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Abstract

Naive-Bayes classifiers are widely employed for classification tasks because

of their efficiency and efficacy. Real-world classification tasks often involve

quantitative attributes. In naive-Bayes learning, quantitative attributes are

usually discretized. We investigate the working mechanism of discretization

in naive-Bayes learning. We prove a theorem that states particular conditions

under which discretization will result in naive-Bayes classifiers delivering the

same probability estimates as would be obtained if the correct probability den-

sity function were employed. We then analyze the factors that might affect

the classification error of naive-Bayes classifiers that are trained on data pro-

cessed by discretization. We suggest that the use of different discretization

techniques can affect the classification bias and variance of the generated clas-

sifiers. We name such effects discretization bias and variance. We argue that by

properly managing discretization bias and variance, we can effectively reduce

the naive-Bayes classification error. However, according to the comprehen-

sive literature review that we have conducted, existing discretization methods

have potential problems when applied in naive-Bayes learning. Thus we aim

at developing new discretization techniques that are able to improve classifi-

cation efficacy and efficiency of naive-Bayes classifiers. Our new methods are

informed by an analysis from the new perspective of managing discretization

bias and variance. In particular, we propose proportional discretization, fixed

frequency discretization, non-disjoint discretization and weighted proportional dis-
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x

cretization. To validate our theoretical arguments, we conduct experiments

across a large suite of real-world datasets. We empirically evaluate our new

techniques against five existing key discretization methods, each of which was

either designed especially for naive-Bayes learning or is in practice often used

with naive-Bayes learning. The experimental results support our analysis by

showing that with significant frequency, naive-Bayes classifiers coupled with

our new discretization methods are able to achieve lower classification error

than those coupled with previous discretization methods. This outstanding ef-

fectiveness is achieved with very low computational time and space overhead,

which is desirable since the classification efficiency is one of naive-Bayes classi-

fiers’ characteristics that largely contributes to their popularity, especially with

time-sensitive interactive applications.
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Chapter 1

Introduction

This thesis tackles the problem of discretization within the context of naive-

Bayes learning. Discretization produces a qualitative attribute from a quanti-

tative attribute. Naive-Bayes classifiers can be trained on the resulting qualita-

tive attributes instead of the original quantitative attributes. This circumvents

the dilemma that for real-world data we usually do not know the probability

distribution of the class within quantitative data, which however we need to

know for naive-Bayes learning. Although there exist a number of discretiza-

tion methods in the research area of machine learning, most of them were ini-

tially developed in learning contexts other than naive-Bayes learning. In this

thesis, we argue that naive-Bayes learning has requirements of effective dis-

cretization different from those of most other learning contexts. Hence the ex-

isting methods are not appropriate for naive-Bayes learning. This shortage of

appropriate discretization techniques is a serious problem that needs to be ad-

dressed due to the widespread employment of naive-Bayes classifiers. Conse-

quently, we believe that there is a real and immediate need for improving dis-

cretization effectiveness for naive-Bayes learning. We prove a theorem that ex-

plains why discretization can be effective for naive-Bayes learning. Discretiza-

tion can affect the classification bias and variance of the generated naive-Bayes
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2 Introduction

classifiers, effects we name discretization bias and variance. We believe that by

properly managing discretization bias and variance, we can effectively reduce

the naive-Bayes classification error. We offer insights into the impact of dis-

cretization bias and variance, and accordingly propose our new discretization

techniques that are able to enhance naive-Bayes classification efficacy and effi-

ciency. In this chapter, we first present the background of our research. Next,

we explain our motivation. We then describe our contributions. Finally we

provide the organization of this thesis.

1.1 Background

Naive-Bayes classifiers have a widespread employment for real-world clas-

sification applications. The quantitative attributes involved are usually dis-

cretized before the naive-Bayes classifiers are trained.

1.1.1 Naive-Bayes classifiers are widely employed

When classifying an instance, naive-Bayes classifiers assume the attributes

conditionally independent of each other given the class; then apply Bayes’

theorem to estimate the probability of each class given this instance. The class

with the highest probability is chosen as the class of this instance. Naive-Bayes

classifiers are simple, effective, efficient, robust and support incremental train-

ing. These merits have seen them employed in numerous classification tasks.

Naive-Bayes classifiers have long been a core technique in information re-

trieval [Maron and Kuhns 1960; Maron 1961; Lewis 1992; Guthrie and Walker

1994; Lewis and Gale 1994; Kalt 1996; Larkey and Croft 1996; Pazzani, Mura-
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matsu, and Billsus 1996; Starr, Ackerman, and Pazzani 1996a; Joachims 1997;

Koller and Sahami 1997; Li and Yamanishi 1997; Mitchell 1997; Pazzani and

Billsus 1997; Lewis 1998; McCallum and Nigam 1998; McCallum, Rosenfeld,

Mitchell, and Ng 1998; Nigam, McCallum, Thrun, and Mitchell 1998; Frasconi,

Soda, and Vullo 2001]. They were first introduced into machine learning as a

straw man, against which new algorithms were compared and evaluated [Ces-

tnik, Kononenko, and Bratko 1987; Clark and Niblett 1989; Cestnik 1990]. But

it was soon realized that their classification accuracy was surprisingly high

compared with other more sophisticated classification algorithms [Kononenko

1990; Langley, Iba, and Thompson 1992; Domingos and Pazzani 1996; Domin-

gos and Pazzani 1997; Zhang, Ling, and Zhao 2000]. Thus they have often been

chosen as the base algorithm for bagging, boosting, wrapper, voting or hybrid

methodologies [Kohavi 1996; Zheng 1998; Bauer and Kohavi 1999; Ting and

Zheng 1999; Gama 2000; Kim, Hahn, and Zhang 2000; Tsymbal, Puuronen, and

Patterson 2002]. Also, naive-Bayes classifiers have widespread employment

in medical diagnosis [Kononenko 1993; Kohavi, Sommerfield, and Dougherty

1997; Kukar, Groselj, Kononenko, and Fettich 1997; McSherry 1997a; McSherry

1997b; Zelic, Kononenko, Lavrac, and Vuga 1997; Montani, Bellazzi, Portinale,

Fiocchi, and Stefanelli 1998; Lavrac 1998; Lavrac, Keravnou, and Zupan 2000;

Kononenko 2001; Zupan, Demsar, Kattan, Ohori, Graefen, Bohanec, and Beck

2001], email filtering [Pantel and Lin 1998; Provost 1999; Androutsopoulos,

Koutsias, Chandrinos, and Spyropoulos 2000; Rennie 2000; Crawford, Kay,

and Eric 2002], and recommender systems [Starr, Ackerman, and Pazzani

1996b; Miyahara and Pazzani 2000; Mooney and Roy 2000].
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1.1.2 Discretization is usually used in naive-Bayes learning

Naive-Bayes learning needs to estimate probabilities for each attribute-class

pair. For a qualitative attribute, its relevant probabilities can be estimated from

the corresponding frequencies. For a quantitative attribute, its relevant prob-

abilities can be estimated if we know the probability distributions from which

the quantitative values are drawn. Unfortunately however, those distributions

are usually unknown for real-world data. Thus how to deal with quantitative

attributes is a key problem in naive-Bayes learning. Typically, there are two

approaches to tackling this problem.

The first approach is probability density estimation that makes assump-

tions about the probability density function of a quantitative attribute given

a class. The relevant probabilities can then be estimated accordingly. For in-

stance, a conventional approach is to assume that a quantitative attribute’s

probability within a class has a normal distribution. This assumption is made

because a normal distribution may provide a reasonable approximation to

many real-world distributions [John and Langley 1995], or because the nor-

mal distribution is perhaps the most well-studied probability distribution in

statistics [Mitchell 1997].

A second approach is discretization. Under discretization, a qualitative

attribute is created for a quantitative attribute. Each value of the qualitative

attribute corresponds to an interval of values of the quantitative attribute. The

resulting qualitative attributes are used instead of the original quantitative at-

tributes to train a classifier. Since the probabilities of a qualitative attribute can

be estimated from its frequencies, it is no longer necessary to assume any form
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of distributions for the quantitative attributes.

For naive-Bayes learning, discretization is more popular than assuming

probability density function. The main reason is that naive-Bayes classi-

fiers with discretization tend to achieve lower classification error than those

with unsafe probability density assumptions [Dougherty, Kohavi, and Sahami

1995].

1.2 Motivation

Although there exist a number of discretization methods in the research area

of machine learning, most of them were initially developed in learning con-

texts other than naive-Bayes learning, such as decision trees, decision rules,

decision tables, decision lists, association rules or Bayes network structures.

We argue that naive-Bayes learning’s requirements of effective discretization

differ from those of most other learning contexts. Hence these methods do

not suit naive-Bayes learning very well. Although there also exist a few dis-

cretization techniques that were originally developed in the learning context

of naive-Bayes learning, we suggest that they have potential problems when

used in naive-Bayes learning. Since naive-Bayes classifiers are widely em-

ployed for classification tasks, and since discretization has a major effect on

the naive-Bayes classification error [Pazzani 1995], we believe that there is a

real and immediate need for improving discretization effectiveness for naive-

Bayes learning.

Furthermore, most existing discretization methods have only been tested

on small datasets with hundreds of instances. Since large datasets with high
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dimensional attribute spaces and huge numbers of instances are increasingly

used in real-world applications, a study of these methods’ effectiveness on

large datasets is necessary and desirable [Freitas and Lavington 1996; Provost

and Aronis 1996]. In fact, naive-Bayes classifiers’ computational efficiency has

resulted in their popularity with applications involving large datasets. Thus it

is particularly important that discretization in naive-Bayes learning is efficient

so as to scale to large data.

Motivated by these observations, our research is devoted to developing

purpose-designed discretization methods for naive-Bayes classifiers. Our

goals are to improve both naive-Bayes classification efficacy and efficiency.

These dual goals are of particular significance given naive-Bayes classifiers’

widespread employment, and in particular their employment in time-sensitive

interactive applications.

1.3 Contributions

The following is a list of contributions to the research area of machine learning,

which we present in this thesis.

1. We clarify the differences among the various terms used to define dis-

cretization, and choose the most appropriate definition to use in this the-

sis (Chapter 2).

2. We develop a comprehensive set of taxonomies for discretization meth-

ods (Chapter 2).

3. We explain the working mechanism of discretization in naive-Bayes
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learning. We prove a theorem that accounts for why discretization can

be effective (Chapter 3).

4. We analyze factors that might affect discretization effectiveness (Chap-

ter 3).

5. We propose the concept of discretization bias and variance (Chapter 3).

6. We present a comprehensive literature review of exiting discretization

techniques in the research area of machine learning (Chapter 4).

7. We argue that naive-Bayes learning has requirements of effective dis-

cretization different from those of most other learning contexts. Existing

discretization methods do not appropriately suit naive-Bayes learning

(Chapter 5).

8. We propose proportional discretization for naive-Bayes learning, a dis-

cretization technique that equally weighs discretization bias reduction

and variance reduction; and decreases both discretization bias and vari-

ance with the training data size increasing (Chapter 5).

9. We propose fixed frequency discretization for naive-Bayes learning, a dis-

cretization technique that controls discretization variance by setting a

sufficient interval frequency, and decreases discretization bias as addi-

tional training data become available (Chapter 5).

10. We propose non-disjoint discretization for naive-Bayes learning, a dis-

cretization technique that very efficiently forms overlapping discretized

intervals for a quantitative attribute, and then chooses the most appro-
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priate interval for the attribute value of the present test instance (Chap-

ter 5).

11. We evaluate the effectiveness of studied discretization techniques on a

wide range of large datasets to test whether they can effectively reduce

the naive-Bayes classification error and can efficiently scale to large data

(Chapter 6).

12. Inspired by the experimental results, we propose weighted proportional

discretization for naive-Bayes learning, a discretization technique that

combines the advantages of the above proportional discretization and fixed

frequency discretization (Chapter 6).

1.4 Organization

The remaining chapters are organized as follows.

In Chapter 2, we explain some important concepts used throughout this

thesis. In particular, we clarify the definition of discretization. That is, we

investigate what type of attribute is transformed to what type of attribute by

discretization. This is of particular importance since there exists confusion

on this issue in existing literature. Also there exist various proposals for the

taxonomies of discretization techniques. We integrate our new perspectives

with those preceding ideas, presenting a comprehensive view on this issue.

In Chapter 3, we analyze discretization in naive-Bayes learning. This of-

fers the theoretical foundation of this thesis. We define naive-Bayes classifiers.

We explain discretization’s working mechanism in naive-Bayes learning. We
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aim at finding out why discretization can be affective. In particular, we prove a

theorem that states particular conditions under which discretization will result

in naive-Bayes classifiers delivering the same probability estimates as would

be obtained if the correct probability density functions were employed. We

then analyze the decision boundary and the error tolerance of probability estima-

tion, two factors that might affect discretization effectiveness. We propose the

concept of discretization bias and variance. We believe that by properly manag-

ing discretization bias and variance, discretization can effectively reduce the

naive-Bayes classification error.

In Chapter 4, we conduct a literature review of 34 discretization methods

in the area of machine learning. The review comprises two parts. The first

part is a detailed review of 6 methods that were developed or are often em-

ployed in the context of naive-Bayes learning. In particular, we discuss each

method’s effectiveness in terms of discretization bias and variance, which we

think illuminating. The second part is a brief review of further methods that

were developed in contexts other than naive-Bayes learning.

In Chapter 5, guided by the theoretical analysis of Chapter 3 and the liter-

ature review of Chapter 4, we argue that existing discretization methods have

potential problems with respect to naive-Bayes learning. Thus naive-Bayes

classifiers call for more appropriate discretization techniques. Accordingly,

we develop three new discretization techniques, proportional discretization, fixed

frequency discretization and non-disjoint discretization. All of these techniques fo-

cus on managing discretization bias and variance, the characteristics that we

have valued. We argue that our techniques are appropriate for naive-Bayes

learning.



10 Introduction

In Chapter 6, we present the empirical evaluation of our new techniques,

compared with existing key discretization methods for naive-Bayes learning.

We examine whether our new techniques can enhance both the efficacy and the

efficiency of naive-Bayes learning. We describe our experimental data, design

and statistics employed. We then analyze the experimental results. Inspired

by our empirical observations and analysis, we further propose the fourth new

discretization method, weighted proportional discretization.

In Chapter 7, we present the conclusion of this thesis. We summarize the

key issues presented in this thesis. We discuss some future work that we think

is worth further exploration. Finally we highlight the major contributions of

this thesis to the research area of machine learning.



Chapter 2

Terminology and taxonomy

The previous chapter has introduced the focus of this thesis, namely discretiza-

tion in the context of naive-Bayes learning. In this chapter, we address some

important concepts that are involved in naive-Bayes learning and discretiza-

tion. These concepts will be frequently referred to throughout this thesis. First,

we explain the terms used in classification learning. Second, we clarify the def-

inition of discretization by differentiating diverse terminologies presented in

the existing literature. Third, we present a comprehensive set of taxonomies

of discretization methods, integrating various previous proposals and our new

perspectives.

2.1 Terminology of classification learning

Naive-Bayes learning is a form of classification learning. In classification learn-

ing, each instance is described by a vector of attribute values and its class can

take any value from some predefined set of values. An instance with its class

known is called a training instance (also known as a labelled instance). An

instance with its class unknown is called a test instance (also known as an un-

labelled instance). A set of training instances, so-called the training data, are

11



12 Terminology and taxonomy

provided. A test instance is presented. The learner is asked to predict the test

instance’s class according to the evidence provided by the training data.

2.2 Terminology of discretization

Discretization is a data processing procedure. It transforms an attribute from

one type into another type. In the large amount of existing literature that ad-

dress discretization, there is considerable variation in the terminology used to

describe these two data types, including ‘quantitative’ vs. ‘qualitative’, ‘con-

tinuous’ vs. ‘discrete’, ‘ordinal’ vs. ‘nominal’, and ‘numeric’ vs. ‘categorical’.

We feel it necessary to make clear the difference among the various terms and

accordingly choose the most suitable terminology for use in our thesis.

Turning to the authority of introductory statistical textbooks, [Bluman

1992; Samuels and Witmer 1999], there are two parallel ways to classify data

into different types. Data can be classified into either qualitative or quantita-

tive. Data can also be classified into different levels of measurement scales. Sec-

tions 2.2.1 and 2.2.2 summarize relevant materials from these textbooks.

2.2.1 Qualitative vs. quantitative

Attributes can be classified as either qualitative or quantitative. Qualitative

attributes, also often referred to as categorical attributes, are attributes that

can be placed into distinct categories, according to some characteristics. Qual-

itative attributes sometimes can be arrayed in a meaningful rank order. But

no arithmetic operations can be applied to them. Examples of qualitative at-

tributes are:
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• blood type of a person: A, B, AB, O;

• sex of a fish: male, female;

• student evaluation: fail, pass, good, excellent;

• tenderness of beef: very tender, tender, slightly tough, tough.

Quantitative attributes are numerical in nature. They can be ranked in

order. They can also have meaningful arithmetic operations. Quantitative at-

tributes can be further classified into two groups, discrete or continuous.

A discrete attribute assumes values that can be counted. The attribute

cannot assume all values on the number line within its value range. Examples

of discrete attributes are:

• number of children in a family;

• number of bacteria colonies in a petri fish.

A continuous attribute can assume all values on the number line within

the value range. The values are obtained by measuring. Examples of continu-

ous attributes are:

• temperature;

• weight of a baby.

2.2.2 Levels of measurement scales

In addition to being classified as either qualitative or quantitative, attributes

can also be classified by how they are categorized, counted or measured. This
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type of classification uses measurement scales, and four common types of

scales are used: nominal, ordinal, interval and ratio.

The nominal level of measurement scales classifies data into mutually ex-

clusive (non-overlapping), exhaustive categories in which no order or ranking

can be imposed on the data. Examples of nominal attributes are:

• blood type of a person: A, B, AB, O;

• sex of a fish: male, female.

The ordinal level of measurement scales classifies data into categories that

can be ranked. However, the differences between the ranks cannot be calcu-

lated by arithmetic. Examples of ordinal attributes are:

• student evaluation: fail, pass, good, excellent;

• tenderness of beef: very tender, tender, slightly tough, tough.

It is meaningful to say that the student evaluation of pass ranks higher than

that of fail. It is not meaningful in the same way to say that the blood type of

A ranks higher than that of B.

The interval level of measurement scales ranks data, and the differences

between units of measure can be calculated by arithmetic. However, zero in

the interval level of measurement does not mean ‘nil’ or ‘nothing’ as zero in

arithmetic means. Examples of interval attributes are:

• IQ, whose values are yielded by a standardized psychological test. There

is a meaningful difference of one point between an IQ of 109 and an IQ

of 110. But IQ tests do not measure people who have no intelligence;
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• Fahrenheit temperature, there is a meaningful difference of one degree

between each unit, such as 72 degrees and 73 degrees. But 0 degrees

Fahrenheit does not mean no heat.

It is meaningful to say that the IQ of person A is two points higher than that

of person B. It is not meaningful in the same way to say that the tenderness of

piece of beef A is two points higher than the tenderness of piece B.

The ratio level of measurement scales possesses all the characteristics of

interval measurement, and there exists a zero that, the same as arithmetic zero,

means ‘nil’ or ‘nothing’. In consequence, true ratios exist between different

units of measure. Examples of ratio attributes are:

• number of children in a family;

• weight of a baby.

It is meaningful to say that the weight of child A is twice that of child B. It is

not meaningful in the same way to say that the IQ of person A is twice that of

person B.

The nominal level is the lowest level of measurement scales. It is the least

powerful in terms of including data information. The ordinal level is higher.

The interval level is even higher. The ratio level is the highest level. Any

data conversion from a higher level of measurement scales to a lower level of

measurement scales will lose information. Table 2.1 gives a summary of the

characteristics of different levels of measurement scales.

2.2.3 Terminology employed in this thesis

In summary, the following taxonomy applies to attribute types:
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Level Ranking ? Arithmetic operation ? Arithmetic zero ?
Nominal no no no
Ordinal yes no no
Interval yes yes no
Ratio yes yes yes

Table 2.1: Measurement Scales

1. qualitative attributes:

(a) nominal;

(b) ordinal;

2. quantitative attributes:

(a) interval, either discrete or continuous;

(b) ratio, either discrete or continuous.

We believe that ‘discretization’ as it is usually applied in machine learn-

ing is best defined as the conversion of quantitative attributes to qualitative at-

tributes. In consequence, we will refer to attributes as either quantitative or

qualitative throughout this thesis.

Another term often used for describing discretization is ‘cut point’. When

discretizing a quantitative attribute, a cut point is a value of the attribute where

an interval boundary is located by a discretization method.

2.3 Taxonomy of discretization methods

There exist diverse taxonomies in existing literature to classify discretization

methods. Different taxonomies emphasize different aspects of the distinctions
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among discretization methods.

Typically, discretization methods can be classified into either primary or

composite. Primary methods accomplish discretization without reference to

any other discretization method. Composite methods are built on top of a

primary method.

Primary methods can be classified as per the following taxonomies.

1. Supervised vs. Unsupervised [Dougherty, Kohavi, and Sahami 1995].

Methods that use the class information of the training instances to se-

lect discretization cut points are supervised. Methods that do not use

the class information are unsupervised. Supervised discretization can

be further characterized as error-based, entropy-based or statistics-based ac-

cording to whether intervals are selected using metrics based on error on

the training data, entropy of the intervals, or some statistical measure.

2. Univariate vs. Multivariate [Bay 2000]. Methods that discretize each at-

tribute in isolation are univariate. Methods that take into consideration

relationships among attributes during discretization are multivariate.

3. Parametric vs. Non-parametric. Parametric discretization requires input

from the user, such as the maximum number of discretized intervals.

Non-parametric discretization only uses information from data and does

not need input from the user.

4. Hierarchical vs. Non-hierarchical. Hierarchical discretization selects cut

points in an incremental process, forming an implicit hierarchy over the

value range. The procedure can be split or (and) merge [Kerber 1992].
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Split discretization initially has the whole value range as an interval,

then continues splitting it into sub-intervals until some threshold is met.

Merge discretization initially puts each value into an interval, then con-

tinues merging adjacent intervals until some threshold is met. Some dis-

cretization methods utilize both split and merge processes. For example,

intervals are initially formed by splitting, and then a merge process is

performed to post-process the formed intervals. Non-hierarchical dis-

cretization does not form any hierarchy during discretization. For ex-

ample, many methods scan the ordered values only once, sequentially

forming the intervals.

