Theory in Bayesian Networks

3.1 Introduction

Over the last few decades, interest in artificial intelligence research has been growing rapidly, especially in the area of knowledge based systems. The phrases knowledge based systems or expert systems are usually employed to denote the computer systems which incorporate some symbolic representation of human knowledge. The symbolic representation of this knowledge is used in turn by the computer systems to make decisions as if they had been made by a human expert.


By studying many knowledge based systems developed for many different problem domains, artificial intelligence researchers have found that the knowledge required for the decision process often cannot be precisely defined. In fact, many real-life problem domains are fraught with uncertainty. Chapter 2 has shown that information retrieval systems are not spared uncertainty in their problem domain. The challenge in the research of building knowledge based systems can be seen as that of modeling a human expert’s capability for handling uncertainty. Human experts in particular problem domains are able to form judgements and take decisions based on uncertain, incomplete or even contradictory information. Therefore, a good knowledge based systems to be of practical use, has to perform at least equally well compared with a human expert in handling uncertainty in a given problem domain.


In this chapter, we introduce a formalism for representing uncertainty using Bayesian networks and associated algorithms for manipulating uncertain information. There are many other formalisms including Rule based systems and fuzzy logic. However, Bayesian networks have been accepted by a large population of artificial intelligence researchers due to their powerful formalism for representing domain knowledge and its associated uncertainty. In section 3.2 we recap classical probability theory and Bayes theory. In this section we provide the formal development of Bayes theorem from that of the classical probability theory. Section 3.3 reviews the difference between the Bayesian and classical approaches to probability theory. Section 3.4 discusses the use of Bayesian network in knowledge based systems. This section includes the discussion of Bayesian network formalism and properties. These properties include the implementation of conditional independence. 

Any knowledge based system needs to be able to adapt to additional knowledge that arrives at the system as evidence. The procedure to perform this operation is known as the inference process. Section 3.5 looks at inference processes in the Bayesian network. We conclude the chapter with a summary in section 3.6.

3.2 Bayes Theorem

To understand Bayesian networks, it is important to understand the Bayesian approach to the probability and statistics. In this section, we contrast the Bayesian view of probability to the classical view of probability. We also present the main theorem on which Bayesian probability and statistics are based, that is of Bayes theorem. First, we present in this section the development of the Bayes theorem. The following derivation follows that of Neapolitan [Neapolitan90]

According to Laplace [Neapolitan90, pp28] probability is defined as :

The theory of chance consists in reducing all the events of some kind to a ceratin number of cases equally possible, that is to say, such as we may be equally undecided about in regard to their existence, and in determining the number of cases favorable to the event whose probability is sought. The ratio of this number to that of all the cases possible is the measure of the probability.

Laplace's definition gives the framework of the classical approach which states that every possible outcome of an experiment has an equal chance. We discuss the meaning of the above definition in more detail below. First, we define the meaning of a sample space where the possible outcomes can be derived. During this discussion we use the example of picking up a card from a 52 card deck.

Definition 3.1. Let an experiment which has a set of mutually exclusive and exhaustive outcomes be given. That set of outcomes is called the sample space and is denoted by (.

In our experiment picking a card from a deck, the sample space ( is the set of 52 different outcomes. Next, we define an event in a sample space.  

Definition 3.2 Let ( be the set of subsets of ( such that


1. (((

2. E1 and E2 ( ( implies E1 ( E2 ( (

3. E ( ( implies E( (
Then ( is called a set of events relative to (.

According this definition, an event is simply a set of propositions which has its corresponding set of possible outcomes in the sample space (. For example, if an event E is the proposition of getting a king from the deck of cards, then there are 4 corresponding possible outcomes in sample space (, namely king of spades, king of hearts, king of diamonds and king of clubs. Next, we define the means of a probability value for an event.

Definition 3.3 For each event E ( (, there is corresponding a real number P(E), called the probability of E. This number is obtained by dividing the number of equipossible alternatives favorable to E by the total number of equipossible alternatives or outcomes.

