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Abstract

The success and popularity of naive Bayes (NB) has led to a field of research exploring
algorithms that seek to retain its numerous strengths while reducing error by alleviat-
ing the attribute interdependence problem. These algorithms can be categorized into five
groups: those that apply conventional NB to a subset of attributes, those that alter NB
by allowing interdependencies between attributes, those that apply NB to a subset of the
training sample, those that calibrate NB’s probability estimates and those that introduce
hidden variables to NB. Eighteen key algorithms are analyzed in detail. We provide com-
parative analysis of thirteen algorithms’ features and benchmark them using error analysis
based on the bias-variance decomposition and probabilistic prediction analysis based on the
quadratic loss function on sixty natural domains from the UCI Machine Learning Repos-
itory. To provide a baseline for comparison, we also present comprehensive experimental
results for Logistic Regression and LibSVM, a popular SVM implementation. In analyzing
the results of these experiments we provide general recommendations for selection between
semi-naive Bayesian methods based on the characteristics of the application to which they
are applied.

Keywords: Classification, Naive Bayes, the Attribute Independence Assumption, Semi-
naive Bayesian Classification

1. Introduction

Given a labeled training sample described by a set of features or attributes, supervised
classification algorithms seek to build a classifier that maps a new instance to be classified
(hereafter referred to as a test instance) into a discrete class label. In the Bayesian classifier
(Duda and Hart, 1973; Lachenbruch, 1975; Aitchison and Dunsmore, 1975), a test instance
is assigned the class label with the highest posterior probability. Following the classifica-
tion of David (1976), approaches to estimating posterior probabilities broadly fall into two
categories: firstly, the diagnostic paradigm, also called discriminative classifiers, where the
parameters of the conditional distribution are directly estimated from the training sam-
ple by maximizing the conditional likelihood; and secondly, the sampling paradigm, also
called generative classifiers, where the parameters of the joint distribution are estimated
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from the training sample by maximizing the joint likelihood and those of the conditional
distribution are obtained via Bayes theorem. Two typical examples of discriminative and
generative classifiers are Logistic Regression and naive Bayes (NB). Logistic Regression di-
rectly estimates the posterior probabilities by fitting the training data to a logistic curve,
while NB directly estimates the prior and class conditional probabilities and obtains the
posterior probabilities by applying Bayes rule. Generally, generative classifiers are easier
and more efficient to train with lower variance, while discriminative classifiers tend to have
lower bias and hence higher classification accuracy on large training data (Rubinstein and
Hastie, 1997; Ng and Jordan, 2001; Mitchell, 2005). This paper examines recent research
into variants of the generative learning algorithm NB.

NB is a very simple and computationally efficient learning algorithm that demonstrates
remarkably strong accuracy over a range of application domains (Domingos and Pazzani,
1996; Mitchell, 1997; Lewis, 1998; Hand and Yu, 2001). It has many desirable features. One
of these is that it performs optimal classification save only in so far as there are

• violations of its assumption that the attributes are independent of one another given
the class; and

• inaccuracies in the estimation of the base probabilities from the training data.

Numerous generative techniques have sought to enhance the accuracy of NB by relaxing
the assumption of conditional independence between the attributes given the class (Hilden
and Bjerregaard, 1976; Kittler, 1986; Kononenko, 1991; Langley, 1993; Langley and Sage,
1994; Kohavi, 1996; Pazzani, 1996; Sahami, 1996; Singh and Provan, 1996; Friedman et al.,
1997; Webb and Pazzani, 1998; Keogh and Pazzani, 1999; Zheng and Webb, 2000; Webb,
2001; Xie et al., 2002; Zadrozny and Elkan, 2002; Zhang et al., 2004; Webb et al., 2005; Acid
et al., 2005; Cerquides and Mántaras, 2005a,b; Zhang et al., 2005; Zheng and Webb, 2006;
Langseth and Nielsen, 2006; Zheng and Webb, 2007). This paper examines these methods
which we call semi-naive Bayesian methods. We provide a broad classification of the meth-
ods into five groups. Of these, we examine seventeen representative semi-naive Bayesian
methods, with detailed time and space complexity analysis. To gain a better understanding
of the strengths and limitations of these algorithms, we perform error analysis based on the
bias-variance decomposition (Kohavi and Wolpert, 1996), probabilistic prediction analysis
based on the quadratic loss function and training and classification time analysis on sixty
natural domains from the UCI Machine Learning Repository (Newman et al., 1998).

There are seven main differences between this work and the earlier comparative study
of Zheng and Webb (2005). This paper compares thirteen semi-naive Bayesian methods, in-
cluding recent methods, on sixty data sets using the repeated cross-validation bias-variance
estimation method proposed by Webb (2000), while the earlier paper compares eight semi-
naive Bayesian methods on thirty-four data sets with a smaller average size using the bias-
variance decomposition method proposed by Kohavi and Wolpert (1996). Because the
repeated cross-validation bias-variance estimation method results in the use of substan-
tially larger training sets, we believe it is preferable to the method of Kohavi and Wolpert.
To provide a baseline for comparison, this study also presents experimental results for Lo-
gistic Regression and LibSVM. In addition, this work employs m-estimation to estimate
probabilities, rather than Laplace estimation, and evaluates the probabilistic prediction of
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each method by using the quadratic loss function. Furthermore, the Friedman test and
Nemenyi test are employed to analyze error, bias, variance and root mean squared error as
they might be more appropriate than large numbers of binomial sign tests for comparison
of multiple algorithms over multiple data sets. Due to these differences, the results of this
paper and the earlier paper differ slightly, those of the current study being indicative of the
use of larger training sets.

The rest of the paper is organized as follows. Section 2 reviews classification with NB.
Section 3 describes generic strategies for relaxing the independence assumption and pro-
vide details of seventeen representative semi-naive Bayesian methods, including algorithm
description and complexity analysis. Logistic Regression and its extensions are briefly de-
scribed in Section 4. Section 5 contains the experimental results of NB, twelve semi-naive
Bayesian methods, Logistic Regression and LibSVM on a wide range of domains and general
guidelines for selection between semi-naive Bayesian methods. Conclusions are provided in
Section 6. Finally, the Appendix presents detailed error, bias, variance and root mean
squared error results.

2. Naive Bayes: A Generative Classifier

Supervised classification learning is the process of predicting a discrete class label y ∈
{c1, . . . , ck} for a test instance x = 〈x1, . . . , xn〉 from a labelled training sample, where xi

is the value of the ith attribute Xi and ci is the ith value of the class variable Y . The
Bayesian classifier (Duda and Hart, 1973; Lachenbruch, 1975; Aitchison and Dunsmore,
1975) predicts the class label for x by selecting

argmax
y

P (y |x) = argmax
y

P (y,x)/P (x) (1)

= argmax
y

P (y,x). (2)

The equality holds between (1) and (2) due to P (x) being invariant across values of y.
Where estimates of P (y |x) are required rather than a simple classification, these can be
obtained by normalization,

P̂ (y |x) =
P̂ (y,x)∑k

i=1 P̂ (ci,x)
, (3)

where P̂ (·) represents an estimate of P (·).
Let X = 〈X1, . . . , Xn〉 be the instance variable and vi the cardinality of the domain of

Xi, the number of values that is may assume. There are
∏n

i=1 vi combinations of attribute
values. To accurately estimate P (Y,X) = P (Y )P (X |Y ), we need to estimate k(

∏n
i=1 vi −

1) parameters, each requiring sufficient examples to support reliable estimation (Mitchell,
2005). It is clearly unrealistic to do this directly in most real world domains as, if the
number of attributes is large, some instances are unlikely to occur in the given training
data, and hence it is impossible to obtain the estimate of P (Y,X) directly from the training
sample.

Naive Bayes (NB) (Ohmann et al., 1988; Kononenko, 1990; Langley et al., 1992; Langley
and Sage, 1994) circumvents this problem by making the assumption that the attributes are
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independent given the class. Consequently, the number of parameters to estimate P (Y,X)
is dramatically reduced to k

∑n
i=1(vi−1) . Under this conditional independence assumption

NB estimates P (y,x) by

P̂ (y,x) = P̂ (y)
∏

i∈N

P̂ (xi | y), (4)

where N = {1, · · · , n}. For the history of NB, we refer the reader to Hand and Yu (2001),
which provides a comprehensive history of NB with many further references.

