Chapter 4


A Semantically Correct Bayesian Network Model for Information Retrieval

4.1 Introduction

Probability theory has long been recognised as a useful tool for dealing with uncertainty. The information retrieval process, as explained in Chapter 2, involves some uncertainty. This suggests that an appropriate approach to information retrieval is one which uses probability theory as its basic framework. Indeed, researchers in the area of information retrieval have been investigating the probabilistic model since the 60’s [Maron60]. This model was the first information retrieval model with such a firm theoretical foundation for handling uncertainty. Despite the apparent attractiveness of an information retrieval model with firm theoretical basis, acceptance of this model has not been universal. This lack of wide acceptance is due to the fact that the estimation of the probability parameters in the model is perceived to be somewhat unsatisfactory. 


The estimation of probability parameters in traditional probability models [Maron60, Robertson76, Rijsbergen79] requires us to look at the frequency of term occurrences in the set of relevant and non-relevant documents. The probabilistic model on the other hand, usually relies on the relevance feedback process. This is a process whereby the system presents the top-ranked documents to the user for a judgement as to whether they are relevant or not. In such a model, before any relevance feedback data is available, it is very difficult for the system to determine the relevance status of a document for an ad hoc query in order to produce an initial document ranking. The existing probabilistic models usually circumvent this parameter estimation problem by producing initial ranked documents based on ad hoc estimations of the probabilistic model parameter or by using an alternate retrieval model, for example, using the number of index terms that are in common with those in the query to produce the initial ranking. These models then use the probabilistic formulae to calculate the revised document ranking after the data that can be used to determine relevant or non-relevant set becomes available. Based on this relevance data, it is then possible to estimate the parameters of the probabilistic model by computing the proportion of times each term occurs in the documents that have been judged relevant and non relevant. There have been some attempts to formulate methods which perform the estimation of probability parameters of the probabilistic model using either no prior knowledge of relevance data [Croft79] or using partial relevance information [Sparck-Jones79]. However these models are still based on some degree of ad-hoc estimation. Thus, one weakness of the traditional probabilistic models such as that of Maron and Kuhn [Maron60], Robertson and Sparck-Jones [Robertson76], Fuhr [Fuhr89] and Rijsbergen [Rijsbergen79] is that they use two different computation methods: one to produce the initial ranking and another to handle relevance feedback. We will also refer to the traditional probabilistic models as non-inference probabilistic models.

An additional weakness of existing probabilistic models concerns their lack of ability to learn from past queries to determine the prior distribution for the model parameters. This mean that parameters are applied only for current query, and as such a large potential database of relevance judgement based on past queries would be wasted, although it is considered to be useful [Fuhr92]. 

In this chapter we introduce a new model for information retrieval based on probabilistic inference. Probability inference, as explained in chapter 3, is the mechanism that can be used to revise beliefs as new evidence arrives at the body of belief. This approach to the probabilistic information retrieval model overcomes the weakness of the traditional probabilistic model in the following ways:


The probabilistic inference approach to the probabilistic model retains the sound theoretical basis of the traditional probabilistic model, but also incorporate methods for producing initial ranking of documents and of handling relevance feedback. In this approach, the initial ranking of document is produced using the prior probability distribution and relevance feedback data is used as new evidence to update the prior probabilities.


Relevance feedback fits naturally into the model. The probabilistic inference approach provides an automatic mechanism for learning. By modeling prior distributions on the model parameters, we can coherently update the prior distributions as more feedback data becomes available. 


The probabilistic inference approach allows us to incorporate relevance information from other queries into the model by using its ability to incorporate learning into the model. This and the natural application of relevance feedback means that the probabilistic inference model provides a better learning framework than do the traditional probabilistic models.

The difference between the existing non-inference probabilistic models and the probabilistic inference approach arises due to their differing treatment of the meaning of probability. In the former, the probability is considered from a frequency point of view. The probability values in this model are obtained simply by counting the number of documents containing a particular descriptor or index term. On the other hand, the probabilistic inference models interpret the probability as the degree of belief in an event or proposition. This is known as an epistemological view of probability, a view which considers the assignment of beliefs in propositions, quite devoid of any statistical background. The epistemological view provides the information retrieval model with the ability to capture the model’s semantics. Although these two views of probability are considered to be contradicting, the statistical notion of probability may be used as a way to measure chance at the implementation level [Rijsbergen79]. A clear explanation of probability at the conceptual level to capture the semantics of the document collection is required and has been lacking from the traditional probabilistic models [Rijsbergen92]. A major objective of our model therefore is that of providing a conceptual model for information retrieval. 

Probabilistic inference is also superior to the traditional probabilistic models in providing the information retrieval mechanism with effective means by which important semantic information can be incorporated into the retrieval process, thus circumventing some statistical problems inherent in the traditional probabilistic model.  

We will adopt one specific approach to probabilistic inference, namely that of Bayesian networks. A Bayesian network is a model for probabilistic inference which uses a combination of probability and graph theory.  The inclusion of graph theory into the model provides Bayesian network with some additional characteristics lacking in those retrieval model based on non-graphical approaches to probabilistic inference. These additional characteristics are:


The documents in the collection may be represented as  complex objects with multilevel representations, not merely as collections of index terms. The document may be considered as a collection of either index terms, sentences or phrases. The level of representation of the document is implementation dependent. 