According to definition 3.3, the probability of the event king card turn up is 4/52. Using the above definitions we can now prove some properties of probability theory and of conditional probability [Neapolitan90].

Theorem 3.1 Let ( be a finite set of sample points, ( a set of events relative to (, and, for each E ( (, P(E) is the probability of event E according to the classical definition of probability in definition 3.2. Then


1. P(E)>=0  for E ( (

2. P(()=1

3. If E1 and E2 are disjoint subsets of (, then P(E1(E2)=P(E1)+p(E2)
Proof. Let n be the number of equipossible outcomes in (.
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1. If k is the number of equipossible outcomes in E, the, according to definition 3.3, 


2. Following definition 3.3,  
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3. Let E1 and E2 be disjoint events, let k be the number of equipossible outcomes in E1, and let m be the number of euipossible outcomes in E2. Then, since E1 and E2 are disjoint, k+m is the number of equipossible outcomes in E1(E2. Thus, following definition 3.3, 
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Definition 3.4. Let ( be the set of sample points, ( a set of events relative to (, and P a function that assigns a unique real number to each E ( (. Suppose P satisfies the properties defined by theorem 3.1. Then ((,(,P) is called a probability space and P is called probability measure of  (.

Defining a probability space is very important for measuring any probability value. Laplace [Neapolitan90] states that there is no absolute probability value. Any probability space exists relative to partial information or knowledge. Different knowledge will generate different probability spaces. For example, Natalie, a sneaky girl, peeks at the top of the card deck before a card is drawn from it. She sees that the top card is a king but does not know to which suit that king belongs. By doing this, Natalie has changed her probability space from 52 possible outcomes to 4 possible outcomes. The probability of the card drawn being a king of hearts now becomes 1/4 instead of 1/52. This example illustrates the importance of conditioning the probability on some known knowledge or information. Now, we define the meaning of conditional probability.
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Theorem 3.2. Let ((,(,P) be the probability space created according to the classical definition of probability. Suppose E1 ( ( is nonempty therefore has a positive probability. Then, we assume that the alternatives in E1 remain equipossible when it is known for certain that E1 has occurred, the probability of E2 given that E1 has occurred is equal to

Proof. Let n,m, and k be the number of sample points in (, E1 and E1 ( E2, respectively. Then the number of equipossible alternatives based on the information that E1 has occurred is equal to m while the number of these alternatives which are favorable to E2 is equal to k. Therefore the probability of E2 given that E1 has occurred is equal to
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Definition 3.5. Let ((,(,P) be a probability space and E1 ( ( such that P(E1) > 0. Then for E2((, the conditional probability of E2, given E1, which is denoted by P(E2|E1), is defined as follows :
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Definition 3.6. Let ((,(,P) be a probability space and {E1,E2,...,En} be a set of events such that for i(j

[image: image4.wmf]NULL

E

E

j

i

=

Ç


and


[image: image5.wmf]U

n

i

i

E

1

=

W

=


Then the events in {E1,E2,...,En}are said to be mutually exclusive and exhaustive.

Lemma 3.1. Let ((,(,P) be a probability space and {E1,E2,...,En}be a set of mutually exclusive and exhaustive events in ( such that 1<=i<=n, P(E1)>0. Then for any E ((.
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Proof. Since the Ei’s are exhaustive, we have that


E=(E(E1)((E(E2) ( .. ((E(En)

Therefore, since the Ei’s are mutually exclusive, by definition 3.4 we have that


P(E)= (E(E1)+(E(E2)+...+(E(En)

From definition 3.5,

P(E)= P(E|E1)P(E1)+ P(E|E2)P(E2)+…+ P(E|En)P(En)(
The definition 3.5 is known as the classical or traditional view of conditional probability. In the following discussion illustrate development of Bayes theorem which is a different view of conditional probability.

Theorem 3.3. Bayes Theorem. Let ((,(,P) be a probability space and {E1,E2,...,En} be a set of mutually exclusive and exhaustive events in ( such that for 1( i ( n, P(Ei) > 0. Then for any E ( ( such that P(E) > 0, we have that for 1 (j(n
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Proof. Let {E1,E2,...,En}as set of mutually exclusive and exhaustive events in ( such that for 1( i ( n, P(Ei) > 0. 

