Pre-publication draft of a paper which appeared in the Proceedings of the Sixth Australian Joint Conference
Artificial Intelligence (Al 93), pages 342-347

Systematic search for categorical attribute-value data-driven machine learning.

Geoffrey I. Webb
School of Computing and Mathematics, Deakin University
Geelong, Vic., 3217, Australia.

Abstract

Optimal Pruning for Unordered Search is a search algorithm that enables
complete search through the space of possible disjuncts at the inner level of a
covering algorithm. This algorithm takes as inputs an evaluation function, e,
a training set, #, and a set of specialisation operators, o. It outputs a set of
operators from o that creates a classifier that maximises e with respect to ¢.
While OPUS has exponential worst case time complexity, the algorithm is
demonstrated to reach solutions for complex real world domains within
reasonable time frames. Indeed, for some domains, the algorithm exhibits
greater computational efficiency than common heuristic search algorithms.

Introduction

A class description (hereafter referred to as simply description) is an expression that
describes a class of objects. Covering algorithmsl1.2.3.4 use two levels of search to infer a
disjunctive description. Although there is considerable minor variation, at the outer level
they all operate approximately as follows:

description = false
while the training set is not empty
form disjunct, the best non-disjunctive description with respect to the training set
remove all cases covered by disjunct from the training set
description < description v disjunct
end while
Some algorithms develop ordered descriptions by allowing disjuncts to be developed for
any class at any stage2. Other algorithmsl.3.4 develop unordered descriptions by
developing all non-disjunctive descriptions for a single class at one time.

Each disjunct is formed by search. Typically, the search space from which a disjunct is
selected is extremely large. To enable search of such large search spaces, previous
algorithms have employed heuristic search.

In recent years, there has been considerable interest in systematic search algorithms for
use within the inner level of a covering algorithm. The first of these, LEIS, was restricted
to inferring classifiers that were complete and consistent with regard to the training set
and used the strict AQ technique of searching only the generalisations of the most
specialised description that covered a randomly selected positive case. Rymon’s
algorithm6 constrains the size of the search space by exploring only conjunctions of
clauses where each clause allows a single value only for an attribute. Schlimmer?
performs systematic search through the same space as is explored in this research. To
achieve this, its search is bounded by specifying a maximum depth to be considered.

This paper presents an algorithm for systematic search through the space of all possible
non-disjunctive descriptions.

To appear in N. Foo & C. Rowles (Eds) Al ‘93. World Scientific, Singapore.

An expanded version of this paper is available as Deakin University School of Computing and Mathematics
Technical Report C93/17.

michelle
Pre-publication draft of a paper which appeared in the Proceedings of the Sixth Australian Joint Conference on Artificial Intelligence (AI 93), pages 342-347

Optimal Pruning for Unordered Search: A systematic search algorithm

The Optimal Pruning for Unordered Search (OPUS) algorithm is applicable to any

language for expressing descriptions in which:

* a non-disjunctive description can be constructed from the most general description
ANYTHING by the application of a sequence of specialisation operators; and

* the order in which those specialisation operators are applied does not affect the cover
of the resulting description.

Although OPUS is applicable to inferring ordered or unordered rules8, this paper

considers only the latter case.

Inductive bias is specified to the algorithm via a value function. value() is a function that

provides a numeric evaluation of a description such that the higher the evaluation the

higher the preference for the description. This research uses the Laplace function$,

os_ cover(D) + 1
value(D) = Pos— (D)

total_ cover(D) + no_ of _ classes
where pos_cover(D) is the number of cases covered by D that belong to the class with
which D is associated, total_cover(D) is the total number of cases covered by D and
no_of_classes is the number of classes in the domain.

To reduce time complexity OPUS prunes the search space through optimistic pruning and
other pruning techniques. The efficiency of OPUS arises from the manner in which it
ensures that the size of the region pruned by each pruning action is maximised.

Two functions complement the value function to support pruning. An optimistic estimate
(value that is not lower than the actual maximum) of the maximum value of any
specialisation of description obtained by application of any combination of operators in
the set operators is provided by potential_value(description, operators). One definition
for use with the Laplace value function when developing unordered rules is

pos_cover(D) + 1

potential _value(D,O) =
pos_cover(D) + neg_cover(D& O) + no_of _ classes

where neg_cover(D & O) is the total number of cases not belonging to the class that are
covered by the description formed by applying all specialisation operators in O to D.