Dependencies between documents are built implicitly into the model by using the independence assumption of the Bayesian network. We will explore this  in detail in section 4.2.2. Citation or nearest neighbor links can also be easily incorporated into the model because of its graphical nature. Citation and nearest neighbour links have been shown to improve the performance of information retrieval systems [Turtle90]. 


Synonyms and a thesaurus can be easily implemented as part of the network. Any index terms that are synonyms can be linked, so that the system can use all those synonyms during retrieval. The index terms that belong to the same concept may be linked into a concept node. The collection of the concept nodes in the network forms a thesaurus in the system. The addition of a thesaurus has been shown to increase the performance of a retrieval system [Sparck-Jones71].

We will present in detail the characteristics of the model and how the model addresses problems of the traditional probabilistic models in section 4.2. This section also examines the concept of prior probability which is one of the major issues in probabilistic information retrieval models.  Section 4.3 includes the discussion of the inference process in the network which occurs once new information or evidence has arrived. Since a Bayesian network is directed acyclic graph, the determination of the correct causal direction of the inference is considered an important issue. Different causal directions in the model lead to different inference results. We will compare different causal direction models and discuss their application to information retrieval in section 4.3. To show that our model may be used as a conceptual model, in section 4.4 we compare our model with existing information retrieval models such as the Boolean, vector space and traditional probabilistic models. 

4.2 The Bayesian Network Model

In the probabilistic inference model, we assume that there exists an ideal concept space U called the universe of discourse or the domain reference. The elements in this space are considered to be elementary concepts. A proposition is a subset of U. The correspondence between propositions and subsets of elementary concepts can translate the logical notions of conjunction, disjunction, negation, and implication into the more familiar set-theoretic notions of intersection, union, and complemetation respectively. We will use the set-theoretic and logical operations interchangeably during our discussion in this chapter. 

4.2.1 Probability Space

In information retrieval, the ideal concept space can be interpreted as the knowledge space, in which documents, index terms, and user queries are all represented as propositions or subsets.

A probability function P is defined on the concept space U. The probability P(d) is interpreted as the degree to which  U is covered by the area occupied by the knowledge contained in document d. Similarly, P(q d) represents the degree to which U is covered by the knowledge common to both query q and document d. 

We assume that all documents in the collection have been indexed and are represented by a set of index terms and that the concept space U includes all the index terms in the collection.

Definition 4.1 Let n be the number of index terms in the system and let ti be an index term. U={ti,t2,t3,…,tn) is the set of all the index terms and defines the sample space. Let u U be a subset of U. 
The concept u may represent a document or a query in the information retrieval model. In the Bayesian network, set relationships are specified using random variables as follows.

Definition 4.2 Each index term ti is associated with a random binary variable ki as follows:



ki=1 ( ti ( u



ki=0 ( ti ( u


We also define a function g: U ( R such that g(ti) represents the term weight of the index term ti
The term weights g(ti) will be implemented in our model as the weights of the links in the network.  Now we define the document and query concepts in the sample space U.

Definition 4.3 A document is represented as a concept d={k1,k2,k3,…,kn) where ki is binary random variable and ki=1 if ti q or ki=0 otherwise. 
 d and ki=0 otherwise. Similarly, the user query can be represented as a concept q={k1,k2,k3,…,km ) where ki=1 if ti
In a Bayesian network, the concepts ti, concept d and concept q are represented as nodes. The relations g(ti)  are represented by the links in the network. Then, given that documents and queries are represented as concepts in the space U, we can apply a basic model of information retrieval as a concept matching system [Kwok90].

To represent the knowledge contained in document d and the knowledge represented by query q, a Bayesian network model uses two separate networks. One network, the document network represents the documents in the collection. The other network, the query network  represents the user query [Ghazfan95]. The two networks are combined when a retrieval process is performed. The network model is depicted by figure 4-1. 
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Figure 4‑1  Bayesian network model for information retrieval systems.
The document and query networks are similar except that the document network is established at the creation of the database collection and remains the same unless new documents are added to or obsolete documents are deleted from the collection. The query network, on the other hand exists only for the duration of the user’s query and is very dynamic in the sense that the query network changes for different queries as opposed to the document network which remains the same for different queries.

The output of retrieval consists of the collection's relevant documents which are ranked by calculating P(d|q) ie: the value of probability in nodes di when the value of query q is known. This inference network approach to information retrieval was first introduced by Turtle and Croft [Turtle91]. In their model, however, they use the inference P(q|d) which produces a different document ranking output than does our model. We will show in section 4.4  that our model provides a more general and appropriate framework for modeling information retrieval than the model of Turtle and Croft. 