It follows from definition 3.5 [image: image8.wmf]P
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From Lemma 3.1 we have [image: image10.wmf]P
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If E and E' are any two events such that P(E) and P(E') are both positive, then the following equality follows directly from definition 3.5 :
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Notice that in Bayes theorem, the conditional probability is not represented as joint events as in classical conditional probability. This different treatment of conditional probability leads to several philosophical differences between the Bayesian and classical approach. Section 3.4 compares and discusses these two different approaches towards probability in detail.

In our study, we use Bayes theorem as a diagnosis tool. A typical diagnostic process consists of a hypothesis that has been postulated and some evidence that can be used to verify the hypothesis. For a diagnostic process, Bayes theorem as in theorem 3.3 can be written as

[image: image12.wmf]P

H

e

P

e

H

P

H

P

e

(

/

)

(

/

)

(

)

(

)

=






(3.1)
P(H|e) represents  the belief that we yield a hypothesis H upon obtaining evidence e. The belief can be calculated by multiplying our previous belief P(H) by the likelihood P(e|H), that is, if e will materialise if hypothesis H is true. P(H) is sometimes called the prior probability and P(H|e) is posterior probability. The denominator P(e) hardly enters into the calculation because it is a normalising constant. We will use this format of Bayes theorem in the rest of the discussion in this thesis, unless we feel necessary to go back to the general format as in theorem 3.3.

3.3. Bayesian vs Classical Probability Theory

We compare the Bayesian and classical view of probability on two of the important aspects of probability, namely the meaning of the probability and the meaning of conditional independence. First, we will discuss the different meanings of probability according to the Bayesian and classical views respectively.

The Bayesian approach views probability as a person’s degree of belief in an event x occurring given the information available to that person. A probability of 1 corresponds to the belief in the absolute truth of a proposition, a probability of 0 to the belief in the proposition’s negation, and the intervening values to the partial belief or knowledge. 


Classical probability theory considers the probability of an event x as the physical probability of the event x occurring. The probability values are acquired through a number of repeated experiments. The larger the number of experiments performed, the more accurate the value of the probability. Thus, the classical approach relies on the existence of the experiments and is not willing to attach any probability value to an event that is not a member of a repeatable sequence of events. The Bayesian approach, on the other hand, consider a probability as a person’s degree of belief, a belief can be assigned to unique events that are not members of any repeatable sequence of events. For example, consider assigning the probability to the belief that the Australian will win the Ashes in 1997, although the matches have not yet taken place. Although Bayesian approach is willing to assign a probability value to this event, the assignment of this subjective probability should be considered carefully. It must be based on all the information available to the individual who makes the prediction. This information may include those items that are known to be true, deducible in a logical sense and empirical frequency information. For example in predicting the probability of the Australian team winning the Ashes, information about all the Australian and England players’ current form, the Australian team's past experience in playing in England, as well as the weather pattern in England during summer may be used.


 The second main difference between the Bayesian and classical approaches is their treatment of conditional independence. We define the conditional independence as follows:

Definition 3.7. Let ((,(,P) be a probability space and H and e events in ( such that one of the following is true:


1. P(H)=0 or P(e)=0

2. P(H|e)=P(H)
Then H is said to be independent of e.
Based on this definition, classical probability introduced the following theorem.

Theorem 3.4. Let ((,(,P) be the probability space and H and e be arbitrary events in (. Then H and e are independent if and only if 
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Proof. Let H and e be independent event in ( and P(H) > 0. 

It follows from definition 3.5 that P(H(e) = P(H|e)P(e). 

From definition 3.6 we have P(H|e)=P(H) for H independent of e. 

