Applications (AIA'02) pp 143-159
Publisher: ACTA Press

Pre-publication draft of paper accepted for publication in the Proceedings of the IASTED International Conference on Artificial Intellig

Predicting the rolling force in hot steel rolling mill using

an ensemble model

Y. Frayman!, B. F. Rolfe!, P. D. Hodgson?, G. I. Webb!
1School of Computing and Mathematics
Deakin University
Geelong, Vic. 3217, Australia
2School of Engineering and Technology
Deakin University
Geelong, Vic. 3217, Australia
email: {yfraym,brolfe,phodgson,webb}@deakin.edu.au

Abstract

Accurate prediction of the roll separating force is crit-
ical to assuring the quality of the final product in
steel manufacturing. This paper presents an ensemble
model that addresses these concerns. A stacked gener-
alisation approach to ensemble modeling is used with
two sets of the ensemble model members, the first set
being learnt from the current input—output data of the
hot rolling finishing mill, while another uses the avail-
able information on the previous coil in addition to the
current information. Both sets of ensemble members
include linear regression, multilayer perceptron, and
k-nearest neighbour algorithms. A competitive selec-
tion model (multilayer perceptron) is then used to se-
lect the output from one of the ensemble members to
be the final output of the ensemble model. The en-
semble model created by such a stacked generalization
is able to achieve extremely high accuracy in predict-
ing the roll separation force with the average relative
accuracy being within 1% of the the actual measured
roll force.
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1 Introduction

Maintaining product consistency and quality in the
manufacturing process has become a widespread con-
cern as a result of increasing competition in the world
markets.

Increasing demands on the quality of rolling mill
products have led to great efforts to improve the con-
trol and automation systems of the rolling process.
Hot steel rolling is one of the most important steel
manufacturing processes. Hot rolling is the first metal
shaping process after the slab has been cast, in flat
products such as plate, strip and sheet. The final
shaping stage of hot rolling steel strip is normally per-

formed on a tandem mill known as a finishing mill
consisting typically of two to six stands. Here the fi-
nal thickness, flatness and profile of the workpiece are
determined. It is important to have a sound under-
standing of the behaviour of the roll gaps in the fin-
ishing mill for design, scheduling and control purposes.
In particular, accurate predictions of the roll separat-
ing force are necessary to meet the current and the
future quality standards of final product dimensions
and flatness.

This paper focuses on the development of an en-
semble model to address these concerns specifically
within the steel industry. The motivation for the appli-
cation of inductive learning—based methodologies lies
in the fact that they do not require the expert de-
velopment of phenomenological models. This technol-
ogy could provide a powerful tool for accurate predic-
tion of the roll separating force, thereby ensuring that
the products manufactured conform to target specifi-
cations and thus contribute to enhanced business ben-
efits.
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Figure 1. Finishing hot rolling mill

As seen in Fig. 1, a hot strip tandem finishing
mill takes a bar of metal (at roughly 1100 degrees C
for mild steel) and puts it through a series of rolling
stands typically reducing its average thickness by a
factor of 10. The outgoing strip should have a uniform
thickness with typical dimensions being 600-1800 mm
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in width, and 1.5-6 mm in thickness. As the width
does not change much there is a corresponding increase
of length by an order of 10.

The mill settings are determined from the physi-
cal models based on expert metallurgical and mechan-
ical knowledge. The set—up of these models is crucial
since it determines, to a large extent, the thickness of
the final product. In practice, it is sometimes observed
that the roll-gap settings produced by set—up models
are not as accurate as those required by increasing
consumer product—quality demands. Although small
errors can usually be compensated for by the mill con-
trollers, larger errors lead to quality degradation and
potentially out—of—specification product.

The mill set—up errors arise since the set—up
model only uses factors whose exact physical relation-
ships are understood. Unfortunately, the rolling pro-
cess involves many additional factors that affect the
elastic/plastic material deformation in the roll gap,
particularly due to the stochastic nature of the rolling
process. In this sense, the physical model is far from
perfect.

The main objective of this work was to assess the
the empirical model approach to the prediction of the
roll separating force. An ensemble model consisting
of multilayer perceptrons (neural networks), linear re-
gressions, and k—nearest neighbours was used, as it was
found that the none of the single models achieved the
desired predictive accuracy.

