
Prepublication draft, to appear in Data Mining and Knowledge Discovery,

10(1), 2005, pp 39-79.

K-Optimal Rule Discovery

Geoffrey I. Webb (webb@infotech.monash.edu.au)
School of Computer Science and Software Engineering,
PO Box 75, Monash University,
Melbourne, Victoria 3800 Australia
Telephone +61 3 9905 3296 Facsimile +61 3 99055146

Songmao Zhang (szhang@nlm.nih.gov)
US National Library of Medicine (LHC/CgSB)
National Institutes of Health
8600 Rockville Pike, MS 43 (Bldg 38A, B1N28T)
Bethesda, MD 20894 USA

Abstract. K-optimal rule discovery finds the k rules that optimize a user-specified
measure of rule value with respect to a set of sample data and user-specified con-
straints. This approach avoids many limitations of the frequent itemset approach of
association rule discovery. This paper presents a scalable algorithm applicable to a
wide range of k-optimal rule discovery tasks and demonstrates its efficiency.

Keywords: Exploratory Rule Discovery, Association Rules, Classification Rules,
Rule Search, Search Space Pruning

1. Introduction

Association rule discovery (Agrawal and Srikant, 1994; Agrawal et al.,
1996) is an enduring and popular data mining technology. It differs
from conventional machine learning techniques by finding all rules that
satisfy some set of constraints, rather than finding a single model that
bests fits the sample data. This proves useful in many data mining
contexts as it empowers the user to select between the many potential
models that the data may support. However, association rule discovery
is based on the application of a minimum support constraint. This
constraint is used to prune the search space and make computation
feasible. This can be limiting, as support is often not directly related
to the potential value of the rule. One example of this is the so called
vodka and caviar problem (Cohen et al., 2000). Ketel vodka and Beluga
caviar are low sales-volume products and hence a correlation between
purchases of them is likely to have low support. Nonetheless, a strong

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

"KORD preprint".tex; 13/12/2004; 9:27; p.1

2 Geoffrey I. Webb & Songmao Zhang

correlation between them may be of considerable interest as they are
high profit items and hence the affinity is likely to represent substantial
benefit. Where support is not directly related to the potential value of
a rule, the application of a minimum support constraint carries a risk
that the most valuable rules will not be discovered. A further limitation
of the use of minimum support as the primary constraint on the rules
to be discovered is that it is often not possible to predict a minimum
support threshold that will result in a useful number of rules. Set the
threshold too high and very few rules will be produced. There is often
a narrow range of minimum support values below which the number
of rules produced becomes extraordinarily large and unmanageable
(Zheng et al., 2001).

The OPUS AR algorithm (Webb, 2000) presented an alternative
approach to such exploratory rule discovery that we call k-optimal rule
discovery. Under this approach the user specifies a rule value measure
λ, a set of constraints M and the number of rules to be discovered, k.
The system then returns the k rules that optimize λ within constraints
M. This extends previous techniques that have sought the single rule
that optimizes a value measure for a pre-specified consequent (Webb,
1995; Bayardo and Agrawal, 1999). In contrast, the new algorithm
finds multiple rules and allows any condition in the role of consequent.
This paper provides a formal definition of the k-optimal rule discovery
task, presents a refined version of the OPUS AR algorithm, proves the
correctness of the algorithm, presents a number of pruning mechanisms
and proves their correctness, and evaluates the efficiency of the algo-
rithm and pruning mechanisms with respect to a number of widely
studied rule discovery tasks.

2. Constraint-Satisfaction Rule Discovery

We define both association rule discovery and k-optimal rule discovery
in terms of a generic description of rule discovery under constraints,
defining what we call a constraint satisfaction rule discovery task
(CStask). A record is an entity to which predicates called conditions
apply. For notational convenience we treat a record d as denoting the set
of conditions that apply to d. A database D is a nonempty collection
of records. For any set of conditions S and database D,

coverset(S,D) = {d ∈ D | d ⊇ S}, and (1)

cover(S,D) =
| coverset(S,D)|

|D|
. (2)

"KORD preprint".tex; 13/12/2004; 9:27; p.2

K-Optimal Rule Discovery 3

Where the database is implied by the context we abbreviate the former
to coverset(S) and the latter to cover(S). A CStask is a 3-tuple
〈C,D,M〉, where

C: is a nonempty set of conditions;

D: is a database of records r ⊆ C;

M: is a set of constraints on the rules that form the solution for the
CStask;

A rule is a pair of sets of conditions denoted by X→Y , where

X: is a nonempty set of conditions called the antecedent ; and

Y : is a nonempty set of conditions called the consequent .

The predicate satisfies(X→Y,D,M) is true of all and only rules X→Y
that satisfy all constraints in M with respect to D. CSsolution :
{〈C,D,M〉} → {{X→Y }} is a many-to-one function from CStasks to
their solutions, satisfying

CSsolution(〈C,D,M〉)

= {X→Y | X ⊆ C ∧ Y ⊆ C ∧ satisfies(X→Y,D,M)}.

Constraint-satisfaction rule discovery provides a generic formal
framework in which it is possible to describe, analyze and contrast
a wide range of exploratory rule discovery techniques.

Note that the feasibility of computing a solution to a constraint
satisfaction rule discovery task will depend critically upon the number
of rules that satisfy M with respect to D. For example, a given set of
constraints may fail to exclude any rules with respect to a given D,
in which case the number of rules and hence time complexity will be
exponential with respect to the number of conditions in C.

3. Association Rule Discovery

Association rule discovery (Agrawal and Srikant, 1994; Agrawal et al.,
1996) can be described as a form of CStask. This approach to rule
discovery overcomes the computational complexity of an unconstrained
CStask by imposing a constraint on the minimum allowed value for
support, where

support(X→Y,D) = cover(X ∪ Y,D).

"KORD preprint".tex; 13/12/2004; 9:27; p.3

4 Geoffrey I. Webb & Songmao Zhang

Early association rule discovery used an additional constraint on the
minimum value for confidence, defined in Section 4.1, but subsequent
work has substituted other auxiliary constraints such as lift, also defined
in Section 4.1.

Most association rule discovery algorithms utilize the frequent item-
set strategy as exemplified by the Apriori algorithm (Agrawal et al.,
1993). The frequent itemset strategy first discovers all frequent itemsets
{I ⊆ C | support(I,D) ≥ min support}, those sets of conditions whose
support exceeds a user defined threshold min support. Association
rules are then generated from these frequent itemsets. This approach is
very efficient if there are relatively few frequent itemsets. It is, however,
subject to a number of limitations.

1. There may be no natural lower bound on support. Associations
with support lower than the nominated min support will not be
discovered. Infrequent itemsets may actually be especially interest-
ing for some applications. As illustrated by the vodka and caviar
problem, in many applications high value transactions are likely to
be both relatively infrequent and of great interest.

2. Even if there is a natural lower bound on support, the analyst
may not be able to identify it. If min support is set too high
then important associations will be overlooked. If it is set too
low then processing may become infeasible. There may be no
means of determining, even after an analysis has been completed,
whether important associations have been overlooked due to the
lower bound on support being set too high.

3. Even when a relevant minimum support can be specified, the num-
ber of frequent itemsets may be too large for computation to be
feasible. Many datasets are infeasible to process using the frequent
itemset approach with sensible specifications of minimum support
(Bayardo, 1998).

4. The frequent itemset approach does not readily admit to techniques
for improving efficiency by using constraints on the properties of
rules that cannot be derived directly from the properties only of
the antecedent, the consequent, or the union of the antecedent and
consequent. Thus, they can readily benefit from a constraint on
support (which depends solely on the frequency of the union of the
antecedent and consequent) but cannot readily benefit from a con-
straint on confidence (which relates to the relationship between the
support of the antecedent and of the union of the antecedent and
the consequent). Where such constraints can be specified, potential
efficiencies are lost.

"KORD preprint".tex; 13/12/2004; 9:27; p.4

K-Optimal Rule Discovery 5

An extension of the frequent itemset approach allows min support
to vary depending upon the items that an itemset contains (Liu et al.,
1999). While this introduces greater flexibility to the frequent itemset
strategy, it does not resolve any of the four issues identified above.

Most research in association rule discovery has sought to improve
the efficiency of the frequent itemset discovery process (Agarwal et al.,
2000; Han et al., 2000; Savasere et al., 1995; Toivonen, 1996, for ex-
ample). This has not addressed any of the above problems, except the
closed itemset approaches (Pasquier et al., 1999; Pei et al., 2000; Zaki,
2000), that reduce the number of itemsets required, alleviating the
problems of point 3, but not addressing 1, 2 or 4.

Note that auxiliary constraints, such as confidence and lift, typi-
cally reduce the number of rules produced, but have little impact on
computational efficiency. This is due to the use of the frequent itemset
strategy. Under this strategy it is the minimum support constraint that
has the primary impact on the computational efficiency of the task.

4. K-optimal rule discovery

Webb (2000) outlines an alternative approach to rule discovery. Under
this approach the user specifies a rule value measure λ, a set of con-
straints M and the number of rules to be discovered k. The system
then returns the k rules that optimize λ with respect to the database
D within constraints M.

A k-optimal rule discovery task (KOtask) is a 5-tuple 〈C,D,M, λ, k〉
where

C: is a nonempty set of conditions;

D: is a database of records r ⊆ C;

M: is a set of constraints on the rules that form the solution for the
task;

λ : {X→Y } × {D} → R is a function from rules and databases to
real values and defines an value measure such that the greater
λ(X→Y,D) the greater the (potential) value to the user of X→Y
given the database; and

k: is an integer denoting the number of rules in the solution for the
task.

solution : {〈C,D,M, λ, k〉} → {{X→Y }} is a many-to-many function
mapping a KOtask to its solutions, satisfying

∀s ∈ solution(〈C,D,M, λ, k〉)

"KORD preprint".tex; 13/12/2004; 9:27; p.5

6 Geoffrey I. Webb & Songmao Zhang

s ⊆ CSsolution(〈C,D,M〉)

∧ |s| ≤ k;

∧¬∃r ∈ solution(〈C,D,M, λ, k〉) : |r| < |s|

∧¬∃X→Y ∈ s, X ′→Y ′ ∈ (CSsolution(〈C,D,M〉) − s) :

λ(X→Y,D) < λ(X ′→Y ′,D).

Note, it follows from this definition that if the CSsolution contains k
or more rules then all solutions to the KOtask contain k rules. If the
CSsolution contains fewer than k rules then there is only one solution
to the KOtask and it is identical to the CSsolution. There may only be
multiple solutions for a given KOtask if there are multiple rules with
the same value for λ, each of which may take the kth place in a solution
for the task.

It is important to distinguish k-optimal rule discovery from Bayardo
and Agrawal’s (1999) system that finds all rules that are sc-optimal.
Any rule that optimizes any of a wide range of common value measures
including lift and leverage is sc-optimal. Finding all such rules may
be useful if a user does not have any idea of what is an appropriate
measure of rule value. In contrast, k-optimal rule discovery finds the k
rules that optimize a specific measure of rule value. For many measures
the highest rating such rule will be sc-optimal, but the second and
subsequent rule may not be sc-optimal. If the user knows that they
are interested in rules that maximize some specific measure such as lift
or leverage, finding rules that maximize all of a continuum of other
measures of rule value will only serve to obscure the rules of interest
that are discovered.

4.1. Interestingness measures

Rule value measures are central to the enterprize of k-optimal rule
discovery. Such measures will often not actually directly capture the
true value of a rule, as this will often depend upon many factors that
are difficult to formalize and incorporate in a computational process.
Rather, what we for convenience refer to as rule value measures will
usually be measures of potential value.

We define four such measures with respect to a rule X→Y :

coverage(X→Y,D) = cover(X,D),

support(X→Y,D) = cover(X ∪ Y,D),

confidence(X→Y,D) =
support(X→Y,D)

coverage(X→Y,D)
,

"KORD preprint".tex; 13/12/2004; 9:27; p.6

K-Optimal Rule Discovery 7

leverage(X→Y,D)

= support(X→Y,D) − cover(X,D) × cover(Y,D).