5. Global vs. Local [Dougherty, Kohavi, and Sahami 1995]. Global methods

discretize with respect to the whole training data space. They perform

discretization once only, using a single set of intervals throughout a sin-

gle classification task. Local methods allow different sets of intervals

to be formed for a single attribute, each set being applied in a different

classification context. For example, different discretizations of a single

attribute might be applied at different nodes of a decision tree [Quinlan

1993].

6. Eager vs. Lazy [Hsu, Huang, and Wong 2000; Hsu, Huang, and Wong

2003]. Eager methods perform discretization prior to classification time.

Lazy methods perform discretization during the classification time.

7. Disjoint vs. Non-disjoint. Disjoint methods discretize the value range

of the attribute under discretization into disjoint intervals. No intervals

overlap. Non-disjoint methods discretize the value range into intervals
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that can overlap.

Composite methods first choose some primary discretization method to

form the initial cut points. They then focus on how to adjust these initial cut

points to achieve certain goals. The taxonomy of a composite method some-

times is flexible, depending on the taxonomy of its primary method.

To the best of our knowledge, we are the first to propose the tax-

onomies ‘primary’ vs. ‘composite’, ‘parametric’ vs. ‘non-parametric’, ‘hierar-

chical’ vs. ‘non-hierarchical’ and ‘disjoint’ vs. ‘non-disjoint’.

2.4 Summary

In this chapter, we have explained the concepts that we will use throughout

this thesis. For naive-Bayes learning, we have explained key terms including

‘instance’, ‘attribute’, ‘class’, ‘training data’ and ‘test data’. For discretization,

we have clarified the difference among different types of data and accordingly

chosen to define discretization as transforming ‘quantitative’ attributes into

‘qualitative’ attributes. We have also presented a comprehensive set of tax-

onomies of discretization methods that integrates our new perspectives and

previous proposals. We think our work is of particular necessity, since there is

considerable confusion regarding the terminology and taxonomy of discretiza-

tion in the existing literature.

In the next chapter, we will analyze discretization in naive-Bayes learning.
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Chapter 3

Theoretical analysis of

discretization in naive-Bayes

learning

The previous chapter has explained the terms involved in this thesis. These

terms will be frequently referred to in this chapter, which analyzes discretiza-

tion in naive-Bayes learning and thus offers the theoretical foundation of this

thesis. In this chapter, we first define naive-Bayes classifiers and describe their

characteristics. Next, we address the working mechanism of discretization in

naive-Bayes learning. We prove a theorem that provides accounts for why

discretization can be effective. We then analyze factors that might affect the

effectiveness of discretization. We suggest that discretization can affect the

classification bias and variance of the generated naive-Bayes classifiers, effects

we name discretization bias and variance. We believe that by properly man-

aging discretization bias and variance, we can effectively reduce the naive-

Bayes classification error. In particular, we offer insights into managing dis-

cretization bias and variance by tuning interval frequency and interval num-

ber formed by discretization.

21
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3.1 Naive-Bayes classifiers

In naive-Bayes learning, we define:

• C as a random variable denoting the class of an instance,

• X < X1,X2, · · · ,Xk > as a vector of random variables denoting the ob-

served attribute values (an instance),

• c as a particular class label,

• x < x1,x2, · · · ,xk > as a particular observed attribute value vector (a par-

ticular instance),

• X=x as shorthand for X1=x1∧X2=x2∧·· ·∧Xk=xk.

Suppose a test instance x is presented. The learner is asked to predict its

class according to the evidence provided by the training data. Expected clas-

sification error can be minimized by choosing argmaxc(p(C=c|X=x)) for each

x [Duda and Hart 1973; Domingos and Pazzani 1997]. We start with Bayes’

theorem:

p(C=c|X=x) =
p(C=c)p(X=x |C=c)

p(X=x)
. (3.1)

Since the denominator in (3.1) is invariant across classes, it does not affect

the final choice and can be dropped:

p(C=c|X=x) ∝ p(C=c)p(X=x |C=c). (3.2)

Probabilities p(C=c) and p(X=x |C=c) need to be estimated from the train-

ing data. Unfortunately, since x is usually an unseen instance which does

not appear in the training data, it may not be possible to directly estimate
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p(X=x |C=c). So a simplification is made: if attributes X1,X2, · · · ,Xk are condi-

tionally independent of each other given the class, then:

p(X=x |C=c) = p(∧k
i=1Xi=xi |C=c)

=
k

∏
i=1

p(Xi=xi |C=c). (3.3)

Combining (3.2) and (3.3), one can further estimate the most probable class

by using:

p(C=c|X=x) ∝ p(C=c)
k

∏
i=1

p(Xi=xi |C=c). (3.4)

Classifiers using (3.4) are naive-Bayes classifiers. The assumption embodied

in (3.3) is the attribute independence assumption. The probability p(C=c|X=x)

denotes the conditional probability of a class c given an instance x. The proba-

bility p(C=c) denotes the prior probability of a particular class c. The probabil-

ity p(Xi=xi |C=c) denotes the conditional probability that an attribute Xi takes

a particular value xi given the class c.

In naive-Bayes learning, the class C is qualitative, and an attribute Xi can be

either qualitative or quantitative. Since quantitative data have characteristics

different from qualitative data [Bluman 1992; Samuels and Witmer 1999], the

practice of estimating probabilities in (3.4) when involving qualitative data is

different from that when involving quantitative data.

3.1.1 Calculating frequency for qualitative data

The class, as well as a qualitative attribute, usually takes a small number

of values [Bluman 1992; Samuels and Witmer 1999]. Thus there are usually



24 Theoretical analysis of discretization in naive-Bayes learning

many instances of each value in the training data. The probability p(C=c)

can be estimated from the frequency of instances with C=c. The probability

p(Xi=xi |C=c), when Xi is qualitative, can be estimated from the frequency of

instances with C=c and the frequency of instances with Xi=xi ∧C=c. These

estimates are strong consistent estimates according to the strong law of large

numbers [Casella and Berger 1990; John and Langley 1995].

In practice, a typical approach to estimating p(C=c) is to use the Laplace-

estimate [Cestnik 1990]: nc+k
N+n×k, where nc is the number of instances satisfying

C=c, N is the number of training instances, n is the number of classes, and

k equals 1. A typical approach to estimating p(Xi=xi |C=c) is to use the M-

estimate [Cestnik 1990]: nci+m×p
nc+m , where nci is the number of instances satis-

fying Xi=xi ∧C=c, nc is the number of instances satisfying C=c, p is p(Xi=xi)

(estimated by the Laplace-estimate), and m is a constant that is set as 2 as in

Cestnik’s study [1990].

3.1.2 Probability density estimation for quantitative data

When it is quantitative, Xi often has a large or even an infinite number of val-

ues [Bluman 1992; Samuels and Witmer 1999]. Thus the probability of a par-

ticular value xi given the class c, p(Xi=xi |C=c) can be infinitely small. Accord-

ingly, there usually are very few training instances for any one value. Hence

it is unlikely that reliable estimation of p(Xi=xi |C=c) can be derived from the

observed frequency. Consequently, in contrast to qualitative attributes, prob-

ability density estimation models each quantitative attribute by some contin-

uous probability distribution over the range of its values [John and Langley
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1995]. Hence p(Xi=xi |C=c) is completely determined by a probability density

function f , which satisfies:

1. f (Xi=xi |C=c)≥ 0,∀xi ∈ Si ;

2.
∫

Si
f (Xi |C=c)dXi = 1;

3.
∫ bi

ai
f (Xi |C=c)dXi = p(ai ≤ Xi ≤ bi |C=c),∀[ai ,bi ] ∈ Si ;

where Si is the value space of Xi [Scheaffer and McClave 1995].

When involving quantitative attributes, naive-Bayes classifiers can manip-

ulate f (Xi=xi |C=c) instead of p(Xi=xi |C=c). According to John and Lan-

gley [1995], supposing Xi lying within some interval [xi ,xi + ∆], we have

p(xi ≤ Xi ≤ xi + ∆ |C=c) =
∫ xi+∆

xi
f (Xi |C=c)dXi . By the definition of a deriva-

tive, lim
∆→0

p(xi≤Xi≤xi+∆ |C=c)
∆ = f (Xi=xi |C=c). Thus for very small constant ∆,

p(Xi=xi |C=c)≈ p(xi ≤ Xi ≤ xi +∆ |C=c)≈ f (Xi=xi |C=c)×∆. The factor ∆ then

appears in the numerator of (3.4) for each class. They cancel out when normal-

ization is performed. Thus

p(Xi=xi |C=c) ∝̃ f (Xi=xi |C=c); (3.5)

and p(C=c|X=x) ∝̃ p(C=c)
k

∏
i=1

f (Xi=xi |C=c). (3.6)

The density function f gives a description of the distribution of Xi within

the class c, and allows probabilities associated with Xi |C=c to be found [Sil-

verman 1986]. Unfortunately however, f is usually unknown for real-world

data. In consequence, probability density estimation is used to construct f̂ , an

estimate of f from the training data.
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A conventional approach to constructing f̂ is to assume that the val-

ues of Xi within the class c are drawn from a normal (Gaussian) distribu-

tion [Dougherty, Kohavi, and Sahami 1995; Mitchell 1997]. Thus

f̂ = N(Xi ;µc,σc) =
1√

2πσc
e
− (Xi−µc)2

2σ2
c ,

where µc is the mean and σc is the standard deviation of the attribute values

from the training instances whose class equals c. In this case, training involves

learning the parameters µc and σc from the training data. The normal distri-

bution assumption is made because it may provide a reasonable approxima-

tion to many real-world distributions [John and Langley 1995], or because it

is perhaps the most well-studied probability distribution in statistics [Mitchell

1997]. This approach is parametric, that is, it assumes that the data are drawn

from one of a known parametric family of distributions [Silverman 1986]. The

major problem of this method is that when the attribute data do not follow a

normal distribution, which is often the case in real-world data, the probability

estimation of naive-Bayes classifiers is not reliable and thus can lead to infe-

rior classification performance [Dougherty, Kohavi, and Sahami 1995; Pazzani

1995].

A second approach is less parametric in that it does not constrain f̂ to fall

in a given parametric family. Thus less rigid assumptions are made about

the distribution of the observed data [Silverman 1986]. A typical approach is

kernel density estimation [John and Langley 1995]. f̂ is averaged over a large
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set of normal (Gaussian) kernels,

f̂ =
1
nc

∑
j

N(Xi ;µi j ,σc),

where nc is the total number of training instances with class c, µi j is the jth

value of Xi within class c, and σc= 1√
nc

. It has been demonstrated that kernel

density estimation results in higher naive-Bayes classification accuracy than

the former method in domains that violate the normal distribution assump-

tion, and causes only small decreases in accuracy in domains where the as-

sumption holds. However, this approach tends to incur high computational

memory and time. Whereas the former method can estimate µc and σc by stor-

ing only the sum of the observed xi and the sum of their squares, this approach

must store every xi . Whereas the former method only has to calculate N(Xi)

once for each Xi=xi |C=c, this approach must perform this calculation nc times.

Thus it has a potential problem that undermines the efficiency of naive-Bayes

learning.

3.1.3 Merits of naive-Bayes classifiers

Naive-Bayes classifiers are simple and efficient. They need only to collect in-

formation about individual attributes, which contrasts to most learning sys-

tems that must consider attribute combinations. Thus naive-Bayes’ compu-

tational time complexity is only linear with respect to the size of the training

data. This is much more efficient than the exponential complexity of non-naive

Bayes approaches [Yang and Liu 1999; Zhang, Ling, and Zhao 2000]. They are

also space efficient. They do not require the training data be retained in mem-
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ory during classification and can record all required information using only

tables of no more than two dimensions.

Naive-Bayes classifiers are effective. They are optimal methods of super-

vised learning if the independence assumption holds and the estimates of the

required probabilities are accurate [Duda and Hart 1973]. Even when the inde-

pendence assumption is violated, their classification performance is still sur-

prisingly good compared with other more sophisticated classifiers. One rea-

son for this is because that the classification estimation under zero-one loss is

only a function of the sign of the probability estimation. In consequence, the

classification accuracy can remain high even while the probability estimation

is poor [Domingos and Pazzani 1997].

Naive-Bayes classifiers are robust to noisy data such as irrelevant at-

tributes. They take all attributes into account simultaneously. Hence, the

impact of a misleading attribute can be absorbed by other attributes under

zero-one loss [Hsu, Huang, and Wong 2000; Hsu, Huang, and Wong 2003].

Naive-Bayes classifiers support incremental training [Rennie 2000; Roy

and McCallum 2001; Zaffalon and Hutter 2002]. One can map an existing

naive-Bayes classifier and a new training instance to a new naive-Bayes clas-

sifier which is identical to the classifier that would have been learned from

the original data augmented by the new instance. Thus it is trivial to update

a naive-Bayes classifier whenever a new training instance becomes available.

This contrasts to the non-incremental methods which must build a new classi-

fier from scratch in order to utilize new training data. The cost of incremental

update is far lower than that of retraining. Consequently, naive-Bayes classi-

fiers are particularly attractive for classification tasks where the training infor-
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mation updates frequently.

These merits have led to naive-Bayes learning’s widespread employment

for real-world classification applications.

3.2 How discretization works

Discretization provides an alternative to probability density estimation for

naive-Bayes learning. Under probability density estimation, if the assumed

density is not a proper estimate of the true density, the naive-Bayes classifi-

cation performance tends to degrade [Dougherty, Kohavi, and Sahami 1995;

John and Langley 1995]. Since the true density is usually unknown for real-

world data, unsafe assumptions unfortunately often occur. Discretization can

circumvent this problem. Under discretization, a qualitative attribute X∗i is

formed for Xi . Each value x∗i of X∗i corresponds to an interval (ai ,bi ] of Xi . Any

original quantitative value xi ∈ (ai ,bi ] is replaced by x∗i . All relevant probabil-

ities are estimated with respect to x∗i . Since probabilities of X∗i can be prop-

erly estimated from frequencies as long as there are enough training instances,

there is no need to assume the probability density function any more. How-

ever, because qualitative data have a lower level of measurement scales than

quantitative data as we have addressed in Chapter 2, discretization can suffer

information loss.

3.2.1 Why discretization can be effective

Dougherty, Kohavi, and Sahami [1995] conducted an empirical study to

show that naive-Bayes classifiers resulting from discretization achieved
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lower classification error than those resulting from unsafe probability density

assumptions. With this empirical support, Dougherty et al. suggested that

discretization could be effective because they did not make any assumption

about the form of the probability distribution from which the quantitative

attribute values were drawn. Hsu, Huang, and Wong [2000, 2003] further

analyzed this issue from a theoretical base. Specifically, they assumed a

discretized attribute given a class X∗i |C=c to have a multinomial distribution

with parameters nc and p1, p2, · · · , pv, where nc is the number of the training

instances with class c, v is the number of discretized values of X∗i , x∗i j is the

jth value of X∗i , and p j = p(X∗i =x∗i j |C=c) for j=1,2, · · · ,v. The parameters

p1, p2, · · · , pv have a Dirichlet distribution which conjugates to the multinomial

distribution. ‘Perfect aggregation’ of a Dirichlet distribution implies that one

can estimate p(X∗i =x∗i |C=c) with arbitrary accuracy, independent of the shape

of the curve of the density function f (Xi |C=c) in the interval (ai ,bi ] to which

x∗i corresponds. They suggested that discretization would achieve optimal

effectiveness by forming x∗i for xi such that p(X∗i =x∗i |C=c) simulates the role

of f (Xi=xi |C=c) by distinguishing the class that gives xi high density from the

class that gives xi low density. However, they did not supply any insight into

why there exist differences in the effectiveness among different discretization

methods. Instead, they suggested that ‘well-known’ discretization methods,

such as equal width discretization [Catlett 1991; Kerber 1992; Dougherty,

Kohavi, and Sahami 1995] and entropy minimization discretization [Fayyad

and Irani 1993], were unlikely to degrade naive-Bayes classification per-

formance. In contrast, we do not believe in this unconditional excellence.

Rather, we believe that discretization for naive-Bayes learning should focus
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on the accuracy of p(C=c|X∗i =x∗i ) as an estimate of p(C=c|Xi=xi). As we

will prove in Theorem 1, as long as p(C=c|X∗i =x∗i ) is an accurate estimate of

p(C=c|Xi=xi), discretization can be effective to the degree that the probability

estimates are the same as would be obtained if the correct probability density

functions were employed.

Theorem 1 Assume the first l of k attributes are quantitative and the remaining

attributes are qualitative1. Suppose instance X∗ is the discretized version of instance

X, resulting from substituting qualitative attribute X∗i for quantitative attribute Xi

(1≤ i ≤ l). If ∀l
i=1(p(C=c|Xi=xi) = p(C=c|X∗i =x∗i )), and the naive-Bayes attribute

independence assumption (3.3) holds, we have p(C=c|X=x) ∝ p(C=c|X∗=x∗).

Proof:

According to Bayes theorem, we have:

p(C=c|X=x)

= p(C=c)
p(X=x |C=c)

p(X=x)
;

since the naive-Bayes attribute independence assumption (3.3) holds, we con-

tinue:

=
p(C=c)
p(X=x)

k

∏
i=1

p(Xi=xi |C=c);

1In naive-Bayes learning, the order of the attributes does not matter. We make this assumption only
to simplify the expression of our proof. This does not affect the theoretical analysis at all.
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using Bayes theorem:

=
p(C=c)
p(X=x)

k

∏
i=1

p(Xi=xi)p(C=c|Xi=xi)
p(C=c)

=
p(C=c)
p(C=c)k

∏k
i=1 p(Xi=xi)
p(X=x)

k

∏
i=1

p(C=c|Xi=xi);

since the factor ∏k
i=1 p(Xi=xi)
p(X=x) is invariant across classes:

∝ p(C=c)1−k
k

∏
i=1

p(C=c|Xi=xi)

= p(C=c)1−k
l

∏
i=1

p(C=c|Xi=xi)
k

∏
j=l+1

p(C=c|Xj=x j);

since ∀l
i=1(p(C=c|Xi=xi) = p(C=c|X∗i =x∗i )):

= p(C=c)1−k
l

∏
i=1

p(C=c|X∗i=x∗i)
k

∏
j=l+1

p(C=c|Xj=x j);

using Bayes theorem again:

= p(C=c)1−k
l

∏
i=1

p(C=c)p(X∗i =x∗i |C=c)
p(X∗i =x∗i )

k

∏
j=l+1

p(C=c)p(Xj=x j |C=c)
p(Xj=x j)

= p(C=c)
∏l

i=1 p(X∗i =x∗i |C=c)∏k
j=l+1 p(Xj=x j |C=c)

∏l
i=1 p(X∗i =x∗i )∏k

j=l+1 p(Xj=x j)
;

since the denominator ∏l
i=1 p(X∗i =x∗i )∏k

j=l+1 p(Xj=x j) is invariant across

classes:

∝ p(C=c)
l

∏
i=1

p(X∗i =x∗i |C=c)
k

∏
j=l+1

p(Xj=x j |C=c);
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since the naive-Bayes attribute independence assumption (3.3) holds:

= p(C=c)p(X∗=x∗ |C=c)

= p(C=c|X∗=x∗)p(X∗=x∗);

since p(X∗=x∗) is invariant across classes:

∝ p(C=c|X∗=x∗). 2

Theorem 1 assures us that in naive-Bayes learning, if the attribute indepen-

dence assumption holds, and if for each quantitative attribute Xi , discretiza-

tion can form a qualitative X∗i such that p(C=c|X∗i =x∗i ) is a reasonable approx-

imation of p(C=c|Xi=xi), we can expect that p(C=c|X∗=x∗) is a reasonable

approximation of p(C=c|X=x). Since p(C=c|X∗i =x∗i ) is estimated as for quali-

tative attributes, it allows naive-Bayes learning not to assume any form of the

probability density of the quantitative data.

This analysis of discretization that focuses on p(C=c|Xi=xi) instead

of f (Xi=xi |C=c) is derived from Kononenko’s analysis [1992]. However,

Kononenko’s analysis requires that the attributes be assumed unconditionally

independent of each other, which entitles ∏k
i=1 p(Xi=xi) = p(X=x). This as-

sumption is much stronger than the naive-Bayes attribute independence as-

sumption embodied in (3.3). Thus we suggest that our deduction in Theorem

1 more accurately captures the mechanism by which discretization works.
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3.3 What affects discretization effectiveness

We have proved that the accuracy of the probability p(C=c|X∗i =x∗i ) as an es-

timate of p(C=c|Xi=xi) for each class c plays a key role on discretization’s ef-

fectiveness. Two important factors that relate to this accuracy are the decision

boundary and the error tolerance of probability estimation. Different discretization

methods have different ways to deal with these two factors, and thus have

different effects on the classification bias and variance of the generated clas-

sifiers. We name these effects discretization bias and variance. We suggest that

discretization methods that can well manage discretization bias and variance

are of great utility. According to (3.4), besides p(C=c|Xi=xi), the prior proba-

bility of each class p(C=c) also affects the final choice. To simplify our analysis,

we here assume that each class has the same prior probability. That is, p(C=c)

is identical for each c. Thus we can cancel out the effect of p(C=c). However,

our analysis extends straightforwardly to non-uniform cases.

In addition, two important terms throughout our analysis are interval fre-

quency and interval number. Interval frequency is the number of training in-

stances in an interval formed by discretization. Interval number is the total

number of intervals formed by discretization.

3.3.1 Classification bias and variance

When we talk about the effectiveness of a discretization method, we in fact

mean the performance of naive-Bayes classifiers that are trained on data dis-

cretized by this discretization method. Thus it is essential to explain how the

performance of naive-Bayes classifiers is measured.
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The performance of a classifier is usually measured by its classification er-

ror. The error can be partitioned into a bias term, a variance term and an ir-

reducible term [Kong and Dietterich 1995; Breiman 1996; Kohavi and Wolpert

1996; Friedman 1997; Webb 2000]. Bias describes the component of error that

results from systematic error of the learning algorithm. Variance describes the

component of error that results from random variation in the training data

and from random behavior in the learning algorithm, and thus measures how

sensitive an algorithm is to changes in the training data. As the algorithm be-

comes more sensitive, the variance increases. Irreducible error describes the

error of an optimal algorithm (the level of noise in the data), which is usually

aggregated with the bias term or (and) the variance term.

