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ABSTRACT
Naive Bayes is a simple, computationally efficient and re-
markably accurate approach to classification learning. These
properties have led to its wide deployment in many online
applications. However, it is based on an assumption that
all attributes are conditionally independent given the class.
This assumption leads to decreased accuracy in some ap-
plications. AODE overcomes the attribute independence
assumption of naive Bayes by averaging over all models in
which all attributes depend upon the class and a single other
attribute. The resulting classification learning algorithm for
nominal data is computationally efficient and achieves very
low error rates.

1. INTRODUCTION
Naive Bayes has gained widespread application due to its
simplicity, computational efficiency, direct theoretical basis,
and competitive classification accuracy. It is particularly
attractive for interactive applications due to the speed with
which it can be applied. This speed is derived from its use
of a simplifying attribute-independence assumption.

Naive Bayes has a long history of application in information
retrieval [12] and has gained some popularity in the ma-
chine learning community. It has numerous desirable fea-
tures. It is extremely efficient. It is provably optimal bar
only for two explicit assumptions, the attribute indepen-
dence assumption and the assumption that the estimates
based on frequency are accurate. Finally, for many classifi-
cation tasks its accuracy is extremely competitive with much
more computationally intensive techniques [8; 11], especially
when sample sizes are small [21].

However, where the attribute independence assumption is
violated, its accuracy may suffer. It should be noted that
not all violations of the attribute independence assumption
matter. Naive Bayes will remain an optimal classifier so
long as its probability estimate for the most probable class
is higher than its probability estimate for any other class
[3]. Nonetheless, harmful violations of the attribute inde-
pendence assumption appear to be frequent in real-world
application domains. In consequence, there is a sizeable
body of literature addressing measures that can be applied
to maintain the desirable features of naive Bayes while re-

ducing the harmful effects of the attribute independence as-
sumption [4; 6; 7; 9; 10; 11; 13; 14; 15; 18; 17; 21; 22].

Of these approaches, two in particular have demonstrated
remarkable prediction accuracy, LBR [21] and TAN [4]. How-
ever, both these algorithms have high computational re-
quirements reducing their utility in many data mining appli-
cations. We present a new algorithm that results from our
efforts to attain the prediction accuracy of LBR and TAN
without the computational overheads.

2. CLASSIFICATION BY CONDITIONAL
PROBABILITY ESTIMATION

We assume a joint probability distribution X, Y , a sample
X∗, Y ∗ drawn from X, Y , where each x ∈ X is an object
described by a vector of k attribute values 〈x1, x2, . . . xk〉
and each y ∈ Y is a class label. The classification task is to
assign a y ∈ Y to a given x ∈ X.

Assuming that x is drawn at random from X, Y , error can be
minimized by selecting argmaxyP (y |x). As P (y |x) is not
generally known, one approach is to estimate it from X∗, Y ∗.
In general, P (Z |W ) = P (W ∧Z)/P (W ). If X∗, Y ∗ is a rep-
resentative sample of X, Y then for any predicates W and Z,
P (W ∧Z) ≈ F (W ∧Z, X∗, Y ∗) and P (W ) ≈ F (W, X∗, Y ∗),
where F (Z, X, Y ) denotes the frequency with which Z oc-
curs in the reference distribution X, Y . However, to guard
against problems associated with sampling error, when es-
timating population frequency from the sample frequency
the exact sample frequency is usually adjusted providing a
function on the sample frequency, f(Z, X∗, Y ∗), such as the
Laplace error estimate [5] or an m-estimate [1]. In conse-
quence,

P (y |x) = P (x ∧ y)/P (x) (1)

≈ f(x ∧ y, X∗, Y ∗)/f(x, X∗, Y ∗). (2)

However, the accuracy of this approximation will deteriorate
as the values of P (x ∧ y) and P (x) decrease. Where k is
large, the probabilities P (x) and P (x ∧ y) are likely to be
extremely low, and hence the approximation in (2) will be
poor. This problem can be circumvented with respect to
estimating P (x) by observing that P (x) =

P
y∈Y P (x ∧ y)

and hence that it is necessary only to estimate the numerator
for each class and the denominator in (1) can be calculated
therefrom. Alternatively, if we wish only to identify the most
probable class, we can observe that P (x) is invariant across

The Australasian Data Mining Workshop Copyright c©2002



classes and hence for any x, P (y |x) ∝ P (y)P (x | y) thus
relieving us from the need to estimate P (x). Nonetheless, it
remains necessary to estimate P (x∧ y). In this context it is
necessary to use less direct approximations for P (y |x).