Piatetsky-Shapiro (1991) argues that many measures of rule value are
based on the difference between the observed joint frequency of the
antecedent and consequent, support(X→Y), and the frequency that
would be expected if the two were independent, cover(X) × cover(Y).
He asserts that the simplest such measure is one that we call leverage,
as defined above. This measure has also been called interest. Note that
leverage can also be expressed as

leverage(X→Y,D)

= cover(X,D) × (confidence(X→Y,D) − cover(Y,D)) .

Expressed in this form, it has also been called weighted relative accuracy
(Todorovski et al., 2000).

Leverage is of interest because it measures the number of additional
records that an interaction involves above and beyond those that should
be expected if one assumes independence. This directly represents the
volume of an effect and hence will often directly relate to the ultimate
measure of interest to the user such as the magnitude of the profit
associated with the interaction between the antecedent and consequent.
This contrasts with the traditional association rule measure

lift(X→Y) =
support(X→Y)

cover(X) × cover(Y)

which is the ratio of the observed frequency with which the consequent
occurs in the context of the antecedent over that expected if the two
were independent. A rule with high lift may be of little interest because
it has low coverage and hence applies in very few circumstances. This
might be provided as justification for the application of minimum sup-
port constraints in conjunction with the lift measure, but this is at best
a crude approximate fix to the problem. It results in a step function
with the very undesirable property that the addition of one more record
in support of a rule with very high lift can transform it from being of
no interest whatsoever, because it fails to meet a minimum support
criterion, to being of very high interest, because it now meets that
criterion and has high lift. In contrast to the use of support and lift as
measures of interest, the use of leverage ensures both that rules with
very low support will receive low values and that there are no artificial
threshold values at which extreme changes in the objective function
occur. For these reasons we use leverage as the value measure λ for the
purposes of this paper. Note, however, that the algorithm we present is

"KORD preprint".tex; 13/12/2004; 9:27; p.7

8 Geoffrey I. Webb & Songmao Zhang

{}

{a}

{b} {a, b}

{c}
{a, c}

{b, c} {a, b, c}

{d}

{a, d}

{b, d} {a, b, d}

{c, d}
{a, c, d}

{b, c, d} {a, b, c, d}

Figure 1. A fixed-structure search space

independent of this measure and that many of the auxiliary techniques
proposed extend directly to other measures of rule value.

5. The OPUS Search Algorithm

We propose an algorithm for solving a useful class of k-optimal rule
discovery tasks based on the OPUS (Webb, 1995) search algorithm.
OPUS provides efficient search for subset selection, such as selecting
a subset of available conditions that optimizes a specified measure. It
was developed for classification rule discovery. Prior to the develop-
ment of OPUS, classification rule discovery algorithms that performed
complete search ordered the available conditions and then conducted a
systematic search over the ordering in such a manner as to guarantee
that each subset was investigated once only, as illustrated in Figure 1.

Critical to the efficiency of such search is the ability to identify and
prune sections of the search space that cannot contain solutions to the
search task. This is usually achieved by identifying subsets that cannot
appear in a solution. For example, it might be determined that no su-
perset of {b} can be a solution in the search space illustrated in Figure 1.
Under previous search algorithms (Clearwater and Provost, 1990; Mor-
ishita and Nakaya, 2000; Provost et al., 1999; Rymon, 1992; Segal and
Etzioni, 1994), the search space below such a node was pruned, as
illustrated in Figure 2. In this example, pruning removes one subset
from the search space.

This contrasts with the pruning that would occur if all supersets of
the pruned subset were removed from the search space, as illustrated
in Figure 3. This optimal pruning almost halves the search space below
the parent node.

"KORD preprint".tex; 13/12/2004; 9:27; p.8

K-Optimal Rule Discovery 9

{}

{a}

{b} ×

{c}
{a, c}

{b, c} {a, b, c}

{d}

{a, d}

{b, d} {a, b, d}

{c, d}
{a, c, d}

{b, c, d} {a, b, c, d}

Figure 2. Pruning a branch from a fixed-structure search space

{}

{a}

{b} ×

{c}
{a, c}
× ×

{d}

{a, d}
× ×

{c, d}
{a, c, d}

× ×

Figure 3. Pruning all nodes containing a single condition from a fixed-structure
search space

OPUS achieves the pruning illustrated in Figure 3 by maintaining
a set of available items at each node in the search space. When adding
an item i to the current subset s results in a subset s ∪ {i} that
can be pruned from the search space, i is simply removed from the
set of available items at s that is propagated below s. As supersets
of s ∪ {i} below s can only be explored after s ∪ {i}, this simple
mechanism with negligible computational overheads guarantees that
no superset of a pruned subset will be generated in the search space
below the parent of the pruned node. This greatly expands the scope of
a pruning operation from that achieved by previous algorithms which
only extended to the space directly beneath the pruned node. Further
pruning can be achieved by reordering the search space (Webb, 1995).
However, this proves to be infeasible in k-optimal rule discovery search
as there is a large amount of information associated with each node in
the search space (specifically, the set of records covered by the current
antecedent) and it is more efficient to utilize this information when it
is first calculated than to either store it for later use or recalculate it

"KORD preprint".tex; 13/12/2004; 9:27; p.9

10 Geoffrey I. Webb & Songmao Zhang

at a later stage as would be required if the nodes were reordered before
expansion.

Note that nodes are pruned only when they need not be explored
during the search. Nodes may need to be explored even when they are
not candidate solutions because candidate solutions might occur deeper
in the search space below those nodes. Pruning is applied only when
it is possible to guarantee that the search space below a node cannot
contain any rule in the solution to the discovery task. In consequence,
OPUS does not require either monotonicity or anti-monotonicity from
its objective function. It requires only that the value of the objective
function can be bounded so that branch and bound techniques can
exclude sections of the search space from exploration.

It is interesting to observe that while the rule discovery systems
Max-Miner and Dense-Miner have been described as using SE-Tree
search (Bayardo, 1998; Bayardo et al., 2000), they are perhaps more
accurately described as using OPUS search, as they use both the prop-
agation of a set of available items and search space reordering, two
strategies that distinguish OPUS search from SE-Tree search.

6. The KORD Algorithm

The KORD algorithm extends the OPUS search algorithm to k-optimal
rule discovery (Webb, 2000). OPUS supports search through spaces of
subsets. Previous rule discovery tasks to which OPUS and related algo-
rithms have been applied (Bayardo, 1998; Bayardo et al., 2000; Webb,
1995) have required that the consequent of each of the rules discovered
be a fixed ‘class’ value. Hence it has been necessary only to explore the
space of subsets of conditions that may form an antecedent for that con-
sequent. In contrast, the k-optimal rule discovery task requires search
through the space of pairs 〈a ⊆ C, c ∈ C〉, where a is the antecedent and
c the consequent of rule. KORD achieves this by performing OPUS
search through the space of antecedents, maintaining at each node a
set of potential consequents, each of which is explored at each node.

KORD relies upon there being a measure of rule value and an up-
per limit k on the number of rules to be returned. These are used
to prune the search space. This contrasts with the frequent itemset
approach that uses a constraint on minimum support to prune the
search space. KORD can also perform pruning by utilizing additional
constraints such as the traditional association rule discovery constraints
on support and confidence or lift. The solution to a KOtask is the set
of rules that optimize the measure of value within those that satisfy
all the constraints. Note that it may not be apparent when a rule is

"KORD preprint".tex; 13/12/2004; 9:27; p.10

K-Optimal Rule Discovery 11

encountered whether or not it is in the solution. For example, if we are
seeking the 100 rules with the highest leverage, we may not know the
cutoff value for leverage until the search has been completed.

To manage this problem, KORD is restricted to KOtasks
〈C,D,M, λ, k〉 that satisfy the following property:

∀R ⊆ {W→Z |W ⊆ C ∧ Z ⊆ C},

solution(〈C,D,M, λ, k〉) ∩ R

⊆ solution(〈C,D,M∧ X→Y ∈ R, λ, k〉) (3)

This condition states that for any subset R of the search space over
which the KOtask is performed, the set of rules from R that are
contained in the solution to the KOtask must be a subset of the
solution to an otherwise identical KOtask for which the solution is
constrained to rules in R. This allows an incremental search to be
performed. In this search, rules in the search space are considered
one at a time. Let S represent the set of rules in the search space
explored so far. A record currentSolution is maintained such that
currentSolution = solution(〈C,D,M∧X→Y ∈ S, λ, k〉). For each new
rule r considered during the search, the algorithm need only update
currentSolution by

− adding r if r ∈ solution(〈C,D,M∧ X→Y ∈ (S ∪ {r}) , λ, k〉), and

− removing any z ∈ currentSolution if z 6∈ solution(〈C,D,M ∧
X→Y ∈ (S ∪ {r}) , λ, k〉).

Appendix A presents a proof that the update strategy for
currentSolution is sufficient and necessary to ensure that on termi-
nation currentSolution = solution(〈C,D,M, λ, k〉).

This simple constraint, (3), greatly simplifies the search task. The
constraint is not unduly restrictive as it is satisfied by all λ and M that
we have considered to date. Note in particular that it allows monotone
and anti-monotone constraints, as well as constraints that are neither.
Our algorithm uses branch-and-bound techniques, and hence relies on
neither monotonicity nor anti-monotonicity in its constraints. The ob-
jective function, leverage, used in our experiments is non-monotone.
The addition of a new condition to an antecedent can raise, lower or
leave unaffected the leverage of a rule.

We limit the rules discovered to rules with a single condition in the
consequent. This is because

− in our experience users have primarily been interested in rules with
consequents containing a single condition,

"KORD preprint".tex; 13/12/2004; 9:27; p.11

12 Geoffrey I. Webb & Songmao Zhang

− for many applications the introduction of rules with multiple con-
dition consequents greatly increases the number of rules discovered
for any given minimum value of a rule value measure, and

− restricting the search space to single element consequents greatly
decreases the amount of computation required for rule discovery.

Table I displays the algorithm that results from extending the OPUS
search algorithm (Webb, 1995) to obtain efficient search for this rule
discovery task. The algorithm is presented as a recursive procedure
with three arguments:

CurrentLHS: the set of conditions in the antecedent of the rule
currently being considered.

AvailableLHS: the set of conditions that may be added to the
antecedent of rules to be explored below this point

AvailableRHS: the set of conditions that may appear on the conse-
quent of a rule in the search space at this point and below

The algorithm also maintains a global variable currentSolution, the
solution to the KOtask constrained to the rules in the search space
considered so far.

To solve KOtask 〈C,D,M, λ, k〉, currentSolution is initialized
to ∅ and the initial call to KORD is made with CurrentLHS=∅,
AvailableLHS=C, and AvailableRHS=C.

The KORD algorithm is a search procedure that starts with rules
with one condition in the antecedent and searches through successive
rules formed by adding conditions to the antecedent. It loops through
each condition in AvailableLHS and adds it to CurrentLHS to form
the NewLHS. For the NewLHS, it loops through each condition c
in AvailableRHS to check whether NewLHS→{c} might be in the
solution. After the AvailableRHS loop, the procedure is recursively
called with the arguments NewLHS, NewAvailableLHS and NewAvail-
ableRHS. The two latter arguments are formed by removing the pruned
conditions from AvailableLHS and AvailableRHS, respectively.

Pruning rules seek to identify areas of the search space that cannot
contain a solution. This is represented within the algorithm by the use
of a predicate insolution(a→c, T) that is true iff the rule a→c is in the
solution to the KOtask, T . The predicate proven(X) is true iff pruning
rules provided to the algorithm prove the proposition X. The use of this
predicate allows us to abstract the algorithm from the sets of pruning
rules that might be used to provide efficient search for a given set of
constraints. The efficiency of KORD will depend critically on the power
of the pruning rules with which it is provided.