2 Ensemble modeling

The motivation for combining models in ensembles is
to improve their generalisation ability. This idea has
a long history, for example, in the area of forecast-
ing, where better results can be achieved by combin-
ing forecasts (model mixing) than by choosing the best
single forecast [1].

The effectiveness of an ensemble can be mea-
sured by the extent to which the members are error—
independent [11], that is show different patterns of
generalisation). The ideal would be a set of models
where each of the models generalised well, and when
they did make errors on the unseen data, these errors
were not shared with any other models.

The important point is that each of the models in
an ensemble has to generalise well in order for the en-
semble to be effective. Some authors, for example [4]
suggest to over—fit the models in an ensemble to make
them disagree. While such an approach will ensure
that the performance of the ensemble is better than
of any of the ensemble members, it is quite likely that
it could be worse than that of a single model which
is trained to generalise well. The aim of the ensem-
ble learning is not just to improve the performance of
the ensemble over that of the ensemble members, but

to achieve the best performance possible. This point,
while quite obvious, is commonly overlooked.

2.1 Selection of ensemble members

The aim then is to find models that generalise differ-
ently. There are several possible ways to achieve that
which include the following;:

Sampling data: FEach model in the ensemble is
trained on a different subsample of the training data.
Resampling methods are particularly useful where
there is a shortage of data.

Boosting and adaptive re-sampling: In boosting,
a series of weak learners could be converted to a strong
learner as a result of training the members of an en-
semble on patterns that have been filtered by previ-
ously trained members. The AdaBoost algorithm [6]
uses training sets that are adaptively resampled, such
that the weights in the resampling are increased for
those cases that are most often misclassified. While
boosting is generally designed for classification tasks,
it has also been recently applied for regression prob-
lems {citefriedman01. The gradient boosting machine
{citefriedman01 is closely related to artificial neural
networks and optimization in general, which opens
a new link between optimization and computational
learning [10].

Varying the learning method employed: The
learning method used to train the models can be var-
ied while holding the data constant. For example,
an ensemble might be constructed from models gen-
erated by a combination of learning techniques such
as various statistical methods, linear regression, neu-
ral networks, k—nearest neighbours, decision trees, and
Markov chains. While this approach is rarely used, in
our opinion, it is a very promising approach to ensem-
ble learning, as the use of different learning methods
for ensemble members are more likely to result in dif-
ferent patterns of the generalization, than by varying
the data. Further, there is a possibility to combine
varying both the learning method and the data, for
example, with adaptive re-sampling of the data. This
paper pursues the approach of varying the learning
method.

2.2 Combining ensemble members

The next step in ensemble learning is to find an ef-
fective way of combining model outputs. Methods of
combining the models in ensemble learning include the
following:

Averaging and weighted averaging: Linear com-
bination of the outputs of the ensemble members are
one of the most popular aggregation methods. A sin-
gle output can be created from a set of model outputs
via simple averaging, or by means of a weighted aver-



age that takes account of the relative accuracy of the
models to be combined.

Stacked generalisation: Under stacked generali-
sation [14] a nonlinear model learns how to combine
the ensemble members with weights that vary over the
feature space. The outputs from a set of lower level
generalisers are used as the input to a higher level gen-
eraliser that is trained to produce the appropriate out-
put. The same idea has been adapted to regression
tasks, where it is termed stacked regression [3].

Appropriate determination of the stacking
weights is essential for good modeling performance.
A simple approach is to take equal weights (mean) for
the individual models. Alternatively, the weights can
be calculated using multiple linear regression. How-
ever, stacking weights using this technique, has been
shown not to give good results, owing to the highly
correlated nature of the individual model predictors.

Another possibility is to consider a competitive
combination of ensemble members [12] for instance by
using a non-linear model (for example a neural net-
work) that is trained to select the appropriate output
of the ensemble member as a final output of the ensem-
ble model based on the performance of ensemble mem-
bers on a particular data tuple. The aim here is basi-
cally to create a global model (ensemble model) where
each of the ensemble members is acting as a local pre-
dictor in the area of its best performance. This is the
approach used in current paper. In such a rule-based
switching [2], [13] the control is switched between the
ensemble members depending on the output of one of
the members.