One approach is to use Bayes theorem:

P (Z |W ) =
P (Z)P (W |Z)

P (W )
. (3)

Bayes theorem holds irrespective of whether one adopts a
Bayesian or a frequentist definition of probability. Hence its
use need not imply a commitment to one or the other theo-
retical approach to probability. When estimating probabili-
ties from data it can be used to replace the term P (Z |W )

with P (Z)P (W |Z)
P (W )

in contexts where the base terms in the

latter can be estimated more reliably or accurately than di-
rect estimation of the former.

However, using Bayes theorem to replace the estimation of
P (y |x) by the estimation of P (y)P (x | y)/P (x) does not di-
rectly resolve the problem. If direct estimation of P (y |x)
is inaccurate then direct estimation of P (x | y) will also be
inaccurate because both require estimation of P (x ∧ y).

Naive Bayes resolves this problem by assuming that the at-
tributes are conditionally independent given the class. In
consequence, the following equality is assumed:

P (x | y) =

kY
i=1

P (xi | y). (4)

This allows the following approximation to be applied to
estimate the conditional probabilities:

P (y |x) ≈
f(y, X∗, Y ∗)

Qk
i=1

f(xi∧y,X∗,Y ∗)
f(y,X∗,Y ∗)P

y′∈Y

�
f(y′, X∗, Y ∗)

Qk
i=1

f(xi∧y′,X∗,Y ∗)
f(y′,X∗,Y ∗)

�
(5)

where the denominator may be omitted when the objective
is only to identify the most probable class, as it is invariant
across classes.

3. LBR AND TAN
LBR and TAN reduce harmful effects of the attribute inde-
pendence assumption by allowing models to be formed that
represent limited attribute interdependencies. For each x to
be classified, LBR selects a subset w of the values in x and
assumes only that the remaining attributes are independent
given w ∧ y. Thus, each x is classified using

P (y |x) ≈
f(y∧w,X∗,Y ∗)

f(w,X∗,Y ∗)
Qk

i=1
f(xi∧y∧w,X∗,Y ∗)

f(y∧w,X∗,Y ∗)P
y′∈Y

�
f(y′∧w,X∗,Y ∗)

f(w,X∗,Y ∗)
Qk

i=1
f(xi∧y′∧w,X∗,Y ∗)

f(y′∧w,X∗,Y ∗)

�
(6)

This process is lazy, using a wrapper approach at classifica-
tion time to select the w ⊆ x that appears to best reduce
error on the training data.

The models that LBR forms have all attributes dependent
upon the same group of attributes. In contrast, TAN forms
models in which each attribute depends on at most one other
attribute. For attribute-value v we will denote the attribute
upon which its attribute depends by parent(v). TAN clas-

sifies each x using

P (y |x) ≈
f(y, X∗, Y ∗)

Qk
i=1

f(xi∧xparent(xi)
∧y,X∗,Y ∗)

f(xparent(xi)
∧y,X∗,Y ∗)P

y′∈Y

�
f(y′, X∗, Y ∗)

Qk
i=1

f(xi∧xparent(xi)
∧y′,X∗,Y ∗)

xparent(xi)
∧f(y′,X∗,Y ∗)

�
(7)

TAN selects the parent of each attribute at training time. A
variant of TAN with high accuracy uses a wrapper to select
the parents that appear to best reduce error [6]. We utilize
this variant of TAN in the following work.

LBR and TAN have demonstrated comparable classifica-
tion accuracy [16]. In separate evaluation, LBR has demon-
strated classification accuracy comparable to that of boost-
ing decision trees [22]. However, their very strong classifi-
cation accuracy comes at considerable computational cost.
While the lazy strategy adopted by LBR has negligible train-
ing costs, the cost to classify each object at classification
time is relatively high. In contrast, TAN is relatively ef-
ficient at classification time, but model selection imposes
substantial computational overheads at training time.

4. EFFICIENT CLASSIFICATION
We seek to retain the accuracy of LBR and TAN while re-
ducing the computational overheads. These overheads result
from two types of activity. The first is model selection, per-
formed at training time by TAN and at classification time by
LBR. The second is estimation of the required conditional
probabilities.