"KORD preprint".tex; 13/12/2004; 9:27; p.12

K-Optimal Rule Discovery 13

Table I. The k-optimal rule discovery algorithm

Algorithm: KORD(CurrentLHS,AvailableLHS,AvailableRHS,〈C,D,M, λ, k〉)

1: SoFar := ∅

2: for all P in AvailableLHS do

3: if ¬proven(∀x ⊆ AvailableLHS, y ∈ AvailableRHS :

¬insolution(x ∪ CurrentLHS ∪ {P}→y, 〈C,D,M, λ, k〉)) then

4: NewLHS := CurrentLHS ∪ {P}

5: NewAvailableLHS := SoFar

6: if ¬proven(∀x ⊆ NewAvailableLHS : ∀y ∈ AvailableRHS :

¬insolution(x ∪ NewLHS→y, 〈C,D,M, λ, k〉)) then

7: NewAvailableRHS := AvailableRHS - P

8: if ¬proven(∀y ∈ NewAvailableRHS :

¬insolution(NewLHS→y, 〈C,D,M, λ, k〉)) then

9: for all Q in NewAvailableRHS do

10: if proven(∀x ⊆ NewAvailableLHS :

¬insolution(x ∪ NewLHS→Q, 〈C,D,M, λ, k〉)) then

11: NewAvailableRHS := NewAvailableRHS - Q

12: else

13: if ¬proven(¬insolution(NewLHS→Q, 〈C,D,M, λ, k〉)) then

14: if insolution(NewLHS→Q, 〈C,D,M ∧ X→Y ∈

currentSolution ∪ {NewLHS→Q}, λ, k〉) then

15: add NewLHS → Q to currentSolution

16: remove from currentSolution any rule

W→Z : ¬insolution(W→Z, 〈C,D,M∧ X→Y ∈

currentSolution ∪ {NewLHS→Q}, λ, k〉)

17: tune the settings of the constraints

18: end if

19: if proven(∀x ⊆ NewAvailableLHS :

¬insolution(x ∪ NewLHS→Q, 〈C,D,M, λ, k〉)) then

20: NewAvailableRHS := NewAvailableRHS - Q

21: end if

22: end if

23: end if

24: end for

25: end if

26: end if

27: if NewAvailableLHS 6= ∅ and NewAvailableRHS 6= ∅ then

28: KORD(NewLHS,NewAvailableLHS,NewAvailableRHS,〈C,D,M, λ, k〉)

29: end if

30: end if

31: SoFar := SoFar ∪ {P}

32: end for

"KORD preprint".tex; 13/12/2004; 9:27; p.13

14 Geoffrey I. Webb & Songmao Zhang

As KORD traverses the space of rules, the minLeverage constraint
is increased dynamically so that it is always the kth leverage value
of all the rules searched so far. Line 15 records the rules satisfying the
current constraints. Whenever adding a rule to currentSolution causes
the number of rules in currentSolution to exceed k, line 16 removes the
unqualified rule whose leverage value ranks (k + 1). When the search
is finished, currentSolution is the solution to the KOtask.

Appendix B proves the correctness of the KORD′ algorithm, a vari-
ant of KORD with all pruning removed. As KORD′ is correct, KORD
will also be correct so long as all the pruning rules are correct.

The worst case complexity of KORD is exponential on the number
of conditions in C as in the worst case no pruning is performed and
the algorithm explores the entire search space. The efficiency of KORD
depends critically, then, upon the efficacy of the pruning rules. The
pruning rules depend upon, k, the rule value measure λ, and the con-
straints M. In the following section, we examine a typical class of KO
tasks, which requires the specification of a value measure and set of
constraints. This enables us to provide examples of some pruning rules
that this combination of measure and constraints allow. We prove the
correctness of the pruning rules. We then present experimental evidence
as to the effectiveness of the KORD algorithm for this example task.

7. An Example KO Task

For the purposes of this example we use leverage as the value measure
for the reasons outlined in Section 4.1. We restrict the set of constraints
M to user specified constraints on the coverage, support, confidence
and size of the antecedent of a rule, together with the constraint that
the consequent contain a single condition only. M can thus be described
by

maxLHSsize denoting the maximum number of conditions allowed on
the antecedent of rule

minCoverage denoting the minimum coverage,

minSupport denoting the minimum support, and

minConfidence denoting the minimum confidence.

In consequence, for this example, CSsolution : {〈C,D,M〉} →
{{X→Y }} is a many-to-one function mapping a CStask to its solution,
satisfying

CSsolution(〈C,D,M〉)

"KORD preprint".tex; 13/12/2004; 9:27; p.14

K-Optimal Rule Discovery 15

= {X→Y | X ⊆ C

∧Y ∈ C

∧ 1 6 |X| 6 maxLHSsize

∧ coverage(X→Y) > minCoverage

∧ support(X→Y) > minSupport

∧ confidence(X→Y) > minConfidence}.

solution : {〈C,D,M, leverage, k〉} → {{X→Y }} is a many-to-many
function mapping a KOtask to its solutions, satisfying

∀s ∈ solution(〈C,D,M, leverage, k〉)

s ⊆ CSsolution(〈C,D,M〉)

∧ |s| ≤ k;

∧¬∃r ∈ solution(〈C,D,M, leverage, k〉) : |r| < |s|

∧¬∃X→Y ∈ s, X ′→Y ′ ∈ CSsolution(〈C,D,M〉) − s :

leverage(X→Y,D) < leverage(X ′→Y ′,D).

In the following sections we provide an example walk through of
the KORD algorithm for a simple example of such a task and present
pruning rules that support tasks of this type.

8. An example walk-through

We illustrate the algorithm with a simple KOtask of the type de-
fined in Section 7, where the conditions C = {a, b, c} and the dataset
D = {{a, b}, {a, b}, {a, c}, {c}}. There are no constraints M, λ =
leverage and k = 2. We assume no pruning techniques are available. In
consequence, the predicate proven always returns false.

Top level call:
CurrentLHS={}, AvailableLHS={a, b, c}, AvailableRHS={a, b, c}

Line 1: SoFar={}
Loop at line 2:

− P=a

NewLHS={a}

NewAvailableLHS={}

NewAvailableRHS={b, c}

"KORD preprint".tex; 13/12/2004; 9:27; p.15

16 Geoffrey I. Webb & Songmao Zhang

Loop at line 9:

• Q=b

CurrentSolution does not yet contain k rules so any rule that
satisfies the constraints M will be added.

CurrentSolution={{a}→{b}λ=0.125}

• Q=c

CurrentSolution still does not yet contain k rules so the new
rule is also added.

CurrentSolution={{a}→{b}λ=0.125, {a}→{c}λ=−0.125}

line 31: SoFar={a}

− P=b

NewLHS={b}

NewAvailableLHS={a}

NewAvailableRHS={a, c}

Loop at line 9:

• Q=a

The value of the new rule {b}→{a}λ=0.125 is greater than
that of the lowest value rule in CurrentSolution, so it replaces
that rule.

CurrentSolution={{a}→{b}λ=0.125, {b}→{a}λ=0.125}

• Q=c

The value of {b}→{c}λ=−0.250 is lower than that of the two
rules in CurrentSolution, so CurrentSolution is unaltered.

Recursive call at line 28:

CurrentLHS={b}

AvailableLHS={a}

AvailableRHS={a, c}

Line 1: SoFar = {}

"KORD preprint".tex; 13/12/2004; 9:27; p.16

K-Optimal Rule Discovery 17

Loop at line 2:

• P=a

NewLHS={a, b}

NewAvailableLHS={}

NewAvailableRHS={c}

Loop at line 9:

∗ Q=c

The value of {a, b}→{c}λ=−0.250 is lower than
that of the two rules in CurrentSolution, so
CurrentSolution is unaltered.

line 31: SoFar={a}

line 31: SoFar={a, b}

− P=c

NewLHS={c}

NewAvailableLHS={a, b}

NewAvailableRHS={a, b}

Loop at line 9:

• Q=a

The value of {c}→{a}λ=−0.125 is lower than that of the two
rules in CurrentSolution, so CurrentSolution is unaltered.

• Q=b

The value of {c}→{b}λ=−0.250 is lower than that of the two
rules in CurrentSolution, so CurrentSolution is unaltered.

Recursive call at line 28:

CurrentLHS={c}

AvailableLHS={a, b}

AvailableRHS={a, b}

Line 1: SoFar = {}

Loop at line 2:

"KORD preprint".tex; 13/12/2004; 9:27; p.17

18 Geoffrey I. Webb & Songmao Zhang

• P=a

NewLHS={a, c}

NewAvailableLHS={}

NewAvailableRHS={b}

Loop at line 9:

∗ Q=b

The value of {a, c}→{b}λ=−0.125 is lower than
that of the two rules in CurrentSolution, so
CurrentSolution is unaltered.

line 31: SoFar={a}

• P=b

NewLHS={b, c}

NewAvailableLHS={a}

NewAvailableRHS={a}

Loop at line 9:

∗ Q=a

The value of {b, c}→{a}λ=0.000 is lower than
that of the two rules in CurrentSolution, so
CurrentSolution is unaltered.

line 31: SoFar={a, b}

Recursive call at line 28:

CurrentLHS={b, c}

AvailableLHS={a}

AvailableRHS={a}

Line 1: SoFar = {}

Loop at line 2:

∗ P=a

NewLHS={a, b, c}

NewAvailableLHS={}

NewAvailableRHS={}

Loop at line 9 iterates over an empty set and
so generates no new rules.

line 31: SoFar={a}

"KORD preprint".tex; 13/12/2004; 9:27; p.18

K-Optimal Rule Discovery 19

line 31: SoFar={a, b, c}

9. Pruning and related techniques

The example walk-through of the algorithm provides a good illustration
of the potential for pruning. The final solution was found after consid-
ering only the first three rules. If the system could have determined at
this point that the remaining search space could not contain any rules
that could be added to the solution, then the search could have been
terminated early. A number of pruning rules for the class of KOtasks
defined in Section 7 are presented in Appendix C, together with proofs
of their correctness.

To illustrate how these rules are applied, we consider the application
of pruning rule 7 at line 10 of the KORD algorithm. This pruning rule
calculates an upper bound on the possible value of leverage for any rule
with Q as the consequent and with the current antecedent NewLHS
or a specialization thereof that can be reached by adding to NewLHS
conditions in NewAvailableLHS. A loose upper bound on leverage is
provided by calculating the leverage of a hypothetical rule that has both
coverage and support equal to the support of NewLHS→Q. When
applied in the above example when NewLHS = {c} and Q = a, the
resulting optimistic value is 0.031. This is less than the lowest value
in the solution so far, indicating that no specialization of {c}→{a}
can be in the solution. As a result, a can be immediately deleted from
NewAvailableRHS (line 11). The same applies when Q = b. As a
result, when line 27 is executed NewAvailableRHS is empty and the
recursive call on line 28 is not made, saving exploration of the rules
{a, c}→{b} and {b, c}→{a}.

9.1. Reducing data accesses

A major computational overhead in rule discovery is accessing the
dataset to evaluate the required statistics with respect to each an-
tecedent, consequent, and antecedent-consequent pair. One of the key
factors in the success of the Apriori algorithm is its success in mini-
mizing the number of such data accesses that are required. In addition
to pruning regions of the search space, another important technique
used in KORD to reduce compute time is to save data access. Data
access is required to evaluate the cover and support of a rule or a set
of conditions. However, data access can be avoided when these values
can be derived from other evidence or it can be determined that the
values will not satisfy the search constraints. Different saving rules can

"KORD preprint".tex; 13/12/2004; 9:27; p.19

20 Geoffrey I. Webb & Songmao Zhang

be adopted at different stages during the search process. Whereas the
pruning rules save data access by discarding the region of the search
space below a node, the saving rules save data access for a node without
removing its branch.

In order to evaluate the number of records covered by set of condi-
tions, the dataset is normally accessed by KORD at least once for each
antecedent (NewLHS) and once for the union of the antecedent and
consequent. Techniques for saving such data accesses are directed at
avoiding the need to perform one or the other of these computations.
Two such techniques are presented in Appendix D.

9.2. Dynamic constraint update

Although the constraints minCoverage, minSupport , and
minConfidence are initialized by the user, during search it may
be possible to derive tighter constraints on these statistics than those
initial values. Such tighter constraints can be used to prune more of
the search space or save the evaluation of rules. Based on Theorems 10,
11 and 12 presented in Appendix D, whenever a new rule is added to
currentSolution at line 15 of the algorithm, all the constraints can be
updated at line 17 according to the rules listed below.

