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Abstract. How to efficiently discard potentially uninteresting rules in
exploratory rule discovery is one of the important research foci in data
mining. Many researchers have presented algorithms to automatically
remove potentially uninteresting rules utilizing background knowledge
and user-specified constraints. Identifying the significance of exploratory
rules using a significance test is desirable for removing rules that may
appear interesting by chance, hence providing the users with a more com-
pact set of resulting rules. However, applying statistical tests to identify
significant rules requires considerable computation and data access in
order to obtain the necessary statistics. The situation gets worse as the
size of the database increases. In this paper, we propose two approaches
for improving the efficiency of significant exploratory rule discovery. We
also evaluate the experimental effect in impact rule discovery which is
suitable for discovering exploratory rules in very large, dense databases.
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1 Introduction

Exploratory rule discovery techniques seek multiple models which are able to ef-
ficiently describe the potentially interesting inter-relationships among attributes
in a database. Searching for multiple models instead of a single model often
results in numerous spurious or uninteresting rules.

How to automatically discard statistically insignificant rules has been an im-
portant issue in research of exploratory rule discovery. Several papers have been
devoted to this topic. Bay and Pazzani [4], Liu et. al [10] and Webb [15], devel-
oped techniques for identifying insignificant rules with qualitative attributes only
(or descretized quantitative attributes). Aumann and Lindell [2] and Huang and
Webb [8] both did research on exploratory rule significance with undescretized
quantitative attributes as consequent.

When filtering insignificant exploratory rules regarding quantitative attributes,
the rule discovery systems have to go through the database several times so as
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to collect the necessary parameters for the significance test. Moreover, consider-
able CPU time has to be spent on data access and looking for the set of records
which is covered by the antecedent of a rule. For example, it has been shown by
Huang and Webb [8] that the time spent for discovering the top 1000 significant
impact rules is on the whole much more than that spent on discovering the top
1000 impact rules without using any filter, especially when most of the top 1000
impact rules are insignificant. A technique for improving the efficiency of the
insignificance filter is presented in the same paper by introducing the triviality
filter. The anti-monotonicity of triviality was utilized to effectively prune the
search space.

There is an immediate need for improving the efficiency of the insignificance
filter for distributional-consequent exploratory rule discovery, even after the in-
troduction of the triviality filter. In this paper, we propose two approaches for
efficiency improving in exploratory rule discovery, which can result in substan-
tial reduction of the computation for discovering significant rules. Although the
demonstration is done on impact rule discovery, these techniques can also be
recast for other exploratory rule discovery tasks.

The paper is organized as follows: In section 2, we introduce the concept
and notations of exploratory rule discovery. Existing techniques for discarding
insignificant exploratory rules is introduced in section 3, followed by the brief
description of impact rule discovery in section 4. The techniques for improving
the efficiency are presented in section 5. In section 6, we provide experimental
results and evaluations. Conclusions are drawn in section 7.

2 Exploratory Rule Discovery

Traditional machine learning systems discover a single model from the available
data that is expected to maximize the accuracy or some other specific measures
of performance on unknown future data. Predictions or classifications are then
done on the basis of this single model [15]. Examples include the decision tree
[12], the decision rules [11], and the Naive-Bayes classifier. However, alternative
models exist that perform equally well as those which are selected by the systems.
Thus, it is not always sensible to choose only one of the“best” models in some
cases. The criteria for deciding whether a model is best or not also varies with
the context of application. Exploratory rule discovery techniques are proposed
to overcome this problem by searching for multiple models which satisfy certain
constraints and presenting all these models to the user. Thus, the users are
provided with alternative choices. Better flexibility is achieved herewith.

Exploratory rule discovery techniques [8] are classified into propositional rule
discovery which seeks rules with qualitative attributes or discretized quantita-
tive attributes only and distributional-consequent rule discovery which seeks
rules with quantitative attributes as consequent. The status or performance such
quantitative attributes are described with their distributions. Association rule
discovery [1], contrast sets discovery [4] are examples of propositional exploratory
rule discovery, while impact rule discovery [13] and quantitative association rule



discovery [2] both belong to the class of distributional-consequent rule discov-
ery. It is argued that distributional-consequent rules are able to provide better
descriptions of the interrelationship between quantitative attributes and quali-
tative attributes.