One way to tackle the latter problem is to restrict the al-
lowed interdependencies to each attribute depending upon
the class and one other attribute, in other words to the use
of probabilities P (xi|xj∧y). That is, we restrict the space of
models that we will consider to 1-dependence Bayesian clas-
sifiers [14], the space of TAN models. 1-dependence condi-
tional probabilities can be estimated efficiently by using joint
frequencies stored in a three dimensional table, indexed in
one dimension by xi, in another by xj and in the third di-
mension by y. This table can be formed at training time
in a single scan through the data. Utilizing greater interde-
pendencies requires higher dimensional tables, potentially
resulting in infeasible memory requirements.

By the product rule, for any xi ∈ x,

P (x ∧ y) = P (y ∧ xi)P (x | y ∧ xi). (8)

Hence,

P (y |x) =
P (y ∧ xi)P (x | y ∧ xi)

P (x)
. (9)

Utilizing (9) instead of (1) allows us to make a weaker, and
hence potentially less harmful, attribute independence as-
sumption than (4),

P (x | y ∧ xi) =

kY
j=1

P (xj | y ∧ xi). (10)
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This allows the approximation,

P (y |x) ≈
f(xi ∧ y, X∗, Y ∗)

Qk
j=1

f(xj∧xi∧y,X∗,Y ∗)
f(xi∧y,X∗,Y ∗)P

y′∈Y

�
f(xi ∧ y′, X∗, Y ∗)

Qk
j=1

f(xj∧xi∧y′,X∗,Y ∗)
f(xi∧y′,X∗,Y ∗)

� . (11)

(10) is potentially less harmful than (4) because it assumes
independence between fewer attributes (xi is not considered
independent of the other attributes) and independence is
assumed under strong constraints (the remaining attributes
are independent given y and xi). The estimate (11) can
only be less accurate than the estimate (5) if the estimates
of the individual probabilities are less accurate. The only
systematic effect that might cause this to occur is that the
frequencies will be lower and hence derived from fewer exam-
ples. We can reduce the impact of this effect by restricting
the application of (11) to attribute values xi which occur
with sufficient frequency for us to have confidence that esti-
mation accuracy will not be significantly affected. Note that
this restriction implies the use of lazy learning, as the value
of an attribute is only determined with respect to a given
object that we wish to classify.

Use of (5) reduces the problem of model selection to se-
lecting between up to k models, the models in which every
attribute depends upon the class and the same single at-
tribute such that the value of that attribute xi occurs with
sufficient frequency for us to have confidence in the accu-
racy of its estimation. This leaves us with the problem of
how to select the appropriate model. We note that there
are two problems associated with model selection. The first
is that it can be expected to lead to variance. The second
is that it must entail computational overheads, the perfor-
mance of the necessary computations to determine which is
the preferred model. This reasoning led us to seek models
that allowed for attribute interdependencies without a pro-
cess of selecting which interdependencies to represent. We
achieve this by averaging across all models of the form (11)
such that xi occurs at least 100 times in the training data.

Note that averaging across all such models is justified as (9)
holds for any value of i. Hence,

P (y |x) =

Pk
i=1

P (y∧xi)P (x | y∧xi)
P (x)

k
. (12)

When we replace each P (y∧xi)P (x | y∧xi), averaging multi-
ple estimates of this quantity with different values of i offers
the opportunity to average out estimation errors. If the es-
timation errors are normally distributed with mean 0, the
greater the number of values of i included, the lower the
expected estimation error.

The resulting system classifies using the following.

P (y |x) ≈P
i:C(xi)≥100

f(xi∧y,X∗,Y ∗)
Qk

j=1
f(xi∧xj∧y,X∗,Y ∗)

f(xi∧y,X∗,Y ∗)P
y′∈Y

�
f(xi∧y′,X∗,Y ∗)

Qk
j=1

f(xi∧xj∧y′,X∗,Y ∗)

f(xi∧y′,X∗,Y ∗)

�
|{i : C(xi, X∗, Y ∗) ≥ 100}|

(13)

where C(xi) is the number of training objects that have
attribute value xi.

