Unpublished Draf

Estimating bias and variance from data

Geoffrey I. Webb

Paul Conilione

School of Computer Science and Software Engineering
Monash University

Vic. 3800, Australia

Abstract. The bias-variance decomposition of error provides useful insights into
the error performance of a classifier as it is applied to different types of learning
task. Most notably, it has been used to explain the extraordinary effectiveness of
ensemble learning techniques. It is important that the research community have
effective tools for assessing such explanations. To this end, techniques have been
developed for estimating bias and variance from data. The most widely deployed
of these uses repeated sub-sampling with a holdout set. We argue, with empirical
support, that this approach has serious limitations. First, it provides very little
flexibility in the types of distributions of training sets that may be studied. It requires
that the training sets be relatively small and that the degree of variation between
training sets be very circumscribed. Second, the approach leads to bias and variance
estimates that have high statistical variance and hence low reliability. We develop
an alternative method that is based on cross-validation. We show that this method
allows far greater flexibility in the types of distribution that are examined and that
the estimates derived are much more stable. Finally, we show that changing the
distributions of training sets from which bias and variance estimates are drawn can
alter substantially the bias and variance estimates that are derived.

Keywords: bias-variance decomposition of error, estimating classification perfor-
mance

1. Introduction

The bias plus variance decomposition of error has proved a useful tool
for analyzing supervised learning algorithms. While initially developed
in the context of numeric regression (specifically, of squared error loss,
Geman, Bienenstock, & Doursat, 1992), a number of variants have been
developed for classification learning (zero-one loss) (Breiman, 1996b;
Kohavi & Wolpert, 1996; Kong & Dietterich, 1995; Friedman, 1997;
Domingos, 2000; Webb, 2000; James, 2003). This analysis decomposes
error into three terms, derived with reference to the performance of
a learner when trained with different training sets drawn from some
reference distribution of training sets:

Squared bias: a measure of the error of the central tendency of the
learner.

bvest.tex; 17/10/2003; 7:18; p.1


michelle
Unpublished Draft


2 Geoffrey Webb Paul Conilione

Variance: a measure of the degree to which the learner’s predictions
differ as it is applied to learn models from different training sets.

Intrinsic noise: a measure of the degree to which the target quantity
is inherently unpredictable. This measure equals the expected cost
of the Bayes optimal classifier.

This analysis has been used widely to gain insight into the relative per-
formance of alternative algorithms (for example, John, 1995; Breiman,
1996a, 1998; Kohavi, Becker, & Sommerfield, 1997; Kohavi & John,
1997; Bauer & Kohavi, 1999; Zheng, Webb, & Ting, 1999; Webb, 1999,
2000; Gama & Brazdil, 2000; Valentini & Dietterich, 2003; Yang &
Webb, 2003).

The machine learning community has a long-running concern for
empirical evaluation. It is regarded as important to support theoretical
analysis by analysis of experimental outcomes. If this concern is to be
extended to theoretical analysis based on the bias-variance decomposi-
tion of error, we require reliable methods for evaluating and comparing
algorithms’ bias-variance performance.

The most widely employed approach to estimating bias and variance
from data is the holdout approach of Kohavi and Wolpert (1996). Note
that we are interested in their procedure for estimating bias and vari-
ance as distinct from their definitions of bias and variance, also provided
in the same paper and which we also adopt in the current paper. Their
procedure splits the training data into two subsets, a training pool and
a holdout test set. The training sets are then formed from random
samples drawn from the training pool. We argue that this approach
is fundamentally flawed, resulting in undesirably small training sets,
providing little if any control over the degree of variation in compo-
sition of training sets, and resulting in tremendous instability in the
estimates that it derives. All of these problems are serious. The use
of small training sets means that bias-variance studies are conducted
on fundamentally different distributions of training sets to those to
which the learners are to be applied in practice. The absence of control
over the degree of variation in the composition of the training sets
means that it is not possible to study the bias-variance characteristics
of algorithms as they are applied to distributions with alternative levels
of variation. The instability of the estimates means that individual
estimates are inherently inaccurate.

An alternative approach based on multiple cross-validation trials
has been presented by Webb (2000). We herein extend this approach
to provide greater control over the size of the training sets and the
degree of variation in the composition of training sets. We argue that
this new approach overcomes all the identified deficiencies of Kohavi
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and Wolpert’s procedure, resulting in stable estimates, and allowing
precise control over training set sizes and the degree of variation in the
composition of training sets.

Using this new bias-variance analysis technique, we derive new in-
sights into the relationship between different types of training set dis-
tribution and the bias-variance profiles that are derived therefrom.

While a single definition of bias and variance has been adopted in
the context of regression, there has been considerable debate about
how this definition might best be extended to classification (Breiman,
1996b; Kohavi & Wolpert, 1996; Kong & Dietterich, 1995; Friedman,
1997; Domingos, 2000; Webb, 2000; James, 2003). Rather than entering
into this debate, we here use Kohavi and Wolpert’s (1996) definition on
the grounds that we believe it is the most widely employed in practice.
However, the techniques that we develop are equally applicable to any
of the above bias-variance definitions.

2. Evaluating bias and variance

We wish to analyze the classification performance of a classification
learning system, £, that can be regarded as a function

L(T)— (C(X)—Y)

from training sets 7' to models, where each model C(X) — Y is a
function from objects to classes. T' is a multiset of n class—description
pairs. Each pair (y,x) associates class y € Y with description x € X.
L(T) - (C(X) — Y) is a function from training sets to classifiers,
which are in turn functions from descriptions to classes. Bias-variance
analyses must be performed with respect to a joint distribution Y, X
from which the test set is drawn together with a distribution of training
sets 7 from which the training sets are drawn. Note that while 7
contains (y,x) pairs, these need not be drawn from the same joint
distribution Y, X as the test set.