The joint likelihood of training data is maximized by directly estimating probabilities
using frequency counts over the training data. In NB, the class Y is qualitative and an
attribute Xi can be either qualitative or quantitative. For qualitative attributes, P (y) is
estimated by the frequency of instances with value y (indicated as F (y)), and P (xi | y) is
estimated by the frequency of instances with y and xi (indicated as F (y, xi)) divided by
that of instances with y. To avoid the problems that result from zero frequencies and zero
probabilities, smoothing methods, such as Laplace estimation and m-estimation (Cestnik,
1990), are employed. Using Laplace estimation, we have

P̂ (y) =
F (y) + 1

t + k

and
P̂ (xi | y) =

F (y, xi) + 1
F (y) + vi

,

where t is the number of training examples. Using m-estimation, we have

P̂ (y) =
F (y) + m

k

t + m

and

P̂ (xi | y) =
F (y, xi) + m

vi

F (y) + m
,

where m is a constant.
For quantitative attributes, one common approach to representing the distributions

P (Xi | Y ) is to assume that Xi has a Gaussian distribution whose mean and variance
depends on Y . Previous research (Dougherty, Kohavi, and Sahami, 1995) shows that the
classification errors of NB with discretization methods employed in their study are lower
than that of NB with the assumption that quantitative attributes have a Gaussian distri-
bution. Theoretical analysis on why discretization is effective on NB can be found in Hsu
et al. (2000, 2003b) and Yang and Webb (2003). For this reason, in this paper, quantitative
attributes are discretized prior to classification with NB and its extensions.

At training time, NB generates a one-dimensional table of class probability estimates,
indexed by class, and a two-dimensional table of conditional attribute-value probability
estimates, indexed by class and attribute-value. The resulting space complexity is O(knv),
where v is the mean number of values per attribute. The time complexity of initializing
the tables is O(knv) and that of calculating the estimates is O(tn). Since t is usually
substantially greater than k and v, the overall training time complexity is O(tn). In the
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following paper, if the time complexity of table initialization is lower than that of other
operations in most cases, we only discuss the latter. At classification time, to classify a
single example has time complexity O(kn) using the tables formed at training time with
space complexity O(knv).

3. Semi-naive Bayesian methods

In practical scenarios, the attribute independence assumption is often violated. There
have been many attempts to further improve NB’s accuracy by alleviating the attribute
interdependence problem while at the same time retaining its simplicity and efficiency.
Domingos and Pazzani (1996) point out that interdependence between attributes will not
affect NB’s classification accuracy, so long as it can generate the correct ranks of conditional
probabilities for the classes. However, the success of semi-naive Bayesian methods show that
appropriate relaxation of the attribute independence assumption is effective at improving
its accuracy. Further, in many applications it is desirable to obtain accurate estimates of
the conditional class probability rather than a simple classification, and hence mere correct
ranking will not suffice.

Previous semi-naive Bayesian methods can be roughly subdivided into five groups. The
first group applies NB to a subset of attributes generated by deleting attributes (Kittler,
1986; Langley and Sage, 1994). The second group adds explicit interdependencies between
attributes. Sahami (1996) introduces the terminology of the z-dependence Bayesian classi-
fier, in which each attribute depends upon the class and at most z other attributes. Within
this framework, NB is a 0-dependence estimator. The majority of semi-naive Bayesian
methods that add explicit interdependencies between attributes establish 1-dependence clas-
sifiers (Friedman et al., 1997; Keogh and Pazzani, 1999; Webb et al., 2005; Cerquides and
Mántaras, 2005a; Zheng and Webb, 2006, 2007). Two exceptions are NBTree (Kohavi, 1996)
and Lazy Bayesian Rules (LBR) (Zheng and Webb, 2000), both of which may add any num-
ber of dependencies for an attribute. The third group applies NB to a subset of training
instances (Langley, 1993; Frank et al., 2003). Note that the second and third groups are
not mutually exclusive. For example, NBTree and LBR classify instances by applying NB
to a subset of training instances, and hence they can also be categorized to the third group.
The fourth group performs adjustments to the output of NB without altering its direct
operation (Hilden and Bjerregaard, 1976; Webb and Pazzani, 1998; Platt, 1999; Zadrozny
and Elkan, 2001, 2002; Gama, 2003). The fifth group introduces hidden variables to NB
(Kononenko, 1991; Pazzani, 1996; Zhang et al., 2004, 2005; Langseth and Nielsen, 2006).

It is also useful to distinguish between eager learning methods (Hilden and Bjerregaard,
1976; Kittler, 1986; Kononenko, 1991; Langley, 1993; Langley and Sage, 1994; Kohavi,
1996; Pazzani, 1996; Friedman et al., 1997; Webb and Pazzani, 1998; Keogh and Pazzani,
1999; Platt, 1999; Zadrozny and Elkan, 2001, 2002; Gama, 2003; Zhang et al., 2004, 2005;
Webb et al., 2005; Cerquides and Mántaras, 2005a; Langseth and Nielsen, 2006; Zheng and
Webb, 2007), which perform learning at training time, and lazy learning methods (Zheng
and Webb, 2000; Frank et al., 2003; Zheng and Webb, 2006), which defer learning until
classification time.
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3.1 Applying NB to a Subset of Attributes

In NB, all the attributes are used during prediction, and hence all have some influence on
classification. When two attributes are strongly correlated, the influence from these two
attributes may be given too much weight, and the influence of the other attributes may
be reduced, which can result in prediction bias. Deleting one of these attributes may have
the effect of alleviating the problem. In addition, irrelevant attributes may also degrade
the performance of NB, in effect increasing variance without decreasing bias. Hence their
removal is also useful.

3.1.1 Backward Sequential Elimination

The wrapper approach uses accuracy estimates of a target learning algorithm as an eval-
uation function to measure the effectiveness of alternative attribute subsets (Kohavi and
John, 1997). Backward Sequential Elimination (BSE) (Kittler, 1986) employs a simple
heuristic wrapper approach to detecting and repairing harmful interdependencies. It uses
Leave-one-out cross validation error as a selection criterion. Starting from the full set of
attributes, BSE operates by iteratively removing successive attributes, each time removing
the attribute whose elimination best reduces training set error. It terminates the process
when there is no accuracy improvement. Independence is assumed among the attributes in
the resulting attribute subset given the class. It uses (4), where the set of indices of the
resulting attribute subset is substituted for N , to estimate P (y,x).

At training time BSE generates two tables of probability estimates as NB does. As
it performs leave-one-out cross validation to select the subset of attributes, it must also
store the training data, with additional space complexity O(tn). Keogh and Pazzani (1999)
speed up the process of evaluating the classifiers by using a two-dimensional table, indexed
by instance and class, to store the probability estimates. Each entry in the table is the
estimate of the posterior probabilities that instance x belongs to class y. It is straightforward
to update these to exclude or include the contribution of a specific attribute xi by dividing
or multiplying the entry 〈x,y〉 by P̂ (xi|y). Hence, leave-one-out cross validation can be
performed by simply taking each attribute xi in turn, excluding or including xi in the
table of posterior probabilities, and then classifying x. The resulting space complexity is
O(tn + tk + knv). The time complexity of a single leave-one-out cross validation is reduced
from O(tkn) to O(tk) by using the speed up strategy. Therefore, the time complexity of
attribute selection is O(tkn2), as leave-one-out cross validation will be performed at most
O(n2) times.

BSE has identical time and space complexity to NB at classification time, although it
may in practice result in significant speed-up if many attributes are deleted.

3.1.2 Forward Sequential Selection

Forward Sequential Selection (FSS) (Langley and Sage, 1994) uses the reverse search di-
rection to BSE. Starting from the empty set of attributes, it operates by iteratively adding
successive attributes, each time adding the attribute whose addition most improves training
set accuracy. It performs selection repeatedly while the accuracy is not reduced. It also
uses (4) to estimate P (y,x), where the set of indices of added attributes is substituted for
N . FSS has identical training and classification complexity to BSE.
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3.2 Altering NB by Allowing Interdependencies between Attributes

The addition of explicit arcs between attributes allows interdependencies between attributes
to be addressed directly. However, techniques for learning unrestricted Bayesian networks
often fail to achieve lower error than NB and sometimes lead to higher error (Friedman,
Geiger, and Goldszmidt, 1997). Two possible reasons for this are that the large number
of parameters that must be estimated for full Bayesian networks lead to high variance and
that full Bayesian networks are oriented toward estimating any marginal probability rather
than the being specifically focused on the task of estimating the conditional probabilities
of the class attribute given a full set of other attribute values.