4.2.2 The Document Network

A document in a Bayesian network  is represented as a complex object with several levels of representation. The smallest possible document network consists of two layers of nodes. The top layer represents the system's dictionary or the concept universe U. The next layer down represents arbitrary objects that can be constructed by the combination of index term ti in U. These objects are the concept objects in U and may represent arbitrary sets or propositions. In information retrieval implementations, these objects include phrases, subject classifications, sentences and documents. In the document network used for example in figure 4-1, the concept universe U consists of the index terms as the elementary concepts and documents as  higher level concepts that are built from the elementary concepts. The index terms automatic, information, retrieval, and image make up the concept universe U (the top layer of the nodes) and the document objects doc-1, doc-2 and doc-3 make up the bottom layer. The number of layers in the network is not limited to two. 

The number of layers in the network depends on the level of abstraction to be modeled. For example, if we do not want to implement classification of the index terms into subjects, we only need a two layers network, one layer to represent the dictionary layer and the other to represent document layer as in figure 4-1. However, if we need to model an information retrieval system that represents subject classification explicitly, we need to introduce another layer between the document and the dictionary layer. Such a situation is depicted in figure 4-2. We can see that the index terms image and information are combined into a node multimedia in the middle layer. The network in this situation consists of three layers. Regardless of the number of layers required for the implementation of the model, the top most layer is always the dictionary layer and the bottom most layer is always the document layer. The index terms in the dictionary layer are always required because they are the common elements shared by documents and queries and are used during the matching process. The documents themselves are also required as they are the objects be presented to the user as the result of the matching process. 
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Figure 4‑2 Document network with a subject classsification layer.
The link arrows in the network signifys the causal relationship between the layers. In figure 4-1, the arrows emanate from the index terms automatic, information, and retrieval to the doc-1 node signifies the fact that these three index terms are the cause for document 1 to exist in the collection. In other words, the documents may be considered as the subsets of U formed by the index terms ti in U for which gi(t)>0.
4.2.3 The Query Network

A user’s information need is represented in a Bayesian network model by the query network. Compared to the document network, the query network can be considered as an up side down network. The root node of this network represents an abstraction of the user’s information need. The nodes in the layers underneath the root node further explain the abstract concept of the information need. This lower layer consists of the index terms tj which are part of the universe U. The number of layers in the query network is always two.

We note here that as in any model in information retrieval, the index terms used in the query come from the system’s vocabulary of index terms. Without this limiting assumption, the task of matching between document and query representation becomes almost impossible. 

The user’s information needs are represented explicitly in our model in order to allow the user to further refine their query by assigning  weights to the index terms used to explain the information need. Consider the example shown in figure 4-3.
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Figure 4‑3 An example of a query network.

In this example, the user’s information needs are expressed by the index terms information, image and retrieval. If the user is certain about the relative importance of these index terms, they can quantify their degree of belief in the individual index terms for meeting their information need, that is they can assign weights to the links queryindex term. For example, they may decide to give more weight to the term image than information, if they prefer image retrieval rather than information retrieval articles but do not wish to eliminate the possibility that some of the articles concerned with information retrieval may discuss image retrieval.

4.2.4 Prior Probability

Before any inference process can be performed, any inference based probability model requires that a prior probability be defined. In a Bayesian network, the prior probabilities for all the conditional probabilities for a node given the belief values for its parent nodes and the prior probability for all the root nodes need to be defined. Therefore in our model for information retrieval, we need to define probabilities for the following:


In the document network:


P(d|ti,d=true) - conditional probabilities for a document node given the probability of the index terms that construct the document. These conditional probabilities act as the weights of the link between the document and index term nodes. 


P(ti) – probability that the index term ti will be found relevant to the user’s information need.


In the query network:


P(ti|Q=true) - conditional probabilities for an index term ti given the probability of the query.

Any interior nodes and leaf nodes do not required prior probabilities to be defined and their values will change according to the inference process. Note that we do not have to assign the probability value to the query node because we will instantiate this node during the inference process.

For reasons of clarity and simplicity, we will use the model with a two layer document network depicted in figure 4-1. The conditional probabilities of a document node given its parents, that is P(d|ti,d), are defined using the term weights. The term weight can be calculated as the product of the term frequency (tf)  and inverse document frequency (idf) (refer section 2.5.2). This term weight based on tf*idf  may not produce values in the range [0,1], the usual range for probability values. Therefore to use term frequency in the conditional probability we need to normalise the term weight. Table 4.1 shows two such term frequency normalisation methods.

Max
tf/max(tf) 

Augmented
0.5 + 0.5*tf/max(tf)




Table 4‑1 Variety of term frequency normalisations.

The main difference between the max and the augmented methods lies with the density of the distribution they produce. The augmented term frequency for a particular document will be in the range [0.5,1], whereas the max method produces a term frequency in the range [0,1]. 

We can use different combinations of term frequency normalisations and inverse document frequency weighting schemes. For example, we may adopt the combination of the max term frequency and the inverse document frequency. With these choices, the term weights are then calculated as
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(4.1)

We found that different weighting schemes provide different levels of recall and precision. These differences occur due to the different densities of the probability distributions provided by the different weighting schemes. We found that the best recall and precision was achieved by the middle range density distribution, that is the distribution in the max approach. Further detailed discussion on the behaviour of the model with different weighting schemes is presented in Chapter 6. 