Consider a classification learning algorithm A applied to a set Sof training

instances to produce a classifier to classify an instance x. Suppose we could

draw a sequence of training sets S1,S2, ...,Sl , each of size m, and apply A to

construct classifiers. The error of A at x with respect to this sequence of training

sets of size m can be defined as:

Error(A,m,x) = Bias(A,m,x)+Variance(A,m,x)+ Irreducible(A,m,x).

There is often a ‘bias and variance trade-off’ [Kohavi and Wolpert 1996]. All

other things being equal, as one modifies some aspect of the learning algo-

rithm, it will have opposite effects on bias and variance. For example, usually

as one increases the number of degrees of freedom in the algorithm, the bias

decreases but the variance increases. The optimal number of degrees of free-

dom (as far as the expected loss is concerned) is the number that optimizes
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this trade-off between bias and variance.

Moore and McCabe [2002] illustrated bias and variance through the anal-

ogy of shooting arrows at a target, as reproduced in Figure 3.1. We can think

of the perfect model as the bull’s-eye on a target, and the algorithm learning

from some set of training data as an arrow fired at the bull’s-eye. Bias and

variance describe what happens when an archer fires many arrows at the tar-

get. Bias means that the aim is off and the arrows land consistently off the

bull’s-eye in the same direction. The learned model does not center about the

perfect model. Variance means that repeated shots are widely scattered on the

target. They do not give similar results but differ widely among themselves.

A good learning scheme, like a good archer, must have both low bias and low

variance.

3.3.2 Decision boundary

This factor in our analysis is inspired by Hsu, Huang, and Wong’s study and

analysis of discretization effectiveness [2000, 2003]. Hsu et al. addressed this

factor in the context of estimating the probability density function f (Xi |C=c)

of a quantitative attribute Xi given each class c. They defined decision bound-

aries of Xi as intersection points of the curves of f (Xi |C), where ties occurred

among the largest conditional densities. They suggested that the optimal

classification for an instance with Xi=xi was to pick the class c such that

f (Xi=xi |C=c) was the largest, and the pick of the class was different when

xi was on different sides of a decision boundary. Hsu et al.’s analysis only
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(a) High bias, low variance (b) Low bias, high variance

(c) High bias, high variance (d) Low bias, low variance

Figure 3.1: Bias and variance in shooting arrows at a target. Bias means that the
archer systematically misses in the same direction. Variance means that the arrows
are scattered.
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addressed one-attribute classification problems2, and only suggested that the

analysis could be extended to multi-attribute applications without indicating

how this might be so.

In our analysis we employ a definition of a decision boundary different

from that of Hsu et al.’s because:

1. We believe that better insights are obtained by focusing on the values of

Xi at which the class that maximizes p(C=c | Xi=xi) changes rather than

those that maximize f (Xi=xi |C=c).

2. The condition that ties occur among the largest conditional probabilities

is neither necessary nor sufficient for a decision boundary to occur. For

example, suppose that we have probability distributions as plotted in

Figure 3.2 that depicts a domain with two classes (positivevs. negative)

and one attribute X1. We have p(positive|X1)=1.0 (if X1≥ d); or 0.0 other-

p(C | X )1

X 1d

negative

positive negative

positive

Figure 3.2: A tie in conditional probabilities is not a necessary condition for a decision
boundary to exist.

wise. X1=d should be a decision boundary since the most probable class

changes from negativeto positivewhen Xi crosses the value d. However,

2By default, we talk about quantitative attributes.
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there is no value of X1 at which the probabilities of the two classes are

equal. Thus the condition requiring ties is not necessary. Consider a sec-

ond example as plotted in Figure 3.3. The conditional probabilities for c1

3c

1

2

X

c

c

d 1

p(C | X 1)

Figure 3.3: A tie in conditional probabilities is not a sufficient condition for a decision
boundary to exist.

and c2 are equally largest at X1=d. However, d is not a decision bound-

ary because c2 is the most probable class on both sides of X1=d. Thus the

condition requiring ties is not sufficient either.

3. It is possible that a decision boundary is not a single value, but a value

region. For example as plotted in Figure 3.4, the two classes c1 and c2

1c

1c2c

2c

X

p(C | X

d e
1

1)

Figure 3.4: Decision boundaries may be regions rather than points.

are both most probable through the region [d,e]. In addition, the region’s
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width can be zero, as illustrated in Figure 3.2.

4. Decision boundaries of a quantitative attribute are expected to vary from

test instance to test instance, depending on the precise values of other at-

tributes presented in the test instance, as we will explain later in this sec-

tion. However, Hsu et al. defined the decision boundaries of a quantita-

tive attribute in such a way that they are independent of other attributes.

In view of these issues we propose a new definition for decision bound-

aries. This new definition is central to our study of discretization effectiveness

in naive-Bayes learning. As we have explained, motivated by Theorem 1, we

focus on the probability p(C=c|Xi) of each class c given a quantitative attribute

Xi rather than on the density function f (Xi |C=c).

To define a decision boundary of a quantitative attribute Xi , we first define

a most probable class. When classifying an instance x, a most probable class cm

given x is the class that satisfies ∀c∈C,P(c|x)≤ P(cm|x). Note that there may

be multiple most probable classes for a single x if the probabilities of those

classes are equally largest. In consequence, we define a set of most probable

classes whose elements are all the most probable classes for a given instance x.

We use mpc(x) to represent the set of most probable classes for x. As a matter

of notational convenience we define x\Xi=v to represent an instance x′ that is

identical to x except that Xi=v for x′.

A decision boundary of a quantitative attribute Xi given an instance x in our

analysis is an interval (l , r) of Xi (that may be of zero width) such that

∀(w∈ [l , r),u∈ (l , r]),¬(w=l ∧u=r)⇒mpc(x\Xi=w)∩mpc(x\Xi=u) 6= /0
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∧

mpc(x\Xi=l)∩mpc(x\Xi=r) = /0.

When analyzing how decision boundaries affect the discretization effec-

tiveness, we suggest that the analysis involving only one attribute differs from

that involving multiple attributes, since the final choice of the class is decided

by the product of each attribute’s probability in the later situation.

Consider a simple learning task with one quantitative attribute X1 and two

classes c1 and c2. Suppose X1 ∈ [0,2], and suppose that the probability distri-

bution function for each class is p(C=c1 |X1) = 1− (X1−1)2 and p(C=c2 |X1) =

(X1−1)2 respectively, which are plotted in Figure 3.5. The consequent decision

I1 I2 I3 I5I4

DB2DB1

0.5

1

P(C    X

0

)

P(C = c2 )X

1

1 XP(C = c )1

X1

1

0.1 1 20.3

Figure 3.5: Probability distribution in one-attribute classification problem

boundaries are labelled as DB1 and DB2 respectively in Figure 3.5. The most-

probable class for a value x1 changes each time its location crosses a decision

boundary. Assume a discretization method to create intervals Ii (i=1, · · · ,5) as

in Figure 3.5. I2 and I4 each contain a decision boundary while the remain-

ing intervals do not. For any two values in I2 (or I4) but on different sides
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of a decision boundary, the optimal naive-Bayes learning under zero-one loss

should select a different class for each value3. But under discretization, all

the values in the same interval cannot be differentiated and we will have the

same class probability estimate for all of them. Consequently, a naive-Bayes

classifier with discretization will assign the same class to all of them, and thus

values at one of the two sides of the decision boundary will be misclassified

with respect to the optimal classification under zero-one loss. The larger the

interval frequency, the more likely that the value range of the interval is larger,

thus the more likely that the interval contains a decision boundary. The larger

the interval containing a decision boundary, the more instances to be misclassi-

fied, thus the greater the expected bias of the generated naive-Bayes classifiers.

In other words, larger interval frequency tends to incur higher discretization

bias.

In a one-attribute classification problem, the locations of decision bound-

aries of the attribute X1 depend on the distribution of p(C=c|X1) for each class

c. However, for a multi-attribute application, the decision boundaries of an

attribute, say X1, are not only decided by the distribution of p(C|X1), but also

vary from test instance to test instance depending upon the precise values of

other attributes of the current test instance.

Consider another learning task with two quantitative attributes X1 and X2,

and two classes c1 and c2. The probability distribution of each class given

each attribute is depicted in Figure 3.6, of which the probability distribu-

3Please note that since naive-Bayes classification is a probabilistic problem, some instances
will be misclassified even when optimal classification is performed. An optimal classifier is
one that minimizes the Bayes classification error under zero-one loss [Duda and Hart 1973].
Hence even though it is optimal, it still can misclassify instances on both sides of a decision
boundary.
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tion of each class given X1 is identical with that in the above one-attribute

classification problem in Figure 3.5. We assume that the attribute indepen-

0.2

P(C    X )2

P(C = c2 )X2

1 XP(C = c )2

DB 1 DB 4

P(C    X )1

DB 3DB 2

0
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1
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Figure 3.6: Probability distribution in two-attribute classification problem

dence assumption holds. We analyze the decision boundaries of X1 for an

example. If X2 does not exist, X1 has decision boundaries as depicted in Fig-

ure 3.5. However, because of the existence of X2, those might not be de-

cision boundaries any more. Suppose there comes a test instance x with

X2=0.2. When X1 falls on any of the single attribute decision boundaries as

presented in Figure 3.5, p(C=c1 |X=x) does not equal p(C=c2 |X=x). This

is because p(C=c1 |X2=0.2)=0.8 6= p(C=c2 |X2=0.2)=0.2, and p(C=c|X=x) ∝

∏2
i=1 p(C=c|Xi=xi) for each class c according to Theorem 1. Instead X1’s deci-

sion boundaries change to be DB1 and DB4 as in Figure 3.6. Suppose another

test instance with X2=0.7. By the same reasoning X1’s decision boundaries



44 Theoretical analysis of discretization in naive-Bayes learning

change to be DB2 and DB3 as depicted in Figure 3.6. When there are more

than two attributes, each combination of values of the attributes other than X1

results in a corresponding decision boundary of X1. Thus in multi-attribute

applications the decision boundaries of one attribute can only be identified

with respect to each specific combination of values of the other attributes. As

we increase either the number of attributes or the number of values of an at-

tribute, we will increase the number of combinations of attribute values, and

thus the number of decision boundaries. Since many real-world applications

involve training data of large size, each attribute may have a very large num-

ber of potential decision boundaries. Nevertheless, for the same reason as

we have discussed in the one-attribute context, intervals containing decision

boundaries have the potential negative impact on discretization bias.

Consequently, discretization bias can be reduced by identifying the deci-

sion boundaries and setting the interval boundaries close to them. However,

identifying the correct decision boundaries depends on finding the true form

of p(C|Xi) for each quantitative attribute Xi . Ironically, if we have already

found p(C|Xi), we can resolve the classification task directly; thus there is no

need to consider discretization any more.

Without knowing p(C|Xi), a solution is to increase the interval number so

as to decrease the interval frequency. An extreme approach is to set each (dif-

ferent) value as an interval. Although this most likely guarantees that no in-

terval contains a decision boundary, it usually results in very few instances

per interval. As a result, the estimation of p(C=c|X∗i =x∗i ) for each c might

be so unreliable that we cannot identify the truly most probable class even if

there is no decision boundaries in the interval. The larger the interval number
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for probability estimation, the greater the expected variance of the generated

naive-Bayes classifiers, since even a small change to the training data might

substantially change the probability estimation. In other words, larger inter-

val number tends to incur higher discretization variance.

A possible solution to this problem is to require that the interval frequency

should be sufficient to ensure stability in the probability estimated therefrom.

This raises the question, how reliable must the probability be? That is, when

estimating p(C=c|Xi=xi) by p(C=c|X∗i =x∗i ), how much error can be tolerated

without altering the classification? This motivates our following analysis.

3.3.3 Error tolerance of probability estimation

To investigate this factor, we return to our example depicted in Figure 3.5.

We suggest that different values have different error tolerances of their

probability estimation. For example, for a test instance x with X1=0.1

and thus with c2 being its most probable class, its true class probability

distribution is p(C=c1 |X=x) = p(C=c1 |X1=0.1) = 0.19 and p(C=c2 |X=x) =

p(C=c2 |X1=0.1) = 0.81. According to naive-Bayes learning, as long as

p(C=c2 |X1=0.1) > 0.50, c2 will be correctly chosen as the class and the clas-

sification is optimal under zero-one loss. This means that the error tolerance

of estimating p(C|X1=0.1) can be as big as 0.81−0.50 = 0.31. However, for

another test instance x with X1=0.3 and thus with c1 being its most proba-

ble class, its probability distribution is p(C=c1 |X=x) = p(C=c1 |X1=0.3) = 0.51

and p(C=c2 |X=x) = p(C=c2 |X1=0.3) = 0.49. The error tolerance of estimat-

ing p(C|X1=0.3) is only 0.51−0.50 = 0.01. In the learning context of multi-
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attribute applications, the analysis of the error tolerance of probability estima-

tion is even more complicated. The error tolerance of a value of an attribute

affects, as well as is affected by those of the values of the other attributes since

it is the product of p(C=c|Xi=xi) of each xi that decides the final probability of

each class.

The larger an interval’s frequency, the lower the expected error of probabil-

ity estimates pertaining to that interval. Hence, the lower the error tolerance

for a value, the larger the ideal frequency for the interval from which its prob-

abilities are estimated. Since all the factors that affect error tolerance vary from

case to case, there cannot be a universal, or even a domain-wide constant that

represents the ideal interval frequency, which thus will vary from case to case.

Further, the error tolerance can only be calculated if the true probability dis-

tribution of the training data is known. If it is not known, the best we can

hope for is heuristic approaches to managing error tolerance that work well in

practice.

3.3.4 Summary

By this line of reasoning, optimal discretization can only be performed if the

probability distribution of p(C=c|Xi) for each c within each Xi is known, and

thus the decision boundaries are known. If the decision boundaries are not

known, which is often the case for real-world data, we want to maximize the

interval number so as to minimize the risk that an instance is classified using

an interval containing a decision boundary. By this means we expect to reduce

the discretization bias, thus to reduce the classification bias of the generated
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naive-Bayes classifiers. On the other hand, however, we want to ensure that

the interval frequency is sufficiently large so as to minimize the risk that the er-

ror of estimating p(C=c|Xi=xi) by p(C=c|X∗i =x∗i ) will exceed the current error

tolerance. By this means we expect to reduce the discretization variance, thus

to reduce the classification variance of the generated naive-Bayes classifiers.

However, all other things being equal, there is a trade-off between interval

frequency and interval number. That is, the larger the interval frequency, the

smaller the interval number, and vice versa. A larger interval frequency leads

to lower discretization variance but higher discretization bias, while a larger

interval number leads to lower discretization bias but higher discretization

variance. Hence, tuning interval frequency and interval number can be an

approach to finding a good trade-off between discretization bias and variance,

thus to achieving low naive-Bayes classification error. We argue that there is

no universal solution to this problem. That is, the optimal trade-off between

interval frequency and interval number will vary greatly from test instance to

test instance.

Another illuminating issue arising from our study is that since the decision

boundaries of a quantitative attribute value depend on the precise values of

other quantitative attributes given a particular test instance, we can not de-

velop optimal discretization by any apriori methodology, that is, by forming

intervals prior to the classification time. However, even if we adopt a lazy

methodology [Zheng and Webb 2000], that is, taking into account the values

of other attributes when classifying an instance during classification time, we

still cannot guarantee optimal discretization unless we know the true prob-

ability distribution of the quantitative attributes. These insights reveal that,
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while discretization is desirable when the true underlying probability density

functions are not available, practical discretization techniques are necessarily

heuristic in nature. The holy grail of an optimal universal discretization strat-

egy for naive-Bayes learning is unobtainable.

3.4 Summary

In this chapter, we have conducted a theoretical analysis of discretization in

naive-Bayes learning. Naive-Bayes learning is probabilistic learning. It needs

to estimate the probability of each class given an instance in order to clas-

sify this instance. When the learning involves quantitative attributes, we need

to know the true probability distribution of each class within each quantita-

tive attribute. However, this is usually unknown for real-world data. Con-

sequently, there are two typical approaches to dealing with quantitative at-

tributes, probability density estimation or discretization. Among the two ap-

proaches, discretization is more popular because of its efficacy and efficiency

for naive-Bayes learning. Nonetheless, we do not think that discretization can

be ‘unconditionally’ effective as previous research suggested [Hsu, Huang,

and Wong 2000; Hsu, Huang, and Wong 2003]. Instead we have proved Theo-

rem 1 that states particular conditions under which discretization will result in

naive-Bayes classifiers delivering the same probability estimates as would be

obtained if the correct probability density function were employed. Accord-

ing to Theorem 1, we have proposed two factors, the decision boundary and the

error tolerance of probability estimation to be the key factors that are able to affect

discretization’s effectiveness. Different discretization methods have different
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ways to handle these two factors, thus have different impacts on the classi-

fication bias and variance of the generated naive-Bayes classifiers. We name

these effects discretization bias and variance. We believe that by better managing

discretization bias and variance, we can achieve lower naive-Bayes classifica-

tion error. In particular, we have related discretization bias and variance to

discretized interval frequency and interval number. We have suggested that

by properly adjusting interval frequency and number, we can better manage

discretization bias and variance.

In the next chapter, we will present a comprehensive literature review of

existing discretization methods in the area of machine learning. We are partic-

ularly interested in those methods that are usually employed in naive-Bayes

learning.
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Chapter 4

Review of previous discretization

methods

The previous chapter has analyzed discretization in naive-Bayes learning. This

chapter will present a comprehensive literature review of existing discretiza-

tion methods in the research area of machine learning.

Many real-world data tackled by machine learning algorithms involve

quantitative data. However, there exist many machine learning algorithms

that are more oriented to handle qualitative attributes than quantitative at-

tributes [Kerber 1992; Dougherty, Kohavi, and Sahami 1995; Kohavi and Sa-

hami 1996]. Even for algorithms that can directly deal with quantitative at-

tributes, learning is often less efficient and less effective for quantitative data

than for qualitative data [Catlett 1991; Kerber 1992; Richeldi and Rossotto

1995; Frank and Witten 1999]. Since larger and larger datasets are becom-

ing routinely available for most modern research, the learning efficiency is of

particular importance. Thus discretization has attracted much attention.

Over the years, many discretization algorithms have been proposed and

tested to show that discretization helps improve the performance of learning

and helps understand the learning result. In this chapter, we review 34 dis-

51
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cretization methods. We break down the review to methods that are typically

used for naive-Bayes learning, and to methods that are used for learning con-

texts other than naive-Bayes learning.

4.1 Methods for naive-Bayes learning

We here review six discretization methods, each of which was either designed

especially for naive-Bayes classifiers or is in practice often used for naive-

Bayes classifiers. Since we have valued the bias-variance characteristic of dis-

cretization in naive-Bayes learning, we are particularly interested in analyzing

each method’s effectiveness in terms of discretization bias and variance, which

we believe illuminating. The methods are ordered by the year that they each

were published.

4.1.1 Equal width discretization & Equal frequency dis-

cretization

When discretizing a quantitative attribute, equal width discretization

(EWD) [Catlett 1991; Kerber 1992; Dougherty, Kohavi, and Sahami 1995] di-

vides the number line between vmin and vmax into k intervals of equal width,

where vmin is the minimum observed value, vmax is the maximum observed

value, and k is a user predefined parameter. Thus the intervals have width

w= (vmax−vmin)/k and the cut points are at vmin+w,vmin+2w, · · · ,vmin+(k−1)w.

When discretizing a quantitative attribute, equal frequency discretization

(EFD) [Catlett 1991; Kerber 1992; Dougherty, Kohavi, and Sahami 1995] di-
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vides the sorted values into k intervals so that each interval contains approxi-

mately the same number of training instances. k is a user predefined parame-

ter. Thus each interval contains n/k training instances with adjacent (possibly

identical) values. Note that training instances with identical values must be

placed in the same interval. In consequence it is not always possible to gener-

ate k equal frequency intervals.

Both EWD and EFD are often used for naive-Bayes classifiers because of

their simplicity and reasonable effectiveness [Hsu, Huang, and Wong 2000;

Hsu, Huang, and Wong 2003]. However both EWD and EFD fix the number of

intervals to be produced (decided by the user predefined parameter k). When

the training dataset is very small, intervals tend to have small frequency and

thus tend to incur high discretization variance. When the training data size is

very large, intervals tend to have large frequency and thus tend to incur very

high discretization bias. Thus we anticipate that they do not control either

discretization bias or discretization variance well.

4.1.2 Fuzzy learning discretization

Fuzzy learning discretization1 (FLD) [Kononenko 1992; Kononenko 1993] ini-

tially discretizes Xi into k equal width intervals (ai ,bi] (1≤ i ≤ k) using EWD,

where k is a user predefined parameter. For each discretized value x∗i corre-

sponding to (ai ,bi ], FLD estimates p(X∗i =x∗i |C=c) from all training instances

rather than only from instances that have values of Xi in (ai ,bi ]. The in-

1This is one of the three versions of fuzzy discretization proposed by Kononenko [1992,
1993] for naive-Bayes classifiers. We present here only the version that, according to our ex-
periments, is most effective to reduce the naive-Bayes classification error.
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fluence of a training instance with value v of Xi on (ai ,bi ] is assumed to be

normally distributed with the mean value equal to v and is proportional to

P(v,σ, i) =
∫ bi

ai
1

σ
√

2π
e−

1
2( x−v

σ )2
dx. σ is a parameter to the algorithm and is used to

control the ‘fuzziness’ of the interval bounds. According to Kononenko’s ex-

periments, setting σ to 0.7× vmax−vmin
k achieved the best results. Suppose there

are nc training instances with known values for Xi and with class c, each with

influence P(v j ,σ, i) on (ai ,bi ] ( j=1, · · · ,nc):

p(X∗i =x∗i |C=c) =
p(ai < Xi ≤ bi ∧C=c)

p(C=c)
≈

∑nc
j=1P(v j ,σ,i)

n

p(C=c)
. (4.1)

The idea behind fuzzy learning discretization is that small variation of the

value of a quantitative attribute should have small effects on the attribute’s

probabilities, whereas under non-fuzzy discretization, a slight difference be-

tween two values, such that one is above and one is below the cut point, can

have drastic effects on the estimated probabilities. However, we suspect that

when the training instances’ influence on each interval does not follow the

normal distribution, FLD’s effectiveness can degrade. As for discretization

bias and variance, since FLD takes into consideration all values in a quanti-

tative attribute’s value range for the naive-Bayes probability estimation, we

anticipate it to be good at reducing discretization variance but reversely, bad

at reducing discretization bias. Besides, its primary method can have impact

on its discretization bias and variance. For example, when its primary method

is EWD, FLD tends to incur high discretization bias when the training data

size is large where EWD forms intervals of large frequency.
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4.1.3 Entropy minimization discretization

Entropy minimization discretization (EMD) [Fayyad and Irani 1993] evalu-

ates as a candidate cut point the midpoint between each successive pair of the

sorted values. For evaluating each candidate cut point, the data are discretized

into two intervals and the resulting class information entropy is calculated. A

binary discretization is determined by selecting the cut point for which the en-

tropy is minimal amongst all candidates. The binary discretization is applied

recursively, always selecting the best cut point. A minimum description length

criterion (MDL) is applied to decide when to stop discretization.