Here are some notions of exploratory rule discovery that we are to use in this
paper:

1. A dataset is a finite set of records
2. For propositional rule discovery, a record is an element to which we apply

Boolean predicates called conditions, while for distributional-consequent rule
discovery, a record is a pair < c, v >, where c is the nonempty set of Boolean
conditions, and v is a set of values for the quantitative variables in whose
distribution the users are interested.

3. A rule is in the form of A → C. For propositional rules, both A and C are
conjunctions of Boolean conditions. The status of such rule is described by
interestingness measures like the support and the confidence. Contrarily, for
distributional-consequent rule discovery, A is a conjunction of Boolean con-
ditions while C is a nonempty set of target quantitative variables in which
the users are interested. The quantitative variables are described by distri-
butional statistics. We prefer using A → target to denote a distributional-
consequent rule instead, for the purpose of avoiding confusion.

4. Rule A → C is a parent of B → C if A ⊂ B. If |A| = |B|−1 than the second
rule is a direct parent of the first one, otherwise, it is a grandparent of the
first rule.

5. We use the notion coverset(A), where A is a conjunction of conditions, to
represent the set of records that satisfy the condition (or set of conditions)
A. If a record x is in coverset(A), we say that x is covered by A. If A is ∅,
coverset(A) includes all the records in the database.

6. Coverage(A) is the number of records covered by A. coverage(A) =
|coverset(A)|.

3 Insignificant Exploratory Rules

As is mentioned before, exploratory rule discovery searches for multiple models
in a database, and may lead to discovering spurious or uninteresting rules. How
to decrease the number of resulting rules becomes a problem of concern. One
approach is up to the users to define a suitable set of constraints which may
be utilized so that the algorithm can automatically discard some potentially
uninteresting rules. Another approach is to perform comparison within resulting
rules, so as to present the users with a more compact set of models. Techniques
regarding automatically removing potentially uninteresting rules are summarized
by Huang and Webb [8].

3.1 Improvement

Filtering insignificant rules using statistical tests is one of the interesting topics
of research. By using this technique we perform significance tests among rules



and discard those happen to appear interesting only by chance. To provide a clear
idea of insignificant rules, we will at first introduce the concept of rule improve-
ment defined by Bayardo et al. [5]. Confidence improvement which is used as
an example, defined a minimum improvement in confidence that a propositional
rule must exhibit in order to be regarded as potentially interesting:

imp(A → C) = min(∀A′ ⊂ A, confidence(A → C)

−confidence(A′ → C))

It is argued that setting a minimum improvement is desirable in discarding
potentially uninteresting exploratory rules. However, the values used for com-
parison are derived from samples instead of from the total population. There
is the problem that the observed improvement provides only an estimate of the
true improvement, and if no account is taken of the quality of that estimate, so
it is likely to result in poor decisions.

Rule filtering techniques regarding the significance of rules concern about the
statistically significance of the improvement, rather than the values of interest-
ingness measures. Statistical tests are done with resulting rules and those within
expectation (or without enough surprisingness) are automatically removed. Such
techniques may lead to type-1 error, which result in accepting spurious or un-
interesting rules and type-2 error, which result in rejecting rules that are not
spurious. A technique for statistically sound exploratory rule discovery is pro-
posed by Webb [15] using a holdout set to validate the resulting rules.

3.2 Statistical significance of rules

Chi-square test is a widely used test for identifying propositional rule indepen-
dence. Liu et al. [10] did research on association rules with a fixed attribute as
consequent. They used a chi-square test to decide whether the antecedent of a
rule is independent from its consequent or not, accepting only rules whose an-
tecedent and consequent are positively correlated, thus, discarding rules which
happen to appear interesting by chance. The rules discarded by using an inde-
pendent test are referred to as insignificant rules.

