

if candidateGroup 9999

then

/* Add this item to an existing group */

changes++

else

/* Create a new group for this item */

changes++

endif

endif

endif

i++

enddo

Applying the clustering algorithm in our information retrieval network model, the “items” to be classified are the index terms within a document. The attributes of the items are given by the link weights. The estimation of the significant level can be derived from the standard deviation of the link weight distribution in the document collection. For example, in the ADI collection, the standard deviations of the distribution of the link weights of the individual documents are in the range 0.08 to 1.0. Thus, the significant level should be estimated within this range.

We suggest that adopting a clustering technique that recognises the distribution of the link weights will increase the precision but not the recall of the retrieval. The recall will be the unchanged since no additional knowledge is introduced into the network. We will present a comparison of the performance of the two clustering approaches, random and non-random in chapter 6. In chapter 7 we will present a method to evaluate the goodness of the clusteriong model which in turn can help us to determine the optimal clustering for our network.

5.4 Handling the Indirect Loops

The indirect loop exists in our Bayesian network model when evidence feedback is implemented. Pearl's inference algorithm as used in our model will not work properly in this situation. There are some existing approaches to handling the indirect loops. These approaches perform some preprocessing to find and break the loops before performing inference. We propose a new method for handling the indirect loop. Our method is based on the idea that we can relax the independence assumption in the network so that we can have a finite propagation in the loop. This approach will suit the information retrieval application or indeed any other large network applications because the proposed independence assumption does not require much additional computation compared to the preprocessing approaches.

There are three existing preprocessing approaches for handling cyclic propagation or loops in Bayesian networks, namely clustering, conditioning and stochastic simulation [Pearl88]. Clustering involves forming compound nodes in such a way that the resulting network of clusters is singly connected. Conditioning involves breaking the communication pathways along the loops by instantiating a select group of nodes. Stochastic simulation involves assigning to each node a definite value and having each processor inspect the current state of its neighbour, compute the belief distribution of its host node, and select one value at random from the computed distribution. Beliefs are then computed by recording the percentage of times that each processor selects a given value.

Consider the small retrieval network in Figure 5-5 which serves to illustrate these different approaches for handling the network loop. Note that this network is similar to the network in figure 5-1. The only difference is that we have instantiated document D3 as the user chose it as the relevant document during the relevance feedback process.

[image: image13.wmf]q

similarity

information

retrieval

image

feedback

D

1

D

2

D

3

0.7

0.4

0.4

0.7

0.3

0.5

0.4

0.6

0.8

Figure 5‑5 Retrieval network with a loop.

A loop exists in the network when we use document nodes as evidence in relevance feedback. In the example in figure 5-5, if we take D3 as evidence (thus P(D3)=1), it will change the belief in nodes retrieval and node feedback. The belief in the proposition in node retrieval will change the belief in node q and the belief in document node D2. The new belief in D2 in turn will change the belief in the index term nodes image, information and retrieval and this belief in turn will change the belief of the ancestor nodes all the way up to the node q thus creating an indirect cycle or loop. To allow Pearl’s algorithm to work properly, a method to transform this multi connected network into a singly connected network is required. In the following sections, we present the possible approaches to the indirect loop propagation problem in Bayesian networks and discuss their appropriateness for the implementation of information retrieval systems.

5.4.1 Clustering

The clustering approach involves collapsing nodes to transform the network from a multi-connected network to a singly connected network. In our example in figure 5-5, the obvious choice for the nodes to be collapsed are information and retrieval. The modified network is now depicted in figure 5-6.

[image: image14.wmf]P(D

3

| information, retrieval)

P(D

2

| information, retrieval)

q

similarity

Information - retrieval

image

feedback

D

1

D

2

D

3

0.4

0.7

0.3

0.8

P(information, retrieval | q)

Figure 5‑6 Clustered network.