An often-cited contribution of Fayyad and Irani’s work is that it defined

boundary cut points of a quantitative attribute. Boundary cut points are val-

ues between two instances with different classes in the sequence of instances

sorted by this quantitative attribute. It was proved that evaluating only the

boundary cut points is sufficient for finding the minimum class information

entropy. Many methods in our review refer to the concept of boundary cut

points.

Although it has demonstrated strong effectiveness for naive-Bayes

[Dougherty, Kohavi, and Sahami 1995; Perner and Trautzsch 1998], EMD was

developed in the context of top-down induction of decision trees. It uses MDL

as the termination condition. According to An and Cercone [1999], this has an

effect to form qualitative attributes with few values. For decision tree learning,

it is important to minimize the number of values of an attribute, so as to avoid

the fragmentation problem [Quinlan 1993]. If an attribute has many values,

a split on this attribute will result in many branches, each of which receives
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relatively few training instances, making it difficult to select appropriate sub-

sequent tests. Naive-Bayes learning assumes that attributes are independent

of one another given the class, and hence is not subject to the same fragmenta-

tion problem. As a result, we anticipate that EMD used in naive-Bayes learning

is good at reducing discretization variance, but does not control discretization

bias so successfully. This might work well for the training data of small size,

for which it is credible that variance reduction can contribute more to lower-

ing naive-Bayes learning error than bias reduction [Friedman 1997]. However,

when the training data size is large, it is very likely that the loss through dis-

cretization bias increase will soon overshadow the gain through discretization

variance reduction, resulting in inferior learning performance.

A second issue is that when it is used in naive-Bayes learning, EMD dis-

cretizes a quantitative attribute by calculating the class information entropy as

if the naive-Bayes classifiers only use that single attribute after discretization.

Thus EMD might be effective at identifying decision boundaries in the learn-

ing context of one-attribute applications. But in the context of multi-attribute

applications, the resulting cut points can easily diverge from the true ones as

we have explained in Section 3.3. If this happens, we anticipate that EMD will

control neither discretization bias nor discretization variance well.

4.1.4 Iterative-improvement discretization

Iterative-improvement discretization (IID) [Pazzani 1995] was purposely de-

signed for naive-Bayes classifiers. It initially forms a set of intervals using

EWD or EMD, and then iteratively adjusts the intervals to minimize the naive-
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Bayes classification error on the training data. It defines two operators: merge

two contiguous intervals, or split an interval into two intervals by introduc-

ing a new cut point that is midway between each pair of contiguous values in

that interval. In each loop of the iteration, for each quantitative attribute, IID

applies both operators in all possible ways to the current set of intervals and

estimates the classification error of each adjustment using leave-one-out cross

validation. The adjustment with the lowest error is retained. The loop stops

when no adjustment further reduces the error.

A potential disadvantage of IID results from its iterative nature. When

the training data size is large, the possible adjustments by applying the two

operators will be numerous. Consequently the repetitions of the leave-one-

out cross validation will be numerous so that IID has high computational time

overhead, which defeats a principle advantage of naive-Bayes classifiers for

many application: its computational efficiency.

IID can split as well as merge discretized intervals. How many intervals

will be formed and where the cut points are located are decided by the error

of the cross validation. This is a case by case problem and thus it is not clear

what IID’s systematic impact on discretization bias and variance is. However,

as cross-validation has frequently proved successful in finding a model that

minimizes error, we might infer that IID can obtain a good discretization bias-

variance trade-off.
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4.1.5 Lazy discretization

Lazy discretization (LD) [Hsu, Huang, and Wong 2000; Hsu, Huang, and

Wong 2003] defers discretization until classification time. It waits until a

test instance is presented to determine the cut points and then to estimate

f (Xi=xi |C=c) by p(X∗i =x∗i |C=c) for each quantitative attribute of the test in-

stance. When classifying an instance, LD creates only one interval for each

quantitative attribute containing its value from this instance, and leaves other

value regions untouched. In particular, it selects a pair of cut points for each

quantitative attribute such that the value is in the middle of its corresponding

interval. The interval frequency is equal to that produced by its primary dis-

cretization method. In Hsu et al.’s implementation, the interval frequency is

the same as created by EWD with k=10. However, as already noted, k=10 is

an arbitrary value.

The motivation of LD is to save the training effort of naive-Bayes learn-

ing, since correct classification of an instance only depends on intervals that

contain values of this instance, and is completely independent of how other

value regions are discretized [Hsu, Huang, and Wong 2000; Hsu, Huang, and

Wong 2003]. Ironically, however, LD tends to have high computational mem-

ory and time requirements because of its lazy methodology. Eager approaches

carry out discretization at training time. Thus the training instances can be

discarded before classification time. In contrast, LD needs to keep the train-

ing instances for use during classification time. This demands high memory

expenses when the training data size is large. Furthermore, where a large

number of instances need to be classified, LD will incur large computational
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overhead since it must estimate probabilities from the training data for each

attribute of each instance individually. Although LD achieves comparable ac-

curacy to EWD and EMD [Hsu, Huang, and Wong 2000; Hsu, Huang, and

Wong 2003], the high memory and computational overhead might impede it

from feasible implementation for classification tasks with large training or test

data.

From the perspective of discretization bias and variance, we value the idea

of ‘placing a quantitative value at the middle of its interval’. As we will ex-

plain in detail later in Section 5.2.3, we believe it can contribute to reducing

discretization bias and variance in naive-Bayes learning. However, a pre-

condition of this idea’s success is that a proper interval frequency strategy

is employed. Without forming intervals of proper frequency, as LD’s imple-

mentation did, sub-optimal effectiveness can be expected. For example, if LD

chooses EWD as its primary method, we anticipate that LD tends to have high

discretization bias when the training data size is large, where EWD forms in-

tervals of large frequency.

4.2 Methods for learning contexts other than naive-

Bayes learning

The majority of existing discretization methods in machine learning, however,

have been developed for learning contexts other than naive-Bayes learning,

such as decision trees, decision rules, decision tables, decision lists, association

rules and Bayes networks. We are interested in whether these methods can



60 Review of previous discretization methods

be appropriate for naive-Bayes learning. Thus we conduct a comprehensive

review of these methods and present them by the order of their publication

years.

1. Discretizer-2 [Catlett 1991]. Discretizer-2 was proposed for ID3 [Quin-

lan 1986], an inductive learning program that constructs classification

rules in the form of decision trees. The first cut point is chosen in the

same way as ID3, using a formula that assesses the gain in information

theoretic terms of all possible cut points. The subsequent cut points are

recursively chosen based on the subsets of training instances between the

obtained cut points. A minimum number of instances in each discretized

interval, a maximum number of discretized intervals and a minimum in-

formation gain decide when to stop discretization. D-2 chooses all the

cut points of a quantitative attribute in one step before the tree construc-

tion, rather than jumping back and forth as ID3 does. As a result it offers

large reduction in learning time at the cost of little loss of classification

accuracy.

2. ChiMerge discretization [Kerber 1992]. ChiMerge uses the χ2 statistics

to determine if the relative class frequencies of adjacent intervals are dis-

tinctly different or if they are similar enough to justify merging them

into a single interval. The ChiMerge algorithm consists of an initializa-

tion process and a bottom-up merging process. The initialization process

contains two steps: (1) ascendingly sort the training instances according

to their values for the attributes being discretized, (2) construct the ini-

tial discretization, in which each instance is put into its own interval.



§4.2 Methods for learning contexts other than naive-Bayes learning 61

The interval merging process contains two steps, repeated continuously:

(1) compute the χ2 for each pair of adjacent intervals, (2) merge the pair

of adjacent intervals with the lowest χ2 value. Merging continues until

all pairs of intervals have χ2 values exceeding a χ2-threshold. That is, all

intervals are considered significantly different by the χ2 independence

test. The user can also override the χ2-threshold through two parameters

min-intervals and max-intervals which specify a lower and upper limit on

the number of intervals to create. The standard recommended procedure

for using ChiMerge is to set χ2-threshold at the 0.90, 0.95 or 0.99 signifi-

cant level and to set max-interval to a value around 10 or 15 to prevent an

excessive number of intervals from being created.

3. 1-Rules discretization [Holte 1993]. In order to propose the ‘simplicity

first’ research methodology, Holte [1993] described a kind of rules, called

‘1-rules’, which classify an instance on the basis of a single attribute (that

is, they are 1-level decision trees). To deal with quantitative attributes, a

discretization method, 1-rules discretization is proposed. It sorts the ob-

served values of a quantitative attribute and then divides the values into

a finite number of intervals. In dividing, it attempts to make each interval

‘pure’ (that is, containing instances that are all of the same class). Since

overfitting may result from such a scheme (that is, one interval for each

observed value), 1-rules discretization requires all intervals (except the

rightmost) to contain more than a predefined number of instances in the

same class. Based on the empirical results from Holte, Acker, and Porter

[1989], the threshold is set at 6 for all datasets except for the datasets with
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fewest examples where the threshold is set at 3.

4. Error-based discretization [Maass 1994; Kohavi and Sahami 1996].

Error-based discretization optimally discretizes a quantitative attribute

with respect to error on the training set. In the work of [Maass 1994], it

produces an optimal set of k or fewer intervals that results in the mini-

mum error on the training set if the instances were to be classified using

that single attribute after discretization. The maximum number of inter-

vals k is a user-predefined parameter. This method was implemented as

part of the T2 induction algorithm which is guaranteed to produce close

to optimal 2-level decision trees from sufficiently large training datasets

for any distribution of data [Auer, Holte, and Maass 1995]. T2 sets the

value of k to be the number of classes plus one. In their research compar-

ing error-based and entropy-based discretization, Kohavi and Sahami

[1996] set k to be the same number of intervals proposed by running

the entropy minimization discretization [Fayyad and Irani 1993]. They

showed that the error-based discretization method has a deficiency, that

is, it will never generate two adjacent intervals when a particular class

prevails in both intervals, even when the class frequency distribution

differs in both intervals.

5. Cluster-based discretization [Chmielewski and Grzymala-Busse 1996].

This method consists of two steps. The first step is cluster formation to de-

termine initial intervals for the quantitative attributes. The second step is

post-processing to minimize the number of discretized intervals. Instances

here are deemed as points in n-dimensional space which is defined by n
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attribute values. During cluster formation, the median cluster analysis

method is used. Clusters are initialized by allowing each instance to be

a cluster. New clusters are formed by merging two existing clusters that

exhibit the greatest similarity between each other. The cluster forma-

tion continues as long as the level of consistency (defined in the study)

of the partition is not less than the level of consistency of the original

data. Once this process is completed, instances that belong to the same

cluster are indiscernible by the subset of quantitative attributes, thus a

partition on the set of training instances is induced. Clusters can be an-

alyzed in terms of all attributes to find out cut points for each attribute

simultaneously. After discretized intervals are formed, post-processing

picks a pair of adjacent intervals among all quantitative attributes for

merging whose resulting class entropy is the smallest. If the consistency

of the dataset after the merge is above a given threshold, the merge is

performed. Otherwise this pair of intervals are marked as non-mergable

and the next candidate is processed. The process stops when each possi-

ble pair of adjacent intervals are marked as non-mergable.

6. StatDisc discretization [Richeldi and Rossotto 1995]. This method

was proposed to overcome some ‘undesirable’ properties of ChiMerge

discretization [Kerber 1992], including that ChiMerge examines pairs

of adjacent intervals only, ignoring other surrounding intervals; and

ChiMerge produces a fixed partition of the attribute values. It consists

of three steps: initialization, interval hierarchy creation and selection of

the best discretization. The initialization step sorts the training instances
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according to their values being discretized, and then groups adjacent in-

stances labelled by the same class into the same interval. The interval

hierarchy, in the form of a tree, is created bottom-up during a merging

process. Intervals that are created in the initialization step are associated

to leaf nodes. The merging process contains two steps, repeated contin-

uously: (1) compute the Φ statistic for any N-uples of adjacent intervals

where N is selected by the user, (2) merge the N-uples with the lowest Φ

value. A new non-leaf node is added to the tree whenever a merge oc-

curs. This node, associated to the new interval, is connected to the nodes

that represent the intervals that have been merged. Thus each level of

the tree represents a discretization of the quantitative attribute. Merging

continues until all N-uples of intervals have a Φ value greater than the

Φ distribution at a desired level of significance and degrees of freedom

for a sample. A two-step heuristic is then applied to force the merging

process to continue until a one-interval partition (tree root) is obtained.

The final step is the selection of the best discretization. StatDisc seeks the

largest partition that is obtained before decreasing the significance level.

If this search fails, it returns the partition which, on average, contains the

largest adjacent intervals whose relative class frequencies are the most

dissimilar.

7. Compression-based Discretization [Pfahringer 1995]. In this research,

it was argued that discretization methods which merge or split an inter-

val into a predefined number of intervals sometimes miss the opportunity

of forming larger uniform intervals. Consequently these methods may
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produce superfluous intervals, which may have a detrimental influence

on both learning efficiency and accuracy. In addition, they cannot distin-

guish truly irrelevant attributes from what Kerber [1992] called second-

order correlated attributes, that is, attributes correlating only in the pres-

ence of some other condition. Compression-based discretization was de-

veloped to solve those problems. It is an application of the minimum de-

scription length (MDL) principle [Rissanen 1978] as an objective function

for evaluating a specific discretization as a whole. The basic assumption

used is as follows. If some discretization is synthesized taking class infor-

mation into account, then such a discretization of a single attribute can be

viewed as a set of rules classifying instances. Classifying an instance de-

termines the interval that covers the instance’s respective attribute value

and just returns that interval’s majority class. Adopting this interpreta-

tion, the MDL principle can be straightforwardly used to assign a nu-

merical measure of quality to any single discretization. Pfahringer de-

fined a set of formulae to calculate the cost (bit size) for defining a dis-

cretization plus the cost for encoding the instances in terms of the dis-

cretization. The discretization which minimize the sum cost, that is, the

one with the smallest bit cost (also called the most compressive theory) is

the most probable theory given the class distribution of the training in-

stances. Compression-based discretization consists of two steps. First a

set of promising cut points is heuristically found by an efficient super-

vised discretization. In particular, D-2 [Catlett 1991] is employed with

the stopping criteria as finding at most (25−1) cut points. Second this set

is searched thoroughly by a hill-climbing search for the most compres-
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sive discretization according to the MDL measure defined in this study.

Due to the nature of the MDL measure, most superfluous cut points are

discarded. As for possible second-order attributes, the result of the MDL

measure is one large interval covering all training instances. Thus it is

easy to tell that these attributes are problematic and an unsupervised

method is accordingly used to produce at least a reasonable discretiza-

tion.

8. InfoMerge discretization [Freitas and Lavington 1996]. InfoMerge dis-

cretization is based on information theory, rather than based on a statisti-

cal measure of dependency (or significance test) as ChiMerge discretiza-

tion [Kerber 1992] or StatDisc discretization [Richeldi and Rossotto 1995].

Statistical measures of dependency are not designed for classification.

Rather, they are designed for measuring the dependency between two

attributes in a symmetric way. That is, none of the two attributes being an-

alyzed (the attribute to be discretized and the class) is given special treat-

ment when computing the measure. On the other hand, classification is

an asymmetric task with respect to the two attributes being analyzed. It

wants to predict the value of the class attribute given the discretized at-

tribute, not the reverse. Accordingly InfoMerge uses a measure of infor-

mation loss. The information loss is calculated as the amount of informa-

tion necessary to identify the class of an instance after merging minus the

corresponding amount of information before merging. First, InfoMerge

sorts the attribute values and calculates the class frequency distribution

for each value. Second, InfoMerge iteratively calculates the information
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loss associated with the interval-merging process for every group of N

adjacent intervals (where N is a user-supplied parameter). Besides infor-

mation loss, the size of the intervals to be merged is also taken into con-

sideration. Merging intervals with smaller size is preferable since it will

tend to produce less information loss in the dataset as a whole. Hence

the information loss is furthermore weighted with the interval frequency.

InfoMerge merges the groups of N adjacent intervals with the minimum

value of weighted information loss, following the bottom-up paradigm

of ChiMerge and StatDisc. The stopping criterion of the merging process

depends on user-specified maximum and minimum number of intervals

to be produced and on a given threshold which are set as 12, 5, and 0.001

respectively.

9. K-means clustering discretization [Torgo and Gama 1997]. This method

aims at building k intervals that minimize the sum of the distances of

each element of an interval to its gravity center [Dillon and Goldstein

1984]. This method starts with the EW approximation and then moves

the elements of each interval to contiguous intervals whenever these

changes reduce the sum of distances. The k is found by searching using

a classification algorithm where the loss function considers a cost matrix

given by the distance between the centroids of the clusters.

10. Search-based discretization [Torgo and Gama 1997]. This method was

developed in the context of using classification for regression, where the

regression target variable is discretized into class intervals and some clas-

sification algorithm is used to predict the class interval instead of a par-
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ticular target value. When choosing the cut points, each of three can-

didate discretization methods can be used: equal width discretization,

equal frequency discretization [Catlett 1991; Kerber 1992; Dougherty, Ko-

havi, and Sahami 1995] and k-means clustering [Torgo and Gama 1997].

When deciding how many intervals to be formed, a wrapper technique

[John, Kohavi, and Pfleger 1994; Kohavi 1995b] is used as a method for

finding the near-optimal set of intervals. Each of two alternative search

operators can be provided to the wrapper approach. One is to increase

the previously tried number of intervals by a constant amount. The other

is to improve the previous set of intervals taking into account their indi-

vidual evaluation. That is, the median of these individual error estimates

is calculated; then all intervals whose error is above the median are fur-

ther split by dividing them into two and all the other intervals remain un-

changed. The evaluation strategy of the wrapper approach is an N-fold

cross validation [Stone 1974]. The two wrapper operators together with

the three cut-point-finding strategies make six alternative discretization

methods. The one that gives the best estimated result for the learning

system is selected.

11. Distance-based discretization [Cerquides and Lopez de Mantaras 1997].

This method is based on the Mantaras distance between partitions

[Lopez de Mantaras 1991]. It is iterative, considering all training in-

stances for the selection of each new cut point, in comparison to the

recursive ‘divide and conquer’ technique adopted by many alternative

discretization methods.
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Given a quantitative attribute, suppose that PD denotes the partition on

training instances induced by a discretization D and that PD∪{T} denotes

the partition on training instances induced by adding a new cut point T

to the current discretization D. The requirement is to find a cut point TA

so that it accomplishes:

∀T,Dist(PC,PD∪{T})≥ Dist(PC,PD∪{TA}),

where PC is the partition on the training instances generated by the class

attribute and Dist stands for Mantaras normalized distance, defined as:

Dist(PC,PD) =
I(PC|PD)+ I(PD|PC)

I(PC∪PD)
,

where I is the standard Shannon measures of information [Lopez de

Mantaras 1991].

Once TA is found, the minimum description length principle (MDL)

[Fayyad and Irani 1993] is used to decide whether the improvement re-

sulting from introducing TA is significant enough to accept TA or if other-

wise no further cut points are considered necessary for the discretization.

Given two discretization, one with p and the other with p+1 cut points,

the one with the minimal description length will be chosen. If it is the one

with p cut points, the algorithm stops and no more cut points are added

to the discretization. If it is the one with p+1 cut points, the process con-

tinues by considering introducing a new cut point. Since the complexity
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A1 A2 · · · Ak

C1 n11 n12 · · · n1k

C2 n21 n22 · · · n2k

· · ·
Ck nk1 nk2 · · · nkk

Table 4.1: Zeta Discretization

of the algorithm tends to be high, the process of selecting new cut points

has also been parallelized to obtain a high improvement in the efficiency

of the algorithm.

12. Zeta discretization [Ho and Scott 1997]. Zeta is a measure of strength

of association between the class and an attribute. It is defined as the

maximum accuracy achievable when each value of the attribute predicts

a different class value. Suppose there are N training instances with a k-

valued attribute A and a k-valued class C whose distribution is given by

Table 4.1, where ni j is the number of instances with class value Ci and

attribute value A j and N = ∑k
i=1∑k

j=1ni j . Zeta is defined as:

Zeta=
∑k

i=1nf (i),i

N
×100%,

where f (i) is the class index that has the highest frequency of instances

with attribute value Ai .

When discretization, given a k-valued class variable, a quantitative at-

tribute could be partitioned into k intervals by calculating zeta for each

possible assignment of the k−1 cut points and selecting the combination

of the cut points that gives the largest value of zeta. In order to evade
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examining all possible cut points which is computationally expensive

when k is large, a stepwise hill-climbing procedure is implemented to

recursively find out the cut points in the formed intervals.

13. ConMerge discretization [Wang and Liu 1998]. This method consists of

an initialization step and a bottom-up merging process. In the initial-

ization step, each quantitative value is put into its own interval. In the

merging process, the best pair of adjacent intervals from all quantitative

attributes are repeatedly selected according to a goodness criterion (de-

fined by inconsistency rate in this study). The selected pair are merged

if doing so does not exceed a user-specified inconsistency threshold. If

the pair are not merged, the merging of this pair is excluded from further

consideration. The merging process is repeated until no more merging

is possible. Since scanning all pairs of adjacent intervals for all attributes

for each merge step is not acceptable in terms of computation overhead,

especially for large datasets, a merge-tree structure, a modified B-tree is

proposed to find out the best merging in a constant time that is indepen-

dent of the number of intervals. Thus the algorithm can scale up well in

large datasets.