Consider the following Boolean-consequent rules:

A → C[support = 60%, confidence = 90%]

A&B → C[support = 45%, confidence = 91%]

A&D → C[support = 46%, confidence = 70%]

There is a high possibility that the conditions B and C are conditionally in-
dependent given A, thus the second rule provides little interesting information.
According to Liu et al., the third rule does not bear interesting information,
either. It should also be discarded, because the condition D is negatively corre-
lated to condition C, given A. Bay and Pazzani [4] also made use of Chi-square
test to decide the significance of contrast sets. Webb [15] proposed a statistically



sound technique for filtering insignificant rules, using the Fisher exact test and
a hold out set.

Aumann and Lindell [2] and Huang and Webb [8] both proposed ideas for
filtering insignificant distributional-consequent exploratory rules. In this paper,
we use the definition proposed by the latter.

Definition 1. significant impact rule An impact rule A → target is signifi-
cant if the distribution of its target is significantly improved in comparison with
the target distribution of any of its direct parents’. The measure for the target
distribution can be the mean, the variance etc.

significant(A → target) = ∀x ∈ A, dist(coverset(A))

� dist(coverset(A− x)− coverset(A))1

An impact rule is insignificant if it is not significant.

Definitions of insignificant propositional exploratory rules are provided by
Liu et al. [10] and Bay and Pazzani [4].

In this paper, the mean of the target attribute over coverset(A) is used as the
interestingness measure to be compared for the impact rule. Statistical test is
done to decide whether the target means of two samples are significantly different
from each other.

4 K-Most-Interesting Impact Rule Discovery and
Notations

The impact rule discovery algorithm we adopt is based on the OPUS [14] al-
gorithm, which enable the successfully discovery of the top k impact rules that
satisfy a certain set of constraints.

We characterized the terminology of k-most-interesting impact rule discovery
to be used in this paper as follows:

1. An impact rule is in form of A → target, while the target is describe by the
following measures: coverage, mean, variance, maximum, minimum, sum
and impact.

2. Impact is a interestingness measure suggested by Webb [13]2: impact(A →
target) = (mean(A → target)− targ)× coverage(A)).

3. An k-most-interesting impact rule discovery task is a 7-tuple:
KMIIRD(C, T ,D,M, λ, I, k).
C: is a nonempty set of Boolean conditions, which are the set of available

conditions for impact rule antecedents.
1 The token “�” is used to denote significantly improved, and dist(R) is used to

represent the distribution of the target variable over the set of records R.
2 In this formula, mean(A → target) denotes the mean of the targets covered by A,

and coverage(A) is the number of the records covered by A.



Algorithm: OPUS IR Filter(Current, Available, M)

1. SoFar := ∅
2. FOR EACH P in Available

2.1 New := Current ∪ P
2.2 IF New satisfies all the prunable constraints in M except the nontrivial [8]

constraint THEN
2.2.1 IF any direct subset of New has the same coverage as New THEN

New → relevant stats is a trivial rule
Any superset of New is trivial, so do not access any children of this node,
go to step 2.

2.2.2 ELSE IF the mean of New → relevant stats is significantly higher than all its
direct parents THEN

IF the rule satisfies all the other non-prunable constraints in M
THEN record Rule to the ordered rule list

OPUS IR Filter(New, SoFar, M)
SoFar := SoFar ∪ P

2.2.3 END IF
2.3 END IF

3. END FOR

Table 1. OPUS IR Filter

T : is a nonempty set of the variables in whose distribution we are interested.

D: is a nonempty set of records, which is called the database. A record is a
pair < c, v >, c ⊆ C and v is a set of values for T .

M: is a set of constraints. There are two types of constraints prunable and
unprunable constraints. Prunable constraints are constraints that you
can derive useful bounds for search space pruning and still ensures the
completeness of information. Examples include the anti-monotone, the
succinct constraints [7], or the convertible constraints [9]. Constraints
which are not prunable are unprunable constraints

λ: {X → Y } × {D} → R is a function from rules and databases to val-
ues and defines a interestingness metric such that the greater the value
of λ(X → Y,D) the greater the interestingness of this rule given the
database.