1. If minSupport < minCoverage × minConfidence, then
minSupport = minCoverage × minConfidence.

2. If minCoverage < minSupport , then minCoverage = minSupport .

3. If minSupport < minLeverage, then minSupport = minLeverage.

10. Proof-of-concept experiments

We investigate the computational efficiency of KORD search for
rules that optimize leverage. Experiments are performed on ten large
datasets, nine from the UCI ML and KDD repositories (Blake and
Merz, 2001; Bay, 2001) and one market-basket dataset used in previous
association rule discovery research (Kohavi et al., 2000; Zheng et al.,
2001). These datasets are listed in Table II. In our experiments for
all the datasets, all the conditions available are allowed both in the
antecedent and consequent of rules. Numeric attributes were discretized
into three sub-ranges, each containing as close as possible to one third
of the records.

It might be thought that traditional association rule techniques
could be applied to this problem by first finding all frequent itemsets

"KORD preprint".tex; 13/12/2004; 9:27; p.20

K-Optimal Rule Discovery 21

Table II. Datasets for experiments

name records attributes values

BMS-WebView-1 59,602 497 497

connect-4 67,557 43 129

covtype 581,012 55 125

ipums.la.99 88,443 61 1,883

kddcup98 52,256 480 4,244

mush 8,124 23 127

pendigits 10,992 17 58

shuttle 58,000 10 34

splice junction 3,177 61 243

ticdata2000 5,822 86 709

and then generating all rules from those itemsets, sorting them on
leverage, and discarding all but the top n. We evaluate the feasibility of
this approach by applying Borgelt’s (2000) efficient implementation of
Apriori. We do not include recent alternatives to Apriori in this study
as it has been argued elsewhere (Zheng et al., 2001) that they suffer the
same performance degradation as Apriori on tasks for which minimum
support is set to a level that results in excessively large numbers of
frequent itemsets, as is the case for the current task with respect to
many real world datasets.

A difficulty with applying the frequent itemset approach to discov-
ering the k rules with highest leverage is that there does not appear
to be any way to determine apriori what minimum support level to
employ. How does one ensure that the minimum support constraint
applied does not prevent the generation of one of the k rules with the
highest leverage? However, it follows from the definitions of leverage
and support that leverage(X→Y) ≤ support(X→Y). Hence, if rules R
are derived from the set of itemsets {i | support(i) ≥ kth}, where kth
is the kth highest leverage a rule in R, then it follows that the k rules
with highest leverage derived from those itemsets are the k rules with
highest leverage that would be derived without a minimum support
constraint. Using this insight, an iterative process could repeatedly gen-
erate frequent itemsets at gradually lowering values of minSupport and
generate rules R therefrom until leverage(Rk) ≥ minSupport , where
leverage(Rk) is the kth highest value of leverage of a rule in R. To give
an indication of a lower bound on the overheads of such an approach,
we use Apriori with minSupport set to the minimum value for leverage
of the 1000 rules with highest leverage as discovered by KORD.

"KORD preprint".tex; 13/12/2004; 9:27; p.21

22 Geoffrey I. Webb & Songmao Zhang

It might be thought that the earlier OPUS (Webb, 1995), Max-Miner
(Bayardo, 1998) and Dense-Miner (Bayardo et al., 2000) algorithms,
upon which KORD builds, should also be comparators against which
KORD is evaluated. However, this is not feasible, as those algorithms
require that the consequent be restricted to a single pre-specified value,
and hence are not capable of performing the k-optimal rule discovery
task. It is, indeed, this very limitation that KORD has been designed
to overcome. It might be thought that standard OPUS search could
simply be repeated once for each possible consequent. Indeed, our first
attempt to tackle the k-optimal rule discovery task pursued exactly
this strategy. This proves extremely inefficient, however, as much time
can be spent finding the k-optimal rules with respect to a consequent
for which the most interesting rule does not appear in the solution to
the KOtask .

In all the experiments, KORD seeks the top 1000 rules on leverage
within the constraints of the maximum number of conditions in the
antecedent of a rule is 4 and the maximum number of conditions in the
consequent of a rule is 1. The same maximum antecedent and conse-
quent size used for KORD were also used for Apriori. The experiments
were performed on a Linux server with dual 933MHz CPUs, 1.5Gb
RAM, and 4Gb virtual memory.

Table III shows the efficiency of KORD and Apriori on the ten large
datasets. For KORD this table presents the compute time in hours,
minutes, and seconds; the number of rules evaluated; and the minimum
leverage for a rule in the top 1000 rules on leverage. For Apriori this
table lists the compute time for frequent itemset generation in hours,
minutes and seconds, and the number of itemsets generated.

Comparing CPU times we can see that on every dataset other than
BMS-WebView-1, for which compute times are extremely small, KORD
requires less compute time than Apriori. For kddcup98 Apriori runs out
of memory when generating itemsets. This supports previous analyses
of the inefficiency of the frequent itemset strategy for dense datasets
(Bayardo, 1998). It also suggests that KORD provides a more widely
applicable approach to the k-optimal rule discovery problem than Apri-
ori when the user seeks to discover a limited number of rules that
optimize a value measure.

11. Computational complexity and scalability

The worst-case complexity of KORD is exponential on the number
of conditions that are available for inclusion in the antecedent and
consequent, as in the worst case no pruning is possible and the entire

"KORD preprint".tex; 13/12/2004; 9:27; p.22

K-Optimal Rule Discovery 23

Table III. Efficiency of KORD and Apriori on real world datasets

KORD Apriori

time rules min. time itemsets

Datasets h:m:s evaluated leverage h:m:s generated

BMS-WebView-1 0:0:4 91,244 0.0019 0:0:1 150,136

connect-4 0:0:55 94,682 0.1279 1:0:2 2,360,136

covtype 0:8:3 155,489 0.2212 30:2:55 6,070,334

ipums.la.99 0:0:29 104,582 0.2424 1:30:6 2,649,154

kddcup98 1:31:30 6,259,666 0.2431 Not enough memory

mush 0:0:1 12,892 0.1558 0:0:4 47,867

pendigits 0:0:1 50,733 0.0698 0:0:3 25,108

shuttle 0:0:1 10,029 0.0504 0:0:4 6,451

splice junction 0:0:6 2,160,784 0.0454 0:0:38 2,084,694

ticdata2000 0:0:33 187,247 0.1899 0:38:47 13,216,656

rule space must be explored. If there are k conditions that may appear
in an antecedent then the space of possible antecedents is 2k. If any
one of these k conditions may also appear in the consequent, then the
space of possible rules is of order O(2k+1), despite a restriction that
a condition may not appear in both the antecedent and conclusion of
the same rule. The efficiency of the algorithm depends critically, then,
upon the effectiveness of the pruning mechanisms for a given task.
As the experiments above have demonstrated, for a number of larger
real-world datasets, efficient search by leverage is a reality.

This raises the question, however, of how well will the algorithm
scale to even larger datasets. A fundamental limitation of the current
algorithm is that it requires that all data be retained in memory during
search, as it requires frequent assessment of relevant statistics. With
current hardware, this restricts application of the algorithm to datasets
of size measured in gigabytes. It is conceivable, however, that a variant
of the algorithm could be created that uses the strategy developed for
Dense-Miner (Bayardo et al., 2000), performing breadth-first search
with two stages at each level, the first generating candidate rules and
the second evaluating them all in a single pass through the data.

In theory, the computation required by KORD should increase lin-
early with respect to the size of the data, as the size of the data affect
directly only the process of counting the statistics used to evaluate
a rule. To assess this, we took the largest of our datasets, covtype,
and formed sample datasets containing the first 25%, 50%, 75% and
100% of the data. We also formed larger datasets by appending each of

"KORD preprint".tex; 13/12/2004; 9:27; p.23

24 Geoffrey I. Webb & Songmao Zhang

0 25 50 75 100 125 150 175 200

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

�

�

�

�

�

�

�

�

Size (%)

T
im

e
in

se
co

n
d
s

Figure 4. Compute time vs data set size for variants of the covtype dataset

these sample datasets to the original, resulting in four further datasets
containing 125%, 150%, 175% and 200% of the original amount of
data, albeit with some records duplicated. Figure 4 plots the size of
these datasets against the compute time required to perform the task
described in Section 10.

Inspection of the resulting graph reveals that the points 25%, 50%,
75% and 100% appear to form a curve that it slightly super-linear.
However, it is clear that this effect is not due solely to the direct in-
creased costs of processing the additional data, as the processing time
for 200%, in which all data points are duplicated, is almost exactly
twice that of 100%. Rather, due to the characteristics of this data,
as the number of data points increases up to 100%, there are more
combinations of conditions that achieve sufficient support to make them
credible candidates during search. Hence the number of rules explored
increases. Figure 5 plots the number of rules explored at each data set
size. As can be seen, there is an increase in the number of rules up
until the stage when 100% of the data is used. When data elements are
simply duplicated, however, no more rules need to be considered. In
this case, the increase in execution time reflects only an increase in the
time taken to evaluate the statistics for each rule that is considered.

To assess whether the number of rules evaluated can always be
expected to increase as the number of unique data points increases, we

"KORD preprint".tex; 13/12/2004; 9:27; p.24

K-Optimal Rule Discovery 25

0 25 50 75 100 125 150 175 200

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

�

�

�

�

��

�

�

Size

N
u
m

b
er

of
ru

le
s

ev
al

u
at

ed

Figure 5. Number of rules evaluated vs data set size for variants of the covtype
dataset

repeated the experiment with the next largest data set, ipums.la.99. As
the effect of duplicating data elements does not appear to need further
investigation, we used only data sets containing 25%, 50%, 75% and
100% of the data. The compute time and number of rules evaluated
are plotted in Figures 6 and 7. It is evident that there is no simple
relationship between data set size and the number of rules that need to
be explored. As a result, the amount of time taken varies at different
rates over different increases in data size. Processing all the data takes
29 seconds which is less than 4 times the 8 seconds taken to process
25% of the data. We can expect the increase on average to be linear
on the number of records, but relationships within the data may mean
that additional records result in the need to explore either more or
fewer potential rules, resulting in concomitant increases or decreases in
computation.

"KORD preprint".tex; 13/12/2004; 9:27; p.25

26 Geoffrey I. Webb & Songmao Zhang

0 25 50 75 100

0

5

10

15

20

25

30

�

�

�

�

Size (%)

T
im

e
in

se
co

n
d
s

Figure 6. Compute time vs data set size for variants of the ipums.la.99 dataset

0 25 50 75 100

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000�

�

��

Size

N
u
m

b
er

of
ru

le
s

ev
al

u
at

ed

Figure 7. Number of rules evaluated vs data set size for variants of the ipums.la.99
dataset

12. Conclusions

Traditional machine learning seeks a single model that describes the
data. In contrast, exploratory rule discovery finds multiple potentially
interesting models, empowering the user to select between those models
using criteria that may be difficult to articulate in a form that could
be utilized by a knowledge discovery system.

"KORD preprint".tex; 13/12/2004; 9:27; p.26

K-Optimal Rule Discovery 27

Association rule discovery is the most widely used exploratory rule
discovery technique. However, its support-confidence framework limits
its applicability. In particular, where minimum support is not a relevant
criterion for selecting rules, the frequent itemset strategies that have
been developed for association rule discovery risk failing to identify
interesting rules.

We have presented a new framework for rule discovery that we call k-
optimal rule discovery, together with a scalable algorithm for tackling
k-optimal rule discovery tasks. The computational complexity of the
algorithm is linear with respect to data set size, although different sets
of data imply different search spaces which may require greater or lesser
computation to explore. We have demonstrated that KORD can effi-
ciently solve an interesting class of k-optimal rule discovery task, finding
the 1000 rules with the highest leverage. We have further demon-
strated that it is difficult to tackle this task using the frequent itemset
framework pioneered within the association rule discovery paradigm.

An important benefit of the k-optimal rule discovery framework is
the ability to impose and gain computational benefit from contraints
on the maximum number of rules to discover. A common complaint
levelled against association rule discovery is that the user cannot con-
trol how many rules are returned. The number of rules returned is
controlled indirectly by the minimum support constraint. Small changes
in this constraint can transform a problem for which very few rules are
discovered to one for which millions of rules are discovered. In the k-
optimal rules discovery framework, the user places an upper limit k
on the number of rules to discover. This constraint ensures that the
user is only presented with the most interesting rules according to the
specified measure of rule value. It also speeds up the rule discovery task
by allowing pruning of areas of the search space that cannot contain
one of the k most valuable rules.

This work demonstrates the efficiency of the KORD algorithm for
one type of useful rule discovery task. It falls to future research to iden-
tify further sets of interesting constraints for k-optimal rule discovery
and develop pruning rules that will facilitate their efficient solution.