The index terms are treated as though they have an equal chance to be found relevant to the information need. Thus we can assign 1/(total no. of index terms) as the prior probability of each index term node. The values of these prior probabilities in the index term nodes will change when a new query is submitted and a query network is attached to the document network. 

4.3 Probabilistic Inference in Information Retrieval

The Bayesian probability approach views probability values of nodes as degrees of belief in an event or proposition The links in the network represent the cause and effect relationships between two propositions. The whole network may be viewed as our universe of belief which all the propositions interact with, their effect on each other being derived through the links and any independence assumptions inherent in the network. This process is recognised as being similar to the human reasoning process. A person always has some belief value for a particular issue.  These belief values are arrived at  using knowledge which comes through experience. A new experience arrives at the human belief system regularly through observation of new evidence. This new evidence causes the human to adjust their belief value, ie. to perform a reasoning process. The belief in some propositions may be amplified while belief in others may be lessened. A Bayesian probabilistic inference algorithm tries to model this human reasoning process. Any new evidence which comes to the network will alter the belief distribution in the network. In order to change the belief distribution, a probabilistic inference process is used to a make decision as to which propositions will be affected and by how much the belief in these propositions may have to change.  A Bayesian probabilistic inference algorithm carries out this decision using two characteristics of the network model, namely the semantic of the network to determine the independence assumption, that is the decision as to which propositions will be affected by the new evidence, and the numeric  contents (quantitative representation) to calculate the value of new belief for all the affected nodes.  

We will use Pearl’s inference algorithm [Pearl88] in our model. In this algorithm, the independence assumption can be validated formally through a d-separation check or heuristically by considering the shape of the network (see chapter 3 ).  Once the independence assumption between nodes has been established, the process of the belief updating is performed using the link matrices. A link matrix represents all possible conditional probabilities of a node given the belief values of its parents. For example, if a node x  has a set of parents x={p1,p2,p3,…,pn}, we must estimate P(x|(x) = P(x|p1,p2,p3,…,pn).  Since we are dealing with binary valued propositions ( see definition 4.2), this link matrix can be represented by a matrix of size 2x2n for a node with n parents.  The matrix elements specify the probability taken by a node x given the truth value of its parents. Given that all the parents of x are independent, the estimate P(x| p1,p2,p3,…,pn) can be presented as the sum of all these truth values. For illustration, we will assume that a node doc-1 is constructed from three index terms X,Y and Z (figure 4-4) and that

P(X = true)  =  x

P(Y = true)  = y

P(Z = true)  = z
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Figure 4‑4 Network for the link matrix example.

The link matrix for the information retrieval network in figure 4-4 can be constructed as L[i,j], i  j < 2n given that the parents correspond to pj ( j({0,1,2} in our example) [Turtle91]. We will use the row number to index the values assumed by the child node and use the binary representation of the column number to index the values of the parents. The high order bit of the column number indexes the first parent’s value, the second highest order bit indexes the second parent and so on. The link matrix for figure 4-4 is therefore:
 {0,1}, 0 
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The first row represent the possible values of the parent nodes X,Y,Z when Pr(doc = false) and the second row when Pr(doc = true).

4.3.1 Link Matrices 

We will describe three link matrix forms that can be used for different information retrieval implementations, namely the or and and link matrix for Boolean retrieval and the weighted-sum matrix for probabilistic retrieval. We will base our discussion in this section on the network example in figure 4-4. 

4.3.1.1 OR-link matrix

In an or-combination link matrix, the doc node will be true when any of X,Y, or Z is true and false when all of X,Y,Z are false.   So, for our example,
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Using a closed form update procedure we have

P(doc=true) = (1-x)(1-y)z  +  (1-x)y(1-z) + (1-x)yz + x(1-y)(1-z) + 

x(1-y)z + xy(1-z) + xyz

The update procedure can be simplified as

P(doc = true) =  1 – (1- x)(1-y)(1-z)

P(doc = false)  =  (1-x)(1-y)(1-z)

4.3.1.2 AND-link matrix

For an and-combination link matrix, the doc node will be true when all of  X,Y and Z are true and false otherwise. Thus we have a matrix of the form
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Again using closed form update, we have

P(doc=false) = (1-x)(1-y)(1-z) + (1-x)(1-y)z + (1-x)y(1-z) + (1-x)yz +

x(1-y)(1-z) +  x(1-y)z + xy(1-z)

The calculation can be simplified as

P(doc = true) = xyz

P(doc = false)  = 1 – xyz

The AND and OR link matrices infer different degrees of influence to the belief in the child node. The influence of the belief values for (parents = true) are greater in the OR link matrix than in the AND matrix. Therefore, we can use the OR matrix when we interested in having the child belief  values significantly influenced greatly by the belief values of  (parent = true).