Combining the two definitions we have P(H(e)=P(H)P(e)(
Theorem 3.4 shows that the classical probability formalism checks the conditional independence through the equality of the joint probability of the events and the product of the individual events. The problem with this checking is that the result of the joint probability calculation does not provide psychological meaning to the user or developer of the knowledge-based system about the dependency between the events. Human can not easily attach numerical values to an event but can easily determine whether two events are independent from looking at the cause-effect relationship between the events involved. The Bayesian approach, on the other hand, bases its conditional independence concept around the human reasoning process. 

Bayesian approach sees the conditional relationship as the more basic than that of joint events. According to this approach, conditional probability should reflect the organisation of human knowledge. The organisation of human knowledge consists of a set of evidence e that serves as pointer to a context or frame of knowledge H.  In other words, H|e stands for an event H in the context specified by e. Consequently, empirical knowledge invariably will be encoded in the conditional statements, while belief in joint events, if ever needed, will be computed from those statements via the product

P(H,e)=P(H|e)P(e)



(3.2)

Therefore, Bayesian approach states conditional independence in terms of conditional probabilities, for example P(H|e) which specify the belief of hypothesis H under the assumption that evidence e  is known with absolute certainty. If P(H|e)=P(H), it is said that H and e are independent. 

Treating conditional independence using conditional probabilities rather than joint probabilities not only mirrors the human reasoning process but also provides the capability for knowledge based systems to use the recursive and incremental updating of the belief value. Consider the following situation. Let H denote a hypothesis, en = e1,e2,…,en denote a sequence of data observed in the past and e denote a new fact. A brute force way of calculating the belief in H would be to add the new datum e to the past data en and perform a global computation of the impact on H of the entire set en+1 = {en,e}. In other words, the systems needs to compute the joint probability of H, en and e. To calculate this joint probability, the entire stream of past data needs to be stored and made available for subsequent computation. In practise, this can be time and storage consuming. Using Bayes theorem, to include the new datum e, we have
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(3.3)
The above equation shows that the prior probability P(H|en,e), represented by P(H|en) is the old belief  of the hypothesis H given the en data. Thus, P(H|en) can be considered as a summary of past experience. An update of the belief due to the new datum then can be calculated using this past experience multiplied by the likelihood function P(e|en,H). Thus, the calculation of the new belief for a hypothesis given a new datum does not require the memory of the past data values. It can always be performed as a recursive and incremental computation.

We have shown the background of Bayes theorem and its advantages compared with the traditional approach to probability in this section. Bayes theorem provides us with greater ability to quantify the probability model of a situation by a method close to the human reasoning process, however this purely numerical representation lacks psychological meaningfulness. The numerical model can produce coherent probability measures for all propositional sentences, but often leads to computations that a human reasoner would not use. As a result, the process leading from the premises to the conclusions cannot be followed, tested, or justified by the users, or even the designer of the reasoning system. An extension of the numerical representation is needed to provide psychological meaningfulness of the reasoning system. Such an extension of the numerical representation of the Bayes theorem is provided by the Bayesian network.

3.4 The Bayesian Network as a Knowledge Base

We have mentioned in the previous section that a purely numerical representation is inadequate in representing the human reasoning process. For that reason, many researchers in AI consider probability theory to be epistimelogically inadequate. Due to this perceived inadequacy of the probabilistic approach to AI, some researchers have looked into representing qualitative reasoning through a symbolic reasoning approach. This includes non-monotonic logic[Reiter87], fuzzy logic[Zadeh78], certainty factors[Shortlife75] and Shafer-Dempster belief functions[Gordon85]. Further investigation of the probabilistic approach to AI shows that the exploitation of the conditional independence assumptions implicitly in the qualitative structure of the expert knowledge provides a rich way of representation of knowledge in the probability approach. This qualitative structure of the expert knowledge can be represented by a graph. Using this graph, we can capture and exploit the human ability to easily detect events or proposition dependencies without knowing precisely the numerical estimates of their probabilities. 

Consider the following situation. A person may be reluctant to estimate the probability of having Third World War at the end of the century or winning the Lotto jackpot in the next draw. However, this person can nevertheless state with ease whether these two events are dependent, that is, whether knowing the truth of one event or proposition will alter the belief in the other. Evidently, the notions of relevance and dependence between propositions are far more basic to human reasoning than are the numerical values attached to the probability judgements. 