Typically, we have a single sample of data D from which we wish
to derive bias-variance estimates. D is presumably a sample from some
distribution ©. However, if we generate a distribution of training sets
T by sampling from D, 7 will be a different distribution to ©, unless ©
contains only subsets of D and the sampling methodology used to draw
samples from D replicates ©. Further, irrespective of the distribution
from which D is drawn, we may wish to manipulate the distribution
of training sets in order to produce quite different distributions for
experimental purposes. In consequence, we should not assume that 7
replicates ©.
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Clearly it is possible to have many different types of training set
distribution 7. It is reasonable to expect the bias-variance character-
istics of an algorithm to differ depending upon the properties of the
distribution. However, this issue has received little attention in the
literature. The only property that is usually considered is the size of
the training sets in the distribution. For reasons that are not clear to
us, it is commonly assumed that there will be a single training set size
for any one distribution. That is, it is assumed that a single distribution
will not contain training sets of different sizes.

However, the size of the training set is only one of the properties
of a distribution that we might expect to affect bias and variance. For
example, the relative class frequencies might be expected to affect bias
and variance as the more the data is dominated by a single class the
less might be the variation in the predictions of a typical classifier. A
further property that we expect to be particularly significant for bias-
variance estimation is the inter-training-set variability (5). We define
0 as the average pairwise proportion of objects in any two training
sets of a distribution that are different. This metric provides a measure
of the variation between training sets in the distribution. The mini-
mum possible inter-training-set variability of 4 = 0.0 indicates that all
training sets are identical. A deterministic learning algorithm will have
variance of 0.0 for such a training set distribution as it will always learn
the same classifier. The maximum possible inter-training-set variability,
0 = 1.0 indicates that no two training sets in the distribution share any
objects in common. We might expect such a distribution to result in
high variance for most learning algorithms.

2.1. KOHAVI AND WOLPERT’S DEFINITIONS OF BIAS AND VARIANCE

Kohavi and Wolpert (1996) define the bias and variance decomposition
of error as follows.

biost = L " [Prx(Y=ylX=n) - PrE@@=0)F ()
yey
variance, — % 1 -3 Pr(L(T)(x)=y)? 2)
yey
on =y [1- 3 Rox(y=ylx=r) (3)
yey

The third term, o, represents the irreducible error.
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When estimating these terms from data Kohavi and Wolpert (1996)
recommend the use of a correction to unbias the estimates. Thus, the
estimate of bias? is

biask = 5 3 [Prx(¥ =y X=2) — Pr(L(T)(@)=0)
yey

~Pr(L(T)@)=y) (1= PrLT)@)=p) (N =1) (1)

where P(-) is the estimate of P(-) derived from the observed frequency
of the argument over repeated sample training sets.

Further, as it is infeasible to estimate o from sample data, this term
is aggregated into the bias term by assuming that Pr(L(7)(z)=y) is
always either 0.0 or 1.0. Hence,

—

variance, = Py x (L(T)(X) # Y |X=x) — @. (5)

That is, the estimate of variance equals the estimate of error minus the
estimate of bias.

We draw attention to the manner in which bias and variance are
presented as functions with a single parameter, x. From careful analysis,
however it can be seen that there are two further parameters, £ and 7.
That is, the terms should more correctly be written as biasi c7 and
varianceg ¢ 7. In most cases there is little harm in dropping £ as it will
usually be very clear from the context. One of our contentions, however,
is that the failure to recognize 7 as an important parameter has led
to a serious failure to understand the significance of the distribution in
determining bias-variance results.

Note that bias and variance are defined here with respect to a single
test object. In practice we evaluate these terms over all of a set of test
objects and present the mean value of each term.

Note also that Kohavi and Wolpert all their bias term bias?, fol-
lowing the convention set in the context of numeric regression (Geman
et al., 1992). In this paper we use bias to refer to the bias term in a
classification context.

2.2. KoHAvI AND WOLPERT’S HOLDOUT PROCEDURE

Kohavi and Wolpert (1996) present the following holdout procedure for
estimating the bias and variance of a learner £ from a dataset D.

1. Randomly divide D into two parts, D, a pool of objects from which
training sets are drawn, and E, the test set against which the
performance of each model is evaluated.
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2. N training sets dj . .. dy are generated by uniform random sampling
without replacement from D. To obtain training sets of size m, the
size of D is set to 2m.

3. Apply L to each d;, estimating the required values from the perfor-
mance of £(d;) on E.

This procedure has a number of limitations. For each run of the
learner, the available data D is fragmented into three subgroups, d;,
D — d;, and E. There are good reasons to want each of these to be
as large as possible. First, if we are seeking to evaluate the bias and
variance characteristics of an algorithm with respect to a certain type
of learning scenario, we should examine its behavior when it learns
from the quantities of data available in that scenario. This may mean
learning in the ideal case from all of D. To learn from less is to study
the algorithm’s behavior in the context of smaller training sets. On the
other hand, however, we also want D — d; to be large so that there will
be variety between the various samples d;. We additionally want E to
be large so that we obtain a stable estimate of the performance of each
L(d;). If either the pool from which training sets are drawn D or the
set of test objects F is small then we can expect the error and hence
the bias and variance of the learner to alter substantially depending
upon the exact set of objects that happens to be selected for inclusion
in either of D or E. This is clearly undesirable as it mitigates against
obtaining reliable and consistent results.