The collapsing of the nodes information and retrieval into one node information-retrieval, forces us to estimate P(information, retrieval | q), P(D2 | information, retrieval) and P(D3 | information, retrieval). In the medical diagnosis field, where this method was originally introduced, the estimation of any combination proposition’s conditional probabilities was relatively easy to obtain because each node in the medical diagnosis application represented a medical condition which could be easily observed. The combination of two observations were usually available from observation of past diagnoses. Thus, in the medical diagnostic context, the estimation of {(information,retrieval), (retrieval)} can be derived and used to create a link matrix estimation of the effect of the collapsed node such as P(D2|information,retrieval), P(D3|information,retrieval) or P(information,retrieval|q). Such observations are not as straightforward in an information retrieval network. In our model, the probability values in the document nodes are used to rank the documents and the document nodes are the nodes which exhibit the effect of knowing something about the beliefs in the index term nodes. Since the inference process in information retrieval aims to find the most relevant documents given a user query whereby a set of index terms are considered, isolating and observing the effect of individual index terms or a group of index terms is not desirable and certainly not a simple task.
information,retrieval), (information,retrieval)
, (information,

Another problem that may occur in implementing clustering in information retrieval is deciding which nodes are to be clustered. We know that any document which shares two or more index terms with the query network will create a loop in the network. An extreme choice is to clamp all these index terms into one compound node, both in the query network and document network as in the approaches of Cooper [Cooper84] and Peng and Reggia [Peng86] for the medical diagnosis application. Unfortunately, the exponential cardinality and structurelessness of the link matrix for these large compound nodes make the inference difficult to compute.

A popular method of clustering the nodes is the join tree [Lauritzen88]. If the clusters are allowed to overlap each other until they cover all the links of the original network, then the interdependencies between any two clusters are mediated solely by the variables they share. If we insist that these clusters continue to grow until their interdependencies form a tree structure, then Pearl’s tree propagation algorithm can be used in the inference. This method of clustering will produce a better structure and less complexity of the propositions involved in the clustered nodes compared to Cooper’s approach. However, implementing this approach in information retrieval may be very costly, because the number of nodes involved in the network will mean the preprocessing involved in finding the cluster set will be time and resource consuming. It is also worth noting that the retrieval network is a dense network. That is, there is a high interconnectivity between the index terms and the document nodes in the network. This characteristic means that there is increased complexity inherent in the process of finding the cluster set. The clustering method may be appropriate when the document collection is relatively stable, that is when documents are not often deleted or added to the collection. Because any addition or deletion of documents means changes will occur in the network distribution, the clustered sets need to be regenerated in such an event.

5.4.2 Conditioning

Conditioning is based on our ability to change the connectivity of the network to render it singly connected by instantiating a selected group of nodes [Dechter85]. We can condition the multi-connected network in figure 5-5 into a singly connected network as depicted by figure 5-7 by cutting the loop in the network at node q. The node q is called the loop-cutset node. Once we assign a node to be a loop-cutset node, we can instantiate node q to block the propagation of the belief in the path information-q-retrieval. By doing this, we will have singly connected network and Pearl’s singly connected algorithm becomes applicable.

[image: image15.wmf]similarity

information

retrieval

image

feedback

D

1

D

2

D

3

q=0

q=0

0.4

0.7

0.3

0.5

0.4

0.6

0.8

P(information|q)=0.7

P(retrieval|q)=0.4

Figure 5‑7 A singly connected network as the decomposition of multi connected network.

If we want to recalculate the value of P(D2) given that the user chose D2 as the feedback evidence, we first need to assume that q=0 and then propagate its value through the network until it reaches D2. Using the same network, we now assume that q=1 and repeat the propagation process. Finally, we average the two results weighted by the posterior probabilities P(q=1|D2=1) and P(q=0|D2=1).

Conditioning provides a working solution in many cases of approximation in Bayesian network application. However unlike clustering, if the network is highly connected or dense it may suffer from combinatorial explosion [Pearl88]. The message size grows exponentially with the number of nodes required for breaking up the loops in the network. Considering that during the inference, we must consider each possible combination of instantiated values of the loop-cutset nodes, the number of these loop-cutset instances is equal to the product of the numbers of possible loop-cutset nodes. This product is clearly exponential in the number of loop-cutset nodes.

The information retrieval network suffers from this combinatorial explosion because it is a dense network. It is possible to use a minimisation algorithm to reduce the cutset, however it has been shown that the minimisation algorithm is NP-hard [Stillman91]. Thus conditioning in an information retrieval network would be very costly process.