4.3.1.3 WEIGHTED-SUM link matrix 

The weighted-sum link matrix  is an attempt to weight the influence of individual parent nodes by the probability values of the child node. A parent with a larger weight will influence the child more than a smaller weight parent. If we let the links between the node doc and nodes X ,Y, Z be weighted as wx,wy,wz respectively and set t= wx + wy + wz, for our example we have the link matrix of the form
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Evaluation of the link matrix produces

P(doc= true) = 
[image: image10.wmf]xyz

w

z

xy

t

w

w

w

z

y

x

t

w

w

w

z

y

x

t

w

w

yz

x

t

w

w

w

z

y

x

t

w

w

z

y

x

t

w

w

d

d

y

x

d

z

x

d

x

d

z

y

d

y

d

z

+

-

+

+

-

+

+

-

-

+

-

+

+

-

-

+

-

-

)

1

(

)

(

)

1

(

)

(

)

1

)(

1

(

)

1

(

)

(

)

1

(

)

1

(

)

1

)(

1

(

 

= 
[image: image11.wmf]t

w

z

w

y

w

x

w

d

z

y

x

)

+

+


P(doc = false)  =  
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We may use the term weight (such as term frequency (tf)) for the parent’s or index term weight (wz,wy,wz in the above example)  to implement the weighted-sum because the parent’s or the index term’s weight are summed and normalised over a document. Analogously, we may use the inverse document frequency (idf) for the weight of the document node to represent the index term’s ability to discriminate the document from the other document in the collection. Since we always multiply the weight of the individual parent (index term) by the weight of the child (document) when P(doc=true), the weight we have used is actually equivalent to a tf*idf weighting. Thus, we can assign the tf*idf  values as the link weights. In other word, the link weight represents the P(dj|ti). 

In a query network, the link weight may be interpreted as the user weighting the index term’s relative importance in representing their information need. The link matrix of the query network is less complicated than that of the document network since all index terms in the query network only have one parent node (ie. the query node). 

4.4 Directionality of the Inference

The notion of causation, that is the idea that a given random variable can be perceived as the cause for another variable to exist or change its belief value, is fundamental to inference using a Bayesian network. Different causal direction in the network produce  different reasoning models and thus it is important to consider the direction of the causation in the network. In many cases the direction of the causation is clear, in others it is difficult to distinguish between causal and evidential support.


Causal support is represented as an arc in the network whereas evidential support flows against the direction of the arc. By drawing an arc from node x to y we are asserting that proposition x has in some way caused proposition y to be observed. That is, if we observe proposition x, then this observation in turn will determine our belief in proposition y, assuming that x is the only parent of y. If y has other parents in addition to x, then we need to consider the influence of these other parents. 

Evidential support, on the other hand, means that the observation of  proposition y  may change the belief in proposition x because y is a potential explanation of x. Thus, in this case,  knowing y will confirm or oppose the belief in x.  

In the basic information retrieval model depicted in figure 4-1, there are three different propositions which may be used as causal or evidential support, namely the queries, the index terms and the documents. In our model, we assert in the query network that the observation of a query influences our belief as to which index terms are useful in representing the user’s information need. In the document network, we assert that the combination of the index terms causes the object document to exist. The inference process is performed by instantiating the query network and observing the result of inference at the document nodes. The topology is depicted in figure 4-5a.
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Figure 4‑5 Contrasting causal topologies.
There are at least two others possible topologies which may be used in information retrieval modeling. In the first, we simply invert the network as shown in figure 4-5b. Thus, we assert that the observation of the document causes a change in belief in the index terms and in turn changes the belief in the query. This approach to modeling the inference network was taken by Turtle and Croft [Turtle91]. Superficially, the difference between the two topologies appears trivial, however we have found that the topology shown in figure 4-5b does not provide a “correct” inference model for information retrieval [Ghazfan96]. In this section, we will show what we mean by the “correct” inference.  We will also defer until later in this section the discussion of the third topology shown in figure 4-5c.

As we have stated previously in chapter 2, an information retrieval model's task is to estimate the relevance of the document to a given query. In other words, it attempts to estimate P(Relevant|documenti,queryj), ie. the probability that a document is relevant to a given query. Applying this estimation to the topology shown in figures 4-5a and 4-5b respectively, we have the situation as shown in figure 4-6
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Figure 4‑6 Causal topologies with relevance node.

The node relevance in figure 4-6 is introduced to the graph to explicitly represent the belief value that exists at the end of the inference network chain. In this case, this is the belief value of whether the document is relevant to the query. Thus, the node relevance in figure 4-6 corresponds to an area in the universe U which is occupied by the query Q, the set of index terms ti and the document d, in other words P(Qd). Using Bayes theorem notation, the graph in figure 4-6a gives:
ti

P(Relevant|d,Q)   =  P(Relevant|d,t,Q)








   
 =    P(d,t,Q)



(4.2)  
By conditioning the probability values only on the index terms in the evidence set, i.e the index terms in the query, the above equation can be simplified further into:



P(Relevant|di,Qj)= P(di,|Qj)



(4. 3)

Using the same procedure, the graph in figure 4-6b gives:



P(Relevant|di,Qj)= P(Qj| di)



(4.4)
The belief value presented by the relevance node is the result of the belief propagation process triggered by the arrival of new evidence. The arrival of new evidence for figure 4-6a (our approach) is indicated by the introduction of a query into the system. On the other hand, the result of the inference for the graph in figure 4-6b is obtained by instantiating one document node at a time in the network. In our approach, the relevance value to be measured is that associated with the probabilities at the document nodes. The hypothesi that we have to verify is that as to whether the documents are relevant to a given query (calculating P(d|Q)). On the contrary, the approach adopted in figure 4-5b and figure 4-6b measures the relevance of the query node. The hypothesis then to be verified is the relevancy of the query to a selected document, ie. P(Q|d). 