Unfortunately, these three demands are contradictory. The sets d;,
D — d;, and E are disjoint and hence the size of any one can only be
increased at the expense of at least one of the others.

A further problem is that it allows very little control over the type
of distribution from which the training sets are drawn. In Kohavi and
Wolpert’s technique, the training set of size m is always drawn ran-
domly without replacement from a pool containing 2m objects. This
means that the inter-training-set variability ¢ for the distribution that is
created will always be 1/2. If we are to understand bias and variance in
general we should want to study alternative rates of variation between
training sets. For example, we should want to be able to answer the
question how do bias and variance alter as § alters?

2.3. VALENTINI AND DIETTERICH’S OUT-OF-BAG TECHNIQUE

Valentini and Dietterich (2003) present an alternative procedure for
estimating bias and variance from data. They perform repeated trials
in each of which a bootstrapped sample B is drawn from D. A boot-
strapped sample is a sample of the same size as D that is drawn at
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random from D with replacement. That is, a single object in D may be
represented multiple times in B. On average, 36.8% of objects in D will
not appear in B. This set of objects, D — B is classified by £(B), and
the resulting classifications recorded. After all of the trials have been
performed, bias and variance are then estimated from the record of all
classifications of each object.

This approach has a number of advantages over Kohavi and Wolpert’s
(1996) procedure. First, the training set sizes are larger, providing more
representative training set sizes. Second, so long as sufficient trials are
performed, all objects in D will participate in the estimates in both
training and test set roles. This can be expected to result in much
more stable estimates.

However, this procedure is also subject to the problem that it does
not allow much control over the form of distributions that may be
studied. Repeated bootstrap samples result in a very particular form
of distribution of training sets, a distribution in which each training
set contains many objects that are duplicated, some of them many
times. While it may be interesting to study the bias and variance
characteristics of such distributions, there does not appear to be any
strong theoretical reason to wish to restrict bias and variance analyses
to such distributions.

A further limitation of this procedure is that because the selection of
the test set is random, many trials will need to be performed in order to
obtain a guarantee that most objects will be classified sufficient times
to obtain a reasonable estimate of the learner’s bias and variance when
applied to them. The number of times each object is classified will vary
substantially. If sufficient trials are performed to ensure sufficient clas-
sifications for most objects then many objects will be classified many
more times than necessary. For example, with 50 trials, almost 1% of
objects will be classified 10 or fewer times while almost 27% of objects
will be classified more than 20 times. This suggests that the approach
involves some wasted computation in the form of needless classification
of some objects.

2.4. WEBB’S CROSS-VALIDATION PROCEDURE

Dietterich (1998) has argued that repeated cross-validation trials pro-
vide a superior means of comparing classification error to any of four
alternative techniques including random selection of a test set. While
we are concerned here with the question of how best to estimate bias
and variance from data, rather than the subsequent question of how
to compare the bias and variance performance of multiple algorithms,
we hypothesize that the characteristics that make cross-validation a
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better basis for comparing error also make it a superior process for
estimating bias and variance. In particular, we hypothesis that a cross-
validation based technique for estimating bias and variance, such as
that proposed by Webb (2000), will provide more stable estimates than
will a sampling-based technique such as that proposed by Kohavi and
Wolpert (1996).

Webb’s (2000) procedure repeats k-fold cross validation [ times. This
ensures that each element x of the dataset D is classified [ times.
The bias, and wvariance, can be estimated from the resulting set of
classifications. The bias and variance with respect to the distribution
from which D is drawn can be estimated from the average of each term
over all z € D.

This procedure has a number of advantages over Kohavi and
Wolpert’s. First, like Valentini and Dietterich’s (2003) bootstrap pro-
cedure, all data are used as both training and test data. This can be
expected to lead to far greater stability in the estimates of bias and
variance that are derived, as selection of different training and test sets
can be expected to substantially alter the estimates that are derived.

A second advantage, that is also an advantage over Valentini and
Dietterich’s procedure, is that it allows greater control over the training
sets sizes and inter-training-set variability. Let | - | represent the size
of a data set. In general, k-fold cross validation will result in training
sets of size (k—;l)ﬂ?\ Hence changes to k will result in changes to the
training set size.

Bias and variance is evaluated with respect to individual objects.
Under a single run of k-fold cross-validation, each object is classified
once. Therefore, if there are [ repetitions of k-fold cross-validation, each
object will be classified [ times. The training sets used to classify an
object o under cross-validation cannot contain o. Hence, the [ training
sets used to classify o are drawn at random from D —o. In consequence,
each object o' # 0,0’ € D has %]D[/(]D[ — 1) probability of being a
member of any training set used to classify o and so the inter-training-
set variability of the distribution used to generate the bias and variance
estimates is as follows!.

= () o

! Note that we are here discussing the distribution of training sets used to classify
a single object. The training sets generated by successive folds of a single cross-
validation run will have a different distribution to the one we describe. However,
each test object will only be classified by one test set from this distribution, and
hence the distribution of training sets generated by a single cross-validation run is
quite distinct from the distribution of interest.
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The approach has a further advantage over Valentini and Diet-
terich’s procedure. It guarantees that all objects in D are classified the
same number of times. This allows the experimenter to determine the
number of classifications needed to obtain the desired level of precision
in the estimates and to ensure that all objects are classified exactly
that number of times.

However, while this procedure allows more variation in training set
sizes and inter-training-set variability than either Kohavi and Wolpert’s
or Valentini and Dietterich’s approach, the control over that variation
is nonetheless still constrained. First, it is not possible to alter one of
the two parameters without altering the other. Thus it is not possible
to study, for example, the effect of altering the training set size while
maintaining the inter-training-set variability constant. Second, it is not
possible to reduce the training set size below |D|/2 or increase the
inter-training-set variability above 0.5. It would be desirable to allow
finer-grade control over the training set size and the degree of variation
between training sets.