3.2.1 Tree Augmented Naive Bayes and SuperParent TAN

Tree Augmented Naive Bayes (TAN) (Friedman et al., 1997) allows each attribute to depend
on at most one non-class attribute. Based on this representation, they extended a method
first proposed by Chow and Liu (1968) and utilized conditional mutual information to
efficiently find a maximum spanning tree as a classifier. As each attribute depends on at
most one other non-class attribute, TAN is a 1-dependence classifier. The parent of each
attribute Xi is indicated as π(Xi) and the parent of the class is ∅. It estimates P (y,x) by

P̂ (y,x) = P̂ (y)
∏

i∈N

P̂ (xi | y, π(xi)), (5)

where π(xi) is a value of π(Xi).
At training time TAN generates a one-dimensional table of class probability estimates,

and a three-dimensional table containing a conditional probability estimate for each attribute-
value, conditioned on each other attribute-value and each class, space complexity O(k(nv)2).
The time complexity of forming the three dimensional probability table is O(tn2), as we need
to update each entry for every combination of the two attribute-values for every instance.
Creating the conditional mutual information matrix requires consideration for each pair of
attributes of every pairwise combination of their respective values in conjunction with each
class. The resulting time complexity is O(k(nv)2). The parent function is then generated
by establishing a maximal spanning tree, time complexity O(n2 log n). At classification
time, to classify a single example has time complexity O(kn). The three dimensional con-
ditional probability table formed at training time can be compressed by storing probability
estimates for each attribute-value conditioned by the parent selected for that attribute and
the class. Hence, the space complexity is O(knv2).

SuperParent TAN (SP-TAN) (Keogh and Pazzani, 1999), a variant of TAN, uses the
same representation as TAN, but utilizes a wrapper approach to construct the parent func-
tion. It uses leave-one-out cross validation error as a criterion to add arcs. At any stage
during this process, all attributes that are yet to be assigned a non-class parent are called
orphans. An attribute that is made the parent of all orphans (other than itself) is called a
SuperParent. There are two steps to add an arc. First, the node that if made SuperParent
most improves accuracy is identified. Next, SP-TAN assesses the effect of adding a single arc
from this node to each orphan (without adding arcs to other orphans). The orphan whose
adoption most improves accuracy is called the FavoriteChild. This Parent-FavoriteChild
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pair is then added to the current network. SP-TAN stops adding arcs when there is no
further accuracy improvement or the number of orphans is one.

For ease of understanding, we use a hypothetical example with 4 attributes (X1, X2, X3

and X4) to explain this process. The network is initialized to NB and the set of orphans is
initialized to {X1, X2, X3, X4}, as shown in Figure 1 (a). Each attribute is temporarily made

Y

X1 X2 X3 X4

Y

X1 X2 X3 X4

Y

X1 X2 X3 X4

(a) X1, X2, X3 and X4 are orphans (b) X2 is the node that if made (c) X2 → X3 is added to the current network

SuperParent most improves accuracy

Figure 1: The process of adding an arc for SP-TAN

the parent of all orphans (other than itself) in turn and the effect on classification accuracy
is assessed. In this example (Figure 1 (b)), X2 is the node that if made SuperParent most
improves accuracy. Then, SP-TAN finds the FavoriteChild of X2. If the addition of the arc
from X2 to X3 most improves accuracy, X3 is identified as the FavoriteChild of X2, and
this arc is added to the current network (Figure 1 (c)). This process is terminated when
there is no accuracy improvement or the number of orphans is one. SP-TAN also uses (5)
to classify an instance.

Under different criteria for establishing parent functions, TAN tends to add n− 1 arcs,
while SP-TAN may have fewer arcs between attributes. As the selection of root does not
affect the log-likelihood of the network, TAN randomly selects a root attribute and directs
all edges away from it. In contrast, SP-TAN makes the direction from SuperParents to their
FavoriteChilds.

At training time SP-TAN needs additional space complexity O(tn) for storing the train-
ing data compared with TAN. The selection of a single SuperParent is order O(tkn2), and
the selection of the FavoriteChild is order O(tkn), which is achieved by using the speed up
strategy mentioned in Section 3.1.1. Keogh and Pazzani (1999) proposed another optimiza-
tion to speed up the evaluating process by sorting instances according to whether they are
classified correctly and testing the misclassified instances first. Hence, once the number of
the misclassified instances is larger than the current best-so-far error, we can stop testing
the classifier. These optimizations are effective in practice. The time complexity of forming
the parent function is O(tkn3), as O(n) arcs are added. SP-TAN has identical classification
time and space complexity to TAN.

3.2.2 NBTree

NBTree (Kohavi, 1996) seeks to combine the advantages of NB and decision trees. It
partitions the training data using a tree structure and establishes a local NB in each leaf.
NBTree uses 5-fold cross validation accuracy estimation as the splitting criterion. Each
value of a splitting attribute has its own subtree. The utility of a node is the 5-fold cross
validation accuracy of NB at this node. The utility of a split on an attribute equals the
weighted sum of the utility of nodes generated by the split. NBTree partitions the training
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sample according to the test on the attribute that has the highest utility, out of those
that are substantially better than the utility of the current node. A split is defined to be
substantially better if the relative error reduction is greater than 5% and the splitting node
has at least 30 instances. When there is no substantial improvement, NBTree stops the
growth of the tree.

The classical decision tree predicts the same class for all test instances that reach a leaf.
In NBTree, these instances are classified using a local NB in the leaf, which only considers
those attributes that are not tested on the path to the leaf and those training instances
that reach the leaf. Let B be the set of the splitting attributes on the path leading to the
leaf, and let L be the set of the remaining attributes, we have

P (Y,X) = P (B)P (Y |B)P (L |Y,B)
∝ P (Y |B)P (L |Y, B),

where P (Y |B) is the probability of the class in the leaf, in which the attributes in B have
same values, and P (L |Y,B) is the conditional probability of the remaining attributes given
the class in the leaf. Therefore, NBTree estimates P (y,x) by

P̂ (y,x) = P̂ (y, b)
∏

i∈l

P̂ (xi | y, b),

where b is a value of B and l is the set of indices of attributes in L. NBTree is expected to
have the effect of mitigating the harmful attribute interdependence problem for each local
NB if B can be selected appropriately.

In the worst case, the height of the tree is O(n). At the root, NBTree performs 5-fold
cross validation on each attribute. The split on Xi results in vi subtrees and the cost
of performing cross validation is t1k(n − 1) + · · · + tvik(n − 1) = tk(n − 1), where ti is
the number of instances in the ith subtree. At level one, each instance is described by
n− 1 attributes and the cost of performing cross validation for each attribute is tk(n− 2).
Therefore, the worst cost of building the tree is

∑2
j=n tkj(j − 1) = O(tkn3). In the worst

case, the number of leaves is O(t) and the height of the tree is O(n). The space complexity is
O(kvt). Classification of a single example has time complexity O(kn) and space complexity
O(kvt).

3.2.3 Lazy Bayesian Rules

Lazy Bayesian Rules (LBR) (Zheng and Webb, 2000) adopts a lazy approach and generates
a Bayesian rule according to each test example. The antecedent of a Bayesian rule is a
conjunction of attribute-value pairs, and the consequent of the rule is a local NB, which
uses those attributes that do not appear in the antecedent. The utility of an attribute-
value pair is assessed using leave-one-out cross validation in the local training samples,
those examples that have the attribute values in the antecedent together with the attribute
value being tested. As different attribute-value pairs cover different subsets of the training
samples, it is necessary to be careful in assessing the relative effectiveness of the alternatives.
For example, one attribute value might select a set of examples that are already all correctly
classified by the existing antecedent whereas another might select only examples that are
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not. If the former made no errors and the latter made only 50% errors then it would be
the latter that provided that greatest improvement even though it had the higher error.
To measure each attribute-value pair on the whole local training sample, the errors of the
existing local NB on the training samples that satisfy the attribute values in antecedent but
not the attribute value being tested, are added to the errors of the NB on the local training
examples. The attribute-value pair with the lowest error, out of these that are significantly
lower than the error of the current local NB, is added to the antecedent. The difference
is considered as significant if the outcome of a one-tailed pairwise sign test is better than
0.05. LBR stops adding attribute-value pairs into the antecedent if there is no significant
improvement.

