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Abstract 
 
A quality analysis trial was undertaken at Ford Geelong Stamping Plant on a press 
line that was fitted with standard press sensors to measure press and binder force 
over the stamping cycle for each panel.  The quality of randomly sampled panels was 
measured by obtaining the panel thicknesses at five points, for 135 panels in total.  
These points were chosen such that they exhibited different forming modes.  This 
paper analyses the input force data and the output quality data from the trial to 
determine any potential relationships.  The analysis of the production data was 
performed using statistical correlation techniques to determine initial potential 
relationships between input and output variables.  An Active Shape Model was used 
to extract features when identifying the major sources of variation within the input 
data.  However, the initial analysis of the data elicited no direct relationship between 
the input variables measured and the panel thicknesses.  This result is significant as 
the data collected is from a standard sensor configuration found in many press lines 
through-out the world.  The reason for the lack of a direct relationship is believed to 
come from the lack of sensitivity in the force measurements which are not able to 
identify small changes in the process, whereas gross geometric variations have in 
previous studies shown an obvious relationship with changes in the force press 
profile.  This means that existing force sensors require augmentation by additional 
sensors if a detailed automatic quality control system for the press lines based on 
input sensors alone. 

 
 
1. Introduction 
 
The stamping of sheet metal products is a process that exhibits a large amount of unexplained 
variation. Blümel et al. [1, 2] initially investigated variation of the sheet metal process with respect to 
the variation of material quality.  They concluded that sheet metal forming has inherent problems with 
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process variation.  More recently, Doolan et al. [3, 4] investigated the relationship between in-
process variables, such as punch force, and quality outcomes, such as tearing and wrinkling.  They 
developed a method to find an operating window for punch force as well as developing some 
empirical explanations for the causes of gross geometric variations in output.  This study was based 
on non-production data. 
 
This paper extends upon these studies by using the data from a quality analysis trial at the Ford 
Geelong Stamping Plant on a press line that was fitted with standard press sensors to measure the 
press force over the stamping cycle for each panel.  The analysis of the production data was 
performed using statistical correlation techniques to determine initial potential relationships between 
input and output variables.  Feature extraction was performed on the data set to extract out 
interesting information.  The significance of this paper has been finding the lack of resolution in the 
current sensors for detailed quality control. 
 
The structure of this paper is as follows.  This paper first discusses the production set-up and the 
details of the production trial.  This is followed by a review of the methods used to analyse the data.  
Finally, the results of the study are discussed. 
 
2. Production Set-up 
 

 
Figure 1 Example production set-up, real press line had six operations. 

The press line consists of six operations (press stations), which included trimming and hole cutting.  
The first operation, however, did the most shape modification through deep drawing of the blank. 
 
The binder force profiles were measured with a standard set of strain gauges which were attached to 
the binder connecting columns on the first press machine.  The punch force profiles were measured 
by subtracting the binder force from the total force of the press measured on the outer press frame.  
Unfortunately, this means that the binder force profile is not a direct measurement of the binder/blank 
force, and the press force is even more indirectly measured as it is a fusion of the binder force and 
total force on the outer press frame. 
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Figure 2 Upper front suspension housing panel with arrow noting the points where 
thickness was measured for each panel. The sixth measurement point was not used because of 
the difficulty in getting an accurate reading on the tight radius. 

 
The part chosen for this study was an upper front suspension housing panel (as seen in Figure 2), 
which has been used for the latest sedan model.  This panel was chosen because its production run 
length was acceptable to both Ford and the production trial, geometry data was available, and it was 
complementary to other aims of the STAMP project.  
 
3. Plant Trial Set-up 
 
A production trial was undertaken.  The panels being analysed (excluding particular etched samples) 
were to be used in assembly; and therefore only non-destructive methods of strain estimation of the 
panels could be performed.  An ultrasonic thickness sensor was used in order to not affect the panels 
in production.  Other information was also recorded, such as ambient and die surface temperatures, 
and times and reasons for line stoppages.   
 