2.5. AN EXTENSION TO THE CROSS-VALIDATION PROCEDURE

With these considerations in mind we seek to develop a more flexible
and reliable bias-variance estimation procedure. Our design objectives
are as follows. We wish to have a procedure that takes as inputs a data
set D and parameters m and J that specify the training set size and the
inter-training-set variability, respectively. We wish to derive as stable as
possible estimates of distributions with the respective properties drawn
from the data without excessive computation.

To maintain stability of estimates we believe that it is desirable to
use as much as possible of D as both training and test data. To do
otherwise can be expected to increase variance in the estimates due to
variations in the samples that are used for the purposes of estimation.
To this end we wish to use cross validation. However, simple cross
validation does not allow the precise control over the training set size,
m, that we desire. Each training set created by k-fold cross-validation

has size % x |D|. We overcome this limitation by selecting a k such

that k—;l X |D| > m, and then sampling m objects from the objects
available at each fold.

This mechanism allows us to precisely control m, but not §. In gen-
eral, to obtain an inter-training-set variability rate of § with training set
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size m using random sampling without replacement it is necessary to
sample each training set from a pool of objects D’ of size m/(1—0)+ 1.

From this it follows that we can generate a training set distribution
with properties m and § by selecting a data pool D’ of size m/(1—§)+1
and selecting training sets of size m therefrom. We can achieve the latter
by performing k-fold cross-validation such that k > |D’'|/m and then
randomly sampling a training set of size m from each of the non-holdout
sets that are so formed. To minimize computation, it is desirable to
choose the smallest value of k that satisfies that constraint.

However, to select a single D' would mean using only a subset of
the data for training and testing, those included in D’. More data can
be utilized by simply creating a sequence of these subsets of D. Any
remaining data can be used for testing by adding it to the test set for
one of the folds of one of the data subsets. Note that it is desirable
that this additional test data only be added to one fold so that all test
data are classified the same number of times. It is necessary that the
additional data be classified only from training sets drawn from a single
subset of D in order that the successive training sets used to form the
classifiers by which it is classified are drawn from a distribution with
the required properties.

The following sub-sampled cross-validation procedure, ssCV, instan-
tiates these desiderata.

ssCV(D,l,m,0)
D: The data to be used.

[: The number of times each test item is to be classified, an integer
greater than zero.

m: The size of the training sets, an integer 0 < m < |D].

d: The average proportion of objects to be shared in common between
any pair of training sets, m/(|D| +1) < 4§ < 1.

1. Set the training pool size, tps = [m/d + 1].
. Set the number of cross-validation folds k& = [tps/(tps —m)]
. Set the number of segments ¢ = ||D|/tps]

. Randomize D.

Ot s W N

. Partition D into ¢ segments F...E, each of size tps with any
remaining objects being placed in Fgqq

6. Repeat [ times
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For i =1 to ¢q do

a) Partition F; into k random subsets Fj ... Fy,.
b) For j =1,k
i) Select a random sample S of size m from E; — F}.
i) For each = € F)
Record L(S)(z)
i11) If i =1 and j = 1 Then
For each x € Ey 1
Record L(5)(x)

7. Calculate the estimates of bias, variance, and error from the records
of the repeated classifications for each object.

Under this approach, every object is classified once in every k-fold
cross-validation for the training pool that contains it, and thus [ times
in total. The training sets used for successive classifications of an object
are drawn from different cross-validation experiments, and hence are
independently drawn random samples from the training pool. Thus,
any two training sets used to classify an object will on average contain
m/tps of their objects in common.

2.6. COMPARISON OF THE TECHNIQUES

This sub-sampled cross-validation procedure is superior to both the
holdout and bootstrap procedures in that it provides greater control
of the degree of variability between training sets. Under the holdout
technique, for any two training sets, each will on average contain half
the objects contained by the other. Under the bootstrap approach any
two training sets will contain on average 63.2% of objects in common,
and some of these will be repeated multiple times in one or both sets.
In contrast, the cross-validation technique provides fine-grained control
over the degree of variability in the training sets.

A further property of this new procedure that is superior to that of
the bootstrap procedure is shared with the holdout procedure. Unlike
the bootstrap procedure, all objects are classified the same number
of times. This eliminates wasted computation used to classify some
objects more times than is necessary to obtain sufficient accuracy in
the estimation of the bias and variance measures.

An additional superiority of this new procedure over the holdout
procedure is shared with the bootstrap procedure. The training sets
that are used can be much larger than those in the holdout approach.
For the holdout approach, the training set cannot be more than half
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the size of the training pool and the training pool cannot be larger
than D. Hence, |D|/2 is an upper limit on the size of the training sets
under the holdout approach. In contrast, under cross validation, the
training-set size is |D| — |D|/l and the maximum possible training-set
size is |D| — 1. So, for example, with 5-fold cross-validation and m set
to the maximum value possible, each training set will contain 0.8 of the
data. We believe that it will often be desirable to have larger training
sets as this will more accurately reflect the distribution from which the
training sets to which the learner will be applied in practice.

A final respect in which we expect the cross-validation and bootstrap
procedures to be superior to the holdout procedure is that they use all
objects in D as test objects rather than a sub-sample. This means that if
objects are of varying degrees of difficulty to classify, all will be classified
each time. This can be expected to produce much more stable estimates
than the holdout method where the once-off selection of a test set F
can be expected to impact the estimates obtained. We believe that such
stability is a critical feature of a bias-variance estimation procedure. If
estimates vary greatly by chance then it follows that any one estimate
is unlikely to be accurate. Comparisons between learners on the basis
of such unreliable estimates are likely to in turn be inaccurate.