Let q be a value of the set of attributes in the antecedent, and s the set of indices of
remaining attributes, LBR estimates P (y,x) by

P̂ (y,x) = P̂ (y, q)
∏

i∈s

P̂ (xi | y, q).

The Bayesian rule generated by LBR can be considered as a branch of a tree built by
NBTree. LBR generates a rule for each test instance, while NBtree builds a single model
according to all the examples in the training data. If examples are not evenly distributed
among branches, NBTree may suffer from the small disjunct problem (Holte et al., 1989).
As LBR uses lazy learning, it may mitigate the problem by avoiding splits on an attribute
when the relevant value is infrequent. It is efficient when few examples are to be classified.
However, the computational overhead of LBR may be excessive when large numbers of
examples are to be classified.

At training time, the time and space complexity of LBR are O(tn), as it only stores the
training data. At classification time, LBR adds attribute-value pairs to the antecedent with
time complexity of O(tkn3), as the selection of an attribute-value pair for the antecedent
is order O(tkn2) and this selection is performed repeatedly until there is no significant
improvement on accuracy. The space complexity is O(tn + knv).

3.2.4 Averaged One-Dependence Estimators

To avoid model selection and attain the efficiency of 1-dependence classifiers, Averaged
One-Dependence Estimators (AODE) (Webb et al., 2005) selects a restricted class of One-
Dependence Estimators (ODEs) and aggregates the predictions of all qualified estimators
within this class. A single attribute, called the SuperParent if we borrow the term from
SP-TAN, is selected as the parent of all the other attributes in each ODE. This type of ODE
is called a SuperParent One-Dependence Estimator (SPODE). In order to avoid unreliable
base probability estimates, when classifying an instance x the original AODE excludes
SPODEs with SuperParent xi where the frequency of the value xi is lower than limit
m = 30, a widely used minimum on sample size for statistical inference purposes. However,
subsequent research (Cerquides and Mántaras, 2005a) reveals that this constraint actually
increases error and hence the current research uses m = 1.

For any attribute value xi,

P (y,x) = P (y, xi)P (x | y, xi).
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This equality holds for every xi. Therefore,

P (y,x) =

∑
i∈N∧F (xi)≥m P (y, xi)P (x | y, xi)

|{i ∈ N ∧ F (xi) ≥ m}| , (6)

where F (xi) is the frequency of attribute value xi in the training sample.
AODE utilizes (6) and, for each ODE, an assumption that the attributes are independent

given the class and the privileged attribute value xi, estimating P (y,x) by

P̂ (y,x) =

∑
i∈N∧F (xi)≥m P̂ (y, xi)

∏
j∈N,j 6=i P̂ (xj | y, xi)

|{i ∈ N ∧ F (xi) ≥ m}| . (7)

It averages over estimates of the terms in (6), rather than the true values, which has the
effect of reducing the variance of these estimates.

At training time AODE generates probability tables as TAN does, time complexity
O(tn2). Classification requires the tables of probability estimates formed at training time
of space complexity O(k(nv)2). The time complexity of classifying a single example is
O(kn2) as we need to consider each pair of qualified parent and child attribute within each
class. This process can be sped up by introducing a constant array to store estimates of
P (y, xi) and P (xj | y, xi) at training time. Therefore, at classification time, we only need to
read, other than calculate, these estimates. Although this does not change the classification
time complexity, in practice, it may result in substantial speed-up.

3.2.5 Maximum a Posteriori Linear Mixture of Generative Distributions

AODE classifies by uniformly aggregating all qualified ODEs. One natural extension to
AODE is to use a linear mixture assigning a weight to each ODE. Maximum a Posteriori
Linear Mixture of Generative Distributions (MAPLMG) (Cerquides and Mántaras, 2005a)
assigns the weights w = 〈w1, . . . , wn〉, with which the supervised posteriori (defined in (8))
for Linear Mixture of Generative Distributions (LMG) is maximized, to the ODEs. This is
an optimization problem under the constraint that ∀i ∈ {1, . . . , n}, wi ≥ 0 and

∑n
i=1 wi = 1.

The Augmented Lagrangian method (Pedregal, 2004) is used to transform the constrained
nonlinear optimization problem into a sequence of unconstrained nonlinear optimization
problems, which are solved by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
(Avriel, 2003).

The supervised posterior for LMG using Leave-One-Out cross validation is

P̂LMG(w|T ) =
∏

〈x,y〉∈T

( ∑
i∈N wiP̂

LOO
i (x, y)∑

y∈Y

∑
i∈N wiP̂LOO

i (x, y)

∏

i∈N

wi

)
, (8)

where

P̂LOO
i (x, y) = P̂ (xi, y)

∏

j∈N,j 6=i

P̂ (xj |xi, y),

which is estimated by excluding instance 〈x, y〉 from training set T .
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MAPLMG estimates P (y,x) by

P̂ (y,x) =
∑

i∈N

wiP̂ (y, xi)
∏

j∈N,j 6=i

P̂ (xj | y, xi).

At training time, MAPLMG first estimates the generative probabilities for the instances
left out. It generates a three-dimensional table of probability estimates and stores the train-
ing data to perform Leave-One-Out cross validation, space complexity of O(tn + k(nv)2).
Since we need to go through the training data and consider each parent and child attribute
pair within each class, the estimation process has time complexity of O(tkn2). The second
step is to maximize the supervised posterior for LMG, which has space complexity of O(n2)
and time complexity of O(tknI), where I is the upper limit of the number of iterations.
Therefore, the overall time complexity is O(tkn2 + tknI). At classification time, MAPLMG
has identical time and space complexity to AODE.

3.2.6 Subsumption Resolution (SR)

The specialization-generalization relationship is an extreme type of interdependence. For
two attribute values xi and xj , if P (xj | xi) = 1.0 then xj is a generalization of xi

and xi a specialization of xj . If xj is a generalization of xi, then P (y|x1, . . . , xn) =
P (y|x1, . . . , xj−1, xj+1, . . . , xn). Therefore, deleting the generalization should not be harm-
ful and in fact it removes a violation of the attribute independence assumption. Sub-
sumption Resolution (SR) (Zheng and Webb, 2006) identifies at classification time pairs
of attribute-values such that one appears to subsume (be a generalization of) the other
and deletes the generalization. This requires a method for inferring from the training data
whether one attribute-value is a generalization of another. SR uses the criterion

F (xi) = F (xi, xj) ≥ l

to infer that xj is a generalization of xi, where F (xi, xj) is the frequency of xi and xj

in the training sample and l is a user-specified minimum frequency. It is necessary to
specify a minimum frequency to prevent unsound inferences that P (xi) = P (xi, xj) from
small samples. It might be thought that a less arbitrary technique than use of the “magic
number” l might be obtained using either statistical or information theoretic approaches,
but each would still require an arbitrary critical value, such as α.

SR is suited to algorithms without model selection, such as NB and AODE, but not
algorithms with model selection, such as TAN and NBTree, as the attribute value elimina-
tion can be directly applied to the former but it may affect the model structure built by
the latter.

In the context of NB, SR deletes generalization attribute-values if a specialization is
detected and applies NB to the resulting attribute value set. NB with SR (indicated as
NBSR) uses (4) to estimate P (y,x) where the set of indices of the resulting attribute value
set is substituted for N .

To identify the specialization-generalization relationship, NBSR must generate at train-
ing time a two-dimensional table of probability estimates for each attribute-value, condi-
tioned by each other attribute-value in addition to the two probability estimates tables
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generated by NB, space complexity O(knv + (nv)2). The time complexity of forming the
additional two-dimensional probability estimates table is O(tn2). Classification of a single
example requires considering each pair of attributes to detect dependency and is of time
complexity O(n2 + kn). The space complexity is O(knv + (nv)2).