5.4.3 Sampling and Simulation

Stochastic simulation is a method of computing probabilities by computing how frequently events occur in a series of simulation runs. If a causal model of a domain is available, the model can be used to generate random samples of hypothetical scenarios that are likely to develop in the domain. The probability of any event or combination of events can be computed by counting the percentage of samples in which the event is true.

In general, the simulation methods are divided into two main categories, namely Forward sampling [Bundy85, Henrion86, Shachter86,88] and Markov simulation [Pearl87, Chavez90, Berzuini89]. The main difference between the two approaches lies with the directionality of the propagation during the simulation. Forward propagation as the name implies, only involves propagation in the direction of cause in the network. The drawback of this method is that its complexity is exponential in the number of observed or evidence nodes [Henrion90, Hulme95]. Thus, forward sampling can only be practical if the evidence nodes are at the root of the network.

Markov simulation (sometimes known as Gibbs sampling) on the other hand, allows propagation in both directions. However, this method will have convergence problems when the network contains links that are near deterministic, that is close to 0 or 1 [Chin89].

In our information retrieval model, we have propagation in both directions. The diagnostic or back propagation occurs when we need to infer P(ti) given knowledge of P(dj) with an arc from ti to dj. Moreover, a loop exists in the network when we apply evidence feedback and the evidence lies with the document nodes which are non-root nodes. Thus, forward sampling is not appropriate to our information retrieval network because of these two problems: the lack of support for backward propagation and the exponential complexity of the algorithm for non-root evidence nodes.

Markov simulation (Gibbs sampling) on the other hand does not suffer from the above two problems. To implement this method, we need samples of propositions and their associated observation values. For information retrieval, we can obtain this from the relevance judgment of a test collection. A test collection contains sets of queries with associated documents that are judged to be relevant to the queries. A number of simulations may then be run on a particular query and the set of retrieved document observed. A score is kept for each time a particular document in the relevance judgment set for the query is retrieved. With this approach, we have to make one important assumption, namely that the ‘causal model’ in the network represents the correct distribution of the document collection and that it will generate a 100% level of recall and precision. However, it has been shown that this level of performance is unachievable in information retrieval models [Wallis95]. Even if we were content with the approximate model and hence with accepting less than a 100% level of recall and precision, the size of the network would make running the simulation too costly. Pearl [Pearl88] showed that to get within 1% of the approximate value, we need over 100 runs. It is accepted that the accuracy of the sampling depends on the number of runs performed [Henrion90]. Thus, although many researchers have taken the sampling approach towards handling multi connected networks [Henrion86, Pearl87, Fung90b, Shachter90, Hulme95], this approach does not provide a solution practical for information retrieval. We propose instead a method using intelligent nodes to solve the problem of multi connected networks.

5.5 Dealing with a Loop Using Intelligent Nodes

We have investigated different approaches to handle loops in Bayesian networks. However, all of them are computationally impractical for information retrieval networks due to the network size and density. We propose a method involving intelligent nodes. The aims of our proposed approach are as follows:

1. Providing a mean to break the loop so that the propagation in the network is finite.

2. Providing a mean to break the loop without introducing additional computational complexity to the inference process.

We use the term intelligent because in Pearl’s inference algorithm the node is memoryless whereas in our approach the nodes do have some memory. The memory is used to “remember” the source of message received so that the next time it receives the message from this source it will reject it. In other words, the intelligent nodes act as filters of messages in the network loop. They filter any child messages of a node so that the message is blocked from updating the parent node value of the original message. To illustrate the method, consider the network shown in figure 5-8.

[image: image16.wmf]q

similarity

information

retrieval

image

feedback

D

1

D

2

D

3

0.7

0.4

0.4

0.7

0.3

0.5

0.4

0.6

0.8

Figure 5‑8 Network with intelligence node retrieval.

