Model Performance Evaluation

6.1 Introduction

Information retrieval systems provide us with the ability to locate and retrieve useful documents from a large collection of documents. As a user, we would expect these systems to perform the retrieval tasks as rapidly and economically as possible. Further to this requirement, the value of information retrieval systems also can be seen to depend on their [Salton83]:

· ability to identify useful information accurately and quickly.

· ability to reject non-relevant documents.

· versatility of the retrieval methods.

We have shown in chapter 5 that the proposed Bayesian model fulfills the last requirement since different retrieval models can be simulated using appropriate network representations. In this chapter, we present evaluation result measuring our systems performance as judged against requirements 1 and 2 above. The conventional measure of recall and the precision level will be used to study the performance of a system. 


The recall level measures the ability of the systems to find all the useful or relevant documents for a given query. The precision level measures the rate of rejecting non-relevant documents and of finding the relevant ones before the non-relevant documents are retrieved. A perfect information retrieval system is one, which claims a 100% level of recall and precision. This is achieved by retrieving all the relevant documents before retrieving any non-relevant documents for a given query.  This is not easy to achieve because most practical retrieval systems retrieve some non-relevant documents before all the relevant documents are retrieved or, in other words, the level of precision usually decreases as the recall level increases. In fact it has been proved that without relevance feedback, most current information retrieval systems can only achieve maximum of 80% precision with 100% recall [Rijsbergen92]. 

Improvement in performance in information retrieval systems may seem very small in term of the absolute percentage. However, this small percentage does make substantial different when we consider the massive amount of document involved during the retrieval process. Moreover, the increase in precision is also more difficult to achieve near the optimum level, as stated earlier by Rijsbergen [Rijsbergen92]. 

In information retrieval experiments, the recall and precision levels are obtained by performing several retrievals on the test collection using the supplied queries. A test collection in information retrieval experiments comprises:

· A set of documents – current test collections generally contain information from the original document such as title, author, date and an abstract. The collection may include additional information such as controlled vocabulary terms, author-assigned descriptor and citation information. The documents used in the collection are usually taken from journals and/or newspapers.

· A set of queries – These queries are often taken from actual queries submitted by users. They may be either expressed in natural language or in some formal query language such as boolean expressions.

· A set of relevance judgements – For each query in the query sets, normally a set of relevant documents is identified. This identification process can be done manually by human experts or by using statistical pooling retrieval information from several information retrieval systems.

Each of these query-document sets in the test collection is used during experiments. The interaction of these sets in an information retrieval experiment is depicted by figure 6-1.
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Figure 6‑1 Model for experiments in information retrieval systems.

Using the standard queries in a test collection, a retrieval system under evaluation performs a document search in the documents set. The result of the search is a list of document identifications whereby the document assumed most relevant is ranked first. This list of rankings is then compared with the list of relevance judgments. The relevance judgment list itself does not imply any ranking. It only contains the identification number of documents which judged relevant to the query. Using the recall and precision formulae (see section 6.2), the recall and precision levels are calculated.

There are several existing standard test collections available for comparing the performance of information retrieval systems. These collections vary in collection size, the number of queries, the structure of information and domain of the information. We used three popular and well-studied test collections to evaluate the performance of our system. These were ADI
, MEDLINE and CACM respectively
. The characteristics of these collections are shown in table 6-1


ADI
MEDLINE
CACM

Information domain
Computing
Medical
Computing

No. documents
82
1033
3204

No. Index terms
2086
52,831
74,391

Ave. no.index term/doc
25.451
51.145
23.218

St.dev of no.index term/doc
8.282
22.547
19.903

No. queries
35
30
64

Ave.no.query terms
9.967
9.967
10.577

Size in kilobytes
2,188
1,091
37,158






Table 6‑1 Test collection characteristics.


The ADI collection is the smallest test collection. It contains articles from computing journals. This collection is usually used only in the initial experimental stage because of its limited size. The MEDLINE test collection was created from medical articles in the MEDLINE database. The queries in this collection were obtained from the queries submitted by actual users of the MEDLINE database. The CACM test collection is created from articles published in the Communication of the ACM from 1958 to 1979. Each record in this collection contains author, title, abstract, citation information, manually assigned keywords and Computing Review categories. The CACM collection is the largest test collection amongst the traditional test collections. 

The nature of the test collection influences to some degree the result of experiments in information retrieval research. More specifically the query and the relevance judgment sets are the two main influences to the experimental results. Experiments presented at 5th Text Retrieval Conference [Voorhees96] showed that retrievals using long and more specific queries produce a better recall and precision level than retrieval using short queries.
 Compared with the test collection used in TREC-5, most of the queries in the traditional test collection such as ADI, MEDLINE, and CACM are considered to be short. Thus the maximum level of precision with 100% recall will be expected to be less than 100%.


 We have started this chapter by looking at the methodology involved in conducting experiments in information retrieval. The rest of this chapter will be organised as follows, Section 6.2 reviews in detail how part of the test collection can influence the outcome of the experiments, namely the relevance judgment set. We will discuss how the relevance judgment sets are created and the effect these different creation methods have on information retrieval experiments. In this section, we will also provide examples which show how to calculate the recall and precision level using the retrieved document ranking produced by the system and the relevance judgement from the test collection. 