3. Evaluation

All four of the factors identified in Section 2.6 are important. The
first three do not require evaluation. From inspection of the procedures
it is possible to determine that the specified features of the respective
procedures indeed exist. However,the final of these factors does warrant
investigation. To what extent, in practice, does the use of all available
data in the role of test data lead to more stable estimates than the
use of only a single holdout set? A second, and in our assessment more
significant issue that we seek to evaluate is what effect if any is there
from varying the type of distribution from which bias and variance are
estimated.

To these ends we implemented the cross-validation technique in the
Weka machine learning environment (Witten & Frank, 2000), which
already contains the holdout approach. Unfortunately, we did not have
access to an implementation of the bootstrap procedure. However, we
assessed it less important to include this approach in our evaluation as
its addition could contribute only to further understanding of the first
and lesser issue, the relative stability of the estimates.

We applied the two approaches to the nine data sets used by Kohavi
and Wolpert (1996). These are described in Table I. We use the hold-
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Table I. Data sets

Dataset No. Dataset Train-set
features size size
Anneal 38 898 100
Chess 36 3196 250
DNA 180 3186 100
LED-24 24 3200 250
Hypothyroid! 29 3772 250
Segment 19 2310 250
Satimage 36 6435 250
Soybean-large 35 683 100
Tic-Tac-Toe 9 958 100

t Note, this appears to be a different version of the hypothyroid
data set to that used by Kohavi and Wolpert. They report 25
attributes describing 3163 objects.

out approach with the training set sizes used by Kohavi and Wolpert.
To compare the relative stability of the estimates we apply the cross-
validation technique to each data set using the same training set size
and inter-training-set variability (6 = 0.50) as Kohavi and Wolpert.

We used [ = 50, the number of repetitions used by Kohavi and
Wolpert. To explore the consequences of reducing [ we also applied our
procedure with [ = 10.

Each of the estimation processes was applied to each data set using
each of two different learning algorithms, J48 and NB. J48 is a Weka
reimplementation of C4.5 (Quinlan, 1993). NB is the Weka implemen-
tation of naive Bayes. In order to assess the stability of each estimation
process, we repeated each ten times, using a different random seed on
each trial. Thus we obtained ten values for each measure (error, bias
and variance) for each combination of an evaluation process and a data
set. Tables II to VII present the mean and standard deviation of these
ten values for every such combination of process and data set.

3.1. STABILITY

The first hypothesis that we sought to evaluate is whether the cross-
validation approaches are more stable than the holdout approach. To
assess this we compare the standard deviations of all measures for
both holdout and ssCV with [ = 50. In every single case the standard
deviation for the ssCV was lower than the standard deviation of the
holdout method. For any one comparison of a method, learner, measure
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Table II. Error for J4.8
ssCV, [ =10 ssCV, =50 holdout, [ =50

Data set Mean s Mean S Mean s
anneal 0.088 0.006 0.087 0.005 0.087 0.023
kr-vs-kp 0.050  0.003 0.049 0.002 0.049 0.008
dna 0.243 0.005 0.243 0.004 0.249 0.019
led-24 0.339 0.004 0.339 0.003 0.346 0.009

hypothyroid  0.021  0.001  0.022 0.001 0.021 0.005
segment 0.099 0.003 0.098 0.003 0.099 0.005
satimage 0.224  0.004 0.224 0.002 0.228 0.005
soybean 0.298 0.012 0.298 0.006  0.298 0.021

ttt 0.305 0.009 0.306 0.009 0.302 0.014

Table III. Bias for J4.8
ssCV, [ =10 ssCV, =50 holdout, [ =50

Data set Mean s Mean S Mean s
anneal 0.045 0.007 0.044 0.005 0.044 0.019
kr-vs-kp 0.029 0.002 0.029 0.002 0.030 0.005
dna 0.097 0.002 0.097 0.001 0.101 0.012
led-24 0.206  0.001  0.207 0.001 0.205 0.005

hypothyroid ~ 0.012  0.001  0.012 0.001 0.012  0.002
segment 0.047  0.002 0.047 0.002 0.046  0.003
satimage ~ 0.106 0.002 0.106 0.001 0.107  0.004
soybean 0.132  0.006 0.134 0.003 0.134  0.020
ttt 0.179  0.009 0.180 0.007 0.178  0.016

Table IV. Variance for J4.8
ssCV, [ =10 ssCV, =50 holdout, [l =50

Data set Mean S Mean s Mean s
anneal 0.039 0.006 0.041 0.005 0.042 0.007
kr-vs-kp 0.019 0.001 0.020 0.001 0.019 0.009
dna 0.132 0.004 0.143 0.004 0.146 0.013
led-24 0.119 0.003 0.130 0.002 0.138 0.011

hypothyroid  0.009  0.001  0.009 0.000 0.009 0.004
segment 0.047 0.002 0.050 0.002  0.051 0.004
satimage 0.107  0.002 0.117 0.001  0.119 0.007
soybean 0.149  0.007 0.162 0.004 0.160 0.008

ttt 0.113  0.009 0.123 0.008  0.122 0.023
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Table V. Error for naive Bayes

ssCV, [ =10

Data set Mean s
anneal 0.127  0.005
kr-vs-kp 0.159  0.003
dna 0.145  0.003
led-24 0.309  0.004
hypothyroid  0.052  0.001
segment 0.200  0.006
satimage 0.209  0.001
soybean 0.234  0.005
ttt 0.320  0.008