Acknowledgements

This research has been supported by the Australian Research Council
under grant DP0450219. We are grateful to Mike Pazzani for suggesting
the term k-optimal rule discovery.

"KORD preprint".tex; 13/12/2004; 9:27; p.27

28 Geoffrey I. Webb & Songmao Zhang

Appendix

A. Proof of sufficiency and necessity of update strategy

The following theorems prove that the update strategy for
currentSolution is sufficient and necessary to ensure that on termi-
nation currentSolution = solution(〈C,D,M, λ, k〉).

Theorem 1 (Sufficiency of currentSolution). Suppose KOtask =
〈C,D,M, λ, k〉. For any S ⊆ {X→Y |X ⊆ C ∧ Y ⊆ C}, let
currentSolution = solution(〈C,D,M ∧ X→Y ∈ S, λ, k〉). For any
s ∈ solution(〈C,D,M, λ, k〉) ∩ S, s ∈ currentSolution holds.

This follows directly from (3).

Theorem 2 (Necessity of currentSolution). Suppose KOtask =
〈C,D,M, λ, k〉. For any S ⊆ {X→Y |X ⊆ C ∧ Y ⊆ C}, let
currentSolution = solution(〈C,D,M ∧ X→Y ∈ S, λ, k〉). For any
s ∈ currentSolution, s ∈ solution(〈C,D,M, λ, k〉) ∩ S holds.

Proof. Assume there exists a rule s1 satisfies s1 ∈ currentSolution but
s1 /∈ solution(〈C,D,M, λ, k〉) ∩ S. So s1 /∈ solution(〈C,D,M, λ, k〉)
or s1 /∈ S holds. If s1 /∈ solution(〈C,D,M, λ, k〉), then
s1 /∈ solution(〈C,D,M ∧ X→Y ∈ S, λ, k〉), contradicting s1 ∈
currentSolution; if s1 /∈ S, obviously s1 /∈ solution(〈C,D,M∧X→Y ∈
S, λ, k〉), contradicting s1 ∈ currentSolution. Therefore s1 does not
exist.

Due to the following theorem, it is not necessary to keep track of S.
Rather, it is sufficient to update currentSolution as each rule is added
to S.

Theorem 3 (Sufficiency of addition to currentSolution). Sup-
pose KOtask = 〈C,D,M, λ, k〉. For any S ⊆ {X→Y |X ⊆ C ∧ Y ⊆ C}
and rule r /∈ S, let currentSolution = solution(〈C,D,M ∧ X→Y ∈
S, λ, k〉) and currentSolution′ = solution(〈C,D,M ∧ X→Y ∈ S ∪
{r}, λ, k〉). The following holds.

solution(〈C,D,M∧ X→Y ∈ currentSolution ∪ {r}, λ, k〉)

⊆ currentSolution′ (4)

Proof. Assume there exists a rule s1 that satisfies

s1 ∈ solution(〈C,D,M∧ X→Y ∈ currentSolution ∪ {r}, λ, k〉) (5)

but s1 /∈ currentSolution′ which is

s1 /∈ solution(〈C,D,M∧ X→Y ∈ S ∪ {r}, λ, k〉) (6)

"KORD preprint".tex; 13/12/2004; 9:27; p.28

K-Optimal Rule Discovery 29

According to the theorem of sufficiency of currentSolution, the
following holds.

solution(〈C,D,M, λ, k〉) ∩ (S ∪ {r}) (7)

⊆ solution(〈C,D,M∧ X→Y ∈ S ∪ {r}, λ, k〉)

From (6) and (7), we obtain

s1 /∈ solution(〈C,D,M, λ, k〉) ∩ (S ∪ {r}) (8)

From (5) we obtain s1 ∈ currentSolution ∪ {r}. Let us first assume
s1 ∈ currentSolution, which is s1 ∈ solution(〈C,D,M ∧ X→Y ∈
S, λ, k〉). According to the theorem of necessity of currentSolution,
s1 ∈ solution(〈C,D,M, λ, k〉) ∩ S holds. Thus s1 ∈ S. So s1 ∈ S ∪ {r}.
So s1 ∈ solution(〈C,D,M, λ, k〉) ∩ (S ∪ {r}) holds, contradicting (8).

Now let us assume s1 ∈ {r}. This means s1 ∈ S ∪ {r}. From
(5) and according to the theorem of necessity of currentSolution,
s1 ∈ solution(〈C,D,M, λ, k〉) ∩ (currentSolution ∪ {r}) holds. Thus
s1 ∈ solution(〈C,D,M, λ, k〉). From s1 ∈ S ∪ {r}, we obtain s1 ∈
solution(〈C,D,M, λ, k〉) ∩ (S ∪ {r}) holds, contradicting (8). Thus s1

does not exist. It follows that (4) holds.

Actually, the necessity of addition to currentSolution also holds, as
shown in the following theorem.

Theorem 4 (Necessity of addition to currentSolution). Suppose
KOtask = 〈C,D,M, λ, k〉. For any S ⊆ {X→Y |X ⊆ C ∧ Y ⊆ C} and
rule r /∈ S, let currentSolution = solution(〈C,D,M∧X→Y ∈ S, λ, k〉)
and currentSolution′ = solution(〈C,D,M ∧ X→Y ∈ S ∪ {r}, λ, k〉).
The following holds.

currentSolution′ (9)

⊆ solution(〈C,D,M∧ X→Y ∈ currentSolution ∪ {r}, λ, k〉)

Proof. For any s ∈ currentSolution′, which means s ∈
solution(〈C,D,M∧X→Y ∈ S∪{r}, λ, k〉), according to the theorem of
necessity of currentSolution, s ∈ solution(〈C,D,M, λ, k〉) ∩ (S ∪ {r})
holds. Thus

s ∈ solution(〈C,D,M, λ, k〉) (10)

and s ∈ S ∪ {r} holds. Let us first assume s ∈ S. From (10),
s ∈ solution(〈C,D,M, λ, k〉) ∩ S. According to the theorem of suffi-
ciency of currentSolution, s ∈ solution(〈C,D,M∧X→Y ∈ S, λ, k〉) =
currentSolution. Thus s ∈ currentSolution ∪ {r}. Now let us assume
s ∈ {r}. Obviously s ∈ currentSolution ∪ {r} holds. Therefore we
obtain

s ∈ currentSolution ∪ {r} (11)

"KORD preprint".tex; 13/12/2004; 9:27; p.29

30 Geoffrey I. Webb & Songmao Zhang

Table IV. The k-optimal rule discovery algorithm without pruning

Algorithm: KORD′(CurrentLHS,AvailableLHS,AvailableRHS)

1: SoFar := ∅

2: for all P in AvailableLHS do

3: NewLHS := CurrentLHS ∪ {P}

4: NewAvailableLHS := SoFar

5: NewAvailableRHS := AvailableRHS - P

6: for all Q in NewAvailableRHS do

7: if insolution(NewLHS→Q, 〈C,D,M∧ X→Y ∈

currentSolution ∪ {NewLHS→Q}, λ, k〉) then

8: add NewLHS → Q to currentSolution

9: remove from currentSolution any rule

W→Z : ¬insolution(W→Z, 〈C,D,M∧ X→Y ∈

currentSolution ∪ {NewLHS→Q}, λ, k〉)

10: end if

11: end for

12: if NewAvailableLHS 6= ∅ and NewAvailableRHS 6= ∅ then

13: KORD′(NewLHS,NewAvailableLHS,NewAvailableRHS)

14: end if

15: SoFar := SoFar ∪ {P}

16: end for

From (10) and (11), s ∈ solution(〈C,D,M, λ, k〉)∩ (currentSolution∪
{r}). According to the theorem of sufficiency of currentSolution, we
obtain s ∈ solution(〈C,D,M∧ X→Y ∈ currentSolution ∪ {r}, λ, k〉).
Thus (9) holds.

B. Correctness of the KORD algorithm without pruning

By removing all the pruning in KORD, we get the KORD′ algorithm
shown in Table IV. The correctness of KORD′ is proven by its unique-
ness and completeness. We first prove the completeness of KORD′ in
the following theorem.

Theorem 5 (Completeness). Suppose KOtask = 〈C,D,M, λ, k〉.
For any CurrentLHS, AvailableLHS ⊆ C and AvailableRHS ⊆ C
satisfying AvailableLHS 6= ∅, AvailableRHS 6= ∅, CurrentLHS ∩
AvailableLHS = ∅ and CurrentLHS ∩ AvailableRHS = ∅, let
AvailableLHS = {P1, · · · , Pn} where n > 1 and P1, · · · , Pn ∈ C,
let SEARCHED(CurrentLHS, {P1, · · · , Pm}, AvailableRHS) denote

"KORD preprint".tex; 13/12/2004; 9:27; p.30

K-Optimal Rule Discovery 31

the set of rules KORD′(CurrentLHS, AvailableLHS, AvailableRHS) has
searched after the loop from P1 to Pm at line 2 where 1 6 m 6 n, the
following holds.

SEARCHED(CurrentLHS, {P1, · · · , Pm}, AvailableRHS) (12)

= {CurrentLHS ∪ L→{Q} | L 6= ∅

∧L ⊆ {P1, · · · , Pm}

∧Q ∈ AvailableRHS

∧Q /∈ L}

Proof. The proof is by induction on m. For the basis, it is readily seen
that the theorem is true when m = 1, that is,

SEARCHED(CurrentLHS, {P1}, AvailableRHS) (13)

= {CurrentLHS ∪ {P1}→{Q} | Q ∈ AvailableRHS ∧ Q 6= P1}

For the inductive hypothesis, assume that the theorem is true for 1 6

m 6 k. We will prove that the theorem is true for m = k + 1. When
KORD′ loops at line 2 until Pk+1,

SEARCHED(CurrentLHS, {P1, · · · , Pk, Pk+1}, AvailableRHS)

is composed of two parts, one is

SEARCHED(CurrentLHS, {P1, · · · , Pk}, AvailableRHS)

, and the other is the set of rules KORD′ searches from lines 3 to 15
for Pk+1. For Pk+1, from lines 3 to 11, KORD′ searches

{CurrentLHS ∪ {Pk+1}→{Q}|Q ∈ AvailableRHS ∧ Q 6= Pk+1}

and at line 13,

KORD′(CurrentLHS ∪ {Pk+1}, {P1, · · · , Pk}, AvailableRHS)

is called since at this point

SoFar = {P1, · · · , Pk}.

Applying the inductive hypothesis, we obtain:

SEARCHED(CurrentLHS, {P1, · · · , Pk, Pk+1}, AvailableRHS)

= SEARCHED(CurrentLHS, {P1, · · · , Pk}, AvailableRHS)

∪ {CurrentLHS ∪ {Pk+1}→{Q} | Q ∈ AvailableRHS
∧ Q 6= Pk+1}

"KORD preprint".tex; 13/12/2004; 9:27; p.31

32 Geoffrey I. Webb & Songmao Zhang

∪ SEARCHED(CurrentLHS ∪ {Pk+1},
{P1, · · · , Pk},
AvailableRHS)

= SEARCHED(CurrentLHS, {P1, · · · , Pk}, AvailableRHS)

∪ {CurrentLHS ∪ {Pk+1}→{Q} | Q ∈ AvailableRHS
∧ Q 6= Pk+1}

∪ {CurrentLHS ∪ {Pk+1} ∪ L1→{Q} |
L1 6= ∅
∧ L1 ⊆ {P1, · · · , Pk}
∧ Q ∈ AvailableRHS
∧ Q /∈ L1 ∪ {Pk+1}}

= SEARCHED(CurrentLHS, {P1, · · · , Pk}, AvailableRHS)

∪ {CurrentLHS ∪ {Pk+1} ∪ L1→{Q} |
L1 ⊆ {P1, · · · , Pk}
∧ Q ∈ AvailableRHS
∧ Q /∈ L1 ∪ {Pk+1}}

= {CurrentLHS ∪ L→{Q} | L 6= ∅
∧ L ⊆ {P1, · · · , Pk}
∧ Q ∈ AvailableRHS
∧ Q /∈ L}

∪ {CurrentLHS ∪ {Pk+1} ∪ L1→{Q} |
L1 ⊆ {P1, · · · , Pk}
∧ Q ∈ AvailableRHS
∧ Q /∈ L1 ∪ {Pk+1}}

= {CurrentLHS ∪ L→{Q} | L 6= ∅
∧ L ⊆ {P1, · · · , Pk, Pk+1}
∧ Q ∈ AvailableRHS
∧ Q /∈ L}

proving the theorem.