The goal of combining models is to create effec-
tive ensembles that perform better than the best single
model. An ensemble combined by means of averaging
will not necessarily result in better performance than
choosing the best model as the effectiveness of an en-
semble depends on the extent to which its members
make different errors, or are error-independent [11].

It has been argued [8] that the presence of harm-
ful collinearity or correlation between the errors made
by the component models in an ensemble will reduce
the effectiveness of the ensemble itself. For example,
although varying the data might be an effective way
of producing models which generalise differently, this
will not necessarily result in low error correlations due
to the concept of training set representativeness [5]. A
representative training set is one that leads to good
generalisation where a function being inferred is simi-
lar to that which generated the test set. However, two
representative training sets could lead to very similar
functions being inferred, so their pattern of errors on
the unseen data will be very similar.

On the other hand, if a set of models were trained
using unrepresentative training sets, the resulting gen-
eralisation performance would be poor. The models
might each infer quite different functions, and show

Table 1. Process variables nomenclature

Variable Name Unit
setup exit thickness mm
aim width mm
setup reduction (stands 1-4) %
setup force (stands 1-4) t
setup roll speed (stands 1-4) m/min
setup looper tension (stands 1-4) kN
setup bending force at (stands 1-4) (per side) MN
setup strip temperature (stands 1-4) deg C
setup predicted forward slip (stands 1-4)
chemical composition of the slab grades
work roll diameter (stands 1-4) mm
measured roll force (stands 1-4) t

different patterns of generalisation to the test set, but
as the number of errors increases so does the probabil-
ity that the errors that they make on the test set will
overlap.

It is possible to select ensemble models by apply-
ing selection procedures to a set of models which have
been created through the use of methods designed to
promote diversity, and by continuing the process of
generation and selection, for example using genetic
algorithms to actively search for ensemble members
which generalise well, but which disagree as much as
possible [9)].

3 Experimental Results

Measurements of 48 process variables (Table 1) were
recorded for each of 4961 coils rolled during routine
production at the BHP Billiton Coated Steel Aus-
tralia, Western Port Work Hot Strip Mill in Hastings,
VIC, Australia.
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All of the rolling parameters in the Table 1 were



used as inputs to the ensemble members, except the
measured roll force at stands 1-4, which is the pre-
diction (output) variable. The data was split into two
parts, first 3282 coils were used to develop the ensem-
ble model, and the other 1679 coils formed a test data
on which the proposed technique was evaluated.

As ensemble members we used a standard linear
regression, a feedforward multilayer perceptron with
backpropagation learning algorithm, and a k-nearest
neighbor.

The linear regression used is a standard multivari-
ate linear regression algorithm that generates a lin-
ear weighted sum of the inputs plus a constant bias
for each output. The coefficients (weights) of a lin-
ear regression minimize the least-mean—square error
between the desired outputs and linear regression out-
puts.

The feedforward multilayer perceptron (MLP)
used is a neural network algorithm that generates
input—output mappings based on computations of in-
terconnected nodes arranged in layers. The output of
each node is a nonlinear function of the weighted sum
of inputs from the nodes in the preceding layer. The
MLP with one hidden layer was used. The learning
algorithm used was backpropagation with momentum.
The activation function used was a hyperbolic tangent.
Updating the weights was done using the pattern (on—
line) adaptation. The output node were using a linear
finction. The input and output data was normalized
using a zero mean—unit variance normalization. As a
stopping condition a minimal root-mean-squared-error
(RMSE) between the predicted output values from the
model and the actual output values was used.

The optimal parameters (learning rate and mo-
mentum) and the topology (number of nodes in a hid-
den layer) of the MLP were selected based on a com-
bination of a genetic algorithm search through differ-
ent sets of network structures and parameters to limit
the search space and the an exhaustive search to fine
tune the network structure and the parameters found
by the genetic search. The parameters which resulted
in smallest RMSE between the predicted output val-
ues and the actual output values on a test data, were
used.

K-nearest neighbor (KNN) generates an output
based on extracting the k nearest patterns to the in-
put in the training set. For estimation, the output
value is the average of the outputs of the k nearest
patterns. The Euclidean distance metric is used to
compute nearness.