Table VI. Bias for naive Bayes

ssCV, [ =10

Data set Mean s
anneal 0.077  0.005
kr-vs-kp 0.109  0.003
dna 0.082  0.003
led-24 0.212  0.003
hypothyroid  0.036  0.001
segment 0.148  0.007
satimage 0.186  0.002
soybean 0.148  0.006
ttt 0.232  0.008

ssCV, [
Mean
0.124
0.159
0.145
0.310
0.052
0.199
0.209
0.235
0.321

ssCV, |
Mean
0.075
0.109
0.082
0.213
0.036
0.147
0.186
0.149
0.232

Table VII. Variance for naive Bayes

ssCV, [ =10

Data set Mean s
anneal 0.045 0.004
kr-vs-kp 0.046  0.001
dna 0.057  0.001
led-24 0.088  0.002
hypothyroid  0.014  0.001
segment 0.047  0.004
satimage 0.021  0.001
soybean 0.077  0.005
ttt 0.079  0.006

ssCV, [
Mean
0.048
0.049
0.062
0.095
0.015
0.051
0.023
0.084
0.087

=50
s
0.004
0.002
0.002
0.003
0.001
0.005
0.001
0.006
0.006

=50

0.004
0.003
0.002
0.003
0.001
0.005
0.002
0.005
0.007

=50
s
0.003
0.001
0.001
0.002
0.001
0.002
0.001
0.004
0.004

holdout,

Mean
0.129
0.160
0.148
0.315
0.054
0.192
0.208
0.227
0.322

holdout,

Mean
0.079
0.111
0.083
0.215
0.037
0.139
0.184
0.139
0.236

holdout,

Mean
0.049
0.048
0.064
0.099
0.017
0.052
0.024
0.086
0.084

=50
]
0.029
0.021
0.010
0.004
0.003
0.020
0.006
0.015
0.009

=50

0.030
0.019
0.008
0.005
0.005
0.029
0.005
0.014
0.011

=50

0.009
0.004
0.003
0.005
0.003
0.013
0.002
0.006
0.008

15
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combination there are nine outcomes to compare: the outcomes for each
data set. The probability of the cross-validation method having a lower
value than the holdout method for every one of those comparisons if
each method has equal chance of obtaining the lower value is 0.0020
(one-tailed binomial sign test). This result remains significant at the
0.05 level even if a Bonferroni adjustment for multiple comparisons is
applied by dividing the alpha by 18. We therefore conclude that there is
very strong support for our hypothesis that the cross-validation method
that we have proposed is more stable in its estimates than the holdout
method. This means that the experimenter can have greater confidence
in the values that it produces.

The greater stability is produced at greater computational cost,
however, as the cross-validation method learns [ x k£ x ¢ models in
comparison to the [ models learned by the holdout method. To assess
whether so much computation is required from the ssCV, we compare
it with [ = 10 against holdout with [ = 50. The standard deviation
for ssCV is still lower than that of the holdout method on all compar-
isons, demonstrating that more stable estimates can be derived at more
modest computational cost.

3.2. EQUIVALENCE OF RESULTS

It would be reassuring to know that there was some degree of con-
sistency between the results of the two approaches. Comparing the
results from holdout and ssCV (using | = 50) we observe considerable
agreement in the error, bias, and variance. It is not possible to perform
hypothesis tests to confirm a hypothesis that two population means are
identical. Rather, it is only possible to perform hypothesis tests for the
hypothesis that the means differ. Two-tailed t-tests with Bonferroni
adjustment for multiple comparisons identify none of the 36 pairs of
bias and variance means® as significantly different at the 0.05 level.
Without Bonferroni adjustment, 4 of the 36 pairs of means are assessed
as significantly different at the 0.05 level: the variance for J48 on led-
24 (z = —2.3645), the bias of naive Bayes on soybean (z = 2.1413),
and the variance of naive Bayes on dna (¢ = —1.9755) and led-24
(z = —2.2875). That none of the comparisons is significantly different
once allowance is made for multiple comparisons is suggestive that there
is not a substantial difference in the central tendency of the estimates
of the two approaches.

2 We consider only the bias and variance means as error is derived therefrom.
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3.3. THE EFFECTS ON BIAS AND VARIANCE OF DIFFERING
DISTRIBUTIONS

Having, we believe, obtained overwhelming support for our key hypoth-
esis that the cross-validation technique provides more stable and hence
reliable estimates, it is interesting to explore further issues that arise
from the work. We have developed a bias-variance estimation process
that allows greater control over the types of training set distributions
with respect to which estimation can be performed. It is interesting to
examine the consequences of this greater control.

Previous research has investigated the effects on bias and variance
of altering training set size (Brain & Webb, 2002), using Webb’s (2000)
simple cross-validation bias-variance estimation technique. The study
found that as training set size increases, variance decreases for both J48
and naive Bayes, as does bias for J48, but that the bias of naive Bayes
can trend either up or down as training set size increases. Studies with
our new bias-variance estimation technique corroborated the findings
of that previous study.

However, the new technique also allows us to investigate new ques-
tions. Using this new capability we seek to investigate how bias and
variance are affected if we hold the training set size constant but vary
the inter-training-set variability. If we have two different processes that
draw training sets of a given size at random from a single data source,
we should expect the average error for a single learner applied to the
resulting sequences of training set to be the same for each process. At
any given setting of m each training set formed by ssCV is drawn at
random from the data set as a whole. Every object in the data set has
equal chance of inclusion in any training set. Hence, given a setting of
m, we should expect error to remain constant as ¢ is varied.