Batches of five panels were randomly selected with time intervals of between 10 and 15 minutes.  A 
batch size of five was chosen to provide statistically significant results when comparing means 
between batches.  Random selection of time intervals was used in order to gain a better reflection of 
the variation throughout the shift, and to confound any systematic measurement error.  Each panel 
within the batch had five thickness measurements taken.  In addition, every fourth batch selected had 
four normal blanks replaced by four etched gridded blanks.  The etched gridded panels were 
withdrawn at the end of the line for off-line measurement.  A fifth normal (non-etched) blank was 
incorporated into the batch and its thicknesses were measured to complete the batch of five panels.  
The normal blank was included to determine if there was a major difference between the stamping of 
etched and non-etched panels. 
 
Each panel was measured in five locations (as seen in Figure 2), the sixth location shown in the 
Figure was not measured because it was difficult to get an accurate reading on the tight radius edge 
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section.  Each of these points of interest was chosen from analysing the stamping behaviour of the 
blank using an Autoform simulation of the process.  The points on the panel were chosen where 
there was a large amount of effective strain, a distinct forming mode, and the geometry of the point of 
the part was suitable for the ultrasonic thickness sensor.  These five locations therefore provide the 
most quality information about the part because these were the points where the part was most likely 
to fail.  Also, a minimum of points of interest were chosen because there were time constraints with 
the on-line manual measurement of parts during production. 
 
The variables recorded during the production trial can be split into two categories, input and output 
variables (see Table 1).  The only input variable considered in this paper is the force profile data. 

Variables available for each measured panel 
Input Variables Output Variables (“Quality” Indicators) 
Force profile data Thickness measurements in five locations 
Temperature readings of the die Strain measurements 
Anecdotal recordings of stoppages  

Table 1 Input and output variables from the production trial. 

4. Data Analysis Methods 
 
The data analysis performed in this work consisted of three major operations: 

1. Cleaning the data; 
2. Extracting the  features; 
3. Analysing the data using correlation and other techniques. 

 
Figure 3 The flow of the data analysis 
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First, the data was cleaned to remove any measurement errors.  Several thickness measurements 
were removed from the data for two panels because it was believed that the measurements were 
recorded incorrectly.  The second operation was to extract the features from the data.  Feature 
extraction tries to remove data of low importance, such as data that has low variance or noise.  After 
these two stages, the data can be analysed by looking for correlations between the input and output 
data, and other associative relationships. 
 
The initial analysis functions were linear functions and visual inspection.  The reasoning was to 
investigate using a standard linear analysis so that if such an analysis were able to reveal some form 
of promising information, then more complex methods could be utilised to extract more complex 
relationships. 

4.1 Feature Extraction (Principal Component Analysis) 
 
Principal Component Analysis (PCA) [6] (also known as Karhunen-Loève transformation in 
communication theory) is often used in pattern recognition to select features.  PCA is a 
transformation of the data such that the number of “effective” features is reduced without removing 
much of the information content of the data.  PCA maximises the variance of the “effective” features 
or components of the transformed data.  Suppose the data consists of N samples with P dimensions, 
that is, a matrix of N×P.   By using PCA we can represent this data using only the Q significant 
components (where Q <<  P, often Q = 2 or 3 for ease of viewing). 
PCA consists of the following steps: 

1. Form the co-variance matrix, S 

S = ( ) ( )∑ −−
N

i
i

T
i XXXX

N
1

, (1) 

where Xi  is the ith data sample (1 × P) 
 

2. Perform eigenvalue decomposition on S 
S = TV?V 2 , (2) 
where V is a matrix of eigenvectors and ?  is a diagonal matrix of the eigenvalues of the 
matrix S. 
 

3. Create the transformation matrix 
M = [ ]321 fff , (3) 
where M is a matrix created from the first Q eigenvectors (P × Q), and f i is the ith 
eigenvector (P × 1). 
 

4. Transform the data, data now has Q dimensions/features, where Q << P 
Yi = MiX  (4) 

Active Shape Models [5] are a specific example of PCA applied to image analysis, where the data 
vector Xi is the concatenated vector of all the Euclidean coordinates that describe the object.  For 
this paper, the force values and ram angles for a single profile were concatenated together to make a 
single dimensional vector describing that force profile. 
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4.2 Linear Coefficient of Correlation 
 
The linear dependence [7] between two variables can be measured via the linear coefficient of 
correlation, ?.  The linear coefficient of correlation is a normalised value between −1 = ? = 1, where 
−1 implies a negative linear dependency between the two variables, 0 implies no correlation between 
the variables, and 1 implies a positive linear dependency between the two variables. 