Consider that retrieval producing the initial document ranking has been performed. Thus, each node in the above network has a belief value attached to it (see section 5.1 for the actual values). When document D3 is chosen as the relevant document during relevance feedback, ie. the node D3 is instantiated, this node will send the evidential support or child message to both its parent nodes namely retrieval and feedback. With this new evidential support, the node retrieval recalculates its belief on the proposition represented in the node. In Pearl’s algorithm this new belief then will be passed to its ancestor. Our approach, on the other hand, stops the message from going to the parent(s) of node retrieval. Note that we have produced the initial document ranking, so that the belief at node retrieval is arrived at due to the instantiation of the proposition on the node q. Therefore the degree of influence of the query on node retrieval has been reflected in this node's belief value. If we send evidential support q will be amplified. This amplifying effect does not aid our understanding of the problem and will cause the propagation to run indefinitely.
q. This means that the value of retrieval will contain some value of retrieval to node q,
Consider the following reasoning process in a real life situation. In the morning coffee break my colleague tells me that it is going to rain tomorrow. If I tell her after lunch break that it is going to rain tomorrow because I happen to be reading the weather column in a newspaper at lunch, her belief about the proposition tomorrow it is going to rain should not increase because that information came from me, a person who received the same information earlier from her (the same source). Her initial information may have come from the same article in the newspaper that I read at lunch. I may be considered to be acting as a mirror of her information. My information does not introduce new knowledge to her. The same principal may be applied to our loop problem in the information retrieval network when we block the child message q.
retrieval will only amplify retrieval from node q. The message
The independence assumption is slightly changed with this approach. We actually relax the independence assumption to solve the loop problem. In the strict d-separation or heuristic check, setting D2 as evidence will cause the all the nodes in the sample network to become dependent. We add to the checking procedure a routine to find a filter node that will make some of the nodes in the network independent and hence break the loop. Checking whether any nodes in the network have fan-in descendents and fan-out descendent can easily identify the loop. If there is a node that meets this condition, a loop exists in the network and needs to be broken using the filter node. The modified independence assumption now becomes:

Given a node with descendents which have fan-in links and ancestors which have fan-out links; if this node is the direct parent of a node with fan-in links, the ancestor of this node is independent when the direct child of this node is instantiated.

Using this independence assumption, the node retrieval causes this node and node q to be independent when D3 is instantiated. In the implementation of this independence assumption for information retrieval, we can safely assume that the candidates for the filter nodes are the index term nodes in the document layer. The filter nodes are the index terms used in the query and in part of the relevant document found in the relevance feedback. Note that this filtering does not apply in the production of the initial document ranking because we have instantiated node q and node q is not the direct child of either node information or node retrieval which are the candidates for the filter node.

The modified independence assumption proposed is not significantly different from Pearl’s original independent assumption (see section 3.4.2) apart from the fact that our proposed assumption includes the knowledge of the information source. However, our proposed assumption provides a method for breaking the infinite propagation with very little computational cost. The additional computational cost involved is only the storage cost of keeping the knowledge of the information source, or the memory of the intelligent node. This memory can be easily implemented as a boolean variable. Thus, for a system that involved large network structures such as in an information retrieval system, this assumption presents a workable solution to the problem of indirect loops.

5.5.1 Example of the Feedback Process Using Intelligent Nodes

Assume that we assign node D3 as the evidence node used in the relevance feedback process. We assign P(D3)=1 and P(retrieval=true | D3=true) = 0.8. The initial belief in node retrieval is 0.4 as calculated in section 5.1. The new belief in node retrieval is calculated as the combination of the effect of the new evidence which arrives in node retrieval as retrieval comes from two of its child nodes, namely node D2 and D3. With these values, the beliefs in the network nodes become:
retrieval.
retrieval = 0.4 + 0.8 = 1.2

P(retrieval) = 0.4 * 1.2 = 0.48

P(D2|q,D3)= 0.3(5*10-4)(1-0.7)(1-0.48) + 0.5(1-5*10-4)0.7(1-0.48) +

0.7(1-5*10-4)0.7*0.48 + 0.6(5*10-4)(1-0.7)(1-0.48) +

0.58(5*10-4)(1-0.7)0.48 + 0.65(5*104)0.7(1-0.48) +

0.71(5*10-4)0.7*0.48 = 0.4173

P(D1|q,D3) = P(D1|q) because document D1 does not share any common index terms with document D3. If we have another document called D4 which contains the index term feedback, then P(D4|q,D3) P(D4|q). The value of P(D2|q,D3), as expected, is increased because it contains the index term retrieval which is found in the relevant document D3.

5.6 Summary

We have presented issues and changes to the basic network model which need to be considered when implementing Bayesian networks for information retrieval systems. The main issues have been shown to be the complexity of the computation and indirect loop propagation during the relevance feedback process. The complexity of computation occurs due to a large number of parents per node which cause an explosion in the size of the link matrices.