Section 6.3 presents the performance of our basic model. We use the term basic model to refer to a retrieval model that does not use any weighting scheme. We will use this basic model to compare and discuss the performance of different approaches of estimating probability in section 6.4. The effect of assigning different probability estimation to document link weights, query link weights and the virtual link weights are discussed in this section. Finally, we will compare the performance of our model with other existing retrieval models namely the vector space model [Salton83] and Turtle’s inference network [Turtle90].

6.2 The Relevance Judgement Set

The most difficult task in creating a test collection is the creation of the relevance judgement set. In the current test collections, these relevance judgments are created using one of two methods:

· Human judgements 

In this approach, the relevance judgment sets are created using human to judge whether a document is relevant to the query. They may be the actual users who have submitted queries or independent experts in the collection domain. This method however, is only practical for small collections especially the approach using independent domain experts because the experts have to inspect every document in the collection in order to determine the documents’ relevancy to the query. The relevance judgments in the three test collections used in our experiments are created using this method. 

· Pooling methods 

 In this method, the output of a number of different information retrieval systems is pooled whereby the first N documents in the rank output are combined using some statistical methods. This method has been claimed by some to find the vast majority of relevant documents [Salton83]. However Wallis [Wallis95] argues the opposite. As in other pooling applications, the number of pool participants affects the accuracy of the relevance judgment pool.  The higher the number of participants, the higher is the chance of finding the relevant documents.
 Despite this issue, the pooling method is the only practical way to derive the relevance judgment set when the collection is very large, such as the Wall Street Journal collection (250Mb). Performing domain expert judgement is too expensive in such collections, since it is not possible for experts to inspect every single document in the collection.

 Regardless of the limitations of the methods for creating the relevance judgment sets, test collections remain the most widely used tool for comparing retrieval performance. The test collections are used to generate the recall and precision which is the comparison unit in information retrieval experiments. The recall and precision can be calculated using the following formulae:
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where

r is the number of relevant documents retrieved for a given query.

R is the number of relevant documents in the collection for a given query.

N is the number of documents retrieved for a given query.

To illustrate the use of the above formulae, consider the following example of a set of ranked retrieved document numbers and a set of document numbers judged relevant in a given query. 


Retrieved: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20


Relevant:  1,2,4,5,6,8,11,14,17,20

Using equations 6.1 and 6.2 respectively, the recall and precision for the above retrieved set are:


Recall (%)
Precision(%)

first 5 documents retrieved
40
80

first 10 documents retrieved
60
60

first 15 documents retrieved
80
53.3

first 20 documents retrieved
100
50





Table 6‑2 Examples of recall and precision for different numbers of inspected documents.

We can see from table 6-2 that as the recall level increases the precision level decreases. Thus, the aim of achieving 100% recall and 100% precision may be considered an unachievable goal [Rijsbergen92]. 

The inspection points, i.e the number of documents retrieved at a given point in the report may vary from experiments to experiments. This depends on the size of the collection and the rate of increase in recall or of decrease in precision. If the rate of increase in recall or of decrease in precision is very high, a smaller interval may be needed. However, if the rate is low and the collection is large, a bigger interval may be sufficient for us to report the performance of our experiments without losing detail in the trends in the recall and precision level. In the above example, we have used an interval of 5 documents as the inspection point for calculating the recall and precision levels. 

There is another way of reporting the recall and precision level. This approach reports the value of the precision at a given recall level. In this approach, the size of the collection will not come into consideration when determining the interval. The only consideration is in how much detail the experiments want to report the relation between recall and precision. This approach provides more useful information than the previous approach because it shows clearly the relationship between recall and precision at a given point and the trend in the recall and precision level over the whole experiment. Using this approach, table 6-3 shows the reporting of the recall and precision level for our previous example. We will use this approach reporting the precision for given recall level in reporting the precision our experimental results throughout this chapter.

Recall level (%)
Precision (%)

10
100.00

20
100.00

30
75.00  

40
80.00

50
83.33

60
75.00

70
63.63

80
57.14

90
52.94

100
50.00




Table 6‑3 Example of measuring precision at a given recall level.

We have mentioned that we performed the experiments against three test collections. In the majority of discussion in this chapter, we will use only the ADI collection when discussing the effect of different probability estimation to the recall and precision of the systems for simplicity reason. The results of MEDLINE and CACM experiments will be presented in the conclusion when the optimum model has been established. Unless mentioned specifically, tables of recall and precision in this chapter will be for the ADI test collection. In the next section, we will examine the performance of our basic model.

6.3 Performance of the Basic Model

In the basic model, the value of link weights between the query node and the query term nodes or P(ti|Q=true) is calculated as term frequency within the query (qf). The link weights between the document nodes and the index term nodes or P(dj|ti=true) is calculated as terms’ frequency within the document (tf, equation 2.3.1). In what follows, we discuss the individual components of these estimates independently, although in fact they are dependent. As a result, conclusions about the performance of one component cannot be based on a single observation. We will use the values of recall and precision in this basic model (table 6-4) as the baseline performance to show the effect of varying probability estimation for the link weights.  The results were obtained from performing retrieval based on the basic model for all queries in the ADI collection.

The precision at given recall level for the basic system is very low as we expected since this system does not confer any measure of importance on index terms in the documents and collection. The tf and qf provide only a local measure of importance within a document or the query. As a result, long documents will be more likely to be ranked higher since the chance that a term will occur frequently increases in longer documents. 