( ) ( )( )∑
=

−−=
N

i
ii YY

N
YY

1
2,21,121

1
,Cov µµ , (5) 

   where ( )jj YMean=µ  

The population linear coefficient of correlation, ?, is defined as, 

( )
21

21 ,Cov
σσ

ρ
YY

= , (6) 

   where ( )jj YDev Stnd=σ  

 
5. Analysis of production data 

5.1 Principal Components of the Force Profile 
 
Principal component analysis was implemented using an Active Shape Model [5] on the 1440 
panels’ force profiles collected over the whole production run to extract out the profile regions with 
the most variance.  The Active Shape Model was then applied to the 135 measured panels to extract 
out the principal component values.  The average profile of Binder 1 and its principal components 
can be seen in Figure 4.  The first principal component of the Binder 1 sensor shifts the curve up or 
down (depending on the sign of the principal component value) at the ram angles where the work is 
being performed.  The second principal component adjusts the force spike at the ram angle of 120 
degrees.  The principal components for each sensor were different, reflecting the variation in the 
press. 

5.2 Basic Clustering of the Thickness Measurements 
 
The associated thickness measurements from the panels were split into five groups: low, medium, 
high, very high, and Missing (No measurement).  The reason for separating thickness into groups 
was to look for any simple patterns/relationships between the force profile and increasing thickness.  
The histograms for the four groups can be seen in Figure 5.  The thickness distribution across the five 
point measurements varies somewhat. Measurement “C” has a higher density in the higher thickness 
groups, whereas measurements “A” and “D” have higher density in the lower thickness groups.  The 
thickness groups were chosen such that the distances to the centers of the groups were minimized to 
give four groups across each of the five point measurements.   
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Figure 4 The average force profile and its first two principal components for Binder 1 

which have been positively perturbated. 

5.3 Correlation Between Thickness and Press Force 
 
The correlation between the final thickness at the five points and the force profile was investigated by 
calculating the linear correlation between the principal components of the force profiles and the 
thicknesses measured at the five points on the panel.  The correlation values are shown in Figure 6.  
The linear correlations between the force profile’s principal components and the thickness 
measurements were generally very low, mostly below 0.2.   
 
This implies that there is almost no correlation between the principal components and the thickness 
measurements.  This can also be seen visually by looking at the average principal component values 
for the four thickness groups in Figure 7.  A trend can be thought of as a situation, for a particular 
principal component, where the average principal component value for each of the thickness groups 
is in increasing or decreasing order.   
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Figure 5 Histograms for the five measurement points over the 135 panels (excluding the 

points which had no measurement readings) 
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Binder 1 Thickness Correlation
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Binder 2 Thickness Correlation
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Binder 3 Thickness Correlation
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Binder 4 Thickness Correlation
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Press 1 Thickness Correlation
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Press 2 Thickness Correlation
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Press 3 Thickness Correlation
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Press 4 Thickness Correlation
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Figure 6 Linear correlation between the five thickness points for the 135 panels and the 

principal components of the force profiles for the four binder sensors and the four press sensors. 
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An example of a trend can be seen in principal component 5 (along the horizontal axis) for Binder 1, 
Thickness measurement A.  The order of the average group values is as follows:  the low thickness 
group ( 5.0 ), medium thickness group (0), high thickness group ( 25.0− ), very high thickness group 
( 1.1− ).  In this situation, significant trends should appear at the significant principal components (low 
values or the left hand end of the graphs).  However, there does not appear to be many significant 
trends between the four groups.  Moreover, the spread of the data, as seen in Figure 7, means that 
these average group trends are insignificant and perhaps spurious. 
 
This means that either there is no correlation between the stamping and the final thickness (which is 
unlikely), or the sensors do not have the appropriate resolution to give us this detailed correlation.  It 
is proposed that the sensors do not have the appropriate resolution or sensitivity.  This is because the 
sensors are not measuring the binder or press force directly.  The sensors are placed in the columns 
of the press which dampens the signal from the actual force being applied by the binder to the blank.  
Also, there may be other errors in the system such as material variation that affects the thickness 
variation but has low correlation with press variation. 
 