Another function, cannot_improve(D, E, O) is true only if

* no specialisation obtained by application of any combination of operators in O to E
can have a higher value than the highest valued specialisation obtained by application
of any combination of operators in O to D given that O does not contain the
specialisation operator used to derive S from D; and

* if cannot_improve holds between a node and all of its children, then no specialisation
of a child can improve upon the parent.

Within OPUS, three items are stored within the data structure associated with a
description, the actual description (x—>desc), the last specialisation operator applied in
order to obtain the description (x—>most_recent_operator) and a set of operators that
remain to be applied in the search space descending from the description
(x—search_map). The left arrow ‘<=’ denotes assignment.

Algorithm: OPUS

best—desc < ANYTHING

best—search_map < {operator], operator, ... operatory)

open < { best }

while open is not empty
remove current, the node that maximises potential_value(current—desc,
current—>search_map), from open
new_descs < {}.

for o < each operator in current—search_map in turn
new—>desc < current —>desc & o
new—most_recent_operator < o
if value(new—desc) > value(best—desc) then
best < new
end if
if potential_value(new—desc, current—search_map) > value(best—desc) and
not cannot_improve(current—desc, new—desc, current—search_map)
add new to new_descs
else
current—>search_map < current—>search_map — o
end if
end for
for every description d in new_descs
if for some x in new_descs, cannot_improve(x—desc, d—>desc,
current—>search_map)
remove d from new_descs
current—>search_map < current—>search_map — d—>most_recent_operator
end if
end for
for every description d in new_descs ordered from lowest to highest value on
potential_value(d—desc, current—search_map)
current—>search_map < current—>search_map — d— most_recent_operator
d—search_map < current—>search_map
if potential_value(d—desc, d—search_map) > value(best—desc)
add d to open
end if
end for
end while

OPUS maximises the effect of any pruning that can be performed. However, in the worst
case, OPUS will not be able to perform any pruning resulting in the examination of all 27
points in the search space. Thus, the worst case complexity is exponential. The
important issue with regard to the algorithm’s utility is to what extent is it successful in
decreasing computation time on real world induction problems. This is a matter for
experimental evaluation.

Experimental evaluation

OPUS has been implemented in ‘C’ on a Solbourne 5/602 computer. This implementation
of OPUS handles categorical attribute-value data only. It uses the Laplace evaluation
function and the associated potential_value and cannot_improve functions, described
above. Thus, it is applicable only to develop unordered rules.

The OPUS algorithm is embodied within the following covering algorithm (Class).

for class < each class in turn
while the training set contains objects belonging to class class
divide the training set into POS and NEG where POS contains all objects in the
training set belonging to class and NEG contains all other objects
disjunct < OPUS(POS, NEG)
remove all objects of class class covered by disjunct from the training set
add to the ruleset the rule IF disjunct THEN class
end while
restore to the training set all objects removed above
end for

Table 1: Summary of experimental data sets.

Domain Description #Attribs | #Attrib Vals | #Objects | #Classes

Breast Cancer | Medical prognosis. 9 57 286 2

HouseVotes 84 | Predict political affiliation of US 16 48 435 2
Senators from voting record.

Lymphography | Medical diagnosis. 18 60 148 4

F11 Multiplexer | Artificial data. 11 22 500 2

Primary Tumor | Medical diagnosis. 17 42 339 22

This is equivalent to the ordered rules version of the CN2 algorithm with OPUS
employed in the place of the CN2 find_best_complex heuristic search function.

When the rules so developed are applied to previously unsighted objects, three classes of

outcome are possible.

1. One rule fires. In this case the conclusion for the rule is applied to the object.

2. Multiple rules fire. In this case the conclusion for the rule with the highest value, as
determined by the evaluation function during induction, is applied to the object.

3. No rule fires. In this case the object is deemed to belong to the class represented by
the most objects in the training set.

For evaluation, Class was applied to a number of widely studied data sets from the UCI
machine learning repository9. These data sets are described in Table 1. The number of
attribute values (presented in column 5) treats missing values as distinct values. The
number of class descriptions OPUS considers for each domain is 2”7, where n is the
number of attribute values.

Each data set was randomly divided into training (80% of data) and evaluation
(remaining 20% of data) sets. The Class, Einsteinl0 and CN22 induction systems were
applied to each training set. Each classifier so developed was evaluated against the
corresponding evaluation set. This process was repeated 100 times for each data set.