14. Dynamic discretization [Gama, Torgo, and Soares 1998]. This method

looks at all possible discretizations of a quantitative attribute as a hi-

erarchy. The most general discretization is at the top of this hierarchy,

and consists of one interval containing all the observed values. At the

bottom of the hierarchy is the most specific discretization which is a set

of intervals, each containing a single value. For more than one quanti-
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tative attribute, a set of hierarchies exist. This method performs an A∗

search over the set of hierarchies defined by all the possible combination

of attribute discretizations. By proceeding this way the discretization of

one quantitative attribute depends on the discretization of other quanti-

tative attributes. Thus it is able to explore inter-dependencies between

attributes.

For each quantitative attribute, dynamic discretization considers only

the boundary cut points [Fayyad and Irani 1993]. The search space con-

sists of n1 ∗ n2 ∗ · · · ∗ nm states, where ni is the number of boundary cut

points of attribute i and m is the number of quantitative attributes. A

state can be described by a vector of integers, < v1,v2, · · · ,vm >, where vi

is the number of discretized intervals of attribute i and attribute i is dis-

cretized by k-means clustering discretization with k=vi [Torgo and Gama

1997]. Each state is evaluated by the classification error resulting from a

10-fold cross validation on C4.5 or naive-Bayes classifiers with the cor-

responding discretized data. The initial state of search consists of the

vector < 1,1, · · · ,1 >. In the search space, each node (vector) has m de-

scendants. On each descendant, the number of intervals of one attribute

grows by a user defined parameter. The next node to expand is the one

not yet expanded and with lowest value of the classification error. If

several nodes have the lowest error, the one with the least number of

discretized intervals is chosen to be expanded. If the classification error

returns 0, or the classification performance does not improve in a certain

number of expansions, the discretization process stops.
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15. Berka’s discretization [Berka and Bruha 1998]. The basic idea behind

this method is to create intervals for which the aposteriori distribution of

classes P(C|interval) significantly differs from the apriori distribution of

classes P(C) in the whole training data. This can be achieved by simply

merging those values for which most instances belong to the same class.

The number of resulting intervals is controlled by giving a threshold for

minimal number of instances in one interval. For each quantitative at-

tribute, the discretization process is:

(a) Sort values of the attribute;

(b) For each value:

i. Compute frequencies of occurrence of instances with respect to

each class;

ii. If for the given value all instances belong to the same class, as-

sign that class to the value;

iii. Else if for the given value the distribution of instances with re-

spect to classes significantly differs (according to χ2 or relative

frequency criterion) from the apriori distribution of classes, as-

sign the most frequent class to the value;

iv. Else assign the class UNKNOWNto the value;

(c) Create the intervals from values by:

i. If a sequence of values belong to the same class, then create the

interval INTi = [LBoundi ,UBoundi ] by grouping these values;

ii. If the interval INTi belongs to the class UNKNOWN, then:
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A. If its neighboring intervals INTi−1 and INTi+1 belong to the

same class, then create the interval by joining INTi−1∪ INTi∪
INTi+1;

B. Else create the interval either by joining INTi−1∪ INTi or by

joining INTi ∪ INTi+1 according to a given criterion (for χ2

test, join the intervals with the higher value of χ2; for rel-

ative frequency criterion, join the intervals with the higher

relative frequency of the majority class);

C. Create continuous coverage of the attribute by as-

signing LBoundi := (LBoundi + UBoundi−1)/2 and

UBoundi−1 := LBoundi .

16. Semi-optimal discretization [Chlebus and Nguyen 1998]. This method

was developed in the context of decision tables with two attributes. It

can be generalized to handle more attributes.

Let A = (U,{a,b}∪{d}) be a consistent decision table with two attributes

a and b. Assume that the decision d classifies U into mclasses. Such a de-

cision table can be represented as a set of points S= {(a(ui),b(ui)) : ui ∈U}
in a plane, painted by mcolors. The task is to find a set of horizontal and

vertical lines that divide the plane into the minimum number of rectan-

gular regions, such that every one contains points of the same color.

Let L be a set of all possible horizontal and vertical lines for the set of

points S. The main idea of the algorithm is to reduce L by removing from

it many useless lines without loss of consistency (defined in the study).

The use of a partition line l is characterized by the number of regions
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defined by l and the number of point pairs discerned by l . l is useless if

both numbers are ‘small’. A given region is adjacent to line l if l is one

of its boundaries. Every line l has a function Density(l) being a density of

regions adjacent to l . Let Rl
le f t and Rl

right be the sets of points belonging

to regions adjacent to l on the left and right respectively. Let N(l) be

the number of regions adjacent to l . The density function is defined as

follows:

Density(l) =
cardinality(Rl

le f t)+cardinality(Rl
right)

N(l)
.

For every partition line l , define two functions measuring its global and

local discernibility degrees as follows:

GlobalDisc(l) = cardinality{(u,v) : d(u) 6= d(v),u∈ Rl
le f t,v∈ Rl

right};

LocalDisc(l) = cardinality{(u,v) : d(u) 6= d(v)∧u,v are discernible by l only}.

A line l can be rejected if LocalDisc(l) = 0. A line l is a preferable can-

didate to be rejected if both Density(l) and GlobalDisc(l) are ‘small’. The

algorithm is in four steps:

(a) Start with the set L with all possible lines;

(b) Find a partition line l with LocalDisc(l) = 0 of minimum values of

Density(l). If there are several such lines then select the one with the

minimum value of GlobalDisc(l);

(c) Set L to L−{l} and update the structure of the regions;
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(d) If L is reducible (if L contains redundant lines (such ones with Lo-

calDisc = 0) that can be rejected from L), then go to step (b). Other-

wise stop.

17. Cost-sensitive discretization [Brijs and Vanhoof 1998]. This method

by introducing a misclassification cost function, aims at solving an im-

portant deficiency of error-based discretization, that is, error-based dis-

cretization will never generate two adjacent intervals when in both in-

tervals a particular class prevails even when the class frequency distri-

butions differs in both intervals [Kohavi and Sahami 1996]. Discretizing

a quantitative attribute involves searching for a discretization of the at-

tribute value range that minimizes a given cost function. The specifica-

tion of this cost function depends on the costs assigned to the different

error types which show their relative importance against each other. For

an authentic dataset the cost parameters can be found in the business

context of the dataset. However, in many cases, exact cost parameters

are not known, thus is assigned by the user. This study was developed in

the context of detecting bankruptcy. Candidate cut points are evaluated

against the cost function to minimize the overall misclassification cost of

the false positive and false negative errors instead of just the total sum of

the errors. False positive (respectively false negative) errors in the study

are companies incorrectly classified as not bankrupt (bankrupt) although

they actually are bankrupt (not bankrupt).

First, all boundary cut points [Fayyad and Irani 1993] for the attribute

under discretization are found out as candidate cut points. Second, the
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cost parameters of the cost function are constructed to specify the cost

of making false positive and false negative errors. Third, costs are cal-

culated and assigned to all potential intervals (split as well as merge)

by multiplying the false positive (respectively false negative) cost by the

false positive (false negative) errors made as a result of assigning one of

the two classes to the interval and picking the minimal cost of both as-

signments. Fourth, the maximum number of intervals k is specified. The

value of k may depend on the problem being studied, but the author sug-

gested that it is advisable to keep k relatively low. Fifth, a shortest route

network can be constructed from all potential intervals with their corre-

sponding minimal costs. Finally the shortest route linear programming

approach can be applied on the network to identify the optimal number

and placement of the intervals that yield the overall minimal cost for the

discretization of the quantitative attribute.

The cost-sensitive discretization thus does not suffer the above-

mentioned deficiency of error-based discretization because it can take

into account the class frequency difference of two intervals. By increas-

ing the error-cost of the minority class, the frequency of the minority

class is leveraged so that, eventually, different class labels will be as-

signed to both intervals, indicating a potential cut point.

18. LVQ-based discretization [Perner and Trautzsch 1998]. This method is

based on learning vector quantization (LVQ) [Kohonen 1995]. LVQ is

a supervised algorithm. It attempts to define class regions in the input

data space. Initially, a number of codebook vectors (for details, refer to
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the original paper) Wi labelled by a class are placed into the input space.

Usually several codebook vectors are assigned to each class. After the

initialization of the neural net, each learning instance X, as an input vec-

tor, is presented one or several times to the net. X will be compared

to all codebook vectors in order to find the closest codebook vector Wc.

If X represents the same class as Wc, the learning algorithm will try to

optimize the similarity between the codebook vectors and the learning

instances by shifting Wc in the direction of X. If Wc and X have differ-

ent classes, Wc gets shifted away from X, so that the similarity between

these two decreases. All other codebook vectors remain unchanged. The

following equations represent this idea:

for identical classes : Wc(t +1) = Wc(t)+α(t) · [X(t)−Wc(t)];

for different classes : Wc(t +1) = Wc(t)−α(t) · [X(t)−Wc(t)];

for Wj other than Wc : Wj(t +1) = Wj(t).

LVQ-based discretization employs the LVQ algorithm to carry out dis-

cretization during decision tree learning, either combined with or with-

out the minimal description length principle. A potential cut point might

be in the middle of the learned codebook vectors of two different classes.

Since the algorithm tries to optimize the misclassification probability,

good classification performance can be expected. However the proper

initialization of the codebook vectors and the choice of learning rate α(t)

are crucial problems.
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19. Histogram-based discretization [Perner and Trautzsch 1998]. This

method carries out discretization during decision tree learning. To dis-

cretize a quantitative attribute A, the distribution p(A|A∈Ck)p(Ck) of at-

tribute A according to class Ck is calculated. The curve of the distribution

is approximated by a first order polynom and the minimum square error

method is used for calculating the coefficients:

E =
n

∑
i=1

(a1xi +a0−yi)2;

a1 = ∑n
i=1xi · i

∑n
i=1 i2

.

a0 is either the starting point of this interval or the last point of the pre-

ceding interval.

The cut points are selected by finding two maxima of different classes

situated next to each other.

Another version of this method can further combine with the entropy-

based minimization criteria. The potential boundary cut points [Fayyad

and Irani 1993] are determined by finding the peaks of the distribution.

If two peaks belong to different classes, the entropy-based minimization

criteria is used in order to find the exact cut point between these two

classes by evaluating each boundary point K with Peaki ≤ K ≤ Peaki+1

between these two peaks.

20. Evolutionary discretization [Kwedlo and Kretowski 1999]. This method

was implemented in EDRL-MD, an evolutionary-algorithm-based sys-

tem for learning decision rules. EDRL-MD simultaneously searches for



80 Review of previous discretization methods

the cut points for all quantitative attributes during the generation of de-

cision rules. An evolutionary algorithm (EA) [Michalewicz 1996] is used.

The success of EA is attributed to the ability to avoid local optima, which

is its main advantage over greedy search methods. A decision rule R

takes the form t1∧ t2∧ ·· · ∧ tr → ck, where ck is the kth class and tr is the

rth attribute. A rule set RSck for a class ck is defined as a disjunction of

decision rules whose right hand side is ck. In EDRL-MD the EA is called

separately for each class ck to find the rule set RSck. Each rule set is en-

coded as a concatenation of fixed-length strings as illustrated in Fig. 4.1.

Each string presents the left hand side of one decision rule. Because EA is

called to find a rule set for the given class ck, there is no need for encoding

the right hand side. Each string is composed of N sub-strings where N is

the number of attributes. Each sub-string encodes a condition related to

one attribute. In case of a quantitative attribute Ai , the substring encodes

the lower l i and the upper ui cut point of the condition l i < Ai ≤ ui . Both l i

and ui are selected from the finite set of all boundary cut points [Fayyad

and Irani 1993]. For a qualitative attribute, the sub-string consists of bi-

nary flags, each of which corresponds to one value of the attribute. Each

RSck is initialized using a randomly chosen positive instance, that is, the

initial rule set consists of a single rule which covers the instance. Then

six genetic operators are employed to produce rules: changing condition,

positive instance insertion, negative instance removal, rule drop, crossover and

rule copy (details in paper). These operators form the cut points of the

quantitative attributes at the same time as when the rule set is formed.
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Figure 4.1: String encoding the left hand side of a decision rule

The search criterion, called fitness function in EA is given by:

f (RSck) =
pos−neg

log10(L+α)+β
,

where posis the number of positive instances, negis the number of nega-

tive instances, L is the total number of conditions in RSck, and α=β=10 is

chosen on the experimental basis. Note that the maximization of the nu-

merator is equivalent to maximization of the probability of correct clas-

sification of an instance. The denominator is a measure of complexity of

RSck. An increase of the complexity results in a reduction of the fitness

and thus the rules tends to overfit. Thus the search criterion prefers rule

sets consisting of few conditions, which cover many positive instances

and very few negative ones.

21. Max-m discretization [An and Cercone 1999]. This method was de-

veloped in the context of learning classification rules. The authors ar-

gued that the entropy minimization heuristic discretization with mini-

mum description length principle (MDLP) as stopping criterion [Fayyad

and Irani 1993] might not be appropriate. One possible reason is that,

when the training set is small, the instances are not sufficient to make the
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MDLP criterion valid and meaningful so that the criterion causes the dis-

cretization process to stop too early before producing useful cut points.

Another possible reason is that, even if the recursive MDLP method is

applied to the entire instance space to find the first cut point, it is applied

‘locally’ in finding subsequence cut points due to the recursive nature

of the method. Local regions represent smaller samples of the instance

space and the estimation based on small samples using the MDLP cri-

terion may not be reliable. Accordingly Max-m discretization was pro-

posed. It uses the same entropy criterion as Fayyad and Irani [1993] did

for selecting cut points before rule induction, but it simply chooses a

maximum number of m entropy-lowest cut points without recursive ap-

plication of the method. m is set to be max(2,k∗ log2 l), where k is the

number of classes and l is the number of distinct observed values for

the attribute being discretized. The empirical results showed that MDLP

was not superior to Max-m in most of the tested data sets.

The post-hoc analysis of Max-m discretization uncovered that for several

attributes the selected cut points concentrated on a small local area of the

entire value space. This problem might be caused by the way that Max-

m discretization selects cut points. Max-m first selects the cut point that

has the lowest entropy and then selects as the next one the point with

the second lowest entropy, and so on. This strategy may result in a large

number of cut points being selected near the first cut point because they

have entropy values closer to the entropy value of the first cut point than

the cut points located far from the first cut point. Thus the selected cut

points are among a small area and offer very little additional discrimi-
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nating power because the difference between them involves only a few

instances.

22. EDA-DB [An and Cercone 1999]. This method, entropy-based discretiza-

tion according to distribution of boundary cut points, is a revised version

of Max-m discretization [An and Cercone 1999]. It was proposed to avoid

selecting cut points only within a small area which is a deficiency of max-

m discretization [An and Cercone 1999]. It chooses cut points according

to both information entropy and the distribution of boundary cut points

(defined by Fayyad and Irani [1993]) over the instance space. Similar

to max-m discretization, EDA-DB selects a maximum number of m cut

points, where m is defined as in the max-m method. However rather

than taking the first m entropy-lowest cut points, EDA-DB divides the

value range of the attribute into intervals and selects in ith interval mi

cut points based on the entropy calculated over the entire instance space.

mi is determined by estimating the probability distribution of the bound-

ary cut points over the instance space.

To discretize a quantitative attribute A, let l be the number of distinct

observed values of A, b be the total number of the boundary cut points

of A, and k be the number of classes in the training data, EDA-DB does:

(a) Calculate m as max{2,k∗ log2(l)};

(b) Estimate the probability distribution of boundary cut points:

i. Divide the value range of A into d intervals, where d =

max{1, log2(l)};



84 Review of previous discretization methods

ii. Calculate the number bi of boundary cut points in each interval

ivi , where i=1,2, · · · ,d and ∑d
i=1bi = b;

iii. Estimate the probability of boundary cut points in each interval

ivi as pi = bi
b ;

(c) Calculate the quota qi of cut points for each interval ivi by qi = pi ∗m;

(d) Rank the boundary cut points in each interval by increasing order of

the class information entropy of the partition induced by the bound-

ary point. The entropy for each point is calculated globally over the

entire instance space;

(e) For each interval ivi , select the first qi points in the above ordered

sequence. A total of m cut points are selected.

23. Dynamic qualitative discretization [Mora, Fortes, Morales, and

Triguero 2000]. This method was developed for data analysis by time

series whose goal was to find models which were able to reproduce the

statistical characteristics of the series and to use the models to predict

next values of the series from its predecessors. Most models are re-

stricted to input attributes with qualitative values so that quantitative

attributes need to be discretized. Typical discretization algorithms form

discretized intervals according to statistical stationary properties of the

values, not taking into account the evolution of these values. Contrarily,

this method is called dynamic since the qualitative value associated to a

particular quantitative value can change along the time, that is, the same

quantitative value can be discretized into different values, depending on

the previous values observed in the series. This method is also called
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qualitative since only those changes which are qualitatively significant

appear in the discretized series. Two approaches are individually pro-

posed to implement dynamic qualitative discretization.

The first approach is to use statistical information about the preceding

values observed from the series to select the qualitative value which cor-

responds to a new quantitative value of the series. The new quantitative

value will be associated to the same qualitative value as its preceding val-

ues if they belong to the same population. Otherwise, it will be assigned

a new qualitative value. To decide if a new quantitative value belongs

to the same population as the previous ones, a statistic with Student’s t

distribution is computed.

The second approach is to use distance functions. Two consecutive quan-

titative values, vi and v j , correspond to the same qualitative value when

the distance between them (distance(vi ,v j) = |vi − v j |) is smaller than a

threshold significant distance (defined in the study). The first quantita-

tive value of the time series is used as reference value. The next values in

the series are compared with this reference. When the distance between

the reference and a specific value is greater than the threshold (there is a

significant difference between them), the comparison process stops. For

each value between the reference and the last value which has been com-

pared, the following distances are computed: distance between the value

and the first value of the interval, and distance between the value and the

last value of the interval. If the former is lower than the latter, the qualita-

tive value assigned is the one corresponding to the first value; otherwise,
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the qualitative value assigned is the one corresponding to the last value.

24. Relative unsupervised discretization [Ludl and Widmer 2000a]. This

method was designed with a view to association rule mining. It is un-

supervised because there is no class attribute in rule mining. But the cut

points for one quantitative attribute are constructed dependent on all the

other attributes. The causal intuition is that for a particular quantitative

attribute, a good ‘discretization’ should create cut points that correlate

strongly with changes in the value distributions of other attributes. It

comprises three steps, preprocessing, structure projection and postpro-

cessing. Suppose the attribute to be discretized is the target attribute, and

attributes other than target attributes are the source attributes. In the pre-

processing step, all source attributes are discretized via some unsuper-

vised discretization method. In structure projection, for each source at-

tribute ai , the training instances are filtered so as to group by the different

values of ai ; for each such filtering, a clustering procedure is performed

on values of the target attribute, and the cut points thereby created are

gathered. In the postprocessing step, the cut points are merged accord-

ing to some pre-defined standard so that they lie far enough from each

other. The clustering algorithm has its root in the concept of edge detec-

tion in gray scale image processing. It opens a ‘window’ of a fixed size

around each value in an ordered sequence and determines whether this

value lies at an ‘edge’.

The same discretization method is also used for a regression task which

predicts an exact quantitative target value [Ludl and Widmer 2000b].
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The basic idea is to discretize the target attribute by splitting its range

into some pre-defined number of intervals and learn to classify exam-

ples with a classification learner (for example, C4.5). Then the median

of the predicted interval is returned as the exact target value for the test

instance.

25. Multivariate discretization [Bay 2000]. This method was developed for

set mining whose emphasis is on finding previously unknown and in-

sightful patterns in data. Univariate discretization methods which con-

sider only a single attribute at a time are sub-optimal for set mining

since they can destroy hidden patterns among attributes. As a result,

discretization should consider the effects on all attributes. Two value

ranges X and Y of a quantitative attribute should only be in the same

interval after discretization if the instances in those ranges have similar

multivariate distributions (Fx, Fy) across all attributes and combinations

of attributes.

A contrast set miner STUCCO [Bay and Pazzani 1999] is used to

test the difference between two multivariate distributions. Given two

groups of instances G1 and G2, STUCCO can find all conjunctions of at-

tribute value pairs C meeting two constraints: P(C|G1) 6= P(C|G2), and

|support(C|G1)− support(C|G2)| ≥ δ. support is the percentage of exam-

ples where C is true for the given instance group and δ is set as 0.01 de-

noting the minimum allowed difference of support. If any C is returned

by STUCCO, Fx is deemed substantially different from Fy. Otherwise Fx

is similar to Fy.
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The discretization process is:

(a) Initially discretize all quantitative attributes using equal width dis-

cretization or equal frequency discretization [Catlett 1991; Kerber

1992; Dougherty, Kohavi, and Sahami 1995].

(b) Select two adjacent intervals X and Y that have the minimum com-

bined support and do not have a known cut point between them as

candidates for merging.

(c) If Fx is similar to Fy, merge X and Y into a single interval. Otherwise

place a cut point between them.

(d) If there are no intervals to merge, stop. Otherwise go to step (a).

26. Fuzzy discretization [Ishibuchi, Yamamoto, and Nakashima 2001].

Fuzzy discretization was proposed for generating linguistic association

rules. It is motivated by the fact that many linguistic terms cannot be

appropriately represented by an interval. For example ‘young’, ‘mid-

dle age’ or ‘old’ may not be well defined on intervals with sharp cut

points. Each quantitative attribute can be discretized into homogeneous

fuzzy intervals using symmetric triangular membership functions. It

also can be discretized into inhomogeneous fuzzy intervals based on the

entropy criterion. Each quantitative value has a compatibility grade with

the linguistic terms resulting from the discretization. Such a compatibil-

ity grade is mathematically described by a membership function in fuzzy

logic. Experiments showed that the generalization ability of linguistic

rules with fuzzy discretization is better than that of standard association

rules with non-fuzzy discretization.
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27. MODLEM [Grzymala-Busse and Stefanowski 2001]. MODLEM is a rule

induction algorithm which performs discretization and rule induction

simultaneously, so that it can be directly applied to quantitative data.

For each quantitative attribute q, values are sorted in increasing order.

The discretization considers only boundary cut points [Fayyad and Irani

1993]. Any candidate cut point is evaluated and the best cut point v is

found out, either using the minimal class entropy technique [Fayyad and

Irani 1993] or using Laplacian accuracy [Clark and Boswell 1991]. Once

the best cut point is obtained, one of the two conditions q< v or q≥ v that

covers more positive instances is chosen. The same procedure is repeated

for each attribute. The best condition for all compared attributes is cho-

sen as a new condition of the rule. If it is not sufficient for completing

the rule, the strategy is repeated until the complete rule is induced. Since

MODLEM discretizes quantitative attributes during the rule induction,

the search space is bigger than when generating rules from already dis-

cretized attributes. Thus the rules induced by MODLEM are simpler and

stronger.