Recall level (%)
Precision ( %change)

10
21.79

20
21.50

30
15.61

40
13.79

50
12.59

60
12.59

70
12.45

80
11.95

90
11.60

100
11.60

Average
13.22




Table 6‑4 Recall and precision of basic model.

The highest precision for this model is only 21.79% for a recall level of 10%. This result agrees with previous experimental results of various information retrieval systems [Sparck-Jones72, Salton83, Turtle90]. The performance of this basic model can be further improved by adopting good estimations for the probability parameters of the model. In next section we present the estimations of those probability parameters. 

6.4 Estimating the Probabilities

The basic systems provide very simple probability estimations for the links in the network and produce poor experimental results. We investigated several methods of estimations. The subsequent discussion in this section regarding the probability estimations will be divided into three sections, namely:

1. estimates of the importance of the query terms in explaining the information needs of the user or P(ti|Q=true) (section 6.4.1).

2. estimates of the dependence of the documents upon the index terms in the collection or P(dj|ti=true) (section 6.4.2).

3. estimates of the virtual layers’ distribution (section 6.4.3).

These estimations represent the link weights in the network. Thus correct estimations will lead to a good retrieval performance of the model. 

There are two networks, the query and document networks, used in the model and each of them may take different estimation. We will state clearly the parameters estimated in one network when discussing the other network’s parameter because the combination of the two networks parameters influence the choice of parameters in individual network. 

6.4.1 Estimating P(ti|Q=true)
Users’ information need, which is represented by node Q, can be submitted to the system by using either the Boolean or natural language. With natural language approach, the query submitted to the system is indexed using a process similar to that of indexing documents. All the words in the query that generally do not affect the retrieval performance are removed using the stop word list (see section 2.4.1). The remaining words are then stemmed to remove common endings in order to reduce simple spelling variations to a single form. The stemmed words are then weighted according their importance to the user. The weighting is used to increase the influence of terms that are believed to be important on the document ranking. 

Two factors are commonly used in weighting the contribution of the query terms; the frequency of a term in the query (qf) and the inverse document frequency (idf) of a term in the collection. The assumptions made in this approach are that:

1. a content-bearing term, which occurs frequently in the query, is more likely to be important than the one that occurs infrequently.

2. those index terms that occur infrequently in the collection are more likely to be important than frequent or common index terms. Moreover, such index terms can be used as discriminators of the document in the collection.

As we have discussed in section 4.3.2, the importance of query terms can be estimated by the users if they have some confidence to do so. We would prefer the user to be able to assign the importance of the query terms in their query. However, as explained in section 2.2, sometimes users are not clear about their information needs. Thus, they do not have the ability to estimate the importance of the query terms and in this situation, the above qf and idf estimates can be used as an alternative. We have tested these estimates individually as well as both as a combination. Different from the basic model, we normalised qf estimates in order to reduce the bias of the estimation towards long queries. The normalised qf (nqf) of a term i in a given query j is calculated as:
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(6.3)
where

qfi,j is the query term i's frequency within query j.
max qfj is the maximum frequency of any term in query j.
The second parameter, idf of term i in document k is calculated as:
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(6.4)
where

dfi  is the number of document containing term i 

N  is the number of documents in the collection

The combination of these two parameters may be derived from the product of equations 6.3 and 6.4. In the rest of the discussion we will refer it as qf.idf estimate. In qf.idf estimate the value of this parameter may be higher than 1 for those query terms that occur infrequent in the collection. Thus, we need to further normalise this parameter. One of the normalisation techniques is the cosine normalisation method. This normalisation is introduced by vector space model. The nqf and idf are considered as vectors. Equation 6.5 shows the normalisation formula
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(6.5)

Table 6-5 shows the results of experiments using different term weights in the query.  We use the document network estimates of the basic model for these experiments so that we can see the effect of the query’s parameter estimates. 

Compared with basic model, the performance of model which uses qf alone is decreased. This drop in performance occurred at every recall level. This can be explained by the short nature of the query. Since the queries involved in the experiments are relatively short, achieving high accuracy in statistical estimation using such limited data is difficult. This estimate may consider as noise and as a result, it reduces the performance. 



Precision (%)

Recall(%)
Basic
qf weights
idf weights
qf.idf weights

10
21.79
21.18
34.62
58.19

20
21.50
20.11
34.62
56.86

30
15.61
13.8
29.05
52.38

40
13.79
12.45
18.97
44.57

50
12.59
11.68
18.94
40.47

60
12.59
11.62
18.14
37.85

70
12.45
11.36
15.62
31.11

80
11.95
10.32
15.62
23.65

90
11.60
9.09
15.62
23.04

100
11.60
9.09
15.62
20.25

Average
13.22
11.88
19.71
35.31







Table 6‑5 Performance using different weights for query terms.

The implementation of the idf factor alone, on the other hand, increases the performance significantly. The idf estimate is based on the statistical data collected from the collection. The distribution of the index terms in the collection can provide more accurate statistical estimates than the query because it derives from larger population sample. Moreover, the idf introduces a global discriminator. An index term that occurs often in a query will not be a good document discriminator when it occurs in most of the documents in the collection. Index terms that occur less frequently in the collection are treated as more importance than those that occur more frequently. 