If only gross differences in force are being transmitted through the binder sensors, then novelty 
detection may be possible to find major quality problems.  Novelty detection is the process of finding 
outliers in the data.  In this case, it would be a method that determines which panels had major 
quality problems, such as tearing or wrinkling, during a production run. 
 

 
Figure 7 Mean principal components for thickness groups (low – solid blue line, medium – 
dashed green line; high – dot dashed yellow line; very high- dotted red line) for the five measured 

points (A,B,C,D,E).  Figure on right shows the spread of the principal components of the 
thickness groups (low – blue plus, medium – green asterisk, high – yellow “x”, very high – red 
circle) for the thickness measurement “B”.  All principal component values shown have been 

normalized to a zero mean, unit standard deviation for the ease of viewing. 

 
In this situation we are looking for gross changes from the average signature.  It is an easier problem 
than finding variable correlations because it is a binary classification situation, and the variable 
changes should be significantly different from the norm.  The clustering plots in Figure 5 indicated that 
measurement “A” was centred in the lower thicknesses, and therefore the panels with very high 
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thickness measurements can be thought of as potential outliers or novelties.  Figure 8 indicates that 
the principal component values of the panels’ with very high thickness are on the outskirts of the 
spread graphs.  Unfortunately, there are not enough samples within the data to properly address the 
significance of this preliminary result.  This gives us hope that gross quality changes can be detected 
by analysing the force profile of the press.  Further work is needed to actually prove this to be the 
case, including another production trial on a less stable panel. 
 

 
Figure 8 The spread of the principal components of the thickness groups (low – blue plus, 

medium – green asterisk, high – yellow “x”, very high – red circle, No measurement – black 
square) for the thickness measurement “A”.  Novelty detection could be possible as the very high 

thickness measurements appear on the edges of the principal component spread.  All principal 
component values shown have been normalized to a zero mean, unit standard deviation for the 

ease of viewing. 

 

5.4 Other Interesting Analysis Results 
 
One of the interesting results of our data analysis was the correlation between the production rate 
and the force level of the binders and the press.  The production rate was calculated by using a 
smoothed average window sliding across the time of the production trial which counted the number 
of panels produced over a five minute period.   
 
Binder sensors 1 and 2 have a very weak negative correlation with production rate; whereas Binder 
sensors 3 and 4 have strong positive correlations with production rate, particularly at early ram 
angles (around 75 degrees) (Figure 9).  The reason for the binder applying more pressure on one 
side of the panel when the there is a high through-put of panels is unknown at present.  Possibly it is 
the temperature build-up in the hydraulics system, though this still does not explain the skewness in 
the binder pressure in times of consistent production.   
 
Press sensors 1 through to 4 have weak correlations, and the lack of significance in all these values 
means that it is not possible to make any real conclusions. 
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Binder 1 - Ram Angle Force Production Rate Correlation
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Binder 2 - Ram Angle Force Production rate Correlation
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Binder 3 - Ram Angle Force Production rate Correlation
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Binder 4 - Ram Angle Force Production rate Correlation
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Press 1 - Ram Angle Force Producation rate Correlation
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Press 2 - Ram Angle Force Producation rate Correlatioin
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Press 3 - Ram Angle Force Production rate Correlation
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Press 4 - Ram Angle Force Production rate Correlation
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Figure 9 Correlation between force at particular ram angle and the production rate.  The 

production rate is equal to the instantaneous speed of panel production averaged over a five 
minute period centred on the panel in question. 
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7. Conclusion 
 
The initial analysis of the data from a stamping press line at Ford Geelong Stamping Plant elicited no 
significant relationship between the input variables measured (press and binder force) and the panel 
thicknesses.  This result is significant as the data collected is from a standard sensor configuration 
found in many press lines through-out the world.  The reason for the lack of a direct relationship is 
believed to come from the lack of sensitivity in the force measurements.  The force sensors do not 
measure the binder or press forces directly, which means they are unable to pick up small changes in 
the process.  However, classification of gross variations in thickness may be possible.  Further study 
is necessary to ensure the significance of this finding.  This means that additional sensors will need to 
be added to develop a sensitive automatic quality control system for the press lines based on input 
sensors alone. 
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