As
P

y′∈Y

�
f(xi ∧ y′, X∗, Y ∗)

Qk
j=1

f(xi∧xj∧y′,X∗,Y ∗)
f(xi∧y′,X∗,Y ∗)

�
is in-

variant across classes, to select the class that maximizes the

Table 1: Training time algorithm

INPUTS: training set X∗, Y ∗,
number of attributes k, and
number of classes m

OUTPUTS: joint frequency vector freq,
class frequency vector cfreq,
attribute frequency vector afreq,
attribute-value frequency vector vfreq, and
item count count

Initialize frequencies
count ← 0
Initialize all elements of freq, cfreq, afreq, and vfreq to 0

Accumulate frequencies
FOR EACH x, y ∈ X∗, Y ∗

count ← count + 1
cfreq[y] ← cfreq[y] + 1
FOR i ← 1 TO k

IF xi is known
afreq[i] ← afreq[i] + 1
vfreq[xi] ← vfreq[xi] + 1
FOR j ← 1 TO k

IF xj is known
freq[y, xi, xj ] ← freq[y, xi, xj ] + 1

END IF
END FOR

END IF
END FOR

END FOR

estimate of P (y |x) it is necessary only to select the class
that maximizes the following.P

i:C(xi,X∗,Y ∗)≥100 f(xi ∧ y, X∗, Y ∗)
Qk

j=1

f(xi∧xj∧y,X∗,Y ∗)
f(xi∧y,X∗,Y ∗)

|{i : C(xi, X∗, Y ∗) ≥ 100}|
(14)

5. AVERAGED ONE-DEPENDENCE ESTI-
MATORS

Averaged One-Dependence Estimators (AODE) use (14) for
classification. At training time they produce a three dimen-
sional joint frequency table, indexed in one dimension by
the values of the class and in the remaining two dimensions
by the values of the attributes. The algorithm for this pro-
cess is presented in Table 1. Note that we allow for missing
attribute values but not for missing class values. To apply
the algorithm to allow for missing class values it is possible
to add a preprocess that removes all such objects.

At classification time we utilize the joint frequency table
and (14) for classification as follows. We use the m-estimate
[1] to produce conservative estimates of conditional proba-
bilities from joint frequencies. To estimate P (xi|xj ∧ y) we
use an m-estimate with weight 0.5 and a prior defined by
the frequency of the attribute value in the data as a whole.
We allow for the possibility that some attribute values are
missing, resulting in the following.

P̂ (xi|xj ∧ y) =
freq[y, xi, xj ] + 0.5

freq[y, xj , xj ] + 0.5× vfreq[xi]
(15)
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To estimate P (xi ∧ y) we use an m-estimate with weight 0.5
and a prior defined by the product of the frequencies of the
two terms.

P̂ (xi ∧ y) =
freq[y, xi, xi] + 0.5

afreq[i] + 0.5× vfreq[xi]× cfreq[y]
(16)

The algorithm to return a vector containing probability es-
timates P̂ (y|x) for each y ∈ Y is presented in Table 2.

AODE can be viewed as Bayesian averaging with uniform
priors over all plausible models that have all attributes de-
pend upon a single attribute and the class. Another per-
spective from which AODE can be viewed is as ensemble
learning.

Note, that while there is some superficial similarity between
AODE and exact model averaging with naive Bayesian clas-
sifiers [2], the differences are very substantial. Both pre-
dict by averaging the estimated class probabilities of mul-
tiple models. Exact model averaging averages over naive
Bayes (zero-dependence) models formed with different sub-
sets of the available attributes. Hence, it cannot successfully
model attribute inter-dependencies. In contrast, AODE
averages over models that directly model attribute inter-
dependencies and hence has the potential to overcome the
attribute independence problem. Exact model averaging ag-
gregates models formed by feature subset selection. AODE
aggregates models formed by modelling alternative attribute
inter-dependencies.

5.1 Computational complexity
The time complexity of training is O(nk2), where n is the
number of training objects and k is the number of attributes.
Further, the operations performed in the inner loops in-
volve minimal computation, resulting in minor computa-
tional overheads for training for the numbers attributes nor-
mally encountered (up to hundreds of attributes). Training
time complexity is linear with respect to training set size.
Thus, AODE is an efficient algorithm for classification from
large datasets.