The combination of the qf and idf factors increase further the performance of the system using the idf weight alone. This combination of qf and idf produces better results than the idf or qf used alone because the combination of both gives local and global estimates of the parameters used. An index term that occurs frequently in a query but does not occur frequently in the collection will be a good discriminator of documents in the collection. Thus, instead of acting as noise as in case of the pure qf weights, these qf weights work as intensifiers of the statistical data provided by the idf weights. 

6.4.2 Dependence of Documents on Index Terms

The probability that a term accurately describes the content of a document can be estimated in several ways, but previous information retrieval research has consistently shown that index term frequency in a document (tf) and inverse document frequency (idf) are useful components of such estimates [Salton83]. Therefore, we will concentrate on estimating the link weight that involves tf and idf.

6.4.2.1 Estimating the tf and idf Components
The tf estimate can be represented by the common ntf [Salton83, Rijsbergen79] in which the tf of a term i in a given document j is given by dividing the tfi,j by the maximum frequency of any term in the document as shown in equation 6.6.
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       (6.6)
The formula is similar to the qf weighting scheme. The only difference is that it is applied to a document instead of the query. The idf component can be estimated using equation 6.4.

Table 6-6 shows the performance of the two estimates in the ADI collection. The average performance of the retrieval based solely on the tf estimates of P(dj|ti=true) shows 5.01% drop in performance compared with retrieval based solely idf estimates. The difference in performance between the retrieval based on tf weights alone and idf weights alone is smaller than that observed for the qf and idf estimations(table 6-5). 

 Recall (%)
Precision (%)


tf 
idf 

10
34.38
43.22

20
34.38
40.47

30
28.96
38.13

40
24.47
35.61

50
19.18
27.86

60
19.14
25.76

70
18.36
21.22

80
15.95
18.55

90
15.95
17.59

100
15.95
16.17

Average
22.33
27.34





Table 6‑6 Performance of the retrieval using tf and idf components.

Again, this situation may be explained by the fact that documents contain more index terms than queries, thus providing a larger sample population for the estimates. 

6.4.2.2 Estimating the Combination of tf and idf Components

The belief of P(dj|ti=true) may be estimated by determining the default belief or the belief in the absence of any index terms that support or against a proposition represented by the document nodes[Salton83, Rijsbergen79]. The estimation is given by 

P(dj|ti=true)=( + (1-() ( ntf ( idf

Estimates for P(dj|ti=true) should lie in the range 0.5 to 1.0 and estimates for the default belief should lie in the range 0.0 to 0.5. We investigated different several values of ( in the range of 0.5 to 1. The best performance is given when (=0.5.

A large number of functions for combining and normalising the tf and idf estimations were tested.  Since we require the probabilities to lie in the range [0,1] we need to normalise the combination of tf and idf because the combination may produce values greater than 1. For example, consider the index term educat in the ADI collection in document 14. This index term has the value of 0.8 for the tf component when calculated using equation 6.6. The idf component of this index term in the ADI collection is 12.13 when calculated using equation 6.4. Thus without the normalisation the weight of index term educat will be greater than 1.   

There were two normalisation functions that we found performed best in our experiments. The first estimation uses the cosine normalisation as shown in equation 6.7. 

P(dj|ti=true)=
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(6.7)

This equation is slightly different from the cosine normalisation for the query network (equation 6.5) to take the consideration of the default belief 0.5. 

With this estimation method, the P(dj|ti=true) in the ADI collection are estimated in the range of  [0.03,0.468], the MEDLINE collection in the range of [0.017,0.634] and the CACM in the range of  [0.017,0.994]. These measures give a broad range for CACM and MEDLINE collection, but considerably less range for the ADI collection. We note that this difference influence the behaviour of the system accordingly.

We also investigated a maximum normalisation function to produce similar estimation range among the collections. In this function, the tf.idf is divided by the maximum tf.idf in the collection. The function is shown in equation 6.8.
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(6.8)

Using this scheme, P(dj|ti=true) in the ADI collection is now lie in the range [0.527, 1.0], the MEDLINE is in the range [0.503,1.0] and the CACM is in the range [0.505,1.0]. Compared with the cosine normalisation, this normalisation produces similar ranges for the all three collections. Thus, the differences in characteristics among the collections during the experiments can be minimised. 


Table 6-7 compares the performance of the normalisation functions on the ADI collection. 

Recall (%)
Precision (%)


Cosine Normalisation
Maximum Normalisation

10
64.09
63.40

20
63.80
62.75

30
59.59
57.52

40
54.91
51.94

50
48.56
45.71

60
47.35
43.98

70
37.61
36.01

80
28.87
27.83

90
25.56
26.49

100
23.37
24.38

Average
45.37
44.00





Table 6‑7 Performance for two normalisation functions.

The average performance of the two normalisation functions are only differ by 1.37% with cosine normalisation consistently providing a higher precision. The figures in table 6-7 suggest that when only qf is used to estimate P(ti|Q=true), the estimation of P(dj|ti=true) using the cosine or maximum normalisation does not influence the performance significantly, although they provides different weight’s distribution range. However, when queries with cosine normalised weighted terms are used (equation 6.7 applied for nqf), the effect of different probability distribution in the collection due to the choice of normalisation functions for the document term weights is significant.


Table 6-8 shows the comparative performance of the combination of the dependence of documents on index terms using cosine and maximum tf.idf estimates and on query based on cosine qf.idf estimates.