However, we should expect changes to ¢ to affect bias and variance.
Consider, for example, the case where § = 1.0. All training sets contain
the same objects. For a non-stochastic learner, all models will therefore
be identical. As a result, there will be no variance. The bias of a non-
stochastic algorithm will equal the error (less the irreducible error, if
allowance is made therefor) for such a distribution. As § increases we
should expect the variation in training sets and hence in models learned
to increase, and hence expect variance to rise. Given that we expect
error to be constant, it follows that bias must fall as inter-training-set
variability increases.

To assess this hypothesis we augmented our study to include runs
of ssCV with § = 0.25 and § = 0.75. For each data set we again used
the training set size used by Kohavi and Wolpert and | = 50. The
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Table VIII. Summary for error with J48 over differing training set

distributions
0=0.75 6=0.50 6=0.25

Dataset Mean s Mean ] Mean s

anneal 0.088 0.004 0.087 0.005 0.087 0.003
kr-vs-kp 0.049 0.002 0.049 0.002 0.049 0.003
dna 0.242 0.004 0.243 0.004 0.244 0.003
led-24 0.339 0.003 0.339 0.003 0.337 0.003
hypothyroid  0.022  0.001 0.022 0.001 0.022 0.001
segment 0.098 0.002 0.098 0.003 0.098 0.003
satimage 0.224 0.001 0.224 0.002 0.224 0.002
soybean 0.301  0.010 0.298 0.006 0.300 0.010
ttt 0.304 0.006 0.306 0.009 0.306 0.008
Average 0.185 0.004 0.185 0.004 0.185 0.004

Table IX. Summary for bias with J48 over differing training set

distributions
0=0.75 6=0.50 6=0.25

Dataset Mean s Mean s Mean s

anneal 0.038 0.004 0.044 0.005 0.054 0.005
kr-vs-kp 0.026  0.001 0.029 0.002 0.034 0.002
dna 0.087 0.002 0.097 0.001 0.115 0.002
led-24 0.194 0.001 0.207 0.001 0.228 0.002
hypothyroid  0.011  0.001 0.012 0.001 0.015 0.001
segment 0.042 0.001 0.047 0.002 0.056 0.002
satimage 0.100  0.001 0.106 0.001 0.115 0.001
soybean 0.120 0.005 0.134 0.003 0.163 0.005
ttt 0.168 0.004 0.180 0.007 0.204 0.007
Average 0.087 0.002 0.095 0.003 0.109 0.003

results are presented in Tables VIII to XIII. For ease of reference we
also include in these tables the results presented above for 6 = .50.
With respect to our prediction that error will not vary as inter-
training-set variability alters for a given training set size, we are again
faced with the inability of hypothesis testing to assess a hypothesis that
population means are identical. Again we instead take a falsificationist
approach and assess whether we can reject our hypothesis. To this
end we perform 36 two-tailed t-tests comparing all error means for
0 = 0.25 against 4 = 0.50 and for 6 = 0.50 against 6 = 0.75. No
value of z exceeded the cutoff of z = 3.1971 for significance at the 0.05
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Table X. Summary for variance with J48 over differing training set

distributions
0=0.75 6=0.50 6=0.25

Dataset Mean s Mean ] Mean s

anneal 0.049 0.003 0.041 0.005 0.032 0.005
kr-vs-kp 0.023 0.001 0.020 0.001 0.015 0.002
dna 0.152  0.002 0.143 0.004 0.127 0.003
led-24 0.142 0.003 0.130 0.002 0.107 0.002
hypothyroid  0.011  0.000 0.009 0.000 0.007 0.001
segment 0.055 0.002 0.050 0.002 0.042 0.002
satimage 0.122 0.001 0.117 0.001 0.107  0.001
soybean 0.178 0.010 0.162 0.004 0.135 0.008
ttt 0.133 0.007r 0.123 0.008 0.100 0.008
Average 0.096 0.003 0.088 0.003 0.075 0.003

Table XI. Summary for error with NB over differing training set

distributions

1) 0.75 0.50 0.25
Dataset Mean s Mean s Mean s
anneal 0.123 0.004 0.124 0.004 0.125  0.005
kr-vs-kp 0.161 0.003 0.159 0.002 0.160 0.003
dna 0.146  0.002 0.145 0.002 0.144 0.002
led-24 0.310  0.002 0.310 0.003 0.311 0.003
hypothyroid  0.051  0.002 0.052 0.001 0.052 0.002
segment 0.198 0.006 0.199 0.005 0.199 0.008
satimage 0.209 0.001 0.209 0.001 0.209 0.001
soybean 0.229 0.004 0.235 0.006 0.233 0.008
ttt 0.322 0.006 0.321 0.006 0.321 0.008
Average 0.194 0.003 0.195 0.003 0.195 0.005

level with Bonferroni adjustment for multiple comparisons. Only one
value z = —3.0055 for naive Bayes on the soybean data exceeded the
cutoff z = 1.9600 for two-tailed significance at the 0.05 level without
Bonferroni adjustment. Given the failure to obtain a significant result
after allowance for multiple comparisons we are left without reason to
reject our initial hypothesis that error will not change if training set
size is kept constant while inter-training-set variability is altered.