When SR is applied to AODE, the resulting classifier acts as AODE except that it
deletes generalization attribute-values if a specialization is detected, and aggregates the
predictions of all qualified classifiers using the remaining attribute-values. AODE with SR
(indicated as AODESR) uses (7) to estimate P (y,x) where the set of indices of the resulting
attribute value set is substituted for N .

AODESR has identical time and space complexity to AODE. At training time it be-
haves identically to AODE. At classification time, it must check all attribute-value pairs
for generalization relationships, an additional operation of time complexity O(n2). How-
ever, the time complexity of AODE at classification time is O(kn2) and so this additional
computation does not increase the time complexity of AODE.

3.3 Applying NB to a Subset of the Training Set

Another effective approach to accommodating violations of the conditional independence
assumption is to apply NB to a subset of the training set, as it is possible that the assump-
tion, although violated in the whole training set, may hold or approximately hold in a subset
of the training set. As has been discussed, this group and the second group that alters NB
by allowing interdependencies between attributes are not mutually exclusive. NBTree and
LBR use local NBs to classify an instance and can also be classified into this group.

3.3.1 Recursive Bayesian Classifiers

Recursive Bayesian Classifiers (RBC) (Langley, 1993) forms NB on the training data, then
partitions the training data, placing each instance in a partition corresponding to the class
that NB assigns it. This process is repeated recursively on each partition forming a tree,
until each leaf partition contains only instances from one class. At classification time, NB
is applied to the test instance to direct it down one branch of the tree. Then the NB
formed at the appropriate partition is applied, and so on, until a leaf is reached, at which
point the NB for the leaf is applied to obtain a classification. While results on artificial
data were promising, the reported experimental results for RBC on natural data sets are
disappointing. As a result the technique has received little attention.

3.3.2 Locally Weighted Naive Bayes

Inspired by locally weighted linear regression (Cleveland, 1979; Atkeson, Moore, and Schaal,
1997; Loader, 1999; Hastie, Tibshirani, and Friedman, 2001), Frank, Hall and Pfahringer
incorporate locally weighted learning into NB (Frank, Hall, and Pfahringer, 2003). Locally
Weighted Naive Bayes (LWNB), at classification time, assigns a weight to each instance in
the training set and applies NB to the subset of the training set in which the weights of
instances are greater than zero. The instance weights decrease linearly with the Euclidean
distance to the test instance and the number of instances in the subset is determined by a
user-specified parameter h. The Euclidean distance of the test instance to the ith nearest
neighbor is denoted as di. Before the distance is calculated, quantitative attributes are
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assumed to be normalized (0 ≤ xi ≤ 1) and qualitative attributes to be binarized. LWNB
assigns the weight wi = f(di/dh) to the ith instance, where f(x) is zero if x > 1 and 1− x
otherwise.

Let h′ be the number of instances whose distances are less than dh. LWNB applies NB
to the training set with rescaled weights w′i which is calculated by w′i = wi×h′∑t

j=1 wj
. With these

rescaled weights, the total weight in the subset in which all weights are greater than zero is
approximately h. That is,

∑h′
i=1 w′i ≈ h. In this subset, the frequency of the ith class is:

F (ci) =
h′∑

l=1

w′lE(ci, cl),

where E(a, b) is one if a = b and zero otherwise. The frequency of xj (the value of the jth
attribute in the test instance) given class ci is:

F (xj | ci) =
h′∑

l=1

w′lE(ci, cl)E(xj , x
l
j),

where xl
j is the value of the jth attribute in the lth instance. LWNB uses Equation (4) to

estimate P (y,x).
At training time, as LWNB only stores the training data, it has time and space complex-

ity of O(tn). At classification time, the time complexity of computing distances is O(tn) if
a linear search is performed.1 Estimating class probability and conditional attribute-value
probability has time complexity of O(h′n). To classify the test example requires time of
order O(kn). Hence, the overall classification time complexity is O(tn + kn). The space
complexity is O(tn + knv).

3.4 Calibrating NB’s Probability Estimates

Due to the attribute independence assumption, NB tends to output a bimodal posterior
(Bennett, 2000). That is, for most instances, either the posterior estimates are close to 0
or close to 1. The distortion of probabilities that the independence assumption produces
might be corrected by making adjustments to posterior probabilities, class probabilities
or attribute conditional probabilities. This line of reasoning leads to the fourth group of
methods, which modify the probability outcome of NB.

Hilden and Bjerregaard (1976) impose smoothing by raising the conditional probability
estimates to a power B (0 < B < 1), in effect shrinking the estimates towards zero.
Therefore, P̂ (y,x) is estimated by

P̂ (y,x) = P̂ (y)
∏

i∈N

P̂ (xi | y)B.

They also use m-estimation (m = 1) to estimate base probabilities. In their experiments,
using B = 0.8 provided the best performance. Note that this method can be applied to
any semi-naive Bayesian method without additional computation. It has identical time and
space complexity to NB.

1. When space-partitioning methods, such as KD-Tree, are performed, less time is required for computing
distances.
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3.4.1 Isotonic Regression

Platt (1999) proposed a parametric method to map the SVM outputs o(x) into posterior
probabilities by passing the outputs through a sigmoid:

P̂ (y |x) =
1

1 + eAo(x)+B
,

where the parameters A and B are found by minimizing the negative log-likelihood. Bennett
(2000) applied this method to NB and found that the mean squared error of the estimates
is often reduced, while the classification error is not. Zadrozny and Elkan (2001) used a
non-parametric method, binning, to calibrate NB’s posterior outputs P̂ (y |x). It first sorts
the training set according to P̂ (y |x), and then divides the sorted set into b equal-sized
subsets. Each subset, called a bin, has an upper bound and a lower bound value. Given
a test instance x, it is placed in the bin according to P̂ (y |x). The calibrated probability
estimate is the fraction of training examples in the bin that actually belong to the class y.
In their experiments, the number of bins is set to 10.

Zadrozny and Elkan (2002) also used Isotonic Regression (IR) (Robertson et al., 1988),
an intermediary approach between sigmoid fitting and binning, to calibrate predictions made
by NB. The rationale behind this method is that if a classifier can correctly rank examples,
the mapping from the outputs of the classifier into posterior probabilities is non-decreasing.
Pair-adjacent violators (PAV) (Ayer et al., 1955) is a commonly used algorithm for the
Isotonic Regression problem, finding a stepwise constant isotonic function to minimize mean
squared error over the entire training set. Let g(x) be the value of the function to be learned
for instance x and g∗ the isotonic regression. Given a training set ordered by P̂ (y |x), PAV
initializes g(x) to one if x belongs to y and to zero otherwise. If g is not isotonic, it follows
that there exists a subscript i such that g(xi−1) > g(xi). These two instances xi−1 and
xi−1 are called pair-adjacent violators. The values of g(xi−1) and g(xi) are then replaced
by their average g∗(xi−1) = g∗(xi) = (g(xi−1) + g(xi))/2. This process of replacement is
repeated until there is no violators. PAV returns a set of intervals and an estimate g∗(i) for
each interval i such that g∗(i − 1) ≤ g∗(i). To classify a test instance x, IR first finds the
interval i in which P̂ (y |x) fits and assigns g∗(i) as the calibrated posterior probability.

IR is a binary classifier algorithm. Zadrozny and Elkan used one-against-all approach
to generalizing from two-class classification to multi-class classification and recommended
using simple normalization to combine the binary estimates.

At training time, IR generates two probability tables as NB does, time complexity O(tn).
It also generates a two-dimensional table, indexed by instance and class, to store the outputs
of NB. Each entry in the table is the estimate of the posterior probability that instance x
belongs to class y. The resulting time complexity is O(tkn) and space complexity O(tk).
For each class y, sorting the training instances according to P̂ (y |x) is order O(tlogt) and
generating g∗ using PAV is order O(t). Therefore, for k classes, the time complexity is
O(tklogt). At classification time, to obtain NB’s classification requires of order O(kn) and
find a interval for the instance requires of order O(klogb), where b is the number of intervals.
Since logb is usually smaller than n, the classification time complexity can be summarized
as O(kn) and the space complexity as O(knv).
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3.4.2 Adjusted Probability Naive Bayesian Classification

Adjusted Probability Naive Bayesian Classification (APNB) (Webb and Pazzani, 1998)
applies linear adjustments to the class probabilities. In the two class case, it only needs to
find an adjustment for one of the classes. As the adjustment for one class will influence the
adjustments for other classes in the multiple class case, APNB uses a simple hill-climbing
search to find adjustments that maximize resubstitution accuracy.