28. Ordinal discretization [Frank and Witten 1999; Macskassy, Hirsh, Baner-

jee, and Dayanik 2001]. Ordinal discretization aims at taking advantage

of the ordering information implicit in quantitative attributes, so as not

to make values 1 and 2 as dissimilar as values 1 and 1000. Most dis-

cretization methods transform quantitative attributes into nominal ones

(qualitative attributes without order). Frank and Witten [1999] proposed

a transformation of discretized data that is able to preserve the ordering
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information. For each discretized attribute A∗ with n values (v1,v2, · · · ,vn),

n− 1 boolean ones are introduced, one for each of the attribute’s first

n−1 values. The ith boolean attribute represents the test A∗ ≤ vi . These

boolean attributes are substituted for the original discretized attribute

and are input to the learning process.

A very similar idea was proposed by Macskassy, Hirsh, Banerjee, and

Dayanik [2001]. By introducing the boolean attributes, each value is con-

verted into a bag of tokens. The closer two values are, the more over-

lapping their bags. The degree of ‘overlap’ measures the ordinal dis-

similarity between two quantitative values. Information-retrieval-based

text classification methods then apply to these converted quantitative at-

tributes.

4.3 Summary

In this chapter, we have conducted a literature review of 34 discretization

methods. We summarize in Table 4.2 all these methods in terms of the tax-

onomies presented in Section 2.3. The methods are sorted by the year that

they were published. Some explanations of Table 4.2 are:

1. Abbreviations are used for the names of some taxonomies because of the

space limits. ’Sup.’ is supervised. ‘Uns.’ is unsupervised. ‘Uni.’ is uni-

variate. ‘Mul.’ is multivariate. ‘P.’ is parametric. ‘Np.’ is non-parametric.

‘H.’ is hierarchical among which ‘H. (Sp.)’ is split and ‘H. (Me.)’ is merge.

‘Nh.’ is non-hierarchical. ‘D.’ is disjoint. ‘Nd.’ is non-disjoint.
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2. Methods with both ‘P.’ and ‘Np.’ ticked can be applied in either way.

3. Methods with both ‘H. (Sp.)’ and ‘H. (Me.)’ ticked use the combination

of the two processes, for example, they initially discretize by splitting,

then post-process by merging.

4. For a composite method, if it is flexible in terms of a taxonomy under the

preliminary discretization, the taxonomy will not be ticked; otherwise

the taxonomy will be ticked.

In the next chapter, we will combine Chapter 3 and Chapter 4 to suggest

that existing discretization methods have potential problems if employed in

naive-Bayes learning. We will accordingly present our research on devising

new discretization techniques that are more appropriate for naive-Bayes clas-

sifiers.
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Chapter 5

Improving discretization

effectiveness for naive-Bayes

learning

Chapter 3 has addressed the characteristics of naive-Bayes learning and the

working mechanism of discretization. We have argued that there are no uni-

versally optimal discretization methods, and thus the best one can hope for

is approaches that work well with certain types of real-world applications.

However, because usually the nature of the real-world data is not well known,

it is difficult to categorize a particular application into a certain type and ac-

cordingly choose a corresponding discretization method (if there is any). In

this situation, there may be two alternative approaches. One approach is to

try every available discretization method and choose the one that is proved to

be most effective in the training data of this application. Another approach

is to choose a discretization method that has been approved effective in a

wide-range of applications. We suggest that the first approach is not practi-

cal concerning that there exist a large number of discretization methods, as

we have reviewed in Chapter 4. In contrast, the second approach can be both

93
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feasible and reasonable. Thus although a universally optimal method is not

achievable, discretization techniques that can work well for a wide-range of

real-world applications are useful and desirable.

However, combining what we have learned from the previous two chap-

ters, in this chapter we will argue that existing discretization methods have po-

tential problems if employed for naive-Bayes learning, and thus are less likely

to have widespread effectiveness. Thus naive-Bayes classifiers call for new,

special-purpose, discretization techniques. Spurred by these understandings,

we aim at devising new discretization techniques that improve both naive-

Bayes classification efficiency and efficacy for a wide-range of applications.

Since we have valued the bias-variance characteristic of discretization, our new

methods will focus on managing discretization bias and variance. We argue

that our techniques can be effective by explaining their working mechanisms.

We then argue that they can be efficient by calculating their computational

time complexity.

5.1 Naive-Bayes learning calls for improving dis-

cretization effectiveness

From our literature review presented in Chapter 4, we can see that the major-

ity of the existing discretization methods were designed for learning contexts

other than naive-Bayes learning. Naive-Bayes classifiers are probabilistic, se-

lecting the class with the highest probability given the instance to be classified.

It is plausible that it is less important to form intervals dominated by a single
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class for naive-Bayes classifiers than for decision trees or decision rules. Thus

discretization methods that pursue pure intervals (containing instances dom-

inated by a single class) [Catlett 1991; Kerber 1992; Fayyad and Irani 1993;

Holte 1993; Richeldi and Rossotto 1995; Freitas and Lavington 1996; Ho and

Scott 1997; An and Cercone 1999] might not suit naive-Bayes classifiers. Be-

sides, naive-Bayes classifiers deem attributes conditionally independent of

each other given the class, so there is no need to calculate the joint proba-

bilities of multiple attribute-values. Thus discretization methods that seek to

capture inter-dependencies among attributes [Chmielewski and Grzymala-

Busse 1996; Gama, Torgo, and Soares 1998; Monti and Cooper 1998; Perner and

Trautzsch 1998; Wang and Liu 1998; Kwedlo and Kretowski 1999; Bay 2000;

Ludl and Widmer 2000a] might be less applicable to naive-Bayes classifiers.

Furthermore, methods that were designed to capture the ordinal information

of discretized attributes [Frank and Witten 1999; Macskassy, Hirsh, Banerjee,

and Dayanik 2001] will create a large number of inter-dependent attributes,

hence they are likely to compound naive-Bayes’ attribute inter-dependence

problem when its independence assumption is violated. Thus they are not

appropriate for naive-Bayes learning. In summary, it is plausible that those

previous techniques may not well suit naive-Bayes learning.

As discussed in our literature review, there also exist a very small num-

ber of discretization methods that were developed particularly for naive-Bayes

classifiers. We have analyzed their behavior in naive-Bayes learning in terms

of discretization bias and variance in Chapter 4. Although these methods take

into consideration the nature of naive-Bayes learning, they still have poten-

tial problems. One weakness of many methods is that they produce a fixed
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number of intervals, or tend to minimize the number of intervals. However,

we have argued that when the true distribution of p(C|Xi), and thus the true

decision boundaries of Xi are unknown, it is advisable to form as many inter-

vals as constraints on adequate probability estimation accuracy allow. Thus

these methods’ strategy of interval number might not be desirable. Another

weakness, as a consequence of the first one, is that when the training data size

increases, the interval frequency increases but the interval number does not

tend to. Thus when the training data size becomes large, the increase in dis-

cretization bias tends to overshadow the decrease in discretization variance,

and leads to an increase in the learning error. This contradicts our normal ex-

pectation that the more data we have, the better we learn; and is of particular

disadvantage since large data are increasingly common in modern classifica-

tion applications. Besides, another disadvantage of some methods is that they

tend to incur high computational overhead. Thus they are inappropriate for

naive-Bayes classifiers whose classification efficiency is one key factor of their

popularity. Concerned by these weaknesses, we suggest that these existing

discretization methods for naive-Bayes learning do not work effectively or ef-

ficiently enough.

This shortage of appropriate discretization techniques is further exacer-

bated by the widespread employment of naive-Bayes classifiers. Thus we

believe that there is a real and immediate need for improving discretization

effectiveness for naive-Bayes learning. This motivated our research into spe-

cially tailored discretization methods for naive-Bayes classifiers, which will be

the focus of the remainder of this chapter.
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5.2 Manage discretization bias and variance

We have valued the bias-variance characteristic of discretization. We have ar-

gued that discretization methods that can well manage discretization bias and

variance can be of great utility for naive-Bayes learning. In particular, we

have provided the insights that the interval frequency and interval number

formed by a discretization method can affect that method’s discretization bias

and variance. Also, a number of previous authors have realized that the in-

terval frequency and interval number have a major effect on the naive-Bayes

classification error. Pazzani [1995] and Mora, Fortes, Morales, and Triguero

[2000] have mentioned that if the interval number is too small, important dis-

tinctions are missed; if it is too big, the probability estimation may become

unreliable. Torgo and Gama [1997] have noticed that an interesting effect of

increasing the interval number is that after some threshold the learning algo-

rithm’s performance decreases. They suggested that it might be caused by

the decrease of the interval frequency leading to unreliable estimates due to

overfitting the data. Gama, Torgo, and Soares [1998] have suggested that dis-

cretization with fewer intervals tends to have greater utility. By minimizing

the number of intervals, the dependence of the set of intervals on the training

data will be reduced. This fact will have positive influence on the variance

of the generated classifiers. In contrast, if there are a large number of inter-

vals, high variance tends to be produced since small variation on the training

data will be propagated on to the set of intervals. Hussain, Liu, Tan, and Dash

[1999] have proposed that there is a trade-off between the interval number and

its effect on the accuracy of classification tasks. A lower number can improve
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‘understanding’ of an attribute but lower learning accuracy. A higher number

can degrade ‘understanding’ but increase learning accuracy. Hsu, Huang, and

Wong [2000, 2003] have observed that as the interval number increases, the

classification accuracy will improve and reach a plateau. When the interval

number becomes very large, the accuracy will drop gradually. How fast the

accuracy drops will depend on the size of the training data. The smaller the

training data size, the earlier and faster the accuracy drops. As a result, we

anticipate that one effective way to manage discretization bias and variance

is to adjust interval frequency and interval number. Accordingly we propose

three new discretization techniques, proportional discretization, fixed frequency

discretization, and non-disjoint discretization. To the best of our knowledge, these

are the first techniques that explicitly manage discretization bias and variance

by tuning interval frequency and interval number.

5.2.1 Proportional discretization

Since a good learning scheme should have both low bias and low vari-

ance [Moore and McCabe 2002], it would be advisable to equally weigh dis-

cretization bias reduction and variance reduction. As we have analyzed in

Chapter 3, discretization resulting in large interval frequency tends to have

low variance but high bias; conversely, discretization resulting in large inter-

val number tends to have low bias but high variance. Thus a way to achieve

equal bias reduction and variance reduction is to set interval frequency equal

to interval number. This understanding leads to a new discretization methods,

proportional discretization (PD).
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When discretizing a quantitative attribute for which there are n training

instances with known values, supposing that the desired interval frequency is

s and the desired interval number is t, PD employs (5.1) to calculate s and t. It

then sorts the quantitative values in ascending order and discretizes them into

intervals of frequency s. Thus each interval contains approximately1 s training

instances with adjacent (possibly identical) values.

s× t = n

s = t. (5.1)

By setting interval frequency and interval number equal, PD equally

weighs discretization bias reduction and variance reduction. By setting them

proportional to the training data size, PD can use an increase in the training

data to lower both discretization bias and variance. As the number of training

instances increases, bias can decrease because the interval number increases,

thus the decision boundaries of the original quantitative values are more likely

to be close to the interval boundaries; while variance can decrease because

the interval frequency increases, thus the naive-Bayes probability estimation

is more stable and reliable. This means that PD has greater capacity to take

advantage of the additional information inherent in large volumes of training

data than previous methods.

1It is ‘approximately’ because we should put all identical values into one interval. Thus
sometimes the interval frequency has to be bigger than s to accommodate all the identical
values.
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5.2.2 Fixed frequency discretization

As we have explained in Chapter 3, ideal discretization for naive-Bayes learn-

ing should first ensure that the interval frequency is sufficiently large enough

so that the error of the probability estimation falls within quantitative data’s

error tolerance of probability estimation. On top of that, ideal discretization

should maximize the interval number so that the formed intervals are less

likely to contain decision boundaries. This understanding leads to an alter-

native approach to managing discretization bias and variance, fixed frequency

discretization (FFD).

To discretize a quantitative attribute, FFD sets a sufficient interval frequency,

m. Then it discretizes the ascendingly sorted values into intervals of frequency

m. Thus each interval has approximately2 the same number m of training in-

stances with adjacent (possibly identical) values.

By introducing m, FFD aims to ensure that in general the interval frequency

is sufficient so that there are enough training instances in each interval to re-

liably estimate the naive-Bayes probabilities. Thus FFD can preventing dis-

cretization variance from being very high. As we have explained in Chapter 3,

the optimal interval frequency varies from test instance to test instance, and

varies from application to application. Nonetheless, we have to choose a fre-

quency so that we can implement and evaluate FFD. Particularly, in our study

we choose the frequency mas 30 since it is commonly held to be the minimum

sample size from which one should draw statistical inferences [Weiss 2002].

By not limiting the number of intervals formed, more intervals can be formed

2As explained in PD, ‘approximately’ is because of the existence of identical values.
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as the training data size increases. This means that FFD can make use of ad-

ditional data to reduce discretization bias. Thus intervals of high bias are not

associated with large datasets any more. In this way, FFD can prevent both

high bias and high variance.

It is important to distinguish our new method, fixed frequency discretiza-

tion (FFD) from equal frequency discretization (EFD) [Catlett 1991; Kerber

1992; Dougherty, Kohavi, and Sahami 1995], both of which form intervals of

equal frequency. EFD fixes the interval number. It arbitrarily chooses the inter-

val number k and then discretizes a quantitative attribute into k intervals such

that each interval has the same number of training instances. Since it does not

control the interval frequency, EFD is not good at managing discretization bias

and variance. In contrast, FFD fixes the interval frequency. It sets an interval

frequency mthat is sufficient for the naive-Bayes probability estimation. It then

sets cut points so that each interval contains m training instances. By setting

m, FFD can control discretization variance. On top of that, FFD forms as many

as intervals as constraints on adequate probability estimation accuracy allow,

which is advisable for reducing discretization bias.

5.2.3 Non-disjoint discretization

Both PD and FFD, as well as most of the previous methods that we have re-

viewed in Chapter 4 are disjoint discretization techniques. For a quantitative

attribute, they partition its value range offered by the training data into dis-

joint (non-overlapping) intervals, and then apply these intervals to the whole

set of test instances. However, as we have argued in Chapter 3, the optimal
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Figure 5.1: Favorable and unfavorable intervals.

discretization of a quantitative attribute varies from value to value, depend-

ing on each specific test instance. Thus it is advisable to form an interval most

appropriate for the single value offered by the current test instance, instead of

forming intervals with respect to all values from the whole set of test instances.

Because of the existence of decision boundaries, discretization can result in

one of two types of intervals for a quantitative attribute value: a favorable inter-

val and an unfavorable interval. Suppose that the present test instance’s truly

most probable class is c. Its value of the quantitative attribute to be discretized

is xi . A favorable interval composes values such that the most probable class

for the majority of the values is c. An unfavorable interval composes values

such that c is not the most probable class for the majority of the values. To

illustrate these two types of intervals, we demonstrate for example a learning

task with two classes c1 and c2, and k quantitative attributes. Suppose that

one quantitative attribute X1 is under discretization and the class probability

distribution within X1 given a combination of values of the remaining k−1 at-

tributes as depicted in Figure 5.1. Suppose a test instance3 with value X1=x1a

3A test instance here means a test instance having the same combination of values of the
remaining k−1 attributes as in Figure 5.1.
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turns up, whose truly most probable class is c1. As illustrated in Figure 5.1, I1 is

a favorable interval for x1a, while I2 is an unfavorable interval of x1a. Choosing

c1 as the class of the test instance will minimize the naive-Bayes classification

error under zero-one loss. This is more likely to be achieved by substituting I1

for x1a. Thus discretization resulting in a favorable interval for a value is more

reliable in terms of naive-Bayes probability estimation. However, under dis-

joint discretization, this is difficult to be generally achieved with respect to all

the values from the whole set of test instances. If an interval containing a de-

cision boundary is a favorable interval for values on one side of the decision

boundary, it will be an unfavorable interval of values on the other side. As

also illustrated in Figure 5.1, I1 is not a favorable interval for value x1b, since

the most probable class of x1b is c2 while the majority of the values in I1 have

the most probable class as c1.

The above analysis motivates non-disjoint discretization (NDD), which forms

overlapping (non-disjoint) intervals for a quantitative attribute and always

tries to choose a favorable interval for the value provided by the present test

instance. Although many learning algorithms require values of an attribute to

be disjoint, that is the set of instances covered by one value of X∗i cannot over-

lap that covered by another value of X∗i , naive-Bayes classifiers do not have

that requirement. One implementation of NDD is to always locate a value at

the middle of its corresponding interval. If the value itself is a decision bound-

ary, each class is equally probable for the instance. Thus there is no truly most

probable class. What the most probable class for the interval is chosen does

not matter too much. If the interval contains a decision boundary that is not

the value, locating this value at the middle means at least more than half of
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the value range in this interval has their most probable class the same as this

value. Thus this interval is a favorable one for this value. However, this argu-

ment is correct only when there is no more than one decision boundary in the

interval. If there exist multiple decision boundaries, the most probable class

will change each time the value crosses a decision boundary. In this case, locat-

ing the value to the middle does not ensure that the instance’s most probable

class takes up the majority of the values in the interval. Thus another impor-

tant issue for NDD is the interval frequency strategy. A strategy that is able to

exclude most decision boundaries from an interval while still retaining suffi-

cient instances in the interval for reliable probability estimation will be of great

utility for NDD. This is again a discretization bias and variance management

problem.

When discretizing a quantitative attribute, suppose the number of training

instances4 is n and the desired interval frequency is s, NDD identifies among

the sorted values t ′ atomic intervals, (a′1,b
′
1],(a

′
2,b

′
2], ...,(a

′
t ′,b

′
t ′], each with fre-

quency equal to s′, so that5

s′ =
s
3

s′× t ′ = n. (5.2)

One interval is formed for each set of three consecutive atomic intervals,

such that the kth (1≤ k ≤ t ′− 2) interval (ak,bk] satisfies ak=a′k and bk=b′k+2.

Each value v is assigned to interval (a′i−1,b
′
i+1] where i is the index of the atomic

4We only consider instances with known value of the quantitative attribute.
5Theoretically any odd number k besides 3 is acceptable in (5.2) as long as the same number

k of atomic intervals are grouped together later for the probability estimation. For simplicity,
we take k=3 for demonstration.
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Atomic Interval

Interval

Figure 5.2: Atomic intervals compose actual intervals.

interval (a′i ,b
′
i ] such that a′i < v ≤ b′i , except when i=1 in which case v is as-

signed to interval (a′1,b
′
3] and when i=t ′ in which case v is assigned to interval

(a′t ′−2,b
′
t ′]. Figure 5.2 illustrates the procedure.

As a result, each interval has frequency equal to s by comprising three

atomic intervals; and except in the case of falling into the first or the last atomic

interval, a quantitative value is always towards the middle of its correspond-

ing interval. From the perspective of the whole set of test instances, the dis-

cretized intervals formed for two different values of a quantitative attribute

might overlap with each other. However because the values are used for differ-

ent test instances independently, NDD’s overlapping intervals will not cause

any confusion in classification.

As we have explained, how to choose the interval frequency s is impor-

tant. NDD can be employed with a primary strategy for selecting interval

frequency. The strategy can be based on those of many unsupervised discretiza-

tion methods, such as equal frequency discretization [Catlett 1991; Kerber

1992; Dougherty, Kohavi, and Sahami 1995], proportional discretization [Sec-

tion 5.2.1] and fixed frequency discretization [Section 5.2.2]. In our implemen-

tation, we chose s as 30 which equals the sufficient interval frequency of FFD,

since it had been demonstrated to well manage discretization bias and vari-



106 Improving discretization effectiveness for naive-Bayes learning

ance according to our previous experiments on FFD.

It is important to compare NDD with lazy discretization (LD) [Hsu,

Huang, and Wong 2000; Hsu, Huang, and Wong 2003] that we have reviewed

in Chapter 4. Since LD locates a value exactly at the middle of its interval, it

should be the ideal form of NDD if its computational resources are not a con-

sideration. However, when proposing LD, Hsu et al.’s study did not explain

why the scheme of ‘placing a value at the middle of its interval’ can be effective

in naive-Bayes learning. Neither did it recognize the importance of the inter-

val frequency strategy in this scheme. In contrast, our reasoning leading to

NDD has explained why LD can be effective at reducing the naive-Bayes clas-

sification error, and has argued that the interval frequency is essential for this

scheme’s success. Besides, Hsu et al. stated that the goal of LD is to save train-

ing effort by only working on the interval containing the single value from the

current test instance. The other value ranges are ignored since they are not

needed for classifying the instance. Ironically, because of its lazy methodology

as we have analyzed in Chapter 4, LD tends to have high overhead of com-

putational memory and time. This is especially inappropriate for naive-Bayes

learning, which is popular with applications involving large data. In contrast,

NDD is an ‘eager’ approach. It carries out discretization at training time. Thus

the training instances can be discarded prior to classification time and require

no high memory expenses. It has computational time complexity as low as the

simplest discretization methods like EWD or EFD, which we will present in

detail in Section 5.3. Thus we anticipate NDD to scale to large data very well.
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Table 5.1: Taxonomy of each new method
Method Taxonomy

PD primary, unsupervised, univariate, non-parametric, non-hierarchical, global, eager, disjoint
FFD primary, unsupervised, univariate, parametric, non-hierarchical, global, eager, disjoint
NDD composite, unsupervised, univariate, non-hierarchical, global, eager, non-disjoint

5.2.4 Summary

In Table 5.1, we summarize each of our new methods in terms of our tax-

onomies proposed in Section 2.3.

5.3 Time complexity comparison

We here calculate the time complexities of our new discretization methods as

well as the previous ones discussed in Section 4.1. Because of their compu-

tational efficiency, naive-Bayes classifiers are very attractive for applications

with large data. Thus discretization methods for naive-Bayes learning are nec-

essary to be efficient so that they can scale to large data.

To discretize a quantitative attribute, suppose the number of training in-

stances6, test instances, attributes and classes are n, l , v and m respectively.