A knowledge based system that models the human expert reasoning process therefore needs to use a language to represent probabilistic information that allows assertions about dependency relationships to be expressed qualitatively, directly and explicitly [Pearl88]. One way of providing qualitative dependence relationships in the probability model is by the use of graph theory. The nodes in graphs can be used to represent proposition variables, and the arcs can be used to represent conditional independence.  

There are several graph models are used in AI. These graph models can be classified into two main groups. The first group uses undirected graph. Falling into this category are the Markov networks [Lauritzen88]. The second group uses directed graphs in order to represent explicitly causal dependency between proposition. Bayesian network falls into the second group. Pearl [Pearl88] suggests that this directed graph is a closer representation of human reasoning process and a semantically richer model compared with the undirected graph. For the reason of its richness in capturing diagnostic reasoning processes, we use Bayesian network model in our study. 

3.4.1 Bayesian Network Structure

A Bayesian network is a directed acyclic graph (DAG) whereby a node represents a proposition or an event and an arc represents a direct cause-effect dependency between two propositions or events. Consider the following situation
: an office worker called Mr.Goody lives in the outer suburbs of Melbourne and works in the central business district of Melbourne. His boss, Ms Habib has noticed recently that he comes to the office late most of the time. She does not like the situation, but she wants to give Mr. Goody another chance because he is a good worker and it is only recently that he is often coming late to the office. One day, Mr Goody has a very important meeting with a client and he is late. Ms Habib, currently doing Mr. Goody’s performance evaluation, needs to decide whether to give a good or bad evaluation of him. She needs to know whether Mr. Goody is late because of his carelessness or whether he is just an innocent person caught in the bad traffic. Ms.Habib's decision process can be described by figure 3-1.  While she is waiting for Mr.Goody, Ms.Habib listens to the radio station and learns that there is an accident in the freeway taken by Mr.Goody everyday to work. And since the freeway is under going some repairs and only one lane is open, the traffic is almost at a stand still. With the arrival of this new knowledge, Ms.Habib concludes that Mr.Goody is caught in bad traffic and therefore he is innocent. Her belief in Mr.Goody being late because of his carelessness in getting up late has decreased. In this situation, we can say that the two events of the traffic being heavy and Mr.Goody sleeping in are dependent, giving the new evidence of the event Mr.Goody is late.
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Figure 3-1 An example of a Bayesian network.


The situation depicted through the Bayesian network model in the previous paragraph shows how a directed graph can be used to explain the qualitative part of a decision process. It can clearly show the dependency or cause-effect relations between events or propositions. If the above situation is explained only using only the probability distribution, the dependency between the event Mr.Goody sleeping in and traffic is heavy has to be checked through the numerous probability computations. This computation is not only time consuming but also sometimes difficult to interpret. The example clearly shows that the richness of Bayesian network through the use of directed graph can make it a powerful tool in building knowledge base system. 

3.4.2 Conditional Independence

The example and discussion in section 3.4.1 has shown that the semantics of the Bayesian network demands a clear correspondence between the topology of a DAG and the dependence relationship potrayed by it. Finding conditional independence of events in Bayesian network can be done through the checking of the d-separation. 

Definition 3.8 If X,Y,Z are the three disjoint subsets of nodes in a DAGD, then Z is said to d-separate X from Y , denoted <X|Z|Y>D, if there is no path between a node in X and a node in Y along which the following conditions hold :

1. Every node with converging arrows is in Z or has a descendent in Z 

2. Every other node is outside Z.

Any path satisfies the above condition is said to be active and blocked otherwise. Consider a diagnostic procedure of a metastatic cancer patient illustrated by figure 3-2. A patient who is diagnosed of having metastatic cancer might have resulted in showing two different symptoms, namely increased total serum calcium or brain tumor. Both of these symptoms may cause the patient fall into the stage of coma. If the patient fall into a stage of coma for a long period of time, it will damage the brain cells.
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Figure 3-2 Bayesian network model of metastatic cancer diagnostic.