If an instance x of class ci is misclassified as class cj by APNB with the current vector
of adjustments A, there are two possible adjustments to correct that misclassification. One
is an upward adjustment, which multiplies the original probability estimate for class ci

by an adjustment >
Acj P̂ (cj |x)

P̂ (ci|x)
, where P̂ (cj | x) and P̂ (ci | x) are the probability estimates

produced by NB, and Acz is the adjustment for class cz. Another is a downward adjustment,
which multiplies the probability of class cj with an adjustment <

AciP (ci|x)

P (cj |x) . APNB selects
a value slightly above or below the bounds implied by these ranges, a small value (10−5)
being added to the relevant bound for upward adjustments and subtracted from the relevant
bound for downward adjustments. If there is a significant accuracy improvement by using a
upward or downward adjustment, another bound value for the adjustment is computed. For
the upward adjustment, the upper bound value is the lowest value greater than the lower
bound value, that has a higher resubstitution error than the lower bound value. For the
downward adjustment, the lower bound value is the highest value less than the upper bound
value, that has a higher resubstitution error than the upper bound value. The adjustment
is replaced by the midpoint of the two bound values. This process repeated until there is
no accuracy improvement that passes a binomial sign test for significance at the 0.05 level.

APNB estimates P (y,x) by

P̂ (y,x) = AyP̂ (y)
∏

i∈N

P̂ (xi | y).

At training time APNB stores the training data to perform leave-one-out cross valida-
tion in addition to the two probability estimates tables generated by NB. Hence, the space
complexity is O(tn + knv). In the worse case, there are O(t) misclassified instances, and
each possible adjustment for the instance has time complexity of O(tk). This process is
repeated once for each class to find a single adjustment that maximizes resubsitution accu-
racy. Therefore, the time complexity is O(t2k2). It has identical time and space complexity
to NB at classification time.

3.4.3 Iterative Bayes

Iterative Bayes (IB) (Gama, 2003) starts with the conditional attribute-value frequency
table generated by NB, indexed by class and attribute-value, and iteratively updates the
frequency table by cycling through all the training examples.

At each iteration, all the examples in the training set are classified by NB using the cur-
rent frequency tables. The conditional attribute-value frequency table is updated through
each training example. The adjustment (indicated as A) for an example x is

1.0− P̂ (yi |x)
k

,
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where yi is the predicted class. If the example is correctly classified, A is added to the
entries 〈yi, xj〉, 1 ≤ j ≤ n, and A/(k − 1) is subtracted from the entries 〈yl, xj〉, 1 ≤ l ≤ k,
l 6= i and 1 ≤ j ≤ n. If the example is misclassified, A is subtracted from the entries
〈yi, xj〉, 1 ≤ j ≤ n, and A/(k − 1) is added to the entries 〈yl, xj〉, 1 ≤ l ≤ k, l 6= i and
1 ≤ j ≤ n. This process is terminated when the number of iterations exceeds 10 or the
following evaluation function increases:

1
t

t∑

i=1

(
1.0− argmax

y
P̂ (y |xi)

)
,

where xi is the ith example. It uses (4) to estimate P (y,x).
At training time, IB generates two probability tables and stores the training data, space

complexity O(tn + knv). At each iteration, to update conditional frequency table requires
time of order O(tkn), as we need to adjust each entry for every combination of the classes
and attribute-values for every example, and to perform classification for all examples also
requires time of order O(tkn). Therefore, the total training time complexity is O(tkn). At
classification time, it has identical time and space complexity to NB.

3.5 Introducing Hidden Variables to NB

Hidden variables, also called latent variables, are variables that are not observed. If two ob-
served attributes are correlated, the introduction of a hidden variable which aggregates the
information from these two attributes may mitigate the attribute interdependence problem.
When dependencies between two attributes are detected, joining these two attributes or
their values corresponds to introducing a hidden variable. The Semi-naive Bayesian Classi-
fier (Kononenko, 1991) uses an exhaustive search to join attribute values iteratively based
on a statistical method for identifying correlations between attributes. Unlike most sub-
sequent semi-naive approaches, Kononenko joins attribute-values, rather than attributes.
This means that different pairs of attributes may be joined when classifying different test in-
stances. However, the reported experimental results were not compelling and the technique
does not appear to have been utilized since it was first proposed.

3.5.1 Backward Sequential Elimination and Joining

Backward Sequential Elimination and Joining (BSEJ) (Pazzani, 1996) uses predictive ac-
curacy on leave-one-out cross validation as a merging criterion to create new Cartesian
product attributes. The value set of a new Cartesian product attribute is the Cartesian
product of the value sets of the two original attributes. For instance, if attribute X1 has
two values: v1

1 and v2
1, and attribute X2 has three values: v1

2, v2
2 and v3

2, the new Cartesian
product attribute will have six values: v1

1v
1
2 ,v1

1v
2
2, v1

1v
3
2, v2

1v
1
2, v2

1v
2
2 and v2

1v
3
2. In addition to

creating new Cartesian product attributes, BSEJ deletes original attributes and also new
Cartesian product attributes during a hill-climbing search. It repeatedly joins a pair of at-
tributes or deletes an attribute such that the action most improves predictive accuracy on
leave-one-out cross validation. This process terminates when there is no further accuracy
improvement.

The resulting Cartesian product attribute set is denoted as H = {H1, · · · ,Hq}. The
set of indices of remaining original attributes that have not been either deleted or joined is
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indicated as R. Independence is assumed among the attributes in {Xi|i ∈ R} and H given
the class. Hence, BSEJ estimates P (y,x) by

P̂ (y,x) = P̂ (y)
∏

i∈R

P̂ (xi | y)
q∏

j=1

P̂ (hj | y), (9)

where hj is a value of Hj .
At training time BSEJ generates tables of class and conditional attribute-value probabil-

ity estimates as NB does. It also generates two-dimensional tables of conditional Cartesian
product attribute-value probability estimates, indexed by class and compound attribute-
value. In the worst case, the new Cartesian product attribute has O(v′) values, where v′

is
∏n

i=1 vi. Therefore, the space complexity is O(tn + kv′) and the time complexity of ini-
tializing the tables is O(kv′). BSEJ considers at most O(n3) Cartesian product attributes,
each requiring a pass through the training data to generate joint probability estimates and
performing leave-one-out cross validation. The time complexity of joining and deleting
attributes is O(tkn3) and the overall training time complexity is O(tkn3 + kv′). At classifi-
cation time, to classify a single example has time complexity O(kn) and space complexity
O(kv′).

3.5.2 Hierarchical Naive Bayes

Zhang et al. (2004) explore the problem of discovering hidden variables in the NB model
and call the model Hierarchical Naive Bayes (HierNB 2), in which the root is the class,
the leaves are attributes observed and the internal nodes are hidden variables. An HierNB
model is parsimonious if there does not exist another HierNB model with the same class and
attributes such that the latter has fewer parameters than the former and the probability
distribution over the class and attributes are the same in the two models. In addition to
parsimonious models, they introduce regular HierNB models. A hidden variable is singly
connected if it has only two neighbors, one being its parent and another child. They call an
HierNB model regular if it satisfies three conditions. First, no two singly connected hidden
variables are neighbors. Second, for any singly connected hidden variable H, vh ≤ vivj

vi+vj−1 ,
where vh is the number of values of H and vi and vj are the number of values of the two
neighbors of H. Third, for any hidden node H, vh ≤

∏
i∈C vi, where C is the set of indices

of children of H. They prove that any parsimonious HierNB model is regular and the set
of all regular HierNB models for a given set of class and attributes is finite. The search
is then restricted to those regular models. A hill-climbing algorithm is employed to learn
a regular model by maximizing the Bayesian Information Criterion (BIC) score (Schwarz,
1978). This method uses EM algorithm (Dempster, Laird, and Rubin, 1977) to estimate
parameters for each candidate model, and hence it has very high time complexity.