Einstein employs a variant of the AQ learning algorithm that performs search from
specific to general classifiers. It was used with most extreme start, most extreme
ordering, multiple start rule optimisation with a beam width of 20 and conservative
conjunct deletionl0,11. CN2 is an re-implementation of the unordered rules version of the
CN2 algorithm8. It was used with a beam width of 20 and no significance testing.
Class, Einstein and CN2 all used the same covering algorithm and Laplace evaluation
function, differing only in that Einstein and CN2 used different heuristic search
techniques to try to maximise the evaluation function when developing each disjunct
whereas Class employed systematic search. The rule sets developed by the systems were
applied with the same conflict resolution strategies (resolution of multiple or no matches),
those outlined above.

Table 2 presents a summary of the experimental results. For each data set it presents
* The mean accuracy obtained when applying the classifier to the evaluation set.

* The mean number of CPU seconds taken to execute the program.

* The mean value of the first rule inferred for each class.

* The mean value of all rules inferred.

* The mean number of rules developed.

All means, other than those for Class, are accompanied by the p value for a matched pairs
two-tailed t-test comparing the value with the corresponding value for Class. A p of 0.05
or lower indicates that the difference is statistically significant at the 0.05 level.

For all data sets other than F11 multiplexer (for which the most extreme ordering

heuristic, employed in this study, produces a poor result for Einsteinll), and
Lymphography, the accuracy of both the classifiers produced by heuristic search

Table 2: Summary of experimental results.

Data set Algorithm | Accuracy | CPUsecs | First val All vals #Rules
Class 70.7 553.8 0.96 0.82 29.8
Breast Cancer | CN2 74.1 (p 0.00){ 51.3 (p 0.00)[0.95 (» 0.00)]0.86 (p 0.00)] 21.0 (p 0.00)
Einstein 71.0 (p 0.58) 22.3 (p 0.00)[0.93 (»p 0.00)]0.89 (p 0.00)] 27.4 (p 0.00)
Class 93.9 2.3 0.99 0.82 14.3
HouseVotes 84 [CN2 94.7 (p 0.00)] 27.0 (p 0.00)]0.99 (p 1.00){0.84 (p 0.00)| 12.8 (p 0.00)
Einstein |94.7 (» 0.00)| 22.9 (» 0.00)[0.99 (» 1.00)[0.97 (» 0.00)| 11.7 (» 0.00)
Class 78.1 2.9 0.71 0.66 11.4
Lymphography | CN2 76.4 (p 0.03)| 14.7 (»p 0.00)[0.70 (» 0.00) [0.63 (» 0.00) | 12.7 (» 0.00)
Einstein 83.0 (p 0.00) 2.2 (p 0.00){0.71 (p 0.00)] 0.80 (p 0.00)] 9.9 (p 0.00)
Class 99.1 2.8 0.97 0.93 22.3
F11 Multiplexer | CN2 99.9 (p 0.00){ 12.6 (p 0.00)[0.97 (»p 1.00)]0.93 (p 1.00)| 21.6 (p 0.00)
Einstein 96.4 (p 0.00){ 33.1 (p 0.00)[0.96 (»p 0.00)]0.96 (p 0.00)]| 21.9 (p 0.18)
Class 34.2 21.1 0.21 0.17 57.6
Primary Tumor |CN2 35.4 (p 0.01)] 141.6 (p 0.00) [0.20 (» 0.00)| 0.16 (p 0.00)]| 61.1 (p 0.00)
Einstein 42.6 (p 0.00) 7.2 (p 0.00) {0.20 (p 0.00)] 0.20 (p 0.00)] 45.7 (p 0.00)

(Einstein and CN2) was greater than that of the classifiers produced by systematic search
(Class). In all but one of these cases, the difference in accuracy was statistically
significant. This suggests that the Laplace value function is not an optimal selection
criteria for a covering algorithm and that it interacts with the heuristics employed by
Einstein and CN2 to create a superior, implicit, evaluation function.

Caution is required in comparing computation time, due to variation in implementation
efficiency between programs. Nonetheless, it is surprising that the mean computation
time of Class was only in one case (breast cancer) significantly greater than those of both
heuristic search techniques. For two of the five data sets the mean computation time for
Class was actually significantly less than that for either of the heuristic search covering
algorithms. That is, Class, performing repeated search, each time finding a solution that
maximised the evaluation function, did so in less time than the heuristic search
techniques took to find a solution.