For any KOtask = 〈C,D,M, λ, k〉, according to the theorem of suffi-
ciency of addition to currentSolution, the variable currentSolution
at line 8 in KORD′ always records solution(〈C,D,M ∧ X→Y ∈
S ∪ {r}, λ, k〉) where S is the search space considered so far and r is
the current rule being considered. According to its completeness, when
it finishes, KORD′ has searched all the rules, thus what the variable
currentSolution records now is solution(〈C,D,M, λ, k〉). This proves
the uniqueness of KORD′.

"KORD preprint".tex; 13/12/2004; 9:27; p.32

K-Optimal Rule Discovery 33

C. Pruning rules

C.1. Properties of the rules in the solution of KOtask

To facilitate the analysis of the pruning rules, we analyze some neces-
sary properties of KOtasks and their solutions. Before presenting the
theorems, we give the following lemma.

Observation 1 (Subset cover). Given KOtask = 〈C,D,M, λ, k〉,
for any S1, S2 ⊆ C, if S1 ⊆ S2, then coverset(S2) ⊆ coverset(S1), and
hence, cover(S2) 6 cover(S1) holds.

Proof. For any d ∈ coverset(S2), from the definition of coverset (1),
S2 ⊆ d holds. Since S1 ⊆ S2, S1 ⊆ d holds. Hence d ∈ coverset(S1). So
coverset(S2) ⊆ coverset(S1) holds.

Observation 2 (Upward closure of coverage). Given KOtask =
〈C,D,M, λ, k〉, for any rule X→Y , if there exists X1 ⊆ X satisfying
cover(X1) < minCoverage, X→Y 6∈ solution(〈C,D,M, λ, k〉).

Proof. According to the definition of KOtask, X1 ⊆ X and Observa-
tion 1, the following holds.

coverage(X→Y) = cover(X) 6 cover(X1) < minCoverage

Hence X→Y 6∈ solution(〈C,D,M, λ, k〉).

Observation 3 (Upward closure of support). Given KOtask =
〈C,D,M, λ, k〉, for any rule X→Y , if there exists Z ⊆ X∪Y satisfying
cover(Z) < minSupport, X→Y 6∈ solution(〈C,D,M, λ, k〉).

Proof. According to the definition of KOtask, Z ⊆ X ∪ Y and
Observation 1, the following holds.

support(X→Y) = cover(X ∪ Y) 6 cover(Z) < minSupport

Hence X→Y 6∈ solution(〈C,D,M, λ, k〉).

Theorem 6 (Lower bound on leverage). Suppose KOtask =
〈C,D,M, λ, k〉. For any rule X→Y , if

cover(Y) > 1 −
minLeverage

cover(X)

or

cover(X) > 1 −
minLeverage

cover(Y)

then
X→Y 6∈ solution(〈C,D,M, λ, k〉).

"KORD preprint".tex; 13/12/2004; 9:27; p.33

34 Geoffrey I. Webb & Songmao Zhang

Proof. Let us first prove the theorem when cover(Y) > 1− minLeverage
cover(X) .

According to the definition of KOtask, we obtain:

leverage(X→Y) = support(X→Y) − cover(X) × cover(Y)

= cover(X ∪ Y) − cover(X) × cover(Y)

From

cover(Y) > 1 −
minLeverage

cover(X)

we obtain

cover(X) × cover(Y) > cover(X) − minLeverage.

Thus leverage(X→Y) satisfies:

leverage(X→Y) < cover(X ∪ Y) − (cover(X) − minLeverage)

= cover(X ∪ Y) − cover(X) + minLeverage.

From Observation 1 we obtain cover(X ∪ Y) 6 cover(X). Thus the
following holds.

leverage(X→Y) < minLeverage

Hence X→Y 6∈ solution(〈C,D,M, λ, k〉). Similarly the theorem is
proved when

cover(X) > 1 −
minLeverage

cover(Y)
.

Theorem 7 (Auxiliary lower bound on leverage). Suppose
KOtask = 〈C,D,M, λ, k〉. For any rule X→Y , if cover(X) × (1 −
cover(X)) < minLeverage, X→Y 6∈ solution(〈C,D,M, λ, k〉).

Proof. Firstly let us assume

cover(X) 6 cover(Y).

It follows that
1 − cover(X) > 1 − cover(Y).

According to the definition of KOtask and Observation 1, we obtain:

leverage(X→Y) = support(X→Y) − cover(X) × cover(Y)

= cover(X ∪ Y) − cover(X) × cover(Y)

6 cover(X) − cover(X) × cover(Y)

= cover(X) × (1 − cover(Y))

6 cover(X) × (1 − cover(X))

< minLeverage

"KORD preprint".tex; 13/12/2004; 9:27; p.34

K-Optimal Rule Discovery 35

Secondly let us assume cover(X) > cover(Y). Thus cover(Y)
cover(X) < 1

holds. According to the definition of KOtask and Observation 1, we
obtain:

leverage(X→Y) = support(X→Y) − cover(X) × cover(Y)

= cover(X ∪ Y) − cover(X) × cover(Y)

6 cover(Y) − cover(X) × cover(Y)

= cover(Y) × (1 − cover(X))

< cover(Y) ×
minLeverage

cover(X)

< minLeverage

So for both cases leverage(X→Y) < minLeverage holds. Hence
X→Y 6∈ solution(〈C,D,M, λ, k〉).

Theorem 8 (Lower bound on confidence). Suppose KOtask =

〈C,D,M, λ, k〉. For any rule X→Y , if cover(Y)
cover(X) < minConfidence,

X→Y 6∈ solution(〈C,D,M, λ, k〉).

Proof. According to the definition of KOtask and Observation 1, we
obtain:

confidence(X→Y) =
support(X→Y)

coverage(X→Y)
=

cover(X ∪ Y)

cover(X)
6

cover(Y)

cover(X)

From
cover(Y)

cover(X)
< minConfidence

it follows that

confidence(X→Y) < minConfidence.

Hence, X→Y 6∈ solution(〈C,D,M, λ, k〉).

Theorem 9 (Full cover). Suppose KOtask = 〈C,D,M, λ, k〉. For
any rule X→Y , if cover(X) = 1 or cover(Y) = 1, leverage(X→Y) = 0
holds.

Proof. When cover(X) = 1, cover(X ∪ Y) = cover(Y) holds. Thus,

leverage(X→Y) = support(X→Y) − cover(X) × cover(Y)

= cover(Y) − cover(Y)

= 0

Similarly the theorem is proved when cover(Y) = 1.

"KORD preprint".tex; 13/12/2004; 9:27; p.35

36 Geoffrey I. Webb & Songmao Zhang

Theorem 10 (Coverage for rules in the solution).
Suppose KOtask = 〈C,D,M, λ, k〉. For any rule X→Y ∈
solution(〈C,D,M, λ, k〉), coverage(X→Y) > minSupport holds.

Proof. According to the definition of KOtask, Observation 1 and that
X→Y is in the solution, we obtain:

coverage(X→Y) = cover(X) > cover(X ∪ Y)

= support(X→Y)

> minSupport

Theorem 11 (Support for rules in the solution).
Suppose KOtask = 〈C,D,M, λ, k〉. For any rule X→Y ∈
solution(〈C,D,M, λ, k〉), support(X→Y) > minCoverage ×
minConfidence holds.

Proof. According to the definition of KOtask and that X→Y is in the
solution, we obtain:

support(X→Y) = coverage(X→Y) × confidence(X→Y)

> minCoverage × minConfidence

Theorem 12 (Bound on support from leverage).
Suppose KOtask = 〈C,D,M, λ, k〉. For any rule X→Y ∈
solution(〈C,D,M, λ, k〉), support(X→Y) > minLeverage.

Proof. According to the definition of KOtask and that X→Y is in the
solution, we obtain:

support(X→Y) = leverage(X→Y) + cover(X) × cover(Y)

> leverage(X→Y)

> minLeverage

C.2. Relations between rules in KOtask

We investigate the relations between two rules when they share the
same coverage value under some condition. We start with the following
lemma.

"KORD preprint".tex; 13/12/2004; 9:27; p.36

K-Optimal Rule Discovery 37

Lemma 1 (Union cover). Suppose KOtask = 〈C,D,M, λ, k〉. For
any nonempty S1, S2, S3 ⊆ C satisfying S1 ∩ S2 = ∅, S2 ∩ S3 = ∅ and
S1 ∩ S3 = ∅, if

cover(S1) = cover(S1 ∪ S2) (14)

the following holds.

cover(S1 ∪ S3) = cover(S1 ∪ S2 ∪ S3) (15)

Proof. From (14) and the definition of KOtask, we obtain:

| coverset(S1)| = | coverset(S1 ∪ S2)| (16)

From Observation 1 we obtain:

coverset(S1) ⊇ coverset(S1 ∪ S2) (17)

From (16) and (17), we obtain:

coverset(S1) = coverset(S1 ∪ S2) (18)

For any d ∈ D ∧ S1 ∪ S3 ⊆ d, S1 ⊆ d and S3 ⊆ d hold. From S1 ⊆ d
and (18), we obtain S1 ∪ S2 ⊆ d. And since S3 ⊆ d, S1 ∪ S2 ∪ S3 ⊆ d
holds. Hence we obtain:

coverset(S1 ∪ S3) ⊆ coverset(S1 ∪ S2 ∪ S3) (19)

From Observation 1 we obtain:

coverset(S1 ∪ S3) ⊇ coverset(S1 ∪ S2 ∪ S3) (20)

From (19) and (20), coverset(S1 ∪ S3) = coverset(S1 ∪ S2 ∪ S3) holds,
proving (15).

Theorem 13 (Upper bound on leverage from confidence).
Suppose KOtask = 〈C,D,M, λ, k〉. For any rule X→Y , if
confidence(X→Y) = 1, for any X1 ⊂ C satisfying X1 ∩ X = ∅ and
X1 ∩ Y = ∅, the following holds.

leverage(X ∪ X1→Y) 6 leverage(X→Y)

Proof. From confidence(X→Y) = 1 and the definition of KOtask, we
obtain:

cover(X) = cover(X ∪ Y) (21)

According to the definition of KOtask and (21), we obtain:

leverage(X→Y) = support(X→Y) − cover(X) × cover(Y) (22)

= cover(X ∪ Y) − cover(X) × cover(Y) (23)

= cover(X) − cover(X) × cover(Y) (24)

= cover(X) × (1 − cover(Y)) (25)

"KORD preprint".tex; 13/12/2004; 9:27; p.37

38 Geoffrey I. Webb & Songmao Zhang

From (21) and Lemma 1, we obtain:

cover(X ∪ X1) = cover(X ∪ X1 ∪ Y) (26)

According to the definition of KOtask and (26), we obtain:

leverage(X ∪ X1→Y) (27)

= support(X ∪ X1→Y) − cover(X ∪ X1) × cover(Y) (28)

= cover(X ∪ X1 ∪ Y) − cover(X ∪ X1) × cover(Y) (29)

= cover(X ∪ X1) − cover(X ∪ X1) × cover(Y) (30)

= cover(X ∪ X1) × (1 − cover(Y)) (31)

From Observation 1 we obtain cover(X ∪ X1) 6 cover(X). Thus, from
(25) and (31), the following holds.

leverage(X ∪ X1 → Y) 6 leverage(X→Y)

Theorem 14 (Unproductive specializations). Suppose KOtask =
〈C,D,M, λ, k〉. For any rule X→Y and X∪X1 → Y where X∩X1 = ∅,
if

coverage(X→Y) = coverage(X ∪ X1 → Y) (32)

the following holds.

support(X→Y) = support(X ∪ X1 → Y) (33)

confidence(X→Y) = confidence(X ∪ X1 → Y) (34)

leverage(X→Y) = leverage(X ∪ X1 → Y) (35)

Proof. According to (32) which is cover(X) = cover(X ∪X1), and from
Lemma 1, we obtain:

cover(X ∪ Y) = cover(X ∪ X1 ∪ Y)

proving (33). From (32) and (33), (34) and (35) follow.