Langseth and Nielsen (2006) also use a greedy search to learn a regular HierNB model,
but use different criteria to find a candidate hidden variable and to specify cardinalities
for the hidden variable. Under the assumption that Xi and Xj are independent given Y ,
2tI(Xi, Xj |Y ) converges towards χ2

k(vi−1)(vj−1) in distribution, where I(Xi, Xj |Y ) is the

2. To distinguish Hierarchical Naive Bayes from Hidden Naive Bayes, we use HierNB to denote the former
and HidNB the latter.
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conditional mutual information. A new hidden variable is allocated as the parent of two
attributes Xi and Xj with the highest probability P (Z ≤ 2tI(Xi, Xj |Y )), where Z is χ2

distributed with k(vi − 1)(vj − 1) degrees of freedom. The value set of a hidden variable is
initialized to the Cartesian product over all the value sets of its children. Using a greedy
search, this method collapses values of the hidden variable by maximizing conditional log-
likelihood via the Minimum Description Length (MDL) (Rissanen, 1978) scoring function.
They report that HierNB models generated by this method have a significant accuracy
advantage over those by Zhang et al. (2004). HierNB uses (9) to estimate P (y,x), where
the set of indices of original attributes without a hidden parent is substituted for R, the set
of hidden variables without a hidden parent is substituted for H and hj is a value of the
jth hidden variable belonging to H.

There are two main differences between BSEJ and Langseth and Nielsen’s HierNB. The
first difference is the criterion to join attributes (or create hidden variables). The former
uses predictive accuracy on leave-one-out cross validation, while the latter uses conditional
mutual information. In addition to joining attributes, BSEJ also deletes attributes. Rather
than using the full combination of values of children of a hidden variable, HierNB collapses
those values.

For the detailed time complexity analysis of HierNB, we refer the reader to Langseth and
Nielsen (2006). The training time complexity is O(tn2v

′2) and training space complexity
O(kv′). At classification time, it has identical time and space complexity to BSEJ.

3.5.3 Hidden Naive Bayes

Hidden Naive Bayes (HidNB) (Zhang, Jiang, and Su, 2005) creates a hidden parent for
each attribute. The probability of attribute Xi given the class and its hidden parent Hi is
defined as follows.

P (Xi |Y, Hi) =
n∑

j=1,j 6=i

WijP (Xi |Y,Xj),

where

Wij =
I(Xi, Xj | Y )∑n

j=1,j 6=i I(Xi, Xj | Y )
.

It estimates P (y,x) by

P (y,x) = P (y)
∏

i∈N

P (xi | y, hi), (10)

where hi is a value of Hi.
At training time, HidNB generates probability tables and forms conditional mutual

information matrix as TAN does, space complexity O(k(nv)2). The time complexity of
computing weights is O(n2) and overall time complexity is O(tn2+k(nv)2). At classification
time, it has identical time and space complexity to AODE.
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Table 1: Computational Complexity

Training Classification

Algorithm Time Space Time Space

NB O(tn) O(knv) O(kn) O(knv)

BSE O(tkn2) O(tn + tk + knv) O(kn) O(knv)

FSS O(tkn2) O(tn + tk + knv) O(kn) O(knv)

BSEJ O(tkn3 + kv′) O(tn + kv′) O(kn) O(kv′)

TAN O(tn2 + k(nv)2 + n2logn) O(k(nv)2) O(kn) O(knv2)

SP-TAN O(tkn3) O(tn + k(nv)2) O(kn) O(knv2)

NBTree O(tkn3) O(tkv) O(kn) O(tkv)

LBR O(tn) O(tn) O(tkn3) O(tn + knv)

AODE O(tn2) O(k(nv)2) O(kn2) O(k(nv)2)

MAPLMG O(tkn2 + tknI) O(tn + k(nv)2) O(kn2) O(k(nv)2)

NBSR O(tn2) O(knv + (nv)2) O(n2 + kn) O(knv + (nv)2)

AODESR O(tn2) O(k(nv)2) O(kn2) O(k(nv)2)

LWNB O(tn) O(tn) O(tn + kn) O(tn + knv)

IR O(tkn + tklogt) O(tk + knv) O(kn) O(knv)

APNB O(t2k2) O(tn + knv) O(kn) O(knv)

IB O(tkn) O(tn + knv) O(kn) O(knv)

HierNB O(tn2v
′2) O(kv′) O(kn) O(kv′)

HidNB O(tn2 + k(nv)2) O(k(nv)2) O(kn2) O(k(nv)2)

k is the number of classes

n is the number of attributes

t is the number of training examples

v is the mean number of values per attribute

v′ is the number of combinations of attribute values

I is the upper limit of the number of iterations for BFGS

3.6 Complexity Summary

Table 1 summarizes the complexity of each of the algorithms discussed. We display the
time complexity and the space complexity of each algorithm for each of training time and
classification time.

The training time complexity of SP-TAN and NBTree is cubic in the number of at-
tributes and that of APNB is quadratic in the number of instances and classes. BSEJ has
high training time complexity of O(tkn3 + kv′). Hence, BSEJ, SP-TAN and NBTree have
very high training time if the number of attributes is large and APNB if the number of
instances and classes are large. Since IR needs to sort training instances, it also has high
training time if the number of instances is large. When the cardinalities of hidden variables
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are large, the training time cost of HierNB is high. The classification time complexity of
these algorithms is linear in the number of classes and attributes. Therefore, once models
are generated, these methods can classify test instances efficiently.

LBR and LWNB have identical training time complexity to NB, and hence they are
highly efficient when few instances are to be classified. In other words, the relative efficiency
is maximal when the number of classifications is low. However, the high classification time
complexity of LBR, O(tkn3), hampers its application when large numbers of instances are
to be classified. The classification time complexity of LWNB, O(tn + kn), is higher than
that of the other methods except LBR, NBSR, AODE, MAPLMG, AODESR and HidNB.
As t is usually considerably greater than kn, LWNB has substantially higher classification
time relative to NBSR, AODE, MAPLMG, AODESR and HidNB in most cases.

The training time complexity of MAPLMG, BSE and FSS is relatively higher than that
of TAN, NBSR, AODE, AODESR, IB and HidNB, whose training time complexities are
moderate. NBSR, AODE, AODESR, MAPLMG and HidNB have high classification time
when the number of attributes are large, for example, in text classification. However, for
many classification tasks with moderate or small number of attributes, their classification
time complexity is modest. BSEJ and HierNB have very high space complexity.

3.7 Bayesian Network Perspective

From the Bayesian Network perspective, the methods discussed except BSEJ, HierNB and
HidNB can be classified into three groups, as depicted in Figure 2. The first group (Figure 2

Y

X1 X2 Xi Xi+1 Xn

Y

X1 X2 Xi Xi+1 Xn

(a) 0-dependence classifier (b) 1-dependence classifier

Y

X1 X2 Xi Xi+1 Xn

Y

Xiq+1
Xiq+2

Xi1
Xi2

Xin

Xiq

(c) 1-dependence classifier (SuperParent) (d) z-dependence classifier (z ≥ 0)

Figure 2: Bayesian Network

(a)) only allows each attribute to depend on the class. Examples include NB, BSE, FSS,
NBSR, LWNB, IR, APNB and IB. TAN, SP-TAN, AODE, MAPLMG and AODESR belong
to the second group (Figure 2 (b) and (c)), in which each attribute depends on the class
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and at most one other attribute. For instance, in graph (b), attribute X2 and Xi depend
on attribute X1, Xi+1 depends on Xi and so forth. AODE, MAPLMG and AODESR are
special types of 1-dependence classifiers, in which all attributes depend on the class and
SuperParent, such as attribute X1 in Figure 2 (c). The third group assumes independence
among fewer attributes by allowing each attribute to depend on the class and at most z
(z ≥ 0) other attributes. In Figure 2 (d), independence is assumed among attributes in
O = {Xiq+1 , . . . , Xin} given the class, and these attributes depend on all the attributes in
P = {Xi1 , . . . , Xiq}. For NBTree, P is the set of the splitting attributes on the path leading
to the leaf, and O is the set of leaf attributes. For LBR, P is the set of attributes in the
antecedent, and O is the set of attributes in the consequent.