The dependency between the events in this diagnostic process can be checked by using d-separation (definition 3.8). Consider the different situations below :

1. Let X={C} and Y={B} and Z={A}. Z  d-separates or blocks X and Y because along the path C-A-B there is no converging arrow in A or in any of descendent of A and other nodes in the network ( D,E ) are outside Z. The fact that node A separates node C from B, once the belief value in A is known the belief in node C will not contribute to the belief value in B. If a patient has been diagnosed as having a metastatic cancer, the belief that the patient has an increase in total serum calcium will not increase or decrease the belief that the patient suffers from brain tumor because once the patient diagnosed of having metastatic cancer, brain tumor will be present. It is said that the knowledge of the existence metastatic cancer in a patient makes the event of increased total serum calcium and brain tumor independent.

2. The situation would be different if  we take X={C} and Y{=B} and Z={D}. The path C-D-B has converging arrows namely path C-D and B-D, thus D does not d-separate node C and B. If a patient has been found in coma, using the same Bayesian network, the doctors can consider that the patient suffers from increased total serum calcium or brain tumor. A further medical test carried by the doctors on the patient and find out that the patient has brain tumor. This new finding will decrease the possibility of this patient increase in the total serum calcium. Thus, the knowledge of coma occurred makes the belief of the two events increased total serum calcium and brain tumor dependent. Change in one of these events will change the belief value in the other event.

3. Let the same values are assigned to X and Y, if Z={E}, then nodes X and Y does not d-separate by Z because node E is a descendent of node D which has converging arrows, thus it violates the first condition of definition 3.8. Looking back at the patient diagnostic example, a patient has been found suffering from a brain damage. The Bayesian network representation of the problem shows that a patient can suffer a brain damage after falling into a stage of coma over a long period of time. In this situation once the truth that the patient suffer a brain damaged is known, this new evidence introduced to the diagnostic process can be explained as the result of being in the coma. The second situation above shows that the coma event makes the events increasing total serum calcium and brain tumor become dependent.

The procedure for testing d-separation performed above shows that it separation criteria follow the basic pattern of diagnostics reasoning, such as two inputs of a logic gate are presumed independent, but if the output becomes known, the learning of one input has bearing on the other. The d-separation test is the formal way of determining the independence assumption between proposition in the network. Heuristically, the independence assumption can be derived by looking at the topology in the network. There are three basic topologies that can cause different independence assumption. These topologies are depicted by figure 3-3. 
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Figure 3-3 Different topologies for independence assumption.

In figure 3-3a, the network is considered having arrows a(c and b(c meet head-to-head at node c. In this type of topology where two arrows meet in a node, any instantiation of the root node, ie. node a or b causes these two nodes to be independent. On the other hand, the revelation of the value of proposition in node c causes the node a and node b to be dependent. 


The second topology depicted by figure 3-3b contains two arrows a(c and c(b meet head-to-tail at node c. In this topology, the instantiation of the root node, ie. node a, causes the node b and node c to be dependent because the proposition in node c is the cause of the proposition in node b. The similar situation occurs when we instantiate the leaf node, ie node b. It effects will be computed all the way to node a. However, if we instantiate node c, it causes the node a and node b becomes independent. Once we instantiate node c, it blocks any reasoning from node a to node b and vice versa.


The third topology is depicted by figure 3-3c. It contains two arrows c(a and c(b  which meet tail-to-tail at node c. Only the instantiation of node c causes the node a and node b to be independent. Any instantiation of other node causes the nodes to be dependent in the network.


The heuristic checking explained above provides us with an easier way to determine the conditional independence of the proposition in the network. This checking process using the heuristic can be aided by human vision. 

A diagnostic reasoning involves not only building a diagnostic model of events and its dependency but also observing the changes of the events behaviour when a new evidence or knowledge arrive to the reasoning process.  The observation and adjustment process due to the arrival of new evidences is known as inference process. In this study we use probabilistic model to represent our knowledge thus we will concentrate the discussion in section 3.4 around the probabilistic inference.