C.3. Pruning the condition before it is added to the

antecedent

This pruning rule, applied at line 3 in the KORD algorithm, prunes a
condition in AvailableLHS before it is added to CurrentLHS.

Pruning 1. In KORD for KOtask = 〈C,D,M, λ, k〉, for any condition
P ∈ AvailableLHS, if cover({P}) < minCoverage, P can be pruned
from SoFar.

"KORD preprint".tex; 13/12/2004; 9:27; p.38

K-Optimal Rule Discovery 39

Given the upward closure of coverage, there does not exist any rule
X→Y ∈ solution(〈C,D,M, λ, k〉) such that P ∈ X, thus P can be
pruned from SoFar so that P will not go into any NewAvailableLHS.

C.4. Pruning the new antecedent

This pruning rule, applied at line 6 in KORD, is used to prune the new
antecedent NewLHS which is formed by the union CurrentLHS∪{P}
where P ∈ AvailableLHS.

Pruning 2. In KORD for KOtask = 〈C,D,M, λ, k〉, for NewLHS =
CurrentLHS ∪ {P} where P ∈ AvailableLHS, if cover(NewLHS) <
minCoverage, P can be pruned from SoFar.

Given the upward closure of coverage, there does not exist any
rule X→Y ∈ solution(〈C,D,M, λ, k〉) such that NewLHS ⊆ X,
thus P can be pruned from SoFar so that P will not go into any
NewAvailableLHS ready to be added to the antecedent containing
CurrentLHS.

C.5. Pruning the consequent condition before the

evaluation of rule

Pruning rules applied at line 10 in KORD are used to prune the conse-
quent condition before the evaluation of a rule. We give three pruning
rules.

Pruning 3. In KORD for KOtask = 〈C,D,M)〉, for any condition
Q ∈ NewAvailableRHS, if cover({Q}) < minSupport, then Q can be
pruned from NewAvailableRHS.

Given the upward closure for support, if cover({Q}) < minSupport
then ∀A ⊆ C, support(A→Q) < minSupport , therefore Q can be
pruned.

The second pruning rule functions according to the current lower
bound on minLeverage before the evaluation of the rule. Note that the
lower bound on minLeverage is the leverage of the kth rule that satisfies
the other criteria of those found so far, ordered from highest to lowest
value on leverage.

Pruning 4. In KORD for KOtask = 〈C,D,M, λ, k〉, for the current
NewLHS, for any condition Q ∈ NewAvailableRHS, if cover({Q}) >

1 − minLeverage
cover(NewLHS) , then Q can be pruned from NewAvailableRHS.

According to Theorem 6, if cover({Q}) > 1 − minLeverage
cover(NewLHS) then

NewLHS→Q cannot be in the solution, therefore Q can be pruned.

"KORD preprint".tex; 13/12/2004; 9:27; p.39

40 Geoffrey I. Webb & Songmao Zhang

The third pruning rule is for any consequent condition that covers
the whole dataset.

Pruning 5. In KORD for KOtask = 〈C,D,M)〉, for any condition
Q ∈ NewAvailableRHS, if cover({Q}) = 1 and minLeverage > 0,
then Q can be pruned from NewAvailableRHS.

According to Theorem 9, if cover({Q}) = 1 then ∀A ⊆
C, leverage(NewLHS→Q) = 0. When minLeverage > 0, such a rule
cannot be in the solution. Therefore Q can be pruned.

C.6. Pruning the consequent condition after the

evaluation of rule

Pruning rules applied at line 19 in KORD are used to prune the conse-
quent condition after the evaluation of the current rule. We give three
such pruning rules.

Pruning 6. In KORD for KOtask = 〈C,D,M)〉, after the evaluation
of the current rule NewLHS→Q, if confidence(NewLHS→Q) = 1
and leverage(NewLHS→Q) < minLeverage, Q can be pruned from
NewAvailableRHS.

According to Theorem 13, if confidence(NewLHS→Q) = 1 then
no rule with Q as the consequent in the search space below the cur-
rent node can have higher leverage than NewLHS→Q. Therefore if
leverage(NewLHS→Q) < minLeverage, none of these rules can be in
the solution. Hence Q can be pruned from NewAvailableRHS.

The second pruning rule utilizes optConfidence, an upper bound on
the value of the confidence for a rule with Q as the consequent in the
search space below the current node.

Pruning 7. In KORD for KOtask = 〈C,D,M, λ, k〉, after the
evaluation of the current rule NewLHS→Q where NewLHS =
CurrentLHS ∪ {P}, P ∈ AvailableLHS, optConfidence is computed
by:

optConfidence =
support(NewLHS→Q)

min cover
where

min cover = max(minCoverage, lower) (36)

lower = cover(NewLHS) − max spec × max reduce (37)

max spec = min(maxLHSsize − |NewLHS|, |NewAvailableLHS|)

max reduce = max
S∈NewAvailableLHS

reduce(CurrentLHS, {S})

reduce(X, Y) = (cover(X) − cover(X ∪ Y))

"KORD preprint".tex; 13/12/2004; 9:27; p.40

K-Optimal Rule Discovery 41

If optConfidence < minConfidence, Q can be pruned from
NewAvailableRHS. Let

optLeverage = support(NewLHS→Q) − min cover × cover({Q})

If optLeverage < minLeverage, Q can be pruned from
NewAvailableRHS.

Proof. Assume when optConfidence < minConfidence, Q cannot be
pruned from NewAvailableRHS. So there exists a rule NewLHS ∪
L → Q ∈ solution(〈C,D,M, λ, k〉) where L ⊆ NewAvailableLHS
and L 6= ∅. Let L = {L1} ∪ · · · ∪ {Ll} where L1, · · · , Ll ∈
NewAvailableLHS, 1 6 l 6 |NewAvailableLHS|. Since only
maxLHSsize of conditions are allowed on antecedent of rules in the
solution, l 6 maxLHSsize − |NewLHS| holds. Thus we obtain:

l 6 min(maxLHSsize − |NewLHS|, |NewAvailableLHS|)

= max spec (38)

cover(NewLHS ∪ L) is the number of records covered by NewLHS
minus the number of records not covered by NewLHS ∪L, divided by
|D|. Thus the following holds.

cover(NewLHS ∪ L)

= cover(NewLHS) −

|{d | d ∈ D ∧ NewLHS ⊂ d ∧ NewLHS ∪ L 6⊂ d}|

|D|
(39)

For any d1 ∈ {d | d ∈ D ∧ NewLHS ⊂ d ∧ NewLHS ∪ L 6⊂
d}, since NewLHS = CurrentLHS ∪ {P} and NewLHS ⊂ d1,
CurrentLHS ⊂ d1 holds. From NewLHS ∪L 6⊂ d1, we obtain L 6⊂ d1.
Thus CurrentLHS ∪ L 6⊂ d1 holds. Hence,

d1 ∈ {d | d ∈ D ∧ CurrentLHS ⊂ d ∧ CurrentLHS ∪ L 6⊂ d}

Thus the following holds.

{d | d ∈ D ∧ NewLHS ⊂ d ∧ NewLHS ∪ L 6⊂ d}

⊆ {d | d ∈ D ∧ CurrentLHS ⊂ d ∧ CurrentLHS ∪ L 6⊂ d} (40)

According to the definition of max reduce in (37), for any 1 6 i 6 l,

max reduce >
|{d | d ∈ D ∧ CurrentLHS ⊂ d ∧ CurrentLHS ∪ {Li} 6⊂ d}|

|D|
(41)

"KORD preprint".tex; 13/12/2004; 9:27; p.41

42 Geoffrey I. Webb & Songmao Zhang

Since L = {L1} ∪ · · · ∪ {Ll}, and from (38), (40) and (41), we obtain:

|{d|d ∈ D ∧ NewLHS ⊂ d ∧ NewLHS ∪ L 6⊂ d}|

|D|

6
|{d|d ∈ D ∧ CurrentLHS ⊂ d ∧ CurrentLHS ∪ L 6⊂ d}|

|D|

6

l∑

i=1

|{d|d ∈ D ∧ CurrentLHS ⊂ d ∧ CurrentLHS ∪ {Li} 6⊂ d}|

|D|

6 max spec × max reduce (42)

From (39) and (42), we obtain:

cover(NewLHS ∪ L) > cover(NewLHS) − max spec × max reduce
(43)

Since NewLHS∪L → Q ∈ solution(〈C,D,M, λ, k〉), cover(NewLHS∪
L) > minCoverage holds. From (43) and (37), we obtain:

cover(NewLHS ∪ L) > min cover

Therefore, according to Observation 1 confidence(NewLHS ∪ L → Q)
satisfies:

confidence(NewLHS ∪ L → Q) =
cover(NewLHS ∪ L ∪ {Q})

cover(NewLHS ∪ L)

6
cover(NewLHS ∪ {Q})

cover(NewLHS ∪ L)

=
support(NewLHS→Q)

cover(NewLHS ∪ L)

6
support(NewLHS→Q)

min cover
= optConfidence

< minConfidence

This contradicts the proposition that NewLHS ∪ L → Q is in
the solution. Therefore Q can be pruned from NewAvailableRHS.
Accordingly, leverage(NewLHS ∪ L → Q) satisfies:

leverage(NewLHS ∪ L → Q)

= support(NewLHS ∪ L → Q) − cover(NewLHS ∪ L) × cover({Q})

= cover(NewLHS ∪ L ∪ {Q}) − cover(NewLHS ∪ L) × cover({Q})

6 cover(NewLHS ∪ {Q}) − cover(NewLHS ∪ L) × cover({Q})

"KORD preprint".tex; 13/12/2004; 9:27; p.42

K-Optimal Rule Discovery 43

6 cover(NewLHS ∪ {Q}) − min cover × cover({Q})

= support(NewLHS→Q) − min cover × cover({Q})

= optLeverage

< minLeverage

This contradicts the proposition that NewLHS ∪ L → Q is in the
solution. Therefore Q can be pruned from NewAvailableRHS.

Inherent in the selection of pruning rules is a trade-off between the
amount of computation required to identify opportunities to prune
and the amount of computation saved by applying pruning. The
optConfidence measure requires little computation to evaluate, but
provides a very loose upper bound on confidence, and hence is less
effective at pruning than a tighter bound would be.

The third pruning rule utilizes a tighter bound on confidence,
optConfidence ′ which requires a one-step lookahead to compute. This
requires greater computation than optConfidence, and hence is evalu-
ated only after other pruning rules have failed to prune a node in the
search space.

Pruning 8. In KORD for KOtask = 〈C,D,M, λ, k〉, after the eval-
uation of the current rule NewLHS→Q, optConfidence ′ is computed
by:

optConfidence ′ =
support(NewLHS→Q)

min cover′

where min cover′ is identical to min cover (36), except that NewLHS
is used in place of CurrentLHS in the definition of max reduce.
If optConfidence ′ < minConfidence, Q can be pruned from
NewAvailableRHS. Let

optLeverage ′ = support(NewLHS→Q) − min cover′ × cover({Q})

If optLeverage ′ < minLeverage, Q can be pruned from
NewAvailableRHS.

The proof for this pruning rule mirrors that of the previous rule
except that NewLHS is used in place of CurrentLHS.

Although it requires considerable additional computation to eval-
uate cover(NewLHS ∪ {S}) where S ∈ NewAvailableLHS for
min cover′, pruning by optConfidence ′ and optLeverage ′ can still
improve the efficiency of the search.

"KORD preprint".tex; 13/12/2004; 9:27; p.43

44 Geoffrey I. Webb & Songmao Zhang

D. Saving data access

D.1. Saving data access by identifying unqualified

antecedents

Line 8 in KORD is for saving data access for the rules with NewLHS as
antecedent. We give two saving rules. The first is based on the theorem
of minimum leverage for the antecedent of rules in the solution.

Saving 1. In KORD for KOtask = 〈C,D,M, λ, k〉, if |NewLHS| =
maxLHSsize and cover(NewLHS) × (1 − cover(NewLHS)) <
minLeverage, for any Q ∈ NewAvailableRHS, there is no need to
access data to evaluate NewLHS→Q, as it is not in the solution.