I: is the set of impact rules that can be derived from D, whose antecedents
are conjunctions of one or more conditions in C, whose targets are mem-
bers of T , and which satisfy the constraints in M.

k: is a user specified integer number denoting the number of rules in the
ultimate solution for this task.

The original algorithm for impact rule discovery with filters are described
in table 1. In this table, current is the set of conditions, whose supersets are
currently being explored. Available is the set of conditions that may be added
to current. By adding every condition in available to current one by one, we
form the antecedent of the current rule: New → target, which will be referred to
later as current rules. Rule list is an ordered list of the top-k interesting rules
we have encountered.



5 Efficient Identification of Exploratory Rule Significance

5.1 Deriving Difference Set Statistics without Data Access

According to the algorithm in table 1 and definition 1, we have to compare the
mean of current rule with the means of all its direct parents’ in order to decide
whether a rule is significant or not. The set difference operations necessary for
this purpose requires excessive data access and computation. However with the
status of current rule and all its parent rules known, we will be able to derive
the statistics of the difference sets for performing the significance test, without
additional access to the database. The following lemma validates this statement.

Lemma 1. Suppose we are searching for impact rules from a database D. If
A ⊂ B, and coverset(A)−coverset(B) = R, where A and B are both conjunction
of conditions, R is a set of records from D. If the mean and variance of the
target attribute over coverset(A) and coverset(B) are known, as well as the
cardinality of both record sets, the mean and variance of the target attribute
over set R can be derived without additional data access.

Proof. Since coverset(A)− coverset(B) = R, it is obvious that

|R| = coverage(A)− coverage(B) (1)

mean(R) =
coverage(A)×mean(A → target)− coverage(B)×mean(B → target)

|R|
(2)

variance(A → target) =

∑
x∈coverset(A)

(target(x)−mean(A → target))2

coverage(A)− 1
(3)

variance(B → target) =

∑
x∈coverset(B)

(target(x)−mean(B → target))2

coverage(B)− 1
(4)∑

x∈coverset(A)

target(x) = mean(A → target)× coverage(A) (5)

∑
x∈coverset(B)

target(x) = mean(B → target)× coverage(B) (6)

From 3, 4, 5 and 6 it is feasible to derive the following equation:∑
x∈R

target(x)2 =
∑

x∈coverset(A)

target(x)2 −
∑

x∈coverset(B)

target(x)2

= variance(A → target)× (coverage(A)− 1)

+mean(A → target)2 × coverage(A)

−variance(B → target)× (coverage(B)− 1)

−mean(B → target)2 × coverage(B)

(7)



∑
x∈R

target(x) =
∑

x∈coverset(A)

target(x)−
∑

x∈coverset(B)

target(x) (8)

Thus,

variance(R) =

∑
x∈R (target(x)−mean(R))2

|R| − 1

=

∑
x∈R target(x)2

|R| − 1
−

2mean(R)
∑

x∈R target(x)

|R| − 1
+
|R|mean(R)2

|R| − 1

Since all the parameters in the right hand side of the equation are already known,
we are able to derive all the necessary statistics for doing significance test without
accessing the records in R. The lemma is proved.

Note: in this proof, mean(A → target) denotes the target mean of the records
covered by rule A → target, variance(A → target) denotes the target variance of the
records covered by rule A → target, while mean(R) denotes the target mean of the
records in record set R, and variance(R) represents the target variance of the records
in R.

By deriving the difference set statistics from the statistics of the parent rule
and New → target in table 1, we are able to save data access and computation
for collecting the statistics for performing the significance test, thus improve the
efficiency of the search algorithm.

5.2 The Circular intersection approach

Parallel Intersection Approach According to the definition of significant
impact rules, we compare the current rule with all its direct parents to identify its
significance. In the original OPUS IR Filter algorithm, the procedure described
in figure 1 is employed to find the coverset of every direct parent of the current
rule which is being explored. Each arrow in figure 1 represents an intersection
operation. When deciding whether a rule with 5 conditions, namely A, B, C, D
and E on the antecedent is significant or not, the algorithm have to go through
16 intersection operations! We refer to this approach as the parallel intersection
approach.