The time complexity of classifying an object is O(mk2),
where m is the number of classes and k the number of at-
tributes. Again the operations performed within the inner
loops involve little computation, resulting in computation-
ally efficient classification for the numbers of classes and
attributes normally encountered.

The main space requirement for the algorithm is for the ta-
ble containing the joint frequencies, which is O(mv2), where
m is the number of classes and v is the number of attribute
values. For typical learning problems involving up to tens
of classes and hundreds of attributes this entails relatively
minor space requirements. Note that training can be per-
formed by a single sequential scan through the data. There
is no need to retain training data in memory.

5.2 Sensitivity to large numbers of attributes
Abstract analysis suggests that the performance of AODE
will decline as the numbers of attributes increase. One di-
mension of the algorithm’s sensitivity to large numbers of
attributes is the time and space complexity of the algorithm.
Another dimension is that the benefit of the algorithm’s re-
duction in the attribute independence assumption may be
diluted as the number of attributes increases. Consider a
situation where there is a pairwise interdependence between
two attributes A and B. The probability estimates in the

Table 2: Probability estimation algorithm

INPUTS: object x,
number of attributes k,
number of classes m,
vector of the number of values for each attribute v,
joint frequency vector freq,
class frequency vector cfreq,
count of objects for which a value is known

for an attribute afreq,
attribute-value frequency vector vfreq, and
item count count

OUTPUT: conditional probability vector prob,

Initialize values
FOR i ← 1 TO m, prob[i] ← 0.0
sum ← 0.0

Calculate probabilities
FOR y ← 1 TO m

prob[y] ← 0.0
attcount ← 0
FOR i ← 1 TO k

IF xi is known AND vfreq[xi] ≥ 100
attcount ← attcount + 1

p ← P̂ (xi ∧ y)
FOR j ← 1 TO k

IF xj is known, p ← p× P̂ (xj |xi ∧ y)
END FOR
prob[y] ← prob[y] + p

END IF
END FOR

If no attribute value occurs with sufficient frequency,
revert to naive Bayes
IF attcount = 0

prob[y] ← NB(x, y)
ELSE

prob[y] = prob[y]/attcount
END IF

sum ← sum + prob[y]
END FOR

Normalize to obtain probabilities
FOR y ← 1 TO m, prob[y] ← prob[y]/sum
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two submodels formed when all attributes depend on either
A or B will be correct with respect to the interdependency.
However, in the other submodels, each formed with all at-
tributes depending upon another attribute C, the probabil-
ity estimates will treat A and B as independent, except in
so far as their interdependence is captured by their mutual
interdependencies with C. In many cases interdependencies
between two variables will be captured in part by their mu-
tual interdependencies with other variables. For example, if
we assume that senility and nocturia are both correlated
with age. In this case senility and nocturia will be interde-
pendent. However, for any given value of age they might be
independent. Nonetheless, as the number of other attributes
increases and hence the number of submodels averaged in-
creases, the advantage gained from undoing individual in-
terdependencies in individual submodels might be diluted.

6. EXPERIMENTS
To evaluate the performance of AODE, it was implemented
in Weka [19] and compared to existing Weka implementa-
tions of naive Bayes (NB), LBR, TAN, and C4.5 (J48). Note
that the implementations of LBR and TAN are our own
implementations, created for previous research. The imple-
mentations of naive Bayes and C4.5 are part of the Weka
distribution.

All four algorithms were applied to 39 data sets. These data
sets are formed around a core of twenty-nine data sets used
in previous related research [3; 21] augmented by a variety
of larger data sets. These larger datasets were added as
the original twenty-nine datasets were all relatively small
and the techniques of LBR and TAN have greatest scope
to improve upon NB when more data is available. Note
that three further large datasets, Musk, Census-income, and
Cover-type, are not included in these results because at least
one of LBR or TAN could not complete processing for them
within a one-fortnight time limit.

Each algorithm was applied to each data set using ten-fold
cross validation on a dual-processor 1.7Ghz Pentium 4 Linux
computer with 2Gb RAM. However, due to the long com-
pute times of TAN and LBR, a small number of computa-
tions had to be performed on an alternative machine. This
has not affected the error results obtained. These computa-
tions are identified and excluded from time analyses.