If we apply Bayes theorem to equations 4.3 and 4.4, the two above models of retrieval produce the following interpretations respectively: 
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(4.6)
Note that the denominators of equations (4.5) and (4.6) are normalisation factor for the equations. Therefore, in the process of answering an arbitrary query, equation (4.5) uses the same normalisation factor in every document matching process for that query. Equation (4.6) on the other hand, uses a different normalisation factor for each observed document in the same query. Since an information retrieval system fully evaluates all the documents in the collection for a single query introduced to the system to find the relevant documents, equation 4.6 will produce different normalisation values across documents instantiated for a single query. Hence we can assert that an implementation that exhibits the features of equation (4.5) will give a “correct” result.  To clarify this assertion and the importance of a common normalisation value, consider the following case as an example. Suppose there are four objects in the knowledge universe U: a book A, a thesis B, an article C, and a query Q. The mapping of the document and query set to the knowledge space are given in figure 4-7. A quick visual observation on the graph reveals these facts: 

Book A covers around 50% of the knowledge space occupied by set Q.

Thesis B covers around 30% of the knowledge space occupied by set Q.

Article C covers very little of Q. 
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Figure 4‑7 Document and query mapping in concept universe U.

Conversely, note that query Q covers around 30% of set A, around 70% of set B and most of set C. Intuitively, we would choose A, followed by B and C as our order of ranking for the retrieval of the documents relevant to query Q. However, if we apply equation (4.6) and examine the document ranking produced with this equation, we obtain the following order: article C followed by thesis B and then book A. This example illustrates that adopting a topology that uses an inference direction of P(d|Q) (figure 4-5a) provides a semantically accurate result compared with the model that uses P(Q|d) as in figure 4-5b.

The third topology in figure 4-5,  (figure 4-5c) asserts that both the query and the document are causal agents or propositions for the existence of the index terms. This model is actually the Bayesian network equivalent of the document space modification model adopted by [Yu88, Fuhr90]. To see why this topology is not appropriate as an  information retrieval model we have to consider the independence assumption of Bayesian networks. Using the independence assumption heuristic in chapter 3, we can see that the observation of index term nodes in network topology in figure 4-5c will in fact cause the query and document to be independent. This is not a desired outcome because we would like to infer our belief in the query  to the document through the index terms.  In fact if we use the topology in figure 4-5c, we observe that the query node and the document nodes become competing explanations for the index terms. That is, if we observe the query to be true then it will diminish the causal effect of the document on the index terms. We know however, that the effect of documents on the index terms is constant for a set of document collections. The effect of documents on index terms will only change if a new document is added or an obsolete document is deleted from the collection. Thus, the topology in figure 4-5c is also not able to model the information retrieval task correctly. Therefore, we use the topology depicted in figure 4-5a as the basis for our model.

4.5 Comparison with Other Models

We have provided our model of Bayesian network for information retrieval in sections 4.3 and 4.4. In this section we will show that we can use our model to implement other retrieval models such as the Boolean and binary independence probabilistic model [Rijsbergen79, Robertson76]. We began a comparison with Turtle and Croft’s inference model [Turtle91] in the discussion of causation in the network model in section 4.4. We will further analyse the difference between their model and ours in this section. We will show that our model provides not just a semantically correct document ranking in general but also a richer framework for information retrieval modeling. It is worth noting at this point that the drawbacks of Turtle and Croft’s model do not preclude it producing  good recall and precision [Turtle90, Rajashekar95]. Our model has also shown  promising results (see chapter 6) as well as providing a more general and richer framework for information retrieval.

4.5.1 Simulating the Boolean Model

A Bayesian inference network can be used to simulate the Boolean information retrieval model. In this model, each document is evaluated independently of the other documents in the collection (the fact that there is no document ranking involved means that documents in the collection may be assumed to be independent). Thus, to simulate such retrieval we can create a disjoint network for each individual document in the collection. Each network is then evaluated to determine its relevance. In the implementation we will actually have one network with different prior probabilities assigned to the index term (ti) nodes. In the Boolean model, no weighting is applied, ie. P(ti|Q=true)=1 for all index terms ti used to represent the user’s information need Q. The simulated network can be built using the following steps:



Build an expression tree for the query network.  


Assign  P(ti|Q)=1 for all ti d.
  d and Pr(ti|Q)=0 for all ti

Instantiate node Q.


Use the logical link matrix or or and ( section 4.3.1) to calculate the value of P(d), depending on the Boolean relationship between the node terms in the query. 

Then, P(d)=1 means that the document d satisfies the query and P(d)<1 means it does not satisfy the query. To illustrate the situation, consider The Boolean query 

(information or image) and retrieval
applied to the document collection in figure 4-1. The new network with the expression tree is depicted in figure 4-8.
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Figure 4‑8 Boolean model implemented by a Bayesian Network.