Please note that although such a NewLHS is not qualified to be the
antecedent for a rule in the solution, it cannot be pruned since some of
its supersets might have leverage larger than minLeverage. Saving the
data access for all rules with NewLHS as the antecedent might prevent
application of pruning rules due to the absence of information about
cover(NewLHS ∪ Q) where Q ∈ NewAvailableRHS. For this reason,
we add the limitation to the above saving rule that |NewLHS| =
maxLHSsize, which is the maximum search depth and below which
no pruning will be performed. Saving data access at this stage cannot
slow down the overall efficiency, as cover(NewLHS∪Q) is not used for
pruning.

The second saving rule is for a NewLHS that covers the whole
dataset.

Saving 2. In KORD for KOtask = 〈C,D,M, λ, k〉, if |NewLHS| =
maxLHSsize, cover(NewLHS) = 1 and minLeverage > 0, for any
Q ∈ NewAvailableRHS, there is no need to access data to evaluate
NewLHS→Q, as it is not in the solution.

According to Theorem 9, the leverage value of any rule with such
NewLHS as the antecedent is 0. When minLeverage > 0, such a rule
cannot be in the solution. However, such a NewLHS cannot be pruned
since some of its supersets may not cover the whole dataset anymore
and thus can make the rule have leverage larger than 0.

D.2. Saving data access by identifying unqualified rules

Line 13 in KORD is for saving data access for the current rule
NewLHS→Q. We give two saving rules. The first is based on
Theorem 8.

"KORD preprint".tex; 13/12/2004; 9:27; p.44

K-Optimal Rule Discovery 45

Saving 3. In KORD for KOtask = 〈C,D,M)〉, for the current rule

NewLHS→Q, if |NewLHS| = maxLHSsize and cover(Q)
cover(NewLHS) <

minConfidence, there is no need to access data to evaluate
NewLHS→Q, as it is not in the solution.

The reason that the saving is adopted instead of pruning under
this situation is in the branch below the current NewLHS→Q, some
of the supersets of NewLHS with lower values of coverage might
make the rule have confidence larger than minConfidence. While sav-
ing data access, it is no longer possible to perform pruning based
on the results of the data access. In consequence, the overall effi-
ciency might be slowed down accordingly. Due to this, the constraint
|NewLHS| = maxLHSsize is added to the above saving rule to ensure
that it is applied only at the maximum search depth where no pruning
is necessary.

The next saving rule is based on Theorem 6.

Saving 4. In KORD for KOtask = 〈C,D,M)〉, for the current rule
NewLHS→Q, if |NewLHS| = maxLHSsize and cover(NewLHS) >

1−minLeverage
cover({Q}) , there is no need to access data to evaluate NewLHS→Q,

as it is not in the solution.

Any rule as described above has a value for leverage less than
minLeverage. However no pruning should be performed here as some of
the supersets of NewLHS might have lower cover than (1−minLeverage

cover({Q}))

and thus have leverage larger than minLeverage.

D.3. Saving data access by identifying generalizations

with identical statistics

During the evaluation of the current rule NewLHS→Q, where
NewLHS = CurrentLHS ∪ {P}, P ∈ AvailableLHS, line 14 in
KORD adopts a data access saving rule utilizing the relationship be-
tween CurrentLHS and P . It is based on the theorem of relation from
coverage.

Saving 5. In KORD for KOtask = 〈C,D,M, λ, k〉, for the cur-
rent rule NewLHS→Q where NewLHS = CurrentLHS ∪ {P},
P ∈ AvailableLHS, if |NewLHS| = maxLHSsize, the number
of rules in curentSolution is less than | coverset(NewLHS)|, and
cover(CurrentLHS) = cover(NewLHS), instead of accessing data to
evaluate NewLHS→Q, check if CurrentLHS→Q exists in currentSo-
lution, and if yes, copy all the statistic values of CurrentLHS→Q to
NewLHS→Q, otherwise, NewLHS→Q is not in the solution.

"KORD preprint".tex; 13/12/2004; 9:27; p.45

46 Geoffrey I. Webb & Songmao Zhang

Since CurrentLHS→Q is investigated before NewLHS→Q in
KORD, and they share the same statistic values, NewLHS→Q
will be in currentSolution if and only if CurrentLHS→Q is in
currentSolution. Due to the same reasons as in the above subsec-
tion, we add |NewLHS| = maxLHSsize in the saving rule to make
sure that application of the saving rule cannot slow down the overall
efficiency. If the number of rules in currrentSolution is greater than
| coverset(NewLHS)|, searching these rules might be less efficient than
accessing coverset(NewLHS) to compute cover(NewLHS ∪ Q).

References

Agarwal, R. C., C. C. Aggarwal, and V. V. V. Prasad: 2000, ‘Depth First Generation
of Long Patterns’. In: Proceedingsof the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD2000). Boston, MA,
pp. 108–118, ACM.

Agrawal, R., T. Imielinski, and A. Swami: 1993, ‘Mining Associations between Sets
of Items in Massive Databases’. In: Proceedings of the 1993 ACM-SIGMOD
International Conference on Management of Data. Washington, DC, pp. 207–
216.

Agrawal, R., H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo: 1996, ‘Fast
Discovery of Association Rules’. In: U. M. Fayyad, G. Piatetsky-Shapiro, P.
Smyth, and R. Uthurusamy (eds.): Advances in Knowledge Discovery and Data
Mining. Menlo Park, CA.: AAAI Press, pp. 307–328.

Agrawal, R. and R. Srikant: 1994, ‘Fast Algorithms for Mining Association Rules’.
In: Proceedings of the 20th International Conference on Very Large Databases.
Santiago, Chile, pp. 487–499.

Bay, S. D.: 2001, ‘The UCI KDD Archive’. [http://kdd.ics.uci.edu] Irvine, CA:
University of California, Department of Information and Computer Science.

Bayardo, Roberto J., J.: 1998, ‘Efficiently Mining Long Patterns from Databases’.
In: Proceedings of the 1998 ACM-SIGMOD International Conference on Man-
agement of Data. pp. 85–93.

Bayardo, Roberto J., J. and R. Agrawal: 1999, ‘Mining the Most Interesting
Rules’. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 145–154.

Bayardo, Roberto J., J., R. Agrawal, and D. Gunopulos: 2000, ‘Constraint-Based
Rule Mining in Large, Dense Databases’. Data Mining and Knowledge Discovery
4(2/3), 217–240.

Blake, C. and C. J. Merz: 2001, ‘UCI Repository of Machine Learning Databases’.
[Machine-readable data repository]. University of California, Department of
Information and Computer Science, Irvine, CA.

Borgelt, C.: 2000, ‘Apriori’. (Computer Software) http://fuzzy.cs.

Uni-Magdeburg.de/∼borgelt/.
Buchanan, B. G. and E. A. Feigenbaum: 1978, ‘DENDRAL and Meta-DENDRAL:

Their Applications Dimension’. Artificial Intelligence 11, 5–24.
Clark, P. and T. Niblett: 1989, ‘The CN2 Induction Algorithm’. Machine Learning

3, 261–284.

"KORD preprint".tex; 13/12/2004; 9:27; p.46

K-Optimal Rule Discovery 47

Clearwater, S. H. and F. J. Provost: 1990, ‘RL4: A Tool for Knowledge-based Induc-
tion’. In: Proceedings of Second Intl. IEEE Conf. on Tools for AI. Los Alamitos,
CA, pp. 24–30, IEEE Computer Society Press.

Cohen, E., M. Datar, S. Fujiwara, A. Gionis, R. Indyk, P. Motwani, J. Ullman, and
C. Yang: 2000, ‘Finding Interesting Associations without Support Pruning’. In:
Proceedings International Conference on Data Engineering.

Cohen, W. W.: 1995, ‘Fast Effective Rule Induction’. In: Proceedings of the Twelfth
International Conference on Machine Learning. Morgan Kaufmann.

Han, J., J. Pei, and Y. Yin: 2000, ‘Mining Frequent Patterns without Candidate
Generation’. In: Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data
(SIGMOD’00). Dallas, TX, pp. 1–12.

Kohavi, R., C. Brodley, B. Frasca, L. Mason, and Z. Zheng: 2000, ‘KDD-Cup 2000
organizers’ report: Peeling the onion’. SIGKDD Explorations 2(2), 86–98.

Liu, B., W. Hsu, and Y. Ma: 1998, ‘Integrating Classification and Association Rule
Mining’. In: Proceedings Knowledge Discovery and Data Mining (KDD-98). pp.
80–86.

Liu, B., W. Hsu, and Y. Ma: 1999, ‘Mining Association Rules with Multiple Mini-
mum Supports’. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-99). San Diego, CA, pp.
337–341.

Michalski, R. S.: 1977, ‘Synthesis of Optimal and Quasi-optimal Variable-valued
Logic Formulas’. In: Proceedings of the 1975 International Symposium on
Multiple Valued Logic. Bloomington, Indiana, pp. 76–87, Reidel.

Morishita, S. and A. Nakaya: 2000, ‘Parallel Branch-and-Bound Graph Search for
Correlated Association Rules’. In: Proceedings of the ACM SIGKDD Workshop
on Large-Scale Parallel KDD Systems, Vol. LNAI 1759. Berlin: Springer, pp.
127–144.

Pasquier, N., Y. Bastide, R. Taouil, and L. Lakhal: 1999, ‘Discovering frequent
closed itemsets for association rules’. In: Proceedings of the Seventh International
Conference on Database Theory (ICDT’99). Jerusalem, Israel, pp. 398–416.

Pei, J., J. Han, and R. Mao: 2000, ‘CLOSET: An Efficient Algorithm for Mining
Frequent Closed Itemsets’. In: Proc. 2000 ACM-SIGMOD Int. Workshop on
Data Mining and Knowledge Discovery (DMKD’00). Dallas, TX, pp. 21–30.

Piatetsky-Shapiro, G.: 1991, ‘Discovery, Analysis, and Presentation of Strong
Rules’. In: G. Piatetsky-Shapiro and J. Frawley (eds.): Knowledge Discovery
in Databases. AAAI/MIT Press, pp. 229–248.

Provost, F., J. Aronis, and B. Buchanan: 1999, ‘Rule-Space Search for Knowledge-
Based Discovery’. CIIO Working Paper IS 99-012, Stern School of Business, New
York University, , NY, NY 10012.

Rymon, R.: 1992, ‘Search through Systematic Set Enumeration’. In: Proceedings
KR-92. Cambridge, MA, pp. 268–275.

Savasere, A., E. Omiecinski, and S. Navathe: 1995, ‘An Efficient Algorithm for
Mining Association Rules in Large Databases’. In: Proceedings of the 21st
International Conference on Very Large Data Bases. pp. 432–444, Morgan
Kaufmann.

Segal, R. and O. Etzioni: 1994, ‘Learning Decision Lists Using Homogeneous Rules’.
In: AAAI-94. Seattle, WA, AAAI press.

Todorovski, L., P. Flach, and N. Lavrac: 2000, ‘Predictive Performance of Weighted
Relative Accuracy’. In: D. A. Zighed, J. Komorowski, and J. Zytkow (eds.):
Proceedings of the Fourth European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD2000). pp. 255–264, Springer-Verlag.

"KORD preprint".tex; 13/12/2004; 9:27; p.47

48 Geoffrey I. Webb & Songmao Zhang

Toivonen, H.: 1996, ‘Sampling Large Databases for Association Rules’. In: Pro-
ceedings of the 22nd International Conference on Very Large Data Bases. pp.
134–145, Morgan Kaufmann.

Webb, G. I.: 1995, ‘OPUS: An Efficient Admissible Algorithm for Unordered Search’.
Journal of Artificial Intelligence Research 3, 431–465.

Webb, G. I.: 2000, ‘Efficient search for association rules’. In: The Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
Boston, MA, pp. 99–107, The Association for Computing Machinery.

Zaki, M. J.: 2000, ‘Generating Non-Redundant Association Rules’. In: Proceedings
of the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD2000). Boston, MA, pp. 34–43, ACM.

Zheng, Z., R. Kohavi, and L. Mason: 2001, ‘Real World Performance of Association
Rule Algorithms’. In: KDD-2001: Proceedings of the Seventh International Con-
ference on Knowledge Discovery and Data Mining. San Francisco, pp. 401–406,
ACM.

"KORD preprint".tex; 13/12/2004; 9:27; p.48