The first set of the ensemble members were cre-
ated using the current rolling mill inputs, while an-
other set of the ensemble members (being in both cases
the linear regression, the MLP, and the KNN) were
created using in addition to the current inputs, the in-
puts plus the output (measured force) at the previous
time step (previous coil). The second set of ensem-

ble members therefore becomes a set of recurrent (or
time—delay) models.

As a selection model we used another MLP with
the same setting as the ensemble members, but with
optimal parameters and topology selected to achieve
the best performance for the selection of the appropri-
ate ensemble members to produce the final prediction
of the ensemble model.

The competitive selection model was used, as it
was discussed previously. Its aim here is to select the
best predicted output of the six ensemble members to
act as a final output of the model. In such a way each
of the ensemble members is effectively acting a local
predictor in the area of its best performance.

It is interesting that while the performance of the
KNN models are much worse than that of the other
two algorithms employed (which are quite similar) it
contributes to the final performance of the ensemble
model to a large degree, as it is the only method of
the ones used that can give an exact prediction in
cases where it is accurate. In general, the addition of
the KNN models to the ensemble improves the over-
all ensemble performance to a greater extent than the
combination of just the linear regression and the MLP
models. This suggests that the linear regression and
nonlinear MLP models, while different in form, still ex-
hibit quite similar generalisation patterns. In contrast,
the KNN models, while poor predictors by themselves,
work well in combination with other models. There is
still much to be done, in our opinion, in order to pro-
duce reliable guidance as how to select and combine
the ensemble members effectively. We hope the the
general discussion above on the ensemble learning can
be helpful in this direction.

The performance results are shown in Figs. 3-10
and Table 2. The average relative error in Table 2
was calculated as the absolute difference between the
predicted and measured value of the force divided by
the measured force.
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Figure 3. Predicted Force 1 vs Measured Force 1

While the general performance of the ensemble



Table 2. Performance Results

Average Relative Error Standard Deviation
Force 1 Force 2 Force 3 Force 4 Force 1 Force 2 Force 3 Force 4
Best single model | 0.015233 | 0.018881 | 0.021528 | 0.025546 | 0.017799 | 0.020697 | 0.022469 | 0.026775

Learning Method

Ensemble 0.008267 | 0.010127 | 0.011016 | 0.012503 | 0.010772 | 0.012598 | 0.013657 | 0.015290
. . . 2000 . . .
3000 Measured Force2 — | Measured Force4 ——
Predicted Force2 —— 1800 - Predicted Force 4 —— 1

2500 1
g g
§ 2000 | |, 8
g ‘ [\ g
£ 1500 h 2

1000

0O 200 400 600 800 1000 1200 1400 1600
Coils

Figure 4. Predicted Force 2 vs Measured Force 2
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Figure 5. Predicted Force 3 vs Measured Force 3

model is extremely good with predicted rolling force
being within 1% of the actual measured force, the en-
semble model sometimes gives errors greater than two
standard deviations from the mean. In our case there
were significant errors, 34 out of 1679 on the test data
set. While this is a very good result, current efforts are
directed to investigating and correcting these errors as
are they are obviously going to affect the quality of
the final product. One of the possible directions cur-
rently under investigation, is adaptive re-sampling in
combination with stacked generalisation.

4 Conclusion

This paper focuses on developing an ensemble model
to address the need for accurate predictions of the roll
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Figure 6. Predicted Force 4 vs Measured Force 4
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Figure 7. Scatter Plot of Predicted Force 1 vs Mea-
sured Force 1

separating force in order to meet the quality standards
of the final product in steel manufacturing. A stacked
generalisation approach to ensemble modeling is used
with two sets of ensemble model members, the first set
being learnt from the current input—output data of the
hot rolling finishing mill, while another augments the
information about the current coil with information
from the previous coil. Both sets of ensemble mem-
bers include linear regression, multilayer perceptron,
and k-nearest neighbour algorithms. A competitive se-
lection model (multilayer perceptron) is then used to
select the output of the ensemble member that has the
smallest error to act as the final output of the ensemble
model. The ensemble model created by such stacked
generalization is able to achieve extremely high accu-
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Figure 8. Scatter Plot of Predicted Force 2 vs Mea-
sured Force 2
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racy in predicting the roll separation force with the
average relative accuracy being within 1% of the ac-
tual measured roll force.
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