By examining figure 1, we notice that there are considerable overlaps in
the parallel intersection approach. For example, by using the parallel inter-
section approach, we have to do the same intersection of coverset(A) and
coverset(B) three times, when searching for coverset(ABCD), coverset(ABCE)
and coverset(ABDE). There must be a way in which two of these operations
can be omitted.

Circular Intersection Approach we propose the approach of circular inter-
section which is shown in figure 23. In this approach, intersections are done in
3 Each dashed arrow in figure 2 and figure 3 points to the outcome of that specific

intersection operation and does not represent an actual operation.



Fig. 1. The parallel intersection Approach for ABCDE

two stages. Firstly, in the forward stage, intersections are done from condition
A to condition E one at a time, and the results are kept in memory. Then we
do intersections from the last condition E back to the second one B, which is
referred to as the backward stage. During the backward stage, the coverset of
each direct parent of the current rule is found. By introducing the circular inter-
section approach, the number of intersection operations required for identifying
the significance of current rule is reduced to only 10.

Fig. 2. The circular intersection approach flow for ABCDE

Complexity Using the parallel intersection approach, the number of intersec-
tion operations for iterating through all the subsets is:

(n− 2)× n + 1,

where n is the maximum number of conditions on the rule antecedent. The
complexity is O(n2).

After introducing the circular intersection approach, the intersection opera-
tions for iterating through all the subsets are:

3n− 5.

The complexity is O(n). However, practically the difference in running time will
not be so dramatic, since we have introduced the triviality filter, which enables



the pruning of the search space. Both the parallel intersection procedure and the
circular intersection procedure will probably stop at anytime when it is identified
that the current rule is a trivial rule.

The two approaches (the difference set statistics derivation approach and the
circular intersection approach) mentioned above can combine with each other
so as to achieve higher efficiency. We can save one more intersection operation
by introducing the difference set statistics derivation technique in section 5.1.
Suppose that we are deciding whether the rule A&B&C&D&E → target is
significant or not. Now that the statistics of one of its parent A&B&C&D →
target is known, thus we don’t have to derive the statistics of coverset(ABCD)
once again. Hereby, one intersection operation can also be saved by following the
procedure shown in figure 3 according to lemma 5.1. The number of necessary

Fig. 3. The circular intersection approach for ABCDE when current is ABCD

intersection operations is reduced to

3n− 6.

The new algorithm for impact rule discovery with filters is shown in table
2. In this table, the parent rule is the corresponding rule for the node whose
children we are currently exploring. The antecedent of parent rule is current.

6 Experimental Evaluations

In order to explain how the techniques introduced in this paper can practically
improve the efficiency of rule discovery, we do our experiments by applying the
new algorithm to 10 databases chosen from the UCI Machine Learning reposi-
tory [6] and the UCI KDD archives [3]. The databases are described in table 3.
We applied 3-bin equal-frequency decrepitation to map all the quantitative at-
tributes, except the target attribute, into qualitative ones. The significance level
we chose to decide the significance of impact rules is 0.05. The minimum coverage
for discovered impact rules is set to 0.01, which is very low. The running time
shown in the figures and tables are CPU time spent for the algorithms to search
for top 1000 significant impact rules with the highest impact on a computer with
two PIII 933MHz processors, 1.5G memory, and 4G virtual memory.
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Fig. 4. Comparison of Running Time before and after applying data access sav-
ing techniques for (a) abalone, (b) heart, (c) housing, (d) German credit, and (e)
ipums.la.97



Algorithm: OPUS IR Filter(Current, Available, parent rule, M)

1 SoFar := ∅;
2 FOR EACH P in Available

2.1 New := Current ∪ P
2.2 IF New satisfies all the prunable constraints in M except the nontrivial

constraint THEN

2.2.1 Derive the statistics of coverset(Current)− coverset(New), according to lemma
5.1.

2.2.2 IF the mean of New → target is not significantly improved comparing to
coverset(Current)− coverset(New) THEN

go to step 2.2.4;
2.2.3 ELSE use the circular intersection to comparing the mean of New → target with

the mean of its direct parents other than parent rule

2.2.3.1 IF the mean New → target is significantly improved comparing to all its
direct parents THEN
record New → target to rule list;
OPUS IR Filter(New, SoFar, New → target);
SoFar := SoFar ∪ P ;

