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Abstract

This paper investigates the application of neural net-
works to the recognition of lubrication defects typi-
cal to an industrial cold forging process employed by
fastener manufacturers. The accurate recognition of
lubrication errors, such as coating not being applied
properly or damaged during material handling, is very
important to the quality of the final product in fastener
manufacture. Lubrication errors lead to increased
forging loads and premature tool failure, as well as
to increased defect sorting and the re—processing of
the coated rod. The lubrication coating provides a
barrier between the work material and the die dur-
ing the drawing operation, moreover it needs be suffi-
ciently robust to remain on the wire during the trans-
fer to the cold forging operation. In the cold forging
operation the wire undergoes multi-stage deformation
without the application of any additional lubrication.
Four types of lubrication errors, typical to production
of fasteners, were introduced to a set of sample rods,
which were subsequently drawn under laboratory con-
ditions. The drawing force was measured, from which
a limited set of features was extracted. The neural net-
work based model learned from these features is able
to recognize all types of lubrication errors to a high
accuracy. The overall accuracy of the neural network
model is around 98% with almost uniform distribu-
tion of errors between all four errors and the normal
condition.

Keywords: Lubrication defects, fasteners man-
ufacturing, cold forging, neural networks, feature ex-
traction

1 Introduction

Cold forging includes many processes such as bending,
cold drawing, cold heading, coining, extrusion, punch-
ing, and thread rolling to produce a diverse range of
part shapes. These include various shaft-like compo-

nents, cup-shaped geometry parts, hollow parts with
stems and shafts, all kinds of upset (headed) and bent
configurations, as well as combinations of these geome-
tries. The temperature of metals being cold forged
may range from room temperature to several hundred
degrees.

Often chosen for integral design features, such as
built-in flanges and bosses, cold forging is frequently
used in automotive steering and suspension parts,
antilock-braking systems, hardware, defense compo-
nents, and other applications where high strength,
close tolerances and volume production makes it an
economical choice.

In the cold forging process, a chemically lubri-
cated slug is forced into a closed die under extreme
pressure. The unheated metal thus flows into the de-
sired shape.

Upsetting, or heading, a common technique for
making fasteners, gathers steel in the head and other
sections along the length of the part. In upsetting, the
metal flows at right angles to the ram force, increasing
the diameter and reducing the length.

A typical fastener manufacturing process uses
batch production material transfer. The plant is di-
vided into three main areas:

e Pre-processing that involves descaling and appli-
cation of lubrication consisting of the zinc phos-
phate carrier and a soap stearate lubricant coat-
ing;

e Primary processing that involves wire drawing
and extrusion;

e Post—processing that involves cleaning, heat treat-
ment and the application of a protective coating.

This paper investigates the application of neural
networks to the recognition of lubrication defects typ-
ical to an industrial cold forging process employed by
fastener manufacturers. The accurate recognition of
lubrication errors, such as coating not being applied
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properly or damaged during material handling, is very
important to the quality of the final product in fas-
tener manufacture.

The lubrication used during pre—processing has
a major impact on the productivity of the primary
processing area. For example, if pre—processing fails
to produce high quality coated rod or the coating is
damaged during the material handling then the out-
put efficiency of the primary processing is decreased.
This is a result of increased forging loads and prema-
ture tool failure, as well as increased defect sorting
and the re—processing of the coated rod. The lubrica-
tion coating must provide a barrier between the work
material and die during the drawing operation, while
still be sufficiently robust to remain on the wire dur-
ing the transfer to the extrusion operation, where the
wire undergoes multi-stage deformation without the
application of additional lubrication.

Four types of lubrication defects, typical to pro-
duction of fasteners, were introduced to a set of sample
rods, which were subsequently drawn under laboratory
conditions. The drawing force was measured, from
which a limited set of features was extracted. The
neural network based model was learned from these
features to be able to distinguish all types of lubrica-
tion errors from the normal condition.

2 Test Rig

The main measures to evaluate lubrication coating
performance are tooling change—over rates and the de-
tection of score marks appearing on drawn and forged
surfaces.

The evaluation of the coating performance is done
usually through production based methods. These
production evaluation techniques, while being a valu-
able long term indicator of coating performance, are
reactive methods and are unable to assess the coating
condition before it enters the primary processing area.
This leads to tooling and product damage.

The evaluation technique developed at the School
of Engineering and Technology, Deakin University [2]
(Fig. 1) uses a process simulation test rig and a se-
lection of analysis tools to evaluate the coating perfor-
mance. This technique allows lubrication evaluation
to be performed in isolation to production, enabling
analysis to be done without interfering with day—to—
day running of the production line.