Numeric attributes were discretized using ten-bin discretiza-
tion. Note that the decision tree learner is applied to the
discretized data, rather than being allowed to select its own
cut-points. Its error would be lower if it were allowed to
select its own cut-points. However, we believe that the er-
ror of the probabilistic techniques could also be reduced by
application of alternative discretization techniques [20]. All
algorithms have been applied to the same discretized data
in order to compare their performance on nominal data.

6.1 Relative Error
Table 3 presents the data sets used, the number of objects in
each data set, the number of attributes by which each object
is described, and the mean error of each algorithm on the
data set. At the foot of the table the mean error across all
data sets is provided together with the geometric mean of
the error ratio obtained by dividing the error of AODE by
the error of the alternative algorithm. AODE achieves the
lowest mean error across all data sets. However, this is at

Table 4: Win–Draw–Loss Records

NB TAN LBR J48
AODE WDL 23–8–8 18–6–15 20–4–15 27–2–10

p 0.005 0.364 0.250 0.004

best a gross measure of performance, as error rates across
data sets are incommensurable. The error ratio corrects for
this. The geometric mean is the appropriate approach to
averaging ratio values such as the error ratio. A value less
than 1.0 indicates an advantage to AODE. On this measure
AODE registers very large advantage compared with NB
and J48 and sizeable advantage compared to TAN and LBR.

Note that we do not perform statistical tests of significance
on differences in performance on individual data sets as the
large number of such tests that would be entailed would
result in extremely high levels of expected type 1 error.
Instead we perform statistical tests on the win-draw-loss
records, as presented in Table 4. This table presents the
number of data sets for which AODE obtains lower error,
equal error (measured to one decimal place), and higher er-
ror, with respect to each alternative algorithm. The out-
come of a binomial sign test is also presented. This is the
probability that the observed ratio of wins to losses or higher
would be obtained by chance if both were equi-probable. As
can be seen, AODE enjoys highly significant ratios of wins
to losses against NB and J48. While AODE wins more of-
ten than it loses against TAN and LBR, these ratios are not
significant at the 0.05 level.

Our abstract analysis of AODE identified a potential vul-
nerability of the algorithm when processing data sets uti-
lizing large numbers of attributes. The two data sets with
the most attributes are syncon and sonar. For the former
AODE achieves substantially lower error than any of the
other algorithms. For the latter AODE achieves lower error
than all alternatives other than TAN. The next seven data
sets in descending order of number of attributes are promot-
ers, lung-cancer, chess, anneal, satellite, pioneer, and iono-
sphere. For one of these data sets, satellite, AODE achieves
lower error than all alternatives. For two, promoters, and
lung-cancer, AODE shares the lowest error with NB, LBR,
and, in one case, TAN. For none of the remaining four data
sets does the error of AODE reach the level of the highest of
the alternatives. These outcomes suggest that the expected
vulnerability of AODE to large numbers of attributes is not
apparent for the numbers of attributes investigated in these
experiments. The question of whether the expected vulner-
ability becomes a problem for larger numbers of attributes
is an important area for future investigation.

6.2 Relative Compute Time
Table 5 presents the total compute time of each algorithm
by data set. These times are the total time to run Weka to
complete the cross-validation task and hence include data
input as well as learning and classification. Note that due
to the long compute times of LBR and TAN some computa-
tions were performed on an alternative computer and hence
are excluded as they are incommensurable with the times
listed. Note also that compute times on the compute server
used are highly variable from run to run. Further, our im-
plementations of AODE, TAN, and LBR are not optimized.
Finally, the structure of this task is unfavorable to LBR,
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Table 3: Mean error