Consider a document which includes all those index terms appearing in the query. That is,   P(information|Q),P(image|Q) and P(retrieval|Q) are all equal to 1. Using the Lor link matrix (section 4.3.1), the new belief in the index terms in turn will cause the node or to have the value  1. Using the Land link matrix, the or node and retrieval node cause the value of node and to become equal to 1. This value is then passed down to the node document d so that P(d)=1, therefore d satisfies the query as expected. 


We can consider another example, a document which contains only the index terms information and image but not the index term retrieval. In this example, we can assign P(retrieval|Q)=0, P(information|Q)=1 and P(image|Q)=1. Using the same link matrix, the value of P(d) becomes 0, therefore the document d does not satisfy the query as expected. These two examples show how the Boolean retrieval model can be effectively simulated by the Bayesian network model.

4.5.2 Simulating the Probabilistic Retrieval Model

In the probabilistic retrieval model, a document is described by the presence or absence of index terms. Any document can therefore be represented as a binary vector d(k1,k2,…,kn) where ki=1 indicates the presence of index term i in the document and ki=0 indicating its absence. The document ranking is calculated as the cost function for the retrieval of a particular document that contains index term i and the document is either considered relevant or not relevant. The Bayesian network model for the probabilistic model is represented by figure 4-9.
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Figure 4‑9 Probabilistic retrieval using a Bayesian network.

In a traditional probabilistic model, each individual document is considered in isolation from the other documents in the collection.  The set of index terms observed in a document are restricted to a subset which occurs in the query. The values used for the ranking depend on the ratio of the values of P(ti|relevant) and P(ti|non-relevant) (see section 2.4.3.1). 

In a Bayesian network, we use the values of P(d) at the leaf nodes of the network (the document nodes) to determine the ranking of the document d relative to that of the other documents in the collection. There is no explicit representation of query in the network. The query node is replaced by the node relevance. The index terms are conditioned over the index terms that occur in the query. The main consideration for the probabilistic model is the estimation of the relevant and non-relevant document set. This estimation will not be accurate without comprehensive sampling of queries and relevance judgments. One way to overcome this problem is to estimate the relevance of the index terms which are found in the relevant documents. This estimation may be achieved using a small sample set of relevant documents and the relevance of other documents can be estimated using the existence of the index terms found in the relevant document on the current observed document. 

The probability that an index term ti is found to be relevant is given by the conditional probability P(ti|relevance). These values may be estimated from a small sample retrieval or by using the inverse document frequency [Croft79] when no relevance information is available. One advantage of the probabilistic retrieval implementation using our model is that this estimation may be derived from a user’s confidence in the terms they use in the query. This is possible because we provide an explicit relationship between relevance and index terms via the relevance->index term link. When a set of relevance judgements are available after the retrieval is made, only the P(ti|relevance) need be changed to represent the new confidence level of the user in the index terms. We can see from this that our model provides a consistent interpretation of the P(ti|relevance) which has been lacking in the traditional probabilistic model. Thus, we also can claim that our model subsumes the binary probabilistic retrieval model since it is able to simulate the model and provides a more intuitive interpretation of the relevance estimation in the model.
4.5.3 Inference Network

We began discussion on the different approaches to the inference network model for information retrieval in section 4.4.3. In this section, we will further analyse and comment on the differences between our model and Turtle and Croft’s inference model. 

The two models differ in their assumptions of the causation in the network. Turtle and Croft’s model assumes that document are the main cause of index terms’ existence which in turn causes the information need to exist. Our model, on other hand, asserts that the main cause of the existence of  index terms is the information need. These contradicting causation assumptions lead to different respective inference directions. Turtle and Croft’s model infer the evidence as P(Q|d) whereas ours infers evidence as P(d|Q). We have shown in section 4.4 that the inference process of P(d|Q) produce a more accurate document ranking in the retrieved document set. The benefits of applying P(d|Q) rather than P(Q|d) are not limited to the provision of accurate ranking. There are other benefits which may be gained through our model compared with Turtle and Croft’s model. For example,  our model is able to capture interconnectivity between documents in a collection. This will enable us to easily implement relevance feedback into the model. To illustrate this, consider the two networks depicted in figure 4-10.
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Figure 4‑10 Contrasting Bayesian networks.


Relevance feedback is a method used by information retrieval to refine a user’s information requirements after the user judges the relevancy of the document retrieved. There are two basic ways by which feedback data can be incorporated in a Bayesian network: adding evidence and altering the dependencies represented in the network. The two approaches are fundamentally different. Adding evidence always leaves the probability distribution in the network unchanged. However, it will alter the beliefs in the network to be consistent with that distribution. Altering the dependencies, either by changing the topology of the network or by altering the link matrices changes the probability distribution which in turn alters beliefs in the network. 