3.5 Probabilistic Inference In Bayesian Networks

The basic task of any probabilistic inference system can be regarded as a task  to compute the posterior probability distribution for a set of query variables, given the exact values for some evidence variables. In other words, the computation of P(Query|Evidence). We use the following notation for the discussion of the inference algorithm.

Upper case letters such as A,B,C,D,...,X,Y,Z represents variables
Lower case letters such as a,b,c,d,...,x,y,z represents the possible value of the corresponding variables.

+ represents an affirmation of a proposition.
( represents a denial of a proposition.
E represents a set of evidence variables.
e represents a set of evidence variables which the value is known or instantiated.
BEL(x) represents the overall belief accorded to the proposition X=x by all received evidences. BEL(x)=( P(x|e) where P(x|e) = probability that x is true given this evidence e.

( represents the normalising constant such that this Bel(x) when x is vector is normalised to 1, for example ([2,2,1]=[0.4,0.4,0.2]

My|x represents a fixed conditional probability matrix which quantifies the link X(Y.
In this study, we will only dealing with the discrete variables, thus BEL(x) can be regarded as vectors, which its component corresponds to different values of X. For example if the domain of X is {High, Short}, BEL(x) can be written as 

BEL(x)=(BEL(X=High),BEL(X=Short))=[0.4,0.6]

3.5.1 Pearl’s Inference Algorithm

Pearl’s algorithm of probabilistic inference works on the directed graph approach to the Bayesian network. We adopt the directed graph approach due to its semantic richness in representing knowledge. The main idea behind this algorithm is to create a two ways communication between nodes. Each communication line contains different type of message. The nodes in the network are arranged according to the rank of parent-child association. A direct link between two nodes constitutes a parent-child link and the direction of the arrow determined the rank of a node. The node that has an emanated arrow is the parent whereas the node with a coming arrow is the child. Consider the network in figure 3-4.
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Figure 3-4 Inference in Bayesian network.
Node B is considered as a parent in relation to node C, but is considered a child in relation to node A. The messages that are passed in the networks go through two different channel. The first being the parent-to-child channel and the second being the child-to-parent channel. The messages passes through parent-to-child channel gives the inference process the causal support(() message. In figure 3-4, the (A and (B are the causal support message. The causal support messages are passed to the direct child/children of the node where the message is originated. The child-to-parent channel on the other hand is used to pass the evidential support(() messages. The evidential support messages are passed to the direct parent/parents of the originated node. In figure 3-3, the evidential support message are represented by (B and (C.


In the every single node in the network the value of ( and ( are used to update the belief value of the node through the following formula:




where

x is a proposition X=x

( is the normalising constant

( is the causal support value

( is the evidence support value

By exploiting the conditional independence of the nodes in the network and using the Bayesian recursive update, the calculation of the belief in the Bayesian network can be performed locally in the set of nodes without losing the global effect of the new evidence. Moreover, parallel computation become permissible once the nodes dependency has been determined and independent set of nodes has been found.  This local and parallel computation provides Pearl’s algorithm with the ability to perform inference efficiently. 

To update the new causal belief ((x) and evidential belief ((x) from a node X to Y (X(Y), a link matrix My|x consisting conditional probability of the variables in Y given some known variables in X is used. To illustrate the inference process, consider the following situation (this example is the modified version of Pearl’s example [Pearl88], pp 151 ): 

[image: image27.wmf]In a murder case trial, there are two suspects, one of whom definetly commited a murder. A gun has been found with some fingerprints. Let A identify the event of person  X is the last user of the gun, namely the killer. Let B identify the event of person Y is the last person hold the gun, and let C represent an event of  the fingerprint finding obtained from the laboratory. The following probability distribution is held for the situation.
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After getting the some evidence during investigation, the police believe that suspect 1 has 0.8 probability as the killer or BEL(a=1)=0.8 and suspect 2 is 0.2or BEL(a=2)=0.2.  