The highest computation time for Class is recorded for the breast cancer data. One
possible contributing factor to this effect is that this data has the highest mean number of
values per attribute. In consequence, each specialisation step will, on average, alter the
proportion of objects covered by the least amount. To illustrate this effect, consider
specialisation on an attribute with two values. Specialisation to exclude one value will,
on average, reduce the cover of a description by half. By contrast, if an attribute has ten
mutually exclusive values, then specialisation by one value will, on average, reduce the
cover by only one tenth. With a smaller effect of specialisation, it is likely to be less
apparent whether or not one such specialisation leads to an optimum solution.

The mean value of the first rule developed for each class provides a measure of the
relative performance of the covering algorithms on the same search task. (Once the first
rule has been developed, cases are deleted from the training set, altering the potential
value that can be achieved.)While the values of the classifiers found by the heuristic
search algorithms are in many cases significantly lower than the actual maxima (found by
Class), the magnitude of these differences is small. The mean value of all rules shows
that maximising the value of the first rule will often lead to the development of
subsequent rules with lower value. There appears to be a correspondence between the
number of rules developed and the mean value of the rules. In general, a larger number

of rules co-occurs with in a lower mean value. There appears to be little correlation
between the mean value of the rules and the mean accuracy.

There is no apparent pattern to the relative complexities of the rule sets produced by the
three covering algorithms.

Conclusion

Class is a data driven induction algorithm that performs systematic search to find a class
description that maximises a classifier evaluation function. Although the worst case
complexity of the algorithm is exponential, the performance of an implementation of this
algorithm on real world data exhibits quite adequate performance, and, indeed, in many
cases outperforms common heuristic search algorithms.

Comparative evaluation of the classifiers developed using systematic and heuristic search
with the Laplace classifier evaluation function, demonstrates that, in most cases,
maximisation of Laplace actually leads to a decrease in classification performance. This
strongly suggests that the Laplace classifier evaluation function interacts with heuristic
search algorithms to form implicit evaluation functions that outperform the explicit
Laplace function when evaluating disjuncts within a covering algorithm. Explicit
representation of such implicit evaluation functions presents a challenge for future
machine learning research.

Acknowledgments

This research was supported by the Australian Research Council. Fred Brkich, Doug
Newlands and Ross Quinlan made many helpful comments on drafts of this paper.

References

1. Michalski, R. S. (1980) Pattern recognition as rule-guided inductive inference. IEEE
Transactions on Pattern Recognition and Machine Intelligence, 2, 349-361.

2. Clark, P. & Niblett, T. (1989) The CN2 induction algorithm. Machine Learning, 3,
261-284.

3. Muggleton, S. & Feng, S. (1990). Efficient induction of logic programs In
Proceedings of the First Conference on Algorithmic Learning Theory, Tokyo.

4. Quinlan, J. R. (1991) Determinate Literals in Inductive Logic Programming.
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,
Morgan Kauffman, Los Altos, pp. 746-750.

5. Webb, G. (1990) Techniques for efficient empirical induction. In C. J. Barter & M. J.
Brooks (Eds) Al ‘88. Springer-Verlag, Berlin, pp. 225-239.

6. Rymon, R. An SE-tree based characterization of the induction problem. Proceedings
of the 1993 International Conference on Machine Learning.

7. Schlimmer, J. C. (1983) Efficiently inducing determinations: A complete and
systematic search algorithm that uses optimal pruning. Proceedings of the 1993
International Conference on Machine Learning.

8. Clark, P. & Boswell, R. (1991) Rule induction with CN2: some recent improvements.
In Proceedings of the Fifth European Working Session on Learning, pp. 151-163.

9. Murphy, P. & Aha, D. (1993). UCI Repository of machine learning databases.
[Machine-readable data repository]. University of California, Department of Information
and Computer Science, Irvine, CA.

10. Webb, G. (1992) Man-machine collaboration for knowledge acquisition. In A.
Adams & L. Sterling (Eds) Al ‘92. World Scientific, Singapore, pp. 329-334.

11. Webb, G. (1993) Search strategies for induction by generalization. Technical
ReportR C93/03 Deakin University School of Computing and Mathematics, 13pp.