Recall (%)
Precision (%)


ADI
MEDLINE
CACM


cosine
Maximum
cosine
maximum
cosine
Maximum

10
64.09
68.92
91.10
89.50
71.76
78.84

20
63.80
68.04
79.51
81.55
59.73
69.41

30
59.59
62.24
74.72
75.09
48.26
57.37

40
54.90
56.73
70.96
72.27
39.18
43.60

50
48.56
53.41
66.78
65.15
32.77
36.90

60
47.34
50.84
60.53
58.44
27.48
32.47

70
37.61
38.15
55.92
51.39
21.35
28.70

80
28.87
28.53
47.178
45.65
18.52
20.65

90
25.56
27.65
40.78
39.49
15.55
17.03

100
23.37
25.46
33.68
32.58
12.53
13.14

Average
45.37
48.00
62.11
61.11
34.71
39.81









Table 6‑8 Performance using cosine and maximum normalisation in all collections.

The average precision for both the ADI and CACM experiments is higher for the maximum normalisation. The maximum normalisation produces 2.63% better average precision in ADI collection and 5.1% in the CACM collection respectively. The MEDLINE experiments on the other hand show 1.0% decrease in the precision average for the maximum normalisation compared with the cosine normalisation. This different behaviour in the MEDLINE collection may be explained by the fact that the length of the document in the MEDLINE collection varies enormously (see the average index term per document and its standard deviation of this collection in table 6-1). The average of number of index term per document is 51.1 and the standard deviation is 22.5. Thus, we can see that there are some documents which are very short. The maximum normalisation is slightly biased toward the short document.


The maximum normalisation method also produces a smaller rate of decrease in precision. Indeed, table 6-8 shows that the drop in the precision is slower in the maximum normalisation columns for all three collections. For example, the precision drops 12.03% as the recall increases 10% in CACM experiments using the cosine normalisation. With maximum normalisation the corresponding in precision drop is only 9.43%. Similarly in MEDLINE, the drop is greater in the cosine normalisation.  In ADI collection although the drop is smaller (0.29% for cosine normalisation), the fact that the highest precision is only 64.09% means that the maximum normalisation can be considered to perform better than the cosine normalisation.

The results of these experiments show that the maximum normalisation performs better in overall. The cosine normalisation, although providing a slightly better precision average in the MEDLINE collection, still suffers from the rapid decrease in precision as recall increases. This cosine approach should thus be considered only for those applications that do not require high recall such as interactive searching of library items. For applications that require high recall such as the searching of patent records, the maximum approach is more appropriate. In the rest of the discussion in this chapter, we will thus adopt the maximum approach as our normalisation method of choice for the estimating P(dj|ti=true). 

6.4.3 Estimating the Virtual Layer Distribution

Section 5.2.3 introduced the concept of a virtual layer into the network in order to reduce the complexity of calculation during the inference process. A virtual layer consists of virtual nodes which act as summary nodes for a given group of index term nodes. Thus, it is important to be able to estimate the weight of the links that connect the virtual nodes and the child node of a given group of index term nodes. 

There are two possible estimation methods for these link weights, namely the average and the maximum approach. The average approach takes the average value of the group’s weight as the weight of the virtual links. The maximum approach on the other hand, takes the maximum value of the link weights in the group to be the weight of the virtual links. As we predicted earlier in chapter 5, the maximum approach produces better results than the average approach. Table 6-9 shows the comparison of performance of the two approaches across the three collections. 

We expected that the average and the maximum approaches give different ramification to the accuracy of summary estimation of the groups formed by the virtual layer approach(see section 5.2.3). However, the difference between the two approaches was not as marked as we expected. As discussed in section 5.2.3, we expect that assigning the average weight of the group to the links between virtual nodes and the document nodes will cause the low weight links to pull down the importance of the high weight links in the group. This situation occurs due to the fact that we have assigned the nodes randomly to the groups and as a result, similar virtual links’ weights may occur throughout in the networks.

Recall (%)
Precision (%)


ADI
MEDLINE
CACM


Max
Ave
Max
Ave
Max
Ave

10
68.92
68.21
89.51
89.70
78.85
76.56

20
68.04
67.26
81.55
81.15
69.41
68.49

30
62.24
61.58
75.09
75.27
57.37
58.20

40
56.72
56.48
72.27
72.20
43.60
44.03

50
53.41
52.54
65.15
65.19
36.90
36.89

60
50.84
49.923
58.44
58.08
32.47
32.58

70
38.15
37.30
51.40
51.11
28.70
28.66

80
28.53
27.75
45.65
45.61
20.66
20.41

90
27.65
26.88
39.49
39.43
17.03
16.80

100
25.46
24.72
32.58
32.27
13.14
12.83

Average
48.00
47.26
61.11
61.00
39.81
39.54









Table 6‑9 Performance comparison using average and maximum estimation for virtual links.

Experimental results (table 6-9) show that the average and maximum approaches only differ slightly in their performance. In the ADI collection, the maximum approach is only 0.74% better than the averaging approach. The differences are much less in the MEDLINE collection and the CACM collection, being 0.11% and 0.27% respectively. The rate of decrease in precision is also similar in the two approaches. There is no one approach which exhibits retrieval bias toward either precision or recall. In this sense,  both approaches may be considered of equal value. 

We have suggested a method of improving the random grouping of the index term nodes for the virtual layers in section 5.3.3.1. Table 6-10 reports the comparative performance of the random and non-random clustering techniques. The non-random clustering method requires the estimation of the significant level. Standard deviation of the link weights distribution is a good estimation for this significant level. It gives us a better chance to evenly divide the index term nodes into the group. Recall from the discussion in section 5.3.3 that the most optimised network is given by a symmetric network. 