The above example can be simply represented in a Bayesian network by figure 3-5. The detailed message passing scheme in this example is as follow:
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Figure 3-5 The use of link matrix in the inference.
Prior to the inspection of the fingerprint, all ( are unit vector of 1. The links matrix Mb|a is used to calculate the values of  (b ,(b and in turn using the formula BEL(b). 
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Now we assume that the laboratory report arrives, summarised a evidential support (c=(0.8,0.6), the knowledge about the the last person holding the gun change as
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Using this the update belief in B, the evidential message to the A is changed to 
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In turn, the belief in person 1 being a killer changes from 0.8 to 
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It is showed from this new belief about the last person that hold the gun resulted from the fingerprint report from the laboratory, the belief that person 1 is guilty increases from 0.8 to 0.902. 

We have shown the inference process in a Bayesian network in the shape of a chain. This inference algorithm can be used in other shape of network including tree and singly-connected-networks. All of these different shapes have one thing in common, they do not contain any cycle in the network. The inference process for a Bayesian network that has a cycle is different from the process we presented above.

3.5.2 Handling Loops in the Network

In a cyclic network, the propagation or inference process will face problem in reaching a stable equilibrium state. The message passing scheme that we discussed in previous section will cause the inference process goes indefinitely. The cycle does not necessarily obvious, it may be implicitly constructed because of the d-separation rule. Consider our previous example in figure 3-2 the metastastic cancer diagnostic. There is a cyclic in the network through the links metastatic cancer-increase total serum-coma and metastatic cancer-brain tumor-coma. According to d-separation rule, the instantiation of node coma cause the event increase total serum and brain tumor to be independent, that is changing the belief in brain tumor and increase total serum when a new knowledge about coma is obtained. In turn these two new beliefs will cause the change the belief in metastatic cancer.  Since metastatic cancer is the cause of increase total serum and brain tumor, the new belief in metastatic cancer change the belief of these two events, and at last it will change the belief in the patient will go to state of coma. Thus, we are back to square one. 


There are several methods that can be used to solve the problem of the cycle in a Bayesian network. They are clustering, conditioning and stochastic simulation. Clustering involves forming compound variables in such way that the resulting network of cluster is singly connected. Conditioning involves breaking the communication pathway along the loops by instantiating a selected group of variables. Stochastic simulation involves assigning each variables a definite value and having each processor inspect the current state of its neighbours, compute the belief distribution of its variables, and select one value at random from the computed distribution.


From the three approaches to handle a loop in Bayesian network, stochastic simulation gives the best estimation of the posterior probability. However, it suffers from the complexity of the calculation. The accuracy of the stochastic simulation approach is related to the number of simulation runs. Pearl [Pearl88] suggests that to achieve 1% of accuracy we need to perform 100 runs of simulation. In this study, we introduce a new method in handling cycle in Bayesian network, namely intelligent node. We discuss and compares the different methods of handling loops in chapter 5.

3.6 Summary

In this chapter we have discussed the theory behind the Bayesian network. Bayesian network is built as a combination of Bayes and Graph theory. The Bayes theorem provides the numerical representation of the model, whereas the graph theory provides the semantic representation. A belief distribution in a Bayesian network experience changes when a new knowledge arrives to the network. The changes are computed through the inference process. One of the inference algorithm for a directed Bayesian network is Pearl’s algorithm. It is based on the concept of message passing in the network through the concept of parent-child communication. This algorithm works for chain, tree and singly connected network, but does not work perfectly for a network that contain a cycle or loop. To handle a cycle or loop in the network, clustering, conditioning and stochastic simulation can be used. Stochastic simulation provides the best accuracy at the expense of computation complexity.


In chapter 4, we will introduce a Bayesian network model for an information retrieval system. The basic model will be presented together with an appropriate inference algorithm for the model.
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�  The name of the characters in this example are copywrite of BBC program "Thin Blue Line"
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Fig.3.3a head-to-head





Fig.3.3b head-to-tail





Fig.3.3c tail-to-tail
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