An information retrieval network can be considered a dense network whereby a large number of nodes share the same parent nodes. The fact that the network is dense precludes some of existing approaches, such as layer reduction and link-node deletion, from being of practical use in information retrieval implementations. We have proposed a new method involving the addition of a virtual layer in order to reduce the size of the link matrices. Although the total number of nodes in the network is increased, this approach provides a systematic method for reducing the size of the link matrices in order to meet the computing resources available. In the virtual layer approach, the parent nodes are grouped into a number of clusters. Each cluster is then connected to a virtual node. This virtual node is in turn connected to the child node.

There are different ways of grouping the parent nodes. We introduce two simple methods, namely random and non-random clustering. The random clustering approach does not take into consideration the distribution of the link weights. The assignment of the node to a group is arbitrary determined by the link weights sequence in the data file. The non-random clustering scheme, on the other hand, considers the link weight distribution and classifiesthe nodes accordingly. We also will present in chapter 7 a method which can be used to measure the goodness of the clustering methods in order to find the optimal approximation of the model.

Another issue in the implementation of the Bayesian network model for information retrieval discussed in this chapter is the indirect loop problem. The indirect loop exists in our network when we want to implement evidence feedback. We have proposed a solution involving the use of intelligent nodes which act as message filters in the network and break the loops in the network. The intelligent nodes are part of the original network, however using our independence assumption, differ slightly in that they remember the information source. By knowing the information source, these nodes may filter the messages better than Pearl’s independence assumption and provide finite propagation in the loop.

In the next chapter, we will measure the performance of our retrieval model using three test collections namely ADI, MED and CACM. The performance will be reported in terms of recall and precision, a common performance measurement unit in information retrieval research. Firstly, we will look into the influence of different weightings applied to the link weights. Detailed discussion of ways of estimating the link weights in both query and document networks are presented. Secondly, we will present a performance comparison between the two clustering methods discussed in this chapter. In the last part of the next chapter, we compare the performance of our model with other information retrieval models to show that our model not only provides a more general model for information retrieval but also exhibits higher recall and precision.

� An expert system to assist pathologists with hematopathology diagnosis, jointly developed by Stanford University and the University of Southern California.

� We call the node and the layer virtual because they do not actually form as part of the original knowledge. They are artificially added to this original knowledge.

� ¬symbolised negation

PAGE
132

_950570587.doc

q

0.4

0.7

similarity

0.6

information

retrieval

image

feedback

D1

D2

D3

0.4

0.7

0.3

0.5

0.4

0.8

_951096802.unknown

_951096845.unknown

_950570711.doc

q

similarity

P(D3 | information, retrieval)

Information - retrieval

image

feedback

D1

D2

D3

0.4

0.7

0.3

P(D2 | information, retrieval)

P(information, retrieval | q)

0.8

_950570749.doc

P(information|q)=0.7

q=0

q=0

similarity

0.6

information

retrieval

image

feedback

D1

D2

D3

0.4

0.7

0.3

0.5

0.4

0.8

P(retrieval|q)=0.4

_950570701.doc

q

0.4

0.7

similarity

0.6

information

retrieval

image

feedback

D1

D2

D3

0.4

0.7

0.3

0.5

0.4

0.8

_919494140.doc

p1

p2

p3

q4

q5

q6

p1q1

p2q2

p2q3

p3q2

p3q3

Figure 5-3a Original network

Figure 5-3b Reduced network

_919494160.doc

Parents cluster 10

100

10

1

91

10

1

100

2

1

Parents cluster 1

Child Node

Child node

Virtual Layer

Parents nodes

Figure 5-4a. Original network

Figure 5-4b. Modified network with virtual layer

_950459744.doc

q

0.4

0.7

similarity

0.6

information

retrieval

image

feedback

D1

D2

D3

0.4

0.7

0.3

0.5

0.4

0.8

_919494116.doc

W1

W2

W3

W4

W1

W2

W3

Figure 5-2a Original network

Figure 5-2b Reduced network

P1

P2

P3

P4

C1

P1

P2

P3

C1

C2

C2

W5

W6

W6