We calculated the standard deviation of the distribution of the link weight within the document that required classification in the ADI collection. Most of the standard deviation within the documents lies on the range 0.08 to 1.0. We tried several significant levels in this standard deviation range and performed the retrieval of the ADI collection. The result of these experiments is reported in table 6-10. 

Recall

(%)
Precision 


random cluster
non-random cluster with n significant level



n=0.08
n=0.09
n=0.1

10
68.92
68.78
70.73
69.34

20
68.04
66.43
68.35
66.64

30
62.24
60.54
63.94
61.39

40
56.73
54.36
57.03
54.87

50
53.41
49.19
50.97
49.87

60
50.84
48.39
50.05
48.16

70
38.15
37.26
36.76
37.88

80
28.53
27.85
27.49
27.52

90
27.65
26.40
26.81
26.03

100
25.46
24.42
24.66
24.27

Average
47.997
46.362
47.679
46.597







Table 6‑10 Performance of difference clustering schemes.

The performance of the random clustering method for the average precision is slightly better than the performance of the non-random clustering method. The difference in the average precision, however, is relatively small (0.32%) compared to the gain in precision at 10% to 40% recall. The results shown in table 6-10 agrees with our hypothesis discussed in chapter 5, which stated that the non-random cluster method does not find new relevant documents, instead, it shifts the relevant documents higher in the ranked output. If the non-random cluster method is able to find relevant documents not found by the random cluster, the experiment results will show the increase in the average precision. Therefore, the choice between the two clustering methods depends on the objective of the retrieval systems built. If the precision is very important then the non-random clustering method is the choice with the cost of having more expensive preprocessing. On the other hand, the choice will be the random cluster when the precision is not very important because it requires less computation during the clustering process.

We have presented experimental results of different approaches for estimating the different probability parameters in the model. The summary of the average precision gained by different estimations is shown in table 6-11. 

From this table, we can summarise that the model performs best when the following probability parameters are used:

1. P(ti|Q=true) or the weight of the node Q to query term node is estimated using normalised qf.idf (equation 6.5).

2. The default belief for P(dj|ti=true) is (=0.5.

3. The tf component of the P(dj|ti=true) is estimated using the normalised tf (equation  6.6).

4. The combination of tf.idf of P(dj|ti=true) is best normalised using the maximum normalisation (equation 6.8).

5. The virtual link weights are estimated using the maximum probability values of the group (equation 5.2).

Estimation
Maximum precision
Average precision

Query (none) , document (none)
21.79
13.22

Query (qf), document (none)
21.18
11.88

Query (idf), document (none)
34.62
19.71

Query (normalised qf.idf), document (none)
58.19
35.31

Query (normalised qf,idf), document (tf)
34.38
22.33

Query (normalised qf,idf), document (idf)
43.22
27.34

Query (qf), document (tf.idf with cosine normalisation)
64.09
45.37

Query (qf), document (tf.idf with maximum normalisation)
63.40
44.00

Query (normalised qf.idf), document (tf.idf with cosine normalisation)
64.09
45.37

Query (normalised qf.idf), document (tf.idf with maximum normalisation)
68.09
45.37

Virtual layer with maximum estimation
68.92
48.00

Virtual layer with average estimation
68.21
47.26

Virtual layer with non-random cluster method
70.73
47.68





Table 6‑11 Performance summary of different estimations in ADI collection.

6.5 Performance Comparison with Existing Model

Using the best estimation suggested in previous section, we compared the performance of our model with two other well-known models, namely the vector space model [Salton83] and Turtle and Croft’s model [Turtle90]. We chose these two models of information retrieval because they both well-know models and their experimental results are available publicly.

We can only compare Turtle and Croft’s model [Turtle90] with our Bayesian network model for the CACM collection because they did not report the experiment results for either the ADI collection or the MEDLINE collection. We should also note that the accuracy of the reporting was different in Turtle and Croft’s model. They only report the experiment results to one decimal point accuracy and we will use them as they appear on their published experiment results [Turtle90]. We compared our model with vector space for all the three collections.

Most of the reporting of information retrieval experiments so far has concentrated on looking at the average precision across different recall levels. The problem with this approach is that the comparison is biased towards precision oriented systems [Wallis95]. As we have mentioned, not all applications in information retrieval are suited to these types of systems, for example patent office systems. With systems that require high recall such the patent office systems, lower precision in the low recall level is not necessarily as important as having higher precision at high recall level. A system that produces a high precision at the high recall level is able to better distinguish the relevant and non-relevant documents retrieved compared with systems that produce a lower precision at a high recall level. 

The precision at the high recall levels is very important because the actual number of documents retrieved is much greater at high recall level. Therefore, a slightly higher precision system will retrieve much less number of non-relevant documents compared with a system that produces high precision at low recall but low precision at its high recall levels. We will show that our Bayesian network model not only outperforms the vector space and Turtle and Croft’s model in terms of average precision but also, more importantly, in terms of precision at high recall levels.