Implementing the addition of evidence in the network is very straightforward in our model (see figure 4-10a). The document nodes for all the documents that the user chose as relevant are set as the evidence node, or in other words, we assign the belief = 1 to those document nodes found relevant by the user. Then we can instantiate the query node again and calculate the new probabilities in all the document nodes. Note that considering the document nodes as evidence will set all the index terms for those documents to be dependent, and in turn they will change the beliefs in the other documents that share the same index terms with the relevant documents. Therefore the introduction of  new evidence into the network will change the beliefs not only in those documents found to be relevant but also in other documents in the network. This approach cannot be implemented in Turtle and Croft’s model because they have disjoint inference for each document; ie. they instantiate each document in isolation from other documents in the collection and only consider those index terms that exist in the query. If we assign the document nodes as evidence, then it is only possible to change the belief of those index terms activated by the instantiated document nodes and shared by both document and query.


Consider the small network depicted in figure 4-10b. The new evidence of D1 and D3 (the shaded document node) will not change the belief in D1,D2 or D3 because D1 and D2 do not share common index terms with the query. Even if there is an index term shared by D1 and the query, say for example D1 contains term  T3, the instantiation of the document nodes D1 and D3 will make the index terms independent. Thus, it will fail to alter the belief in the document D2 which the user has not chosen as a relevant document. 


The only way relevance feedback can be implemented in Turtle and Croft model is by adopting altering the dependencies in the network. Given a set of documents that a user has chosen as the relevant documents, a new query representation layer in the network can be built. The new query representations can either replace or extend the original query representations. Considering the same situation as in our previous example for evidence feedback, this dependency feedback is implemented as a network depicted in figure 4-11 and figure 4-12. This approach can be implemented in both our model and in the model of  Turtle and Croft.

Figures 4-11a and 4-11b show how dependency feedback can be implemented in both our model and Turtle and Croft’s model by augmenting all the index terms that are found in the judged relevant documents (i.e. D1 and D2 in our example). The inference process will be performed as normal without assigning evidence to the relevant documents as in adding evidence approach.
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Figure 4‑11 Dependency feedback by augmenting.


Figure 4-12, on the other hand, shows dependency feedback implemented by replacing the index terms in the query with the index terms in the documents judged relevant. Notice that T3 and T4 are deleted from the query network regardless of whether they were in the set of original index terms used to represent the query. 
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Figure 4‑12 Dependency feedback using replacement.


It has been shown that our model supports both relevance feedback methods whereas Turtle and Croft only supports the dependency alteration approach. The efficiency of the respective approaches depends on the retrieval situation. Evidential feedback is appropriate when we are confident that the distribution in the collection is “correct”. A very specific collection domain is an example where this approach is appropriate. Altering dependencies is appropriate when we have low confidence in the model distribution and therefore want to obtain better information about the nature of the true distribution. An example of this approach is document space modification [Yu88, Fuhr90]. They use the set of queries and relevance judgements to learn the “correct” distribution for documents and representation concepts. 


The failure to capture the document interconnectivity means that Turtle and Croft’s model is static. By this we mean that the probabilities used to rank the documents will not change when a new document is introduced to the system. This situation occurs because the relevance of a document is calculated in isolation from other documents in the collection. Although information retrieval is often considered a static system whereby document addition and deletion are not performed frequently, the ability to capture the changes of the distribution of knowledge in the collection is still a desirable feature which our model is able to provide.


The difference between the two models can also be seen in terms of  the efficiency of the inference process. In our model, the inference process starts with the instantiation of the query node. Since there is only one query we only need to perform one inference process. The Turtle and Croft model starts the inference process by instantiating individual document in the collection. Thus repeated inference processes are required, proportional to the number of documents in the collection. 


Although our model is more efficient in terms of the inference process, this can only be achieved by carefully handling the independence assumption and the link matrix. Our model is richer than Turtle and Croft model by virtue of its document interconnectivity, however this also means that our network is more complex than Turtle and Croft’s model and thus the independence assumption needs to be handled carefully. The link matrix also will be larger in our model because , in our model, we have to create the link matrix for index terms. Since the size of the link matrix is 2n, where n is equal to the number of index terms in the document collection, n greater than 20 will be common. This link matrix size issue is not a problem in Turtle and Croft’s model because the maximum size of their link matrix is proportional to the number of index terms used in the query.  We will discuss these implementation issues in Chapter 5.

4.6 Summary

In this chapter, we have presented a new formal model for information retrieval based on Bayesian network theory. The proposed model subsumes the existing models by providing more a general framework to model information retrieval. The proposed model can represent existing models by using appropriate network representations. As a result, the decision of adopting a specific network model can be seen as an issue of implementation. 

The proposed model consists of two separate networks, namely a document network and a query network. These two networks are  combined during the matching process. The matching process is started by instantiating the query node and calculating the effect of this new evidence in the probability distribution in the network.

Different inference directions in the network have different effects on the probability distribution. The two possible inferences in information retrieval are P(d|Q) or P(Q|d). We shown in this chapter that the first approach gives a more accurate result and also provides a richer model through its ability to support evidence and dependency relevance feedback. 

We have concentrated on discussion of our model of information retrieval using Bayesian networks in this chapter. Implementation issue will be discussed in Chapter 5. These can be categorised into two groups, namely the computational complexity of the inference algorithm and the indirect loop which exists during the relevance feedback process. We will discuss some existing approaches to these two issues and their practicality in information retrieval implementations. We will also present our approaches to reducing the computation complexity and for dealing with the indirect loop.
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