We predicted that when ¢ is increased, variance should increase. This
can be tested by hypothesis testing. A one-tailed t-test with Bonferroni
adjustment for multiple comparisons is significant at the 0.05 level for

bvest.tex; 17/10/2003; 7:18; p.19



20 Geoffrey Webb Paul Conilione

Table XII. Summary for bias with NB over differing training set

distributions
0=0.75 6=0.50 6=0.25

Dataset Mean s Mean ] Mean s

anneal 0.064 0.005 0.075 0.004 0.090 0.005
kr-vs-kp 0.099 0.003 0.109 0.003 0.124 0.004
dna 0.069 0.002 0.082 0.002 0.098 0.002
led-24 0.196  0.002 0.213 0.003 0.240 0.003
hypothyroid  0.032 0.001 0.036 0.001 0.041 0.002
segment 0.135 0.006 0.147 0.005 0.162 0.010
satimage 0.181 0.001 0.186 0.002 0.192 0.002
soybean 0.127 0.006 0.149 0.005 0.174 0.007
ttt 0.213  0.003 0.232 0.007 0.259 0.007
Average 0.124 0.003 0.137 0.004 0.153 0.005

Table XIII. Summary for variance with NB over differing training
set distributions

0=0.75 6=0.50 6=0.25

Dataset Mean s Mean s Mean s

anneal 0.058 0.003 0.048 0.003 0.034 0.003
kr-vs-kp 0.061 0.002 0.049 0.001 0.035 0.002
dna 0.075 0.001 0.062 0.001 0.045 0.001
led-24 0.112 0.001 0.095 0.002 0.070 0.002
hypothyroid  0.018 0.001 0.015 0.001 0.011 0.001
segment 0.062 0.002 0.0561 0.002 0.036 0.003
satimage 0.028 0.000 0.023 0.001 0.016 0.000
soybean 0.100  0.005 0.084 0.004 0.058 0.004
ttt 0.106  0.004 0.087 0.004 0.061 0.003
Average 0.069 0.002 0.057 0.002 0.041 0.002

35 of the 36 comparisons. The exception is for J48 on ttt for which
the mean variance increases from 0.1234 to 0.1327 as ¢ increases from
0.50 to 0.75, but the t-test z = 2.8106 which falls short of the critical
z = 2.9913 for the 0.05 significance level adjusted for 36 comparisons.
If error remains constant and variance increases then bias must de-
crease. A one-tailed t-test evaluation of this prediction is significant at
the 0.05 level with adjustment for 36 comparisons in all 36 cases.
These effects on error, bias and variance of varying inter-training-set
variability are illustrated in Figures 1 and 2 where the average of error,
bias and variance is taken across all data sets. For both classifiers, as §
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Figure 1. Comparison of error, bias and variance as § is changed for J48.
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Figure 2. Comparison of error, bias and variance as § is changed for Naive Bayes.

increases, the average error remains constant, the average bias decreases
and the average variance increases.

4. Discussion

We believe that we have demonstrated that varying the type of distri-
bution from which bias and variance are estimated will alter the results
that are obtained. This has far reaching consequences for both expla-
nations of classifier performance that rely on bias and variance and for
how bias and variance experiments should be conducted. Bias-variance
experiments to date have overwhelmingly been conducted using the
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holdout procedure and hence have overwhelmingly come from distribu-
tions with 50% commonality between training set pairs. But we have
shown that altering the distribution can alter the bias-variance results.
This creates a cloud of doubt over the generality of any conclusions
that have been drawn from previous bias-variance studies.

Turning to explanations of classifier performance based on bias-
variance characteristics, we believe that the implications of our findings
are quite profound. Consider Breiman’s (1996a) account of bagging as
a variance reduction mechanism. If bagging does indeed operate by
reducing variance, then it seems reasonable to expect its efficacy to vary
as the variance of the base learner to which it is applied alters. However,
as we have seen, holding training set size constant while altering the
inter-training-set variability can be expected to alter variance without
altering error. Hence if we apply bagging to a learner under altering
values of § we should expect the variance of the base learner to alter,
but the error of bagging to remain constant. There appears to be a
deficiency in a straight forward account of bagging solely in terms of
variance reduction.

As bias and variance characteristics can be expected to vary with
variations in training set distribution it appears critical that bias and
variance experiments should attempt to map out the dimensions of such
variability by exploring a range of different distributions. We hope that
our procedure might be of value for such purposes.

We accept, however, that there is value in having a single stan-
dardized point of comparison for the bias-variance characteristics of
different algorithms, if for no other reason than that it is not feasible
to compute, present or interpret the full space of possible distributions.
For this purpose we propose the use of bias-variance evaluation using

two-fold cross-validation (ssCV with m = |D|/2 and § = ||g||121 ~ 0.5).
This approach is computationally efficient due to the use of the smallest
possible number of folds, uses substantially larger training sets than can
be supported by the holdout approach, and provides the reliability of

estimation inherent in the ssCV approach.

5. Conclusions

We have argued that the holdout approach to bias-variance estimation
has a number of serious drawbacks. First, it necessitates the use of
relatively small training sets, meaning that typical bias-variance stud-
ies must examine quite different types of learning scenarios to those
that occur in practice. Second, it provides no control over the type of
distribution that is formed. All distributions will be such that any two
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training sets will on average contain 50% of objects in common. Third,
it is unstable, random variations resulting a large differences in the
estimates produced.

We have presented an alternative procedure that address all of these
problems, allowing fine-level control over training set size and the types
of distributions while producing much more stable estimates.

Using this procedure we have demonstrated that altering the dis-
tribution of training sets with respect to which bias and variance
are estimated alters the bias-variance performance that is observed.
We believe that this has serious implications for studies that perform
empirical evaluation of bias-variance profiles as the use of different
distributions may result in different conclusions. In particular we have
demonstrated that there are serious difficulties with any account of
the efficacy of an algorithm that explains its error performance in
terms of its ability to control variance. We hope that the procedure
we have developed will enable to research community to obtain bet-
ter understanding of the factors that influence classification bias and
variance.
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