The main performance requirements for the lu-
brication coating are from the pre—forge wire drawing
operation and the extrusion stages in the cold forg-
ing process. In the current approach, these stages in
the fastener manufacturing process are simulated by
multi-reduction drawing. The first reduction simu-
lates the pre-drawing process while a second reduc-
tion simulates the extrusion stage of the cold forging
process [2]. The test rig was constructed from a vari-

Figure 1. The multi—draw test rig

able speed, continuous drawing machine where quick—
change multi-reduction die hostings, quick—change rod
clamping mechanism and constrained flat bed were de-
signed and installed. Strain gauges were mounted at
the rod clamping mechanism to detect drawing force
at both the first and second reductions. Force signals
are collected and conditioned by National Instruments
hardware and Labview software. In this paper we deal
with pre—forge wire drawing operation only.

3 Experimental Set—Up

A two layer solid lubricant system was used on the
rods. This was applied in a plant environment with
conditions kept as close as possible to those used for
standard production. The experimental test rig was
used to produce the rod samples drawn with a 0.35mm
reduction from the a starting diameter of 5 mm.

50 samples were produced with 2 layer coating
applied: zinc phosphate carrier and calcium stearate
lubricant coating. Another 20 samples were produced
as before but with an additional coating of soap lubri-
cant. This final coat of powdered lubricant was added
to minimize the damage of the sensor’s drawing die
on the production wire the same way as it is done in
plant.

Four different kinds of defects common in pro-
duction of fasteners, were introduced into the coatings
(Fig. 2):

1. No coating, where heat shrink wrap was applied
to rods prior to all steps in the coating process.
This corresponds to missing coatings from a pre—
processing stage;

2. Zinc phosphate only, where heat shrink wrap was
applied after the zinc phosphate application. This
corresponds to the missing calcium stearate layer
coating from a pre-processing stage;



3. Hammer peening of the surface of the bar. This
type of error simulates defect introduced during
material handling from pre—processing area to the
primary processing;

4. Scratching of the coating by its removal parallel to
the bar, which was introduced by filing the coating
off. This type of error simulate coils being dragged
across the shop—floor during transfer from pre-
processing area to the primary processing.

f f
peened no coating
scratched Zn phosphate

only (no stearate)

Figure 2. Sample rod

All defects were approximately 50mm in length
and applied to the circumference of the rod with de-
fects being separated by fully coated lengths of rod.

The samples were drawn with an area reduction
of approximately 7% and the loads on the drawing die
were monitored by strain gauges on the rod clamping
mechanism. All defects resulted in increased drawing
loads. In the case of the hammer peening, this is likely
to be due to the resulting irregularity of the rod diam-
eter. In the other three cases, reduced efficiency of
the coatings is due to missing lubrication components.
The defect with only zinc phosphate layer resulted in
the highest friction. The zinc phosphate is a soft coat-
ing and thus is likely to produce a galling or sticking
effect as the rod passed through the die.

The typical force signatures for the rods with
two-layers of lubricants (labeled as non-lubricated
samples) and for the rods with an extra layer of lu-
bricant applied (labeled as the lubricated samples) are
shown in Figs. 3 and 4.

As can be seen, the error 4 (scratching of the coat-
ing) is visually indistinguishable from the normal con-
dition (the one without any errors) on non-lubricated
data, and only the error 3 (peening of the surface of
the bar) is readily distinguished from the normal con-
dition on the lubricated data.

The force signatures were collated to create two
time series, one for non-lubricated samples, and an-
other for lubricated samples with all five possible lu-
bricant conditions (normal condition and the four de-
fects) appropriately pre-labeled with a corresponding
condition label being manually applied to each time
step of the drawing force signal.
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Figure 3. Typical non-lubricated rod sample
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Figure 4. Typical lubricated rod sample

4 Experimental Results

The main aim of this paper is to develop an inductive
model to identify accurately the lubrication errors in
the cold forging by analyzing a force signature. That
is, force variations from the nominal values are to be
linked to various lubrication defects.

There are several possible approaches to the de-
velopment of such a model. The most common ap-
proach is to formulate the problem as a classification
(pattern recognition) problem [1].

We are interested in separating accurately the
normal condition from all four types of lubrication de-
fects. However, a single drawing force value reveals
very little information about what sort of condition
the process is in. This limitation can be alleviated by
extracting some useful features from a set of contigu-
ous force values

f’i = P]({'Z.ZJ "'in-i-n}) )

where f; is the feature, P; is the jth feature extractor
function, z; is the first force value of the set, x;y, is



the last force value of the set and n is the size of the
set.

The set of force values is defined as a sliding win-
dow. Associated with each sliding window is the lu-
brication condition or the output class:

h({f1,---, fm}) € {normal condition, errorl, ..., error4}

where h(.) is the lubrication condition, and fi, ..., fi
are the extracted features of the window.