• EWD, EFD, FLD, PD, FFD and NDD are dominated by sorting. Their

complexities are of order O(nlogn).

• EMD does sorting first, an operation of complexity O(nlogn). It then

goes through all the training instances a maximum of logn times, recur-

sively applying ‘binary division’ to find out at most n−1 cut points. Each

time, it will estimate n−1 candidate cut points. For each candidate point,

6We only consider instances with known value of the quantitative attribute.
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probabilities of each of m classes are estimated. The complexity of that

operation is O(mnlogn), which dominates the complexity of the sorting

and thus results in complexity of order O(mnlogn).

• IID’s operators have O(n) possible ways to adjust cut points in each iter-

ation. For each adjustment, the leave-one-out cross validation has com-

plexity of order O(nmv). The number of times the iteration will repeat

depends on the initial discretization as well the error estimation. It varies

from case to case, which we denote by u here. Thus the complexity of IID

is of order O(n2mvu).

• LD sorts the values once and performs discretization separately for each

test instance and hence its complexity is O(nlogn)+O(nl).

Thus EWD, EFD, FLD, PD and FFD have lower complexity than EMD. LD

tends to have high complexity when the training or testing data size is large.

IID’s complexity is prohibitively high when the training data size is large.

5.4 Summary

In this chapter, we have proposed three new discretization techniques, propor-

tional discretization, fixed frequency discretization and non-disjoint discretization.

All of them focus on managing discretization bias and variance by adjusting

interval frequency and interval number. In addition, non-disjoint discretiza-

tion is able to form overlapping intervals such that for each quantitative value

to be discretized, it is most likely to choose a favorable interval. Theoretically

we have anticipated our new techniques to effectively lower the naive-Bayes
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classification error. We have also argued that they are very efficient in compu-

tational memory and time. These merits are desirable for naive-Bayes learn-

ing.

In the next chapter, we will conduct the empirical evaluation to assess the

degree to which our new techniques have the merits that we have anticipated

in theory.
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Chapter 6

Experimental evaluation

In the previous chapter, we have proposed three new discretization tech-

niques, proportional discretization (PD), fixed frequency discretization (FFD) and

non-disjoint discretization (NDD). In theory, we have argued that these tech-

niques can be both effective and efficient in naive-Bayes learning.

In this chapter, we empirically validate our arguments, using real-world

data. We evaluate whether PD, FFD and NDD can better reduce the

naive-Bayes classification error, compared with previous discretization meth-

ods, equal width discretization (EWD) and equal frequency discretization

(EFD) [Catlett 1991; Kerber 1992; Dougherty, Kohavi, and Sahami 1995],

fuzzy learning discretization (FLD) [Kononenko 1992; Kononenko 1993], en-

tropy minimization discretization (EMD) [Fayyad and Irani 1993] and lazy

discretization (LD) [Hsu, Huang, and Wong 2000; Hsu, Huang, and Wong

2003]1. Since iterative-improvement discretization (IID) [Pazzani 1995] tends

to have high computational complexity, while our experiments frequently in-

volve large datasets (up to 166 quantitative attributes and up to half million

1EWD, EFD and FLD are implemented with the parameter k=10. The original LD in Hsu
et al.’s implementation chose EWD with k=10 as its primary discretization method. That is, it
forms interval width equal to that produced by EWD with k=10. Since we manage discretiza-
tion bias and variance through interval frequency (and interval number), which is relevant but
not identical to interval width, we implement LD with EFD being its primary method. That
is, LD forms interval frequency equal to that produced by EFD with k=10.

111
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training instances), we do not implement IID for the sake of feasibility. Due to

the importance of its efficiency in many applications, we instead focus on com-

putationally efficient techniques of discretization for naive-Bayes learning.

First, we describe our experimental data, design and statistics. Then, we

report the experimental results and analyze what information we can learn

from the results.

6.1 Data

We run our experiments on 29 natural datasets from UCI machine learning

repository [Blake and Merz 1998] and KDD archive [Bay 1999]. This exper-

imental suite comprises 3 parts. The first part is composed of all the UCI

datasets used by Fayyad and Irani [1993] when publishing the entropy min-

imization discretization (EMD). The second part is composed of all the UCI

datasets with quantitative attributes used by Domingos and Pazzani [1996]

for studying naive-Bayes classifiers. In addition, as large data are becoming

more and more common in modern applications, and the first two parts are

mainly confined to small data size, we further augment our data collection

with datasets that we can identify containing quantitative attributes, with em-

phasis on those having more than 5000 instances. Table 6.1 describes each

dataset, including the number of instances (Size), quantitative attributes (Qa.),

qualitative attributes (Ql.) and classes (Class). The datasets are increasingly

ordered by the size.
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6.2 Design

In our study, the effectiveness of a discretization method is presented by the

performance of naive-Bayes classifiers that are trained on data discretized by

this method. We use cross validation to estimate the naive-Bayes classification

performance. The performance is recorded as the classification error, bias and

variance; and the computational time.

6.2.1 Cross validation

According to Kohavi [1995a], and Kohavi and Provost [1998], in k-fold cross

validation, the dataset D is randomly split into k mutually exclusive subsets

(the folds) of approximately equal size, D1,D2, · · · ,Dk. The classifier is trained

and tested k times. Each time t ∈ {1,2, · · · ,k}, it is trained on D−Dt and tested

on Dt . The cross validation estimate of error is the overall number of incorrect

classifications, divided by the number of instances in the dataset. Repeating

cross validation multiple times (trials) using different splits of the instances

into folds provides a reasonable estimate of the error of the single classifier

produced from all the instances. Cross validation can be either stratified or

unstratified. In stratified cross validation, the folds are stratified so that they

contain approximately the same proportion of classes as the original datasets.

In unstratified cross validation, the folds are randomly formed without con-

sidering the class proportion.

To evaluate a discretization method, for each dataset, we implement naive-

Bayes learning by conducting a 10-trial, 3-fold unstratified cross validation.

For each fold, the training data are discretized by this method. The intervals



114 Experimental evaluation

so formed are applied to the test data. We repeat 10 trials because we need

classify each instance several times to estimate the classification bias and vari-

ance. We form 3 folds for each trial because we try to reduce the computation

overhead which otherwise can be heavy because of the many trials2. We do

not use stratification because we are not sure that the true class distribution of

the data will be always the same as the current training data.

6.2.2 Performance metrics

The following metrics are used to record the performance of naive-Bayes clas-

sifiers.

• Classification error is the percentage of incorrect predictions of naive-

Bayes classifiers in the test averaged across all folds in all trials of the

cross validation.

• Classification bias and variance are estimated by the method described

by Webb [2000]. They equate to those defined by Breiman [1996], except

that irreducible error is aggregated into bias and variance. An instance

is classified once in each trial and hence ten times in all. The central

tendency of the learning algorithm is the most frequent classification of

an instance. Total error is the classification error defined as above. Bias

is that portion of the total error that is due to errors committed by the

central tendency of the learning algorithm. This is the portion of classifi-

cations that are both incorrect and equal to the central tendency. Variance

is that portion of the total error that is due to errors that are deviations

2Although naive-Bayes learning itself is very efficient, some discretization methods are not.
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from the central tendency of the learning algorithm. This is the portion

of classifications that are both incorrect and not equal to the central ten-

dency. Bias and variance sum to the total error.

• Computational time is the computational time of discretizing data, and

training and testing a naive-Bayes classifier. It is averaged across all folds

in all trails of the cross validation.

6.3 Statistics

Three statistics are employed to evaluate the performance of naive-Bayes clas-

sifiers.

• Mean is the arithmetic mean of the classification error, bias or variance

respectively across all datasets. It provides a gross indication of the rela-

tive performance of competitive methods. It is debatable whether errors

in different datasets are commensurable, and hence whether averaging

errors across datasets is very meaningful. Nonetheless, a low mean error

is indicative of a tendency towards low errors for individual datasets.

• Geometric mean is the geometric mean of the classification error, bias

or variance respectively across all datasets. Webb [2000] suggested that

geometric mean error ratio is a more useful statistic than mean error ratio

across datasets. Geometric mean error functions the same as geometric

mean error ratio to indicate the relative performance of two methods.

For two methods A and B, the ratio of their geometric mean errors is

their geometric mean error ratio. That A’s geometric mean error is lower
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than B’s is equivalent to that the geometric mean error ratio of A against

B is smaller than 1, and vice versa.

• Win/lose/tie record comprises three values that are respectively the

number of datasets for which the naive-Bayes classifier trained with one

discretization method obtains lower, higher or equal learning error, com-

pared with the naive-Bayes classifier trained with another discretization

method. A one-tailed sign test can be applied to each record. If the test

result is significantly low (here we use the 0.05 critical level), it is reason-

able to conclude that the outcome is unlikely to be obtained by chance

and hence the record of wins to losses represents a systematic underly-

ing advantage of the winning discretization method with respect to the

type of datasets studied.

6.4 Results and analysis

We here present and analyze the experimental results. For each alternative

discretization method on each dataset, Table 6.1 lists its classification error un-

der the column ‘Classification error’; Table 6.2 lists its classification bias and

variance under the column ‘Classification bias’ and ‘Classification variance’ re-

spectively; and both tables list its mean and geometric mean of corresponding

metrics in the row ‘ME’ and ‘GM’ respectively. For each new technique that

we have proposed, Table 6.3 presents its win/lose/tie records on classification

error compared with each previous discretization method.
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6.4.1 Proportional discretization (PD)

• PD achieves both lower mean and lower geometric mean of classification

error than all previous methods.

• With respect to the win/lose/tie records, PD achieves lower classifica-

tion error than each previous method with frequency significant at the

0.05 level.

• PD better reduces classification bias than previous methods. It achieves

lower mean and lower geometric mean of classification bias. Its advan-

tage in bias reduction grows more apparent with the training data size

increasing. This outstanding effectiveness in bias reduction is achieved

without incurring high variance. This supports our suggestion that PD

can use additional data to decrease both discretization bias and variance

by setting both interval frequency and interval number proportional to

the training data size.

6.4.2 Fixed frequency discretization (FFD)

• FFD achieves both lower mean and lower geometric mean of classifica-

tion error than all previous methods.

• With respect to the win/lose/tie records, FFD achieves lower classifica-

tion error than each previous method with frequency significant at the

0.05 level.

• FFD better reduces classification bias than previous methods. It achieves

lower mean and lower geometric mean of classification bias. Its advan-
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tage in bias reduction grows more apparent with the training data size

increasing. This supports our suggestion that FFD can use additional

data to decrease discretization bias, and thus high bias no longer attaches

to large training data.

• FFD also demonstrates a good control on discretization variance. Espe-

cially among smaller datasets where naive-Bayes probability estimation

has a higher risk to suffer insufficient training data, FFD usually achieves

lower variance than alternative methods. This supports our suggestion

that by controlling the frequency of the interval, FFD can prevent the

discretization bias from being very high. However, we have also ob-

served that FFD does have higher variance especially in some very large

datasets. We suggest the reason is that m=30 might not be the optimal

size for those datasets, since there is no universally optimal interval fre-

quency as we have argued. Nonetheless, the gain through FFD’s bias

reduction is more than the loss through its variance increase, thus FFD

still achieves lower naive-Bayes classification error in large datasets com-

pared to previous discretization methods.

6.4.3 Non-disjoint discretization (NDD)

• NDD achieves both lower mean and lower geometric mean of classifica-

tion error than all previous methods.

• NDD also achieves the lowest mean and the lowest geometric mean of

classification error among our three new techniques.
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• With respect to the win/lose/tie records, NDD achieves lower classifi-

cation error than all previous methods with frequency significant at the

0.05 level.

It is illuminating to compare NDD with FFD. Although we base the frequency

strategy of NDD on that of FFD, we expect NDD to obtain additional advan-

tage because of its ‘non-disjoint’ strategy. This is supported by our experimen-

tal results.

• Compared with FFD, the win/lose/tie record of classification error of

NDD is 19/5/5. NDD’s wins are of frequency significant at the 0.05 level.

It is also important to compare NDD with LD since they are similar in terms

of locating a quantitative value towards the middle of its discretized interval.

NDD has been demonstrated to significantly outperform the version of LD

that has EFD as its primary method. However, this LD’s disadvantage might

be caused by its frequency strategy which in our experiments is based on that

of EFD with k=10. Since NDD’s frequency strategy is based on FFD’s, and

FFD has been shown to be better than EFD at managing discretization bias

and variance, for the sake of fair comparison, we here implement another ver-

sion of lazy discretization, named LD FFD, whose frequency strategy is based

on that of FFD. We consequently augment Table 6.1 and Table 6.2 by adding

columns for LD FFD.

• The win/lose/tie records of NDD against LD FFD is 13/9/7. The win to

loss is not significant at the 0.05 level. Thus when they take the same fre-

quency strategy, NDD and LD have competitive effectiveness at reduc-

ing the naive-Bayes classification error. However, from the perspective of
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feasibility, NDD is overwhelmingly superior over LD FFD. For the four

largest datasets in out study, Table 6.4 lists the averaged computational

time of training and testing a naive-Bayes classifier on data discretized

by NDD and LD FFD respectively per fold out of 10-trial 3-fold cross

validation. NDD is much faster than LD FFD.

6.4.4 Previous methods

We are interested in verifying our analysis of previous discretization methods’

effectiveness in terms of discretization bias and variance. We first focus on

primary methods. Then we address composite methods.

6.4.4.1 Primary methods

Among previous methods, there are three primary methods: EWD, EFD and

EMD. Among them, EMD is supervised while the other two are unsupervised.

We analyze their effectiveness, comparing with our new primary methods PD

and FFD. We break down our analysis into unsupervised methods and super-

vised methods. Compared with PD and FFD, we list in Table 6.5 and Table 6.6

each previous primary method’s win/lose/tie record of bias and variance re-

spectively.

With respect to previous unsupervised primary methods EWD and EFD,

we have suggested that one common weakness is that they fix the interval

number ignorant of the training data size. Thus we have predicted that they

tend to obtain high discretization bias when the training data size is large.

This is particularly undesirable given that applications involving large data
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are more and more common. Our experimental results support our prediction.

According to Table 6.5, both EWD and EFD obtain higher bias than PD with

frequency significant at the 0.05 level. EWD obtains higher bias than FFD with

frequency significant at the 0.05 level. Although overall EFD does not lose to

FFD in bias reduction with significant frequency, it uniformly obtains higher

bias than FFD in all the 14 largest datasets. As for discretization variance,

according to Table 6.6, the win/lose/tie records of EWD compared with PD

and FFD are not significant at the 0.05 level, which suggests that EWD does

not have an advantage in variance reduction. Although EFD obtains lower

discretization variance than PD (but not than FFD) with frequency significant

at the 0.05 level, this advantage in variance reduction is usually overshadowed

by its disadvantage in bias reduction. As a result, EFD is still sub-optimal in

reducing the naive-Bayes classification error.

With respect to the previous supervised primary method EMD, according

to Table 6.1, it achieves lower mean and lower geometric mean of naive-Bayes

classification error than the previous unsupervised primary methods EWD

and EFD. This might indicate that EMD enjoys an advantage because it is able

to make use of the class information. However, we have suggested that one

of EMD’s weakness is that it always tends to minimize the interval number.

This tends to form intervals of high bias when naive-Bayes learning involves

large data. Another weakness, as we have suggested, is that although EMD

might be effective at identifying decision boundaries for one-attribute applica-

tions, the resulting cut points can easily diverge from the true decision bound-

aries when in multi-attribute applications where the decision boundaries of

one attribute alter depending on the values of the other attributes. Thus we
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suggest that EMD might be inappropriate for real-world applications where

multi-attribute cases dominate. These suggestions are supported by our ob-

servations. According to Table 6.5, EMD obtains higher bias than PD with

frequency significant at the 0.05 level. Although without statistically signifi-

cant frequency across all the datasets, EMD obtains higher bias than FFD in 9

out of the 10 largest datasets. According to Table 6.6, EMD does not demon-

strate any significant wins in variance reduction compared with either PD or

FFD.

6.4.4.2 Composite methods

Among previous methods, there are two composite discretization methods,

FLD and LD. FLD has EWD as its primary discretization method. LD has EFD

as its primary discretization method. In Table 6.7, we list the win/lose/tie

record of classification error, bias and variance of FLD and LD compared with

their own primary method respectively.

FLD first uses EWD to form an interval (ai ,bi ] for a quantitative attribute

value xi . It then estimates p(ai < Xi ≤ bi |C=c) from all training instances rather

than only from instances that have values of Xi in (ai ,bi ]. The influence of a

training instance with value v of Xi on (ai ,bi ] is assumed to be normally dis-

tributed with the mean value equal to v. FLD was claimed to be advisable

since a slight difference between two values, such that one is above and one

is below the cut point, does not have drastic effects on the estimated prob-

abilities, which happens otherwise with ‘non-fuzzy’ methods. However, we

suspect that when the training instances’ influence on each interval does not

follow the normal distribution which is often the case for real-world applica-
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tions, FLD’s effectiveness can degrade. Our experimental results suggest that

this indeed occurs in practice. According to Table 6.1, compared with its pri-

mary method EWD that is ‘non-fuzzy’, FLD obtains both higher mean and

higher geometric mean of the naive-Bayes classification error than EWD. Ac-

cording to Table 6.7, the win/lose/tie record of FLD compared with EWD on

classification error is 10/18/1, which demonstrates FLD obtains higher error

more often than not compared with EWD. We have also suggested that since

FLD takes into consideration all values in a quantitative attribute’s value range

for the naive-Bayes probability estimation, it is expected to be good at reduc-

ing discretization variance but reversely, bad at reducing discretization bias.

According to Table 6.2, FLD obtains both higher mean and higher geometric

mean of bias than EWD. According to Table 6.7, its win/lose/tie record of bias

reduction against EWD demonstrate a significant loss at the 0.05 level. In con-

trast, it achieves both lower mean and lower geometric mean of variance than

EWD; and its win/lose/tie record of variance reduction against EWD demon-

strates a significant win at the 0.05 level. However, the bias increase usually

outweighs the variance reduction, thus FLD still results in inferior effective-

ness of reducing naive-Bayes classification error compared with its primary

method EWD.

We are particularly interested in checking LD’s effectiveness, since we

value the idea of ‘placing a quantitative value at the middle of its interval’,

and deem that LD should be the ideal format of our new strategy NDD if

its computational resources are not a consideration. According to Table 6.1,

LD achieves both lower mean and lower geometric mean of the naive-Bayes

classification variance than its primary method EFD. According to Table 6.7,
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its win/lose/tie record against EFD on classification error is significant at the

0.05 level. Most striking is LD’s effectiveness on variance reduction. It obtains

lower mean and lower geometric mean of classification variance than EFD as

well as all the other previous methods. Its win/lose/tie record against EFD on

variance reduction is significant at the 0.05 level. These observations support

our suggestion that always looking for favorable intervals by placing a quan-

titative value at the middle of its interval can enjoy an advantage. However,

according to Table 6.7, LD does not significantly improve on EFD with respect

to classification bias reduction, since the win/lose/tie record is 14/12/3 with

sign test equal to 0.42. Also, according to Table 6.2, LD’s mean and geometric

mean of classification bias are equal to those of EFD, which are higher than

most of the other methods. We attribute LD’s disadvantage of bias reduc-

tion to the fact that LD did not identify the proper interval frequency strategy

and only arbitrarily followed that of EFD’s. Thus we have proposed LD FFD

and predicted that LD FFD could better reduce naive-Bayes classification error

than LD since it is coupled with FFD’s frequency strategy which we believe al-

though not universally optimal, is more advisable than EFD’s. The experimen-

tal results support our prediction. According to Table 6.1, LD FFD achieves

both lower mean and lower geometric mean of the classification error than

LD and all other previous methods. According to Table 6.7, its win/lose/tie

against LD on classification error is significant at the 0.05 level. As for bias re-

duction, according to Table 6.2, it also achieves the lowest mean and the lowest

geometric mean of classification bias among the previous methods, which LD

failed to. Its win/lose/tie record against LD on bias reduction is significant

at the 0.05 level. In addition, compared with LD, LD FFD achieves competi-
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tive effectiveness of variance reduction. The win/lose/tie record according to

Table 6.7 is 12/14/3. These observations support our analysis that in order to

improve the discretization effectiveness, the frequency strategy is as essential

as locating a quantitative value at the middle of its interval.

6.4.5 Further discussion and weighted proportional dis-

cretization

PD and FFD manage discretization bias and variance from two different per-

spectives. Although both have clearly demonstrated advantage over previous

discretization methods in reducing the naive-Bayes classification error, there is

no statistically significant difference between their own effectiveness with re-

spect to all the datasets. According to Table 6.1, they obtain the same mean er-

rors (18.6%), and obtain very similar geometric mean errors (13.8% and 13.7%

respectively). The win/lose/tie record of PD compared with FFD is 15/12/2,

which is insignificant with sign test equal to 0.35. However, from the perspec-

tive of discretization bias and variance, PD and FFD demonstrate different

effectiveness according to different training data sizes. In order to analyze

this issue, we split our datasets into ‘smaller’ ones whose sizes are smaller

than 1200; and ‘larger’ ones whose sizes are larger than 1200. The reason of

this split is that in 3-fold cross validation as our experiments have employed,

the training data size will be 900 if the dataset size is 1200. FFD with m=30

and PD will produce identical intervals for a quantitative attribute if there are

900 training instances with known values for this attribute. If the dataset size

is smaller than 1200 and thus the training data size is smaller than 900, PD
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produces smaller interval frequency (larger interval number) than FFD. If the

dataset size is larger than 1200 and thus the training data size is larger than 900,

PD produces larger interval frequency (smaller interval number) than FFD3. In

Table 6.8, we list the mean and geometric mean of naive-Bayes classification

error, bias and variance of PD and FFD respectively on smaller datasets. We

also list the win/lose/tie record of classification error, bias and variance re-

spectively of PD against FFD on smaller datasets in Table 6.8. All the statistics

on larger datasets are listed in Table 6.9.

From these statistics we can find that among smaller datasets, PD achieves

lower mean and lower geometric mean of naive-Bayes classification error than

FFD, although its wins are not of statistically significant frequency with the

win/lose/tie record as 11/5/1. It is PD’s effectiveness in bias reduction that

contributes to its advantage in error reduction. Its mean and geometric mean

of classification bias are both lower than those of FFD’s. It also obtains lower

bias more often than not compared with FFD. While in larger datasets, FFD

demonstrates advantage over PD at reducing classification error. It achieves

both lower mean and lower geometric mean of error than PD. It also obtains

lower error in 7 out of 12 larger datasets. We attribute this advantage to FFD’s

effectiveness in bias reduction. FFD achieves both lower mean and lower ge-

ometric mean of classification bias than PD. Its wins of bias reduction are of

significant frequency with sign test equal to 0.03.