6.5.1 Comparative Performance for the ADI

Our Bayesian network model outperforms the vector space model for experiments in the ADI collection. Table 6-12 and figure 6-2 show the performance comparison between vector space and our model. On average, our model produces a 0.62% better precision for 10 different recall levels. The improvement provided by our model is achieved at the both ends of recall level range. The maximum improvement is achieved at 50% recall (2.01%) and the minimum improvement is at 70% recall (0.16%). 

At the low recall level (10-20% recall), the precision of our model is between 0.96% and 1.66% better than the vector space model. The vector space model performs almost the same level of precision on the middle recall level (30-80% recall). Our model starts to outperform the vector space again at the high recall level. Our model produces a comparative 1.1% and 1.66% performance increase at 90% and 100% recall respectively. 

Recall

 (%)
Precision (%)


Vector Space
Bayesian Network

10
67.26
68.92

20
67.26
68.22

30
62.61
62.3

40
57.85
56.78

50
51.46
53.47

60
49.98
50.71

70
37.99
38.15

80
29.28
28.53

90
26.52
27.65

100
23.8
25.46

Average
47.40
48.02





Table 6‑12 Performance comparison with vector space for ADI collection.

The graph in figure 6-2 shows the comparative recall and precision level of the retrieval in ADI collection. From this graph we can see clearly that the rate of decrease in precision level is almost the same for the vector space and our Bayesian network model, with the exception at the 90% and 100% recall. The trend in the graph that represents our model is flatter at these two recall points, or, in other words our model provides smaller rate of decrease in precision as recall increase. Therefore, our Bayesian network model will clearly outperform the vector space model for high recall oriented system. 

Higher level of precision at the high recall level can be achieved by our Bayesian network model mainly due to the adoption of the graph that enables explicit representation of connectivity among the index terms and the document in the collection. It has been suggested that this connectivity will improve the retrieval performance [Croft84, Croft87a] because explicit representation allows documents that do not contain the query terms to be retrieved if they share many index terms with those documents which contain query terms. However, this index terms and document connectivity has been denied from conventional keyword based matching model such as vector space and has contributed to its inferior performance.
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Figure 6‑2 Comparative Performance for the ADI collection

6.5.2 Comparative Performance for the MEDLINE


The experimental results on the MEDLINE collection show a similar behaviour with those of the ADI collection. Table 6-13 shows the experimental results. The average precision of the Bayesian network model for the experiments in the MEDLINE collection is 1.01% better than the vector space model. The maximum improvement is achieved at the 100% recall (7.61%) and the minimum at 90% recall (1.69%). The vector space model shows good precision at 10%, 30%, 50%, 60% and 70% recall. However, the precision produced by the vector space model decreases drastically at the two extreme recall levels compared with our model. For example, it drops 11.41% in precision when the recall increase from 10% to20%, our drop is 7.96%. It is clearly shown in figure 6-3 that our model produces a more steady decrease in the precision rate than the vector space model. 


The Bayesian network model’s superiority is clearly shown for the precision rate at the high recall level. For example, our model produces 7.61% better precision than the vector space at the 100% recall level. This behaviour is similar to the behaviour of our model in the ADI collection experiments. The difference in precision is much higher in the MEDLINE experiments than the ADI experiments. In the ADI experiments, the difference between the precision at 100% recall of our model and the vector space model is 1.66%.

Recall

(%)
Precision (%)


Vector-space
Bayesian network

10
91.12
89.51

20
79.71
81.55

30
75.40
75.10

40
70.54
72.27

50
67.00
65.15

60
58.85
58.44

70
52.96
51.40

80
43.06
45.65

90
37.80
39.49

100
24.97
32.58

Average
60.10
61.11





Table 6‑13 MEDLINE experimental results.

6.5.3 Comparative Performance for the CACM

The Bayesian network model behaves similarly in the CACM collection as in the ADI and MEDLINE collections. It outperforms the vector space model and Turtle and Croft’s model (see table 6-14 and figure 6-4). The average precision for the Bayesian network is 2.74% and 0.5% better than that of the vector space model and Turtle and Croft’s model respectively. Our model is also superior to both the vector space and Turtle and Croft’s model in terms of precision at low recall levels (10%-30%). Table 6-13 shows that our model produces precision at 10% recall of 2.35% and 5.69% higher than Turtle and Croft’s and the vector space model respectively. 


[image: image11.wmf]10

20

30

40

50

60

70

80

90

100

89.51

81.55

75.10

72.27

65.15

58.44

51.40

45.65

39.49

32.58

91.12

79.71

75.40

70.54

67.00

58.85

52.96

43.06

37.80

24.97

0

10

20

30

40

50

60

70

80

90

100

Precision(%)

Recall(%)

Vector Space

Bayesian Network


Figure 6‑3 Comparative performance for the MEDLINE collection.

Recall

 (%)
Precision (%)


Bayesian network
Vector Space
Turtle’s network

10
78.85
73.16
76.5

20
69.42
61.69
65.5

30
57.37
52.22
54.4

40
43.61
43.97
48.6

50
36.90
35.54
42.3

60
32.47
28.94
36.1

70
28.70
24.87
25.5

80
20.66
20.07
21.1

90
17.03
16.75
12.7

100
13.14
12.45
9.6

Average
39.70
36.96
39.2






Table 6‑14 Experimental results for CACM collection.

In the middle range recall levels, Turtle and Croft’s model shows a better performance than our model. However, from the point of view of practical applications, a higher precision at the both ends of the recall spectrum will be more desirable than that is of precision at the middle recall range for the following reasons:

1. High precision in the middle range does not provide a clear cut-off point in the situation where the systems want to produce limited recall output. The recall cut-off point will be clearer in a model that retrieves the relevant documents concentrated at the top and bottom level of recall level. 