2.2.3.2 END IF;

2.2.4 END IF;

2.3 END IF;
3 END FOR

Table 2. Improved OPUS IR Filter

database records attributes conditions Target
Abalone 4117 9 24 Shuckedweight
Heart 270 13 40 Max heart rate

Housing 506 14 49 MEDV
German credit 1000 20 77 Credit amount
Ipums.la.97 70187 61 1693 Total income
Ipums.la.98 74954 61 1610 Total income
Ipums.la.99 88443 61 1889 Total income
Ticdata2000 5822 86 771 Ave. income

Census income 199523 42 522 Wage per hour
Covtype 581012 55 131 Elevation

Table 3. Basic information of the databases

We ran the program without using the algorithm proposed in table 1 first.
For databases abalone, heart, housing, German credit and ipmus.la.97, which
is relatively smaller, we set the maximum number of conditions on the rule
antecedent (MNC for short) from 3 to 8, and then run the program with no
limit on the MNC. After that, the new algorithm in table 2 is ran according
to the same procedure. The CPU time spent for these programs to search for
the top 1000 significant impact rules is presented using line charts in figure 4.
For ipmus.la.98, ipmus.la.99, ticdata2000, census income and covtype, which are
relatively larger databases, we only ran the programs with MNC set to 3, 4, and
5. The experimental results are listed in table 4.

With MNC set to 3, the number of intersection operations required for doing
insignificant tests are the same, regardless of whether the circular intersection
technique is introduced or not. Thus, the difference in efficiency between the



Database status MNC=3 MNC=4 MNC=5
Ipums.la.98 before 74.41 300.47 1860.31

after 46.15 130.62 482.52
Ipums.la.99 before 750.6 2785.46 9805.81

after 103.29 312.66 820.72
Ticdata2000 before 116.55 1669.76 10808.03

after 73.17 1027.33 7946.36
Census-income before 577.32 2362.53 3781.6

after 351.56 1054.58 2075.2
Covtype before 3529.95 11300.45 20686.95

after 2315.47 9803.97 16987.18
Table 4. Time spent (in seconds) for searching for significant rules in databases:
ipums.la.98, ipums.la.99, ticdata2000, census income, covtype before and after
the techniques are introduced

algorithms in table 1 and table 2 is caused by applying the data access saving
approach which is proposed in section 5.1. For instance, it took the algorithm in
table 1 more than 70 seconds to find the top 1000 significant rules in ipums.la.98
with MNC set to 3, while the time for the algorithm in table 2 to finish the same
task is only 57 seconds.

When the MNC is set to a number greater than 3, the trend of increase in
running time is much steeper before applying the techniques proposed in section
5 than after. The difference in efficiency increases with the MNC. When there
is no limit on the maximum number of conditions on the rule antecedent, the
time spent for the new algorithm to search for top 1000 significant impact rules
in ipums.la.97 is less than one sixth of that necessary for the old one. However,
the running time is also influenced by other factors including the size of the
databases, the number of trivial rules in the top 1000 impact rule, and the
number of significant rules.

7 Conclusion

The large number of resulting rules has long been a handicap for exploratory
rule discovery. Many techniques have been proposed to reduce the set of re-
sulting rules to a manageable size. Removing statistically insignificant rules is
one of those techniques that are popular. Such techniques lead to considerable
decrease in the resulting number of exploratory rules. However, performing sta-
tistical tests to identify the significance of a rule requires considerable data access
and computation. We proposed two techniques in this paper, which can improve
the efficiency of rule discovery by deriving difference set statistics without ad-
ditional reference to the data, and by reducing the redundancy of intersection
operations. We implemented the techniques in k-most-interesting impact rule
discovery, which is suitable for distributional-consequent exploratory rule dis-



covery in very large, dense databases. Experimental results show a substantial
improvement in efficiency after applying these techniques.
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