Therefore, we can associate each sliding window
and its features with a corresponding lubrication con-
dition. The true lubrication condition was chosen to
be the output class associated with each sample point,
Zitn Of the sliding window. In this case, the sliding
window always extracts features from the past drawing
force data. The size of a sliding window was 300 time
steps and selected based on the minimal root—-mean—
square error between the predicted condition by the
model and the actual condition of the lubricant.

The usefulness of the features extracted from the
drawing force signal was analyzed by sensitivity anal-
ysis to evaluate their impact on the recognition rate
for each condition and only the most important ones
were retained.

The following features were selected:

¢ Maximum force value within a sliding window;
e Minimum force value within a sliding window;

e Arithmetic mean (average) force value within a
sliding window;

e Geometrical mean (median) force value within a
sliding window;

e Standard deviation of the force values within a
sliding window. This is a measure of how widely
force values are dispersed from the average force
value (the mean);

e Average deviation of the force values within a slid-
ing window. This is a measure of the variability
in a data set. It is the average of the absolute
deviations of force data points from their mean;

o Skewness of the force values within a sliding win-
dow. This characterizes the degree of asymmetry
of a force data distribution around its mean;

e Kurtosis of the force values within a sliding win-
dow. This characterizes the relative peakedness
or flatness of a force data distribution compared
with the normal distribution;

e Correlation between the force values within the
current and the previous sliding windows;

e Covariance between the force values within the
current and the previous sliding windows. This is
the average of the products of deviations for each
force data point pair.

In addition to extracted features we also used the
current force signal and the past force signals with
different time delays ranging from 25 time steps to
400 time steps also selected based on the minimal root—
mean—square error between the predicted condition by
the model and the actual condition of the lubricant.

The output sensitivity values for each of the
model inputs are in Table 1.

As an inductive model within a patter recognition
framework we used a feedforward multilayer percep-
tron (MLP) with backpropagation learning algorithm
with a momentum term.

An attractive feature of MLP network is that,
given the appropriate network topology and the rig-
orous training procedures, they are capable of reliably
characterizing nonlinear functional relationship [4]. As
the activation function of the MLP model we used a
hyperbolic tangent. A pattern (on-line) learning and
early stopping was employed. All input variables were
normalized with zero mean unit average normalization.

The optimal parameters of the MLP were selected
based on preliminary experiments. The parameters
which resulted in smallest root—mean—squared—error
between the predicted lubrication conditions and the
actual lubrication conditions, were used. The selected
MLP model consisted of 20 inputs and 5 outputs with
two hidden layers, the first hidden layer has 50 nodes,
and the second hidden layer has 45 nodes. The learn-
ing rate selected was 0.05, the momentum term was
0.99.

An oversampling of the lubrication defect data
points was utilized to create an equal distribution of
data tuples for each lubrication condition to avoid the
problem of small disjunct [3, 5] as the data for the
normal condition of lubrication (the one without any
defects) dominates the available data tuples (being
around 75% of all available data tuples). The data tu-
ples were selected randomly, with 70% used for train-
ing and the remaining 30% to test the model general-
ization ability.

The overall prediction results of the MLP model
and the corresponding confusion matrices are in Table
2.

From the Table 2 it is clear that the performance
of the MLP model is extremely accurate. The MLP
model is able to distinguish perfectly, apart from a
single exception, the boundaries between all the er-
rors and only has some difficulty with recognition of
the boundaries between the normal conditions and the
errors. Even these boundaries are recognized with a
very high accuracy being between 97% and 99%. Most
importantly, while the extra layer of calcium stearate



Table 1. Output sensitivities for each of the model input variables. Here the sensl represents the sensitivity for the
normal condition, while the sens2 to sensb represents the sensitivities for errors 1 to 4

Non-lubricated samples Lubricated samples
input sensl sens2 sens3 sens4 sensb sensl sens2 sens3 sens4 sensb
Force 0.0701 | 0.0632 | 0.0552 | 0.0585 | 0.0609 | 0.0422 | 0.0503 | 0.0338 | 0.0661 | 0.0535

Force (delay 25) | 0.0473 | 0.0539 | 0.0511 | 0.0418 | 0.0440 | 0.0454 | 0.0362 | 0.0559 | 0.0506 | 0.0369
Force (delay 50) | 0.0376 | 0.0334 | 0.0335 | 0.0259 | 0.0434 | 0.0403 | 0.0371 | 0.0398 | 0.0442 | 0.0360
Force (delay 100) | 0.0355 | 0.0404 | 0.0245 | 0.0270 | 0.0308 | 0.0213 | 0.0212 | 0.0225 | 0.0226 | 0.0283
Force (delay 150) | 0.0328 | 0.0374 | 0.0449 | 0.0326 | 0.0316 | 0.0425 | 0.0328 | 0.0409 | 0.0546 | 0.0274
Force (delay 200) | 0.0410 | 0.0405 | 0.0621 | 0.0416 | 0.0456 | 0.0332 | 0.0275 | 0.0378 | 0.0354 | 0.0272
Force (delay 250) | 0.0584 | 0.0419 | 0.0504 | 0.0430 | 0.0507 | 0.0386 | 0.0399 | 0.0355 | 0.0496 | 0.0386