2. Having high precision in the middle range but low precision at the high recall level, does not provide the best support for the recall-oriented systems. This is because the amount of documents to be inspected in order to find relevant documents in the high recall level is much higher than the amount of documents to be inspected in the medium recall level. Thus, considering the amount of documents to be inspected, recall-oriented systems will be benefited from high precision at high recall level. 

The vector space model produces worst performance in almost every recall levels than that is of Turtle and Croft’s and our model. The exception occurs only at the 90% and 100% recall, it performs better than the Turtle and Croft’s model. 

The CACM experiments demonstrate the superiority of our model to the vector space and Turtle and Croft’s model. The superiority of our model is with respect to the vector space model is particularly clear. The Bayesian network outperforms the performance of the vector space model at every recall level. This shows that the addition of knowledge, through the use of the network model adopted by our model, provides a better information retrieval model than that is of simple index terms matching function which is adopted by the vector space. This benefit of adopting a network model is clearly demonstrated by the fact that our model maintains comparatively higher precision at the high recall levels. The adoption of the network model provides a natural classification which allows a document that does not contain the query terms to be retrieved. Such characteristic cannot be produced by the keyword-based retrieval such as the vector space model. 

We have claimed in chapter 5 that our model provides greater versatility (Salton’s [Salton83] third requirement introduced early in this chapter) than does Turtle and Croft’s inference network. We have shown in that chapter that our model is not just able to simulate other existing models in information retrieval, but is also able to support both evidence and dependency alteration relevance feedback. 
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Figure 6‑4 Comparative Performance for CACM collection. 

In this chapter, using the experimental results of the three test collections, we have also shown that our Bayesian network model is more effective in identifying useful information accurately and quickly (Salton’s first requirement). In other words, our model exhibits a better precision at most recall levels of the three collections. This ability is achieved by adopting the correct network semantic compared with the Turtle and Croft’s model. Table 6-15 shows the summary of the performance improvement for the three collections.

Collection
Performance improvement (%)


Maximum
Minimum
Average

ADI
2.01
0.16
0.62

MEDLINE
7.73
0.28
0.97

CACM
7.61
1.69
2.74






Table 6‑15 Summary of performance improvement of the experiments.

Our Bayesian network model also met the second requirements stated by Salton, namely the ease of rejecting extraneous document because our model produces a higher average precision for the three collections. Therefore, we can claim that our model provides a better and more versatile model to the information retrieval systems than the two popular existing information retrieval model.

6.6 Summary

The Bayesian network model’s experimental performance has been reported in this chapter. The experiments were run on three collections: ADI, MEDLINE and CACM. These three collections vary in size, distribution of the index term’s weight, the number of queries and their length. 

Different probability estimation methods have also been tested and the results are reported in this chapter. In general, the retrieval performance of the network is better when weighting schemes are used for the link weights in both the query and document network. The best performance is achieved when the P(ti|Q=true) in the query networks is estimated by the qf.idf with cosine normalisation and P(dj|ti=true) in the document network is estimated by the tf.idf with maximum normalisation. The default belief of P(dj|ti=true) for the best performance is given by value of  0.5.

As the size of the Bayesian network for information retrieval is large, the introduction of virtual layers becomes necessary as an aid to reduce the network’s complexity, in particular by reducing the size of the link matrix. In implementing the virtual layer solution, index terms are grouped and connected to a virtual node at the virtual layers. The link weights from the virtual layer to the document layer require estimation. These link weights have to able to summarise the weight distribution of the group. We tested two approaches to these estimation tasks, namely taking the average and the maximum of the weights in the group. We found that both approaches do not differ much in performance with the maximum method producing slightly better performance than the average method.

Using those probability estimations that produce the best retrieval performance for Bayesian network model, we compared its performance with the vector space and the model of Turtle and Croft. The Bayesian network models shows much better precision than these two models especially at the two recall level extremes. This result supports our hypothesis that the introduction of the network as a knowledge base will increase the performance of the retrieval compared with the purely index term matching method (adopted by the vector space model). The fact that our network model outperforms Turtle and Croft’s network shows that the direction of the inference and the assumptions of the causal relations between propositions affects the performance of the retrieval in the network model. This is the case because the direction of the inference dictates the semantics of the model. 

We have suggested the adoption of virtual layer approximation to reduce the computation complexity in Bayesian networks. This approximation method involves the classification of parent nodes into smaller groups, which in turn it will reduce the size of the link matrix. In the next chapter we will present an evaluating model based on Minimum Message Length [Wallace68] to access the goodness of classification of parents node in the network. This model provides a useful and effective mean of finding the optimum virtual layer model. With the help of this model, we can eliminate extensive retrieval testing to different virtual layer models in order to find the optimum model. 





� The full documents collection of the ADI are given in appendix A. The full queries are given in appendix B.

� The collections can be obtained from anonymous-ftp site ftp.cornell.cs.edu

3On average the short queries consist of less than 20 index terms and the long queries contains 100 index terms.

� The relevance judgement of Wall Street Journal collection has been improved over these years by the participant of TREC, hence the first few versions of relevance judgement sets for this collection may thus suffer from the low number of systems used in the pool [Voorhees96].
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