objects atts AODE NB TAN LBR J48
waveform 100000 22 3.6 6.9 4.4 3.7 3.9
adult 48842 15 16.7 18.0 16.0 15.0 15.7
letter-recognition 20000 17 13.2 30.0 16.5 16.0 19.4
sign 12546 9 29.3 38.6 26.6 20.9 20.4
pendigits 10992 17 2.2 12.9 3.6 3.3 9.8
pioneer 9150 37 4.1 9.8 3.5 4.8 4.3
satellite 6435 37 11.3 18.9 12.4 13.3 15.3
hypothyroid 3163 26 2.9 2.9 2.9 2.8 2.5
segment 2310 20 5.7 11.1 6.3 6.4 6.5
mfeat-mor 2000 7 30.2 30.7 30.0 30.0 30.1
german 1000 21 24.4 24.6 24.8 24.7 30.4
led 1000 8 26.4 26.2 25.9 26.2 27.1
ttt 958 10 26.1 29.5 28.6 14.6 15.1
anneal 898 39 5.0 5.5 4.0 4.1 9.2
vehicle 846 19 27.9 39.5 31.3 31.4 30.3
breast-cancer-wisc. 699 10 2.7 2.6 2.6 2.6 5.7
crx 690 16 13.6 15.1 14.4 14.6 15.5
balance-scale 625 5 9.9 8.6 8.6 8.6 36.6
syncon 600 61 1.0 3.0 3.0 2.5 23.0
chess 551 40 11.4 12.7 10.0 11.1 8.3
house-votes-84 435 17 6.4 9.9 6.7 7.1 4.1
horse-colic 368 22 20.4 20.1 18.5 19.0 15.0
ionosphere 351 35 9.4 9.1 9.4 9.1 13.7
bupa 345 7 36.5 36.8 39.7 36.8 39.7
primary-tumor 339 18 48.1 49.0 49.9 49.9 57.8
cleveland 303 14 19.1 16.5 16.5 16.5 21.5
hungarian 294 14 15.7 15.3 15.7 16.0 20.4
heart 270 14 15.6 15.2 15.2 15.2 23.7
new-thyroid 215 6 7.0 8.4 7.4 8.4 7.0
glass 214 10 24.8 25.2 24.3 25.7 23.8
sonar 208 61 24.5 25.5 23.6 26.0 32.2
wine 178 14 3.4 3.4 3.4 3.4 21.4
hepatitis 155 20 15.5 16.1 16.1 14.8 16.8
iris 150 5 6.7 6.7 6.0 6.7 4.0
echocardiogram 131 7 27.5 27.5 28.2 28.2 35.9
promoters 106 58 8.5 8.5 8.5 8.5 21.7
post-operative 90 9 28.9 28.9 30.0 30.0 28.9
labor-neg 57 17 3.5 3.5 3.5 10.5 29.8
lung-cancer 32 57 46.9 46.9 50.0 46.9 53.1
Mean error 16.3 18.4 16.6 16.3 20.5
Geometric mean error ratio 1.00 0.82 0.96 0.95 0.72
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which is relatively efficient for small test sets and relatively
inefficient for large test sets. Hence, these results should be
regarded as broadly indicative only. The mean CPU time
across all data sets is also presented. Finally, we present
the geometric mean of the time for AODE divided by the
time for each alternative algorithm. These latter values are
presented for all algorithms excluding results for waveform
and pioneer as times are not available for all algorithms on
these data sets. They are also presented including all results
for AODE, NB, and J48 only.

Where there are large numbers of attributes the compute
time of AODE increases significantly from that of naive
Bayes. This is especially apparent for pioneer. However,
while up to 12 times slower than naive Bayes, the compute
times are still low, in no case exceeding two minutes to com-
plete ten-fold cross validation. For most data sets the com-
pute time is lower than the decision tree learner. For no data
set does the compute time of AODE exceed that of TAN or
LBR. For most data sets it is dramatically faster.

The geometric mean time ratios indicate that naive Bayes
holds a substantial advantage over AODE, but that AODE
holds a substantial advantage over the decision tree algo-
rithm and a massive advantage over TAN and LBR.

7. CONCLUSION
AODE is a new classification learning algorithm that weak-
ens the attribute independence assumption of naive Bayes
without undue increase in computational complexity. In
these preliminary investigations, this algorithm is demon-
strated to deliver accuracy at least comparable to the state-
of-the-art LBR and TAN algorithms without their high com-
putational cost. The training time of the algorithm is linear
with respect to data set size. Training requires only a sin-
gle sequential scan of the data. These features make the
algorithm highly attractive for processing very large data
sets.

Our theoretical analysis of the algorithm leads us to expect
that it is more suited to data sets described by fewer rather
than more attributes. However, no vulnerability to large
numbers of attributes was apparent in our experiments using
data sets with as many as 61 attributes.

We believe that AODE is successful in achieving our aim
of significantly and substantially reducing the error of naive
Bayes without substantially increasing compute time. We
believe that the resulting algorithm is extremely well suited
to applications that require efficient computation, such as
on-line applications, as well as to applications requiring pro-
cessing of very large training sets.
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