(

(

(

Force (delay 300) | 0.0612 | 0.0633 | 0.0655 | 0.0513 | 0.0614 | 0.0423 | 0.0358 | 0.0324 | 0.0510 | 0.0368
Force (delay 350) | 0.0596 | 0.0635 | 0.0674 | 0.0838 | 0.0389 | 0.0676 | 0.0712 | 0.1073 | 0.0695 | 0.0665
Force (delay 400) | 0.0404 | 0.0397 | 0.0451 | 0.0421 | 0.0501 | 0.0817 | 0.0768 | 0.0859 | 0.0701 | 0.0914

Max 0.0696 | 0.0473 | 0.0612 | 0.0867 | 0.0865 | 0.0806 | 0.0953 | 0.0758 | 0.0697 | 0.0800
Min 0.1026 | 0.0769 | 0.0842 | 0.1068 | 0.1111 | 0.1481 | 0.1303 | 0.1326 | 0.1248 | 0.1637
Average 0.0312 | 0.0465 | 0.0315 | 0.0412 | 0.0314 | 0.0355 | 0.0362 | 0.0396 | 0.0301 | 0.0399
Median 0.0415 | 0.0546 | 0.0387 | 0.0481 | 0.0468 | 0.0225 | 0.0284 | 0.0246 | 0.0214 | 0.0234
Stdev 0.0459 | 0.0376 | 0.0364 | 0.0411 | 0.0585 | 0.0572 | 0.0701 | 0.0468 | 0.0481 | 0.0502
Avedev 0.0275 | 0.0313 | 0.0365 | 0.0229 | 0.0292 | 0.0561 | 0.0695 | 0.0477 | 0.0488 | 0.0505
Skew 0.0538 | 0.0574 | 0.0612 | 0.0526 | 0.0507 | 0.0389 | 0.0396 | 0.0371 | 0.0394 | 0.0393
Kurt 0.0640 | 0.0692 | 0.0631 | 0.0619 | 0.0580 | 0.0632 | 0.0650 | 0.0609 | 0.0601 | 0.0654
Correl 0.0295 | 0.0433 | 0.0317 | 0.0310 | 0.0259 | 0.0241 | 0.0195 | 0.0218 | 0.0256 | 0.0262
Covar 0.0506 | 0.0585 | 0.0560 | 0.0601 | 0.0444 | 0.0187 | 0.0173 | 0.0211 | 0.0182 | 0.0185

Table 2. Model prediction results for each of the process conditions. Here Normal represents the normal condition,
Error 1 represents no coating, Error 2 represents the zinc phosphate layer only, Error 3 represents peening and Error
4 represents scratching

Non-lubricated samples Lubricated samples
Lub condition Normal | Error 1 | Error 2 | Error 3 | Error 4 | Normal | Error 1 | Error 2 | Error 3 | Error 4
Recognition rate 97.2% 99.4% 98.6% 99.2% 99.4% 97.5% 98.6% 98.7% 98.7% 98.1%
13854 9 19 9 6 11380 12 12 13 15
95 1511 0 0 0 60 876 0 0 1
Confusion matrices 68 0 1381 0 0 67 0 888 0 0
87 0 0 1059 0 73 0 0 1018 0
152 0 0 0 1028 97 0 0 0 830




coating applied to lubricated samples makes the de-
fects visually indistinguishable from the normal condi-
tion except for the error 3 (peening), an MLP model is
able to recognize them almost as accurately as for non—
lubricated samples where only the error 4 (scratching)
is visually indistinguishable from the normal condi-
tion.

5 Conclusion

This paper investigates the application of neural net-
works to the recognition of lubrication defects typical
to an industrial cold forging process employed by fas-
tener manufacturers. Four types of lubrication errors,
typical to production of fasteners, were introduced to
a set of sample rods, which were subsequently drawn
under laboratory conditions. The drawing force was
measured, from which a limited set of features were
extracted. The neural network based model learned
from these features is able to recognize all types of lu-
brication errors to a high accuracy. The overall accu-
racy of the neural network model is around 98% with
almost uniform distribution of errors between all four
errors and the normal condition. Work is currently in
progress to apply the model learned from the labora-
tory rod samples to production data.
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