However, it can be observed that PD is less effective at reducing variance

for smaller dataset. Compared with FFD in smaller datasets, PD obtains higher

3This is true only if there is no unknown values for any attribute. Otherwise, it is possible
that although there are more than 900 training instances, there are less than 900 known values
for some attribute. Hence PD will instead produce smaller interval frequency than FFD.
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variance in 11 out of 17 datasets; and it also obtains higher mean and higher

geometric mean of classification variance. We suggest that this disadvantage is

because that PD produces many intervals of small frequency when the training

data size is small. For example, with 100 training instances, FFD will produce

3 intervals containing approximately at least 30 instances each, while PD will

produce 10 intervals containing only 10 instances each. On the other hand, it

can also be observed that FFD is less effective at reducing variance for larger

datasets. Compared with PD in larger datasets, FFD obtains higher classifi-

cation variance in 9 out of 12 datasets; and it also obtains higher mean and

higher geometric mean of classification variance. We suggest that this disad-

vantage is because although we choose m=30 for FFD in our experiments, 30

can not always be an optimal sufficient interval frequency independent of each

specific dataset, as we have explained in Chapter 3.

These understandings raise an interesting question: can we combine PD

and FFD together so that each can use its advantage to complement the other’s

disadvantage? For example, we may set for PD a sufficient interval frequency

like that of FFD’s so as to constrain PD’s discretization variance when the train-

ing data size is small. Or we may make the sufficient interval frequency of FFD

take into consideration the increasing size of the training data as PD can. Ac-

cordingly, we propose weighted proportional discretization (WPD). WPD follows

PD in terms of setting both interval frequency and interval number propor-

tional to the training data size. However, instead of setting interval frequency

equal to interval number, WPD sets a sufficient interval frequency, m that follows

the variance control strategy of FFD. As the training data size increases, both

the interval frequency above m and the interval number increase. As a result,
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WPD does not equally weigh bias reduction and variance reduction. Instead,

WPD weighs variance reduction more than bias reduction by firstly control-

ling interval frequency to be no less than m, by what reason it is named.

When discretizing a quantitative attribute for which there are n training

instances with known values, supposing that the desired interval frequency is

s and the desired interval number is t, WPD employs (6.1) to calculate s and

t. It then sorts the quantitative values in ascending order and discretizes them

into intervals of frequency s. Thus each interval contains approximately4 s

training instances with adjacent (possibly identical) values.

s× t = n

s−m = t. (6.1)

We anticipate that on one hand, WPD can make up PD’s disadvantage for

smaller datasets since it can prevent the discretization variance from being

high by setting interval frequency above m. On the other hand, we anticipate

WPD to make up FFD’s disadvantage for larger datasets since its interval fre-

quency may have a better chance to be suitable for each specific dataset by

reacting to the training data size. We implement WPD the same way as for the

other discretization methods. We record the resulting classification error, bias

and variance in columns ‘WPD’ in Table 6.1 and Table 6.2 respectively. The

win/lose/tie records on classification error of WPD against alternative meth-

ods are listed in Table 6.10.

Our anticipations have been supported by these statistics. Among smaller

4Again, ‘approximately’ is because the existence of identical values.
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datasets, WPD’s mean and geometric mean of classification variance are 3.3%

and 2.2% respectively, both being lower than PD’s (3.7% and 2.3% respec-

tively). WPD obtains lower variance than PD more often than not with the

win/lose/tie record as 10/5/2. Among larger datasets, WPD’s mean and ge-

ometric mean of classification variance are 1.7% and 1.2%, both being lower

than FFD’s (2.0% and 1.5% respectively). WPD obtains lower variance than

FFD more often than not with the win/lose/tie record as 8/2/2. Across all the

datasets, if compared with every previous discretization methods, WPD is able

to achieve the lowest mean and the lowest geometric mean of the naive-Bayes

classification error. Its win/lose/tie records against each previous method are

all of frequency significant at the 0.05 level. However, if compared with our

new methods, WPD does not demonstrate statistically significant advantage

over PD or FFD. Another illuminating observation is that with frequency sig-

nificant at the 0.05 level, WPD loses to NDD in error reduction. We suggest

the reason is that WPD produces disjoint intervals; while NDD produces non-

disjoint intervals, each of which tends to be a favorable interval for a quanti-

tative attribute value and each of which has a reliable interval frequency for

naive-Bayes probability estimation by employing FFD as its primary method.

6.5 Conclusion

This chapter has focused on evaluating our proposed discretization techniques

PD, FFD, WPD and NDD against previous key discretization methods in

naive-Bayes learning, using a large suite of real-world data.

Both PD and FFD manage discretization bias and variance by adjusting
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interval frequency and interval number. Our experimental results have sug-

gested that compared with previous methods, PD and FFD enjoy an advan-

tage at reducing the naive-Bayes classification error with statistically signifi-

cant frequency; and compared with each other, there is no statistically signifi-

cant difference between PD and FFD’s effectiveness of error reduction. How-

ever, since they take different approaches to managing discretization bias and

variance, PD and FFD have demonstrated different effectiveness according to

different training data sizes. We have suggested that it is sensible to combine

PD and FFD’s strategies since each one’s advantages can make up the other’s

disadvantages. This understanding leads to another discretization technique

WPD. The experimental results have shown that WPD also achieves lower

naive-Bayes classification error than every previous method with significant

frequency. Again there is no significant difference among the effectiveness of

WPD, and PD and FFD. This observation supports our analysis in Chapter 3

that the optimal interval frequency (interval number) strategy varies from case

to case. There is not a single universal method that can always achieve the low-

est naive-Bayes classification error ignorant of specific applications. Thus the

best for which one can hope is to develop heuristic approaches that work well

with certain types of real-world applications.

Another new method that we have proposed is NDD. Contrasting to the

above three new methods that are disjoint, NDD is non-disjoint discretization

that forms overlapping intervals. NDD always locates a quantitative attribute

value towards the middle of its interval, thus the interval is most likely to be

favorable for this value. We have argued that besides the ‘non-disjoint’ strat-

egy, the interval frequency strategy is also essential to NDD’s success. Thus
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we choose FFD as NDD’s primary method whose frequency strategy has been

demonstrated effective by our experiments. We anticipate NDD to be of great

utility in naive-Bayes learning. Our experimental results have supported our

anticipation by showing that NDD is significantly more effective than every

previous method and is most effective among our new methods in terms of

reducing the naive-Bayes classification error.

The empirical observation has also supported our analysis on previous

methods’ effectiveness in terms of discretization bias and variance.

Having already evaluated our research in both theory and practice, we will

bring a conclusion to this thesis in the next chapter.
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Table 6.3: Win/lose/tie records on classification error of PD, FFD and NDD
PD FFD NDD

Methods
Win Lose Tie Sign Test Win Lose Tie Sign Test Win Lose Tie Sign Test

vs. EWD 22 7 0 <0.01 20 8 1 0.02 22 7 0 <0.01
vs. EFD 22 6 1 <0.01 19 8 2 0.03 24 3 2 <0.01
vs. FLD 23 6 0 <0.01 22 7 0 <0.01 23 6 0 <0.01
vs. EMD 21 5 3 <0.01 20 9 0 0.03 25 3 1 <0.01
vs. LD 20 8 1 0.02 19 8 2 0.03 21 7 1 <0.01

Table 6.4: Computational time per fold (seconds)
- Adult Ipums.la.99 Census-Income Forest-Covertype
LD FFD 547 6124 47234 56950
NDD 1 14 19 59

Table 6.5: Win/lose/tie records on classification bias of previous primary methods
vs. PD vs. FFD

EWD 5 24 0 < 0.01 8 19 2 0.03
EFD 3 23 3 < 0.01 10 19 0 0.07
EMD 4 22 3 < 0.01 11 16 2 0.22

Table 6.6: Win/lose/tie records on classification variance of previous primary meth-
ods

vs. PD vs. FFD
EWD 14 12 3 0.42 10 17 2 0.12
EFD 17 6 6 0.02 14 11 4 0.35
EMD 12 12 5 0.58 13 15 1 0.43

Table 6.7: Win/lose/tie records of previous composite methods
Classification error Classification bias Classification variance

Win Lose Tie Sign test Win Lose Tie Sign test Win Lose Tie Sign test
FLD vs. EWD 10 18 1 0.09 9 20 0 0.03 22 2 5 < 0.01

LD vs. EFD 19 8 2 0.03 14 12 3 0.42 23 3 3 < 0.01
LD FFD vs. LD 21 8 0 0.01 19 9 1 0.04 12 14 3 0.42



§6.5 Conclusion 135

Table 6.8: Compare PD and FFD on smaller datasets
PD FFD Win/lose/tie record Sign test

ME GM ME GM of PD against FFD
Classification error 18.2 13.1 18.6 13.7 11/5/1 0.11
Classification bias 14.5 10.4 15.3 11.3 12/5/0 0.07
Classification variance 3.7 2.3 3.4 2.1 5/11/1 0.11

Note: ME is mean, GM is geometric mean.

Table 6.9: Compare PD and FFD on larger datasets
PD FFD Win/lose/tie record Sign test

ME GM ME GM of PD against FFD
Classification error 19.2 14.8 18.5 13.8 4/7/1 0.27
Classification bias 17.4 13.0 16.5 11.7 2/9/1 0.03
Classification variance 1.7 1.2 2.0 1.5 9/2/1 0.03

Note: ME is mean, GM is geometric mean.

Table 6.10: Win/lose/tie records on classification error of WPD
WPD vs. EWD EFD FLD EMD LD PD FFD NDD
Win 21 23 22 20 20 8 14 7
Lose 8 5 5 6 9 13 12 19
Tie 0 1 2 3 0 8 3 3
Sign Test 0.01 <0.01 <0.01 <0.01 0.03 0.19 0.42 0.01
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Chapter 7

Conclusion

We have studied discretization for naive-Bayes learning through the previous

chapters. In this chapter, we summarize what we have learned. We also dis-

cuss directions for future research. We complete this thesis by highlighting our

contributions to the area of discretization and naive-Bayes learning.

7.1 Summary of thesis

The kernel issues of this thesis are to understand why discretization can be ef-

fective for naive-Bayes learning and accordingly to devise discretization tech-

niques such that naive-Bayes classifiers with discretization achieve both clas-

sification efficacy and efficiency.

What is discretization? In Chapter 2 we have tackled how to define dis-

cretization. Discretization is a data processing procedure that transforms one

type of data into another type of data. In the existing large amount of literature

that address discretization, there is considerable variation in the terminology

used to describe each of these two data types. However, many of the various

terms have distinct definitions from the perspective of statistics. Thus con-

fusion exists for defining discretization. We carry out a broad survey on this

issue, turning to the authority of statistics text books. We make clear the differ-
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ences among various terms, and suggest it most proper to define discretization

as transforming quantitative data into qualitative data.

Why can discretization be effective? In Chapter 3 we explain discretiza-

tion’s working mechanism in naive-Bayes learning. Discretization seeks to

substitute a qualitative attribute value X∗i =x∗i for a quantitative attribute value

Xi=xi . We have proved in Theorem 1 that if discretization results in that

p(C=c|X∗i =x∗i ) is an accurate estimate of p(C=c|Xi=xi) for each quantita-

tive xi given a test instance x, p(C=c|X∗=x∗) will be an accurate estimate of

p(C=c|X=x).

What affects discretization effectiveness? Having a clear answer to this

question helps us to devise proper discretization techniques for naive-Bayes

learning. In Chapter 3, according to Theorem 1, we have argued that it is

sensible for discretization to focus on the accuracy of p(C=c|X∗i =x∗i ) as an es-

timate of p(C=c|Xi=xi). Two factors, the decision boundary and the error toler-

ance of probability estimation, can affect this estimation. Different discretization

methods can have different approaches to dealing with these two factors, and

hence have different effects on classification bias and variance of the gener-

ated naive-Bayes classifiers. We name these effects discretization bias and vari-

ance. We argue that while discretization is desirable when the quantitative

data’s true underlying probability density functions are not available, practi-

cal discretization techniques are necessarily heuristic in nature. In particular,

we provide insights into managing discretization bias and variance by tuning

interval frequency and interval number.

What is the situation of current research on discretization? In Chapter 4,

we have conducted a comprehensive literature review of discretization meth-
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ods in the research area of machine learning. We are particularly interested

in those methods that were originally developed or are often used for naive-

Bayes classifiers; and in analyzing their behaviors on discretization bias and

variance, which we think illuminating.

Why should we devise new discretization techniques? We believe that our

work presented in this thesis is necessary. Combining Chapter 3 and Chap-

ter 4, we have found that the majority of the existing discretization methods

were developed in learning contexts other than naive-Bayes learning, and do

not suit naive-Bayes classifiers’ requirements of effective discretization. We

have also found that there do exist a few methods that were developed in

the context of naive-Bayes learning. However, their sub-optimal effective-

ness of managing discretization bias and variance, or their sub-optimal com-

putational efficiency suggests that these methods have potential problems for

naive-Bayes learning. Concerning the widespread employment of naive-Bayes

classifiers, we believe that there is a real and immediate need for improving

discretization effectiveness for naive-Bayes classifiers.

What solutions can we offer? In Chapter 5, we have evaluated the impact

of discretization bias and variance on naive-Bayes classification performance.

Since we have obtained the insight that discretization bias and variance relate

to discretized interval frequency and interval number, our new discretization

techniques focus on adjusting interval frequency and number to manage dis-

cretization bias and variance, so as to lower the naive-Bayes classification error.

Using different chains of reasoning, we propose three new techniques, propor-

tional discretization (PD), fixed frequency discretization (FFD) and non-disjoint dis-

cretization (NDD). PD sets interval frequency and interval number equal, both
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proportional to the size of the training data. By this means, it seeks a good

trade-off between discretization bias and variance by equally weighing bias

reduction and variance reduction. Also it can use increasing training data to

decrease both discretization bias and variance. FFD sets interval frequency as

small as possible under the condition that there are sufficient training instances

per interval for the naive-Bayes probability estimation. The interval number

increases with the training data size increasing. By this means, FFD can con-

trol discretization variance from being high, and can use additional training

data to lower discretization bias. NDD is proposed when we further realize

that discretization resulting in favorable intervals for quantitative values can be

expected to lower the naive-Bayes classification error. However, disjoint dis-

cretization cannot be effective to find favorable intervals. Accordingly, NDD

forms overlapping (non-disjoint) intervals for a quantitative attribute, and al-

ways tries to choose a favorable interval for the value of the current instance

to be classified. Two key components of NDD strategy are locating a value

towards the middle of its interval, and selecting proper interval frequency. In

our current research, we employ for NDD the frequency strategy of FFD due

to its simplicity, efficiency and efficacy.

How can we prove the efficiency and efficacy of our new techniques for

naive-Bayes classifiers? Although our theoretical analysis leads to an opti-

mistic expectation of our new methods’ effectiveness of reducing the naive-

Bayes classification error, theory needs to be verified by practice. Conse-

quently, in Chapter 6, we conduct the empirical evaluation for our new tech-

niques against previous key discretization methods in naive-Bayes learning.

We run our experiments on a large suite of natural datasets from UCI machine
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learning repository [Blake and Merz 1998] and KDD archive [Bay 1999]. These

datasets represent applications with hundreds to hundreds of thousands of

instances. This differs from most previous work that was confined to exper-

imental datasets of relatively small size. The experimental results agree with

our predictions. If compared with each previous method, each of PD, FFD

and NDD achieves lower naive-Bayes classification error with frequency sig-

nificant at the 0.05 level. If comparing their own effectiveness, NDD is more

effective than both PD and FFD. We attribute this to the facts that NDD always

seeks favorable intervals by locating a quantitative attribute value towards the

middle of its interval and that NDD employs the frequency strategy of FFD.

As for PD and FFD, there is no statistically significant difference between their

effectiveness. However, we analyze that PD and EFD have different effec-

tiveness of managing discretization bias and variance according to different

training data sizes. Thus we propose weighted proportional discretization (WPD)

that combines PD and FFD. According to our experimental results, WPD also

achieves lower naive-Bayes classification error than every previous method

with significant frequency, while PD, FFD and WPD obtain equivalent effec-

tiveness. These observations support our suggestion that the optimal interval

frequency (interval number) strategy varies from case to case. Thus although

our new techniques are desirable, an optimal universal discretization strategy

for naive-Bayes learning is unobtainable. Hence, the best we can hope for is

heuristic approaches that work well with certain types of real-world applica-

tions.
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7.2 Future work

While it has shed light on a new understanding of discretization in naive-

Bayes learning, our research also brings before us several issues worth further

exploration.

• Although discretization is an approach parallel to probability density es-

timation, these two are not exclusive. Actually the key factors affecting

discretization’s effectiveness, the decision boundary and the error toler-

ance of probability estimation, both depend on the probability distribu-

tion of the training data. Thus the more we know about the data distribu-

tion, the better our discretization can be. Although the conventional ‘nor-

mal distribution’ assumption has been shown ineffective, there do exist

many more sophisticated approaches to modelling the probability den-

sity function [Silverman 1986]. Further investigation of these approaches

might benefit discretization by offering more information about the na-

ture of the data.

• We have demonstrated that our techniques generally perform better than

alternatives on the datasets in our study. However, in practice one is

more interested in the best technique for the particular data to be stud-

ied, not the average performance across many domains [Kohavi 1995b].

It is desirable that an algorithm is devised such that it can utilize back-

ground knowledge of the data. For example, although we set the suffi-

cient interval frequency m as 30 for fixed frequency discretization (FFD)

in our experiments, an extension of FFD may prove more efficacious,

which is able to dynamically adjust mcorresponding to the individuality
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of applications.

• Although there exist a large number of discretization methods, we have

suggested that there is no universally optimal discretization strategy for

naive-Bayes learning, and the best for which one can hope is approaches

that work well with certain types of real-world applications. Thus an

interesting piece of work is to analyze what types of discretization meth-

ods (for example, according to our taxonomies in Chapter 2) are effec-

tive for what types of applications. Finding out this relationship is very

likely to help choose most appropriate discretization methods for partic-

ular applications in practice. However, a challenge in this work is how

to categorize applications into certain types so that the match between

discretization techniques and applications can be properly built up.

• One appealing merit of naive-Bayes classifiers, as we have argued in

Chapter 3, is that their learning is incremental. Thus it is desirable if dis-

cretization methods employed by naive-Bayes learning can also be incre-

mental. However, at the current stage, our new discretization techniques

are not incremental. It will be of great utility to improve our techniques’

incrementality.

• Although all of our proposed discretization methods are originally ori-

ented to naive-Bayes learning, a natural question is: can they be applied

with other learning algorithms? For example, Bayes network learning

relaxes naive-Bayes’ attribute independence assumption. Can our new

techniques facilitate Bayes network learning as well? If yes, to what ex-

tent? If no, why?
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• Another inspiring issue arising from our study is that unsupervised dis-

cretization methods are able to outperform supervised ones (in our ex-

periments the entropy minimization discretization [Fayyad and Irani

1993]) in the context of naive-Bayes learning. This is contrary to the pre-

vious understanding that supervised methodologies tend to have an ad-

vantage over unsupervised methodologies [Dougherty, Kohavi, and Sa-

hami 1995; Hsu, Huang, and Wong 2000; Hsu, Huang, and Wong 2003].

Further investigation of this issue may prove illuminating.

7.3 Concluding remarks

In this thesis, we have studied discretization in naive-Bayes learning. This is

of special significance since naive-Bayes classifiers are popular with classifi-

cation tasks, and the quantitative data are usually discretized to train naive-

Bayes classifiers. New understandings in both theory and practice have come

into being as a result of our study. In theory, we clarify the confusion of defin-

ing discretization in existing literature and conclude that discretization usu-

ally refers to a process of converting quantitative data to qualitative data. We

prove a theorem that explains why discretization can be effective in naive-

Bayes leaning and why discretization is desirable when the true underlying

probability density functions of the quantitative data are not available. We

analyze two factors, the decision boundary and the error tolerance of proba-

bility estimation, which can affect discretization effectiveness. A discretization

method’s effectiveness is reflected by its effects on the bias and variance of the

generated naive-Bayes classifiers. we name these effects discretization bias



§7.3 Concluding remarks 145

and variance. We argue that discretization methods that are able to well man-

age discretization bias and variance are of great utility in naive-Bayes learning.

We further suggest that one effective approach to managing discretization bias

and variance is to adjust interval frequency and interval number. However, we

obtain the understanding that the optimal interval frequency (interval num-

ber) strategy varies depending on individual applications. Thus an univer-

sally optimal discretization strategy for naive-Bayes learning is unobtainable.

Hence, the best for which one can hope is to develop heuristic approaches that

work well with certain types of real-world applications.

In practice, four new discretization techniques have been developed and

evaluated. To the best of our knowledge, these techniques are the first to ex-

plicitly deal with discretization bias and variance. Although each technique

differs in their specific strategy, they have some common merits. First, all

of them can achieve lower naive-Bayes classification error than every previ-

ous key discretization method in our study with frequency significant at the

0.05 level. Second, all of them are able to actively take advantage of increas-

ing information in large data to reduce discretization bias and variance. Thus

they are expected to demonstrate greater advantage than previous methods

especially when learning from large data. It is desirable that a machine learn-

ing algorithm maximizes the information that it derives from large datasets,

since increasing the size of a dataset can provide a domain-independent way of

achieving higher accuracy [Freitas and Lavington 1996; Provost and Aronis

1996]. Third, all of our new techniques have computational time and space

complexity as low as the simplest discretization methods such as equal fre-

quency discretization [Catlett 1991; Kerber 1992; Dougherty, Kohavi, and Sa-



146 Conclusion

hami 1995]. This is especially important since large datasets with high dimen-

sional attribute spaces and huge numbers of instances are increasingly used in

real-world applications; and naive-Bayes classifiers are particularly attractive

for these applications because of their time and space efficiency. These merits

together with the outstanding effectiveness on lowering the naive-Bayes clas-

sification error give us grounds for being positive that our new discretization

techniques are of great utility for naive-Bayes learning.
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