BSEJ, HierNB and HidNB create hidden variables and do not fall into the above groups.
BSEJ and HierNB join attributes, including original attributes and also new compound
attributes. In Figure 3 (a), two hidden variables are introduced into NB. H1 combines X1

and X2. H2 combines several attributes (from X4 to Xi). HidNB creates a hidden parent
for each attribute (Figure 3 (b)).

Y

H1

X1 X2

X3 H2

X4 Xi

Xi+1 Xn

Y

X1

H1

X2

H2

Xi

Hi

Xi+1

Hi+1

Xn

Hn

(a) BSEJ and HierNB (b) HidNB

Figure 3: Hidden Variables

4. Logistic Regression and Its Extension

Discriminative classifiers directly estimate the parameters of the conditional distribution
P (Y |X), without considering marginal distribution of P (X). Generally, discriminative
classifiers have lower bias and higher variance than their generative counterparts. A com-
parison of generative and discriminative learning can be found in (Rubinstein and Hastie,
1997; Ng and Jordan, 2001; Klein and Manning, 2002).

Logistic Regression forms linear models for classification (McLachlan, 1992; Mitchell,
2005). It directly estimates the posterior class probability by fitting the training data to
a logistic curve and assigns the class with the highest posterior probability to the test
instance. It also assumes that attributes are independent given the class, and hence it is
the discriminative counterpart of NB. In the case where Y is a boolean variable, the Logistic
Regression model is defined as

P (Y = 1 | X) =
1

1 + exp(w0 +
∑n

i=1 wiXi)
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and

P (Y = 0 | X) =
exp(w0 +

∑n
i=1 wiXi)

1 + exp(w0 +
∑n

i=1 wiXi)
,

where wi is the parameter to be estimated (0 ≤ i ≤ n). The vector of parameters W =
〈w0, . . . ,wn〉 is usually fit to maximize the conditional log-likelihood:

W ← argmax
W

t∑

o=1

lnP (Y o | Xo,W ),

where Y o and Xo are respectively the observed Y value and X value in the oth training in-
stance. A commonly used method for this maximization problem is gradient ascent (Avriel,
2003; Pedregal, 2004). The parameters are initialized to zero and continually updated in
the direction of the gradient until a global maximum is reached:

W ← W + η
∂

∑t
o=1 lnP (Y o | Xo,W )

∂W
, (11)

where η is the learning rate.
Roos et al. (2005) prove that for Bayesian network structures satisfying a certain graph-

theoretic property the conditional log-likelihood is a concave function of the parameters.
Therefore, the globally optimal parameters of the conditional log-likelihood can be obtained
by simple local optimization methods. For an arbitrary Bayesian network structure B, they
define a corresponding canonical form B∗ which is the Markov blanket of Y in B, with arcs
added to make all parents of Y fully connected. They show that if, in B∗, all nodes having
a common child are connected, the problem of seeking the parameters of B is equivalent to
a Logistic Regression problem.

Greiner and Zhou (2002) propose a general discriminative learning algorithm, Extended
Logistic Regression (ELR), that can be applied to arbitrary Bayesian network structures.
It uses gradient descent and line search to directly maximize the conditional log-likelihood.
ELR initializes the parameters to frequency estimates in the training data and uses cross-
validation to estimate the optimal number of iterations for the gradient descent. Their
experimental results show that ELR is effective and often outperforms its generative coun-
terpart. Grossman and Domingos (2004) introduce BNC, an algorithm that learns the
structure of a Bayesian network classifier by maximizing conditional likelihood. For com-
putational efficiency, it trains the parameters by maximizing joint likelihood. Jing et al.
(2005) propose an efficient approach to discriminative training of Bayesian networks, called
Boosted Augmented Naive Bayes (BAN). It operates by greedily adding edges into NB
until the addition of edges does not improve conditional log-likelihood. Starting from NB,
at iteration u, it adds u edges with the highest conditional mutual information into NB.
AdaBoost is used to boost the resulting classifier, where the parameters are estimated by
maximizing joint likelihood and an upper bound on the negative conditional log-likelihood
is minimized. They report that BAN has competitive classification accuracy with ELR and
BNC.

There are many other approaches to estimating the parameters. Ridgeway et al. (1998)
introduce a weight of evidence formulation for Boosted NB (Elkan, 1997) to modify the
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probability estimate of P (Xi |Y ). Nigam et al. (1999) use maximum entropy to estimate
probability distributions in context of text classification. Wettig et al. (2002) employ a
parameter transformation to make the conditional likelihood a concave function of the
parameters, and use local optimization methods to find the global maximum conditional
likelihood parameters. Jiang et al. (2004) estimate conditional probabilities by minimizing
a smoothed classification error in the training data.

5. Comparison of Fifteen Methods

In this section, the performance of NB and twelve semi-naive Bayesian algorithms will be
analyzed in terms of classification error, bias, variance, root mean squared error (RMSE),
training time and classification time on sixty natural domains from the UCI Repository
of machine learning (Newman et al., 1998). These semi-naive Bayesian algorithms are
BSE, TAN, SP-TAN, NBTree, LBR, AODE, MAPLMG, AODESR, LWNB, IR, BSEJ and
HidNB. We do not compare all the semi-naive Bayesian algorithms introduced in Section 3,
as the power of the Friedman and Nemenyi tests we used is low with a large number of
algorithms. In our data collection, BSE outperforms FSS in classification accuracy (refer
to Section 5.3), therefore, FSS is not included in these comparisons. We select IR as a
representative method for the fourth group. Because we cannot obtain the code of Hi-
erNB, this method is not included. To provide a baseline for comparison, we also compare
these twelve methods to Logistic Regression and LibSVM with parameter search. Table 2
summarizes the characteristics of each data set used in this research, including the number
of the instances, attributes and classes.

5.1 Experimental Methodology

These experiments compare algorithms implemented in the Weka workbench (version 3-
5-7) (Witten and Frank, 2005) on the data sets described in Table 2. Each algorithm is
tested on each data set using a 50-run 2-fold cross validation. The Friedman test and
Nemenyi test with 0.05 level of significance are employed to evaluate the performance of
algorithms, including classification error, bias, variance, RMSE, training time and classifi-
cation time. Experiments on the algorithms except LBR and LibSVM were performed on
a dual-processor 1.7 GHz Pentium 4 Linux computer with 2 Gb RAM. LBR and LibSVM
were executed on a Linux Cluster based on Xeon 2.8 GHz CPUs.

5.1.1 Two-Fold Cross-Validation Bias-Variance Estimation

The Bias-variance decomposition provides valuable insights into the components of the
error of learned classifiers. Bias denotes the systematic component of error, which describes
how closely the learner is able to describe the decision surfaces for a domain. Variance
describes the component of error that stems from sampling, which reflects the sensitivity
of the learner to variations in the training sample (Kong and Dietterich, 1995; Breiman,
1996; Kohavi and Wolpert, 1996; Friedman, 1997; Webb, 2000). Unfortunately, we cannot
in general minimize both simultaneously. There is a bias-variance tradeoff such that bias
typically increases when variance decreases and vice versa. Algorithms that form models
with few parameters, such as NB, usually have low variance in that they are insensitive
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Table 2: Data sets
No. Domain Case Att Class No. Domain Case Att Class

1 Abalone 4177 8 3 31 Lung Cancer 32 56 3

2 Adult 48842 14 2 32 Lymphography 148 18 4

3 Annealing 898 38 6 33 MAGIC Gamma Telescope 19020 10 2

4 Audiology 226 69 24 34 Mushrooms 8124 22 2

5 Auto Imports 205 25 7 35 Nettalk(Phoneme) 5438 7 52

6 Balance Scale 625 4 3 36 New-Thyroid 215 5 3

7 Breast Cancer (Wisconsin) 699 9 2 37 Nursery 12960 8 5

8 Car Evaluation 1728 7 4 38 Optical Digits 5620 48 10

9 Contact-lenses 24 4 3 39 Page Blocks 5473 10 5

10 Contraceptive Method Choice 1473 9 3 40 Pen Digits 10992 16 10

11 Credit Screening 690 15 2 41 Pima Indians Diabetes 768 8 2

12 Cylinder Bands 540 39 2 42 Postoperative Patient 90 8 3

13 Dermatology 366 34 6 43 Primary Tumor 339 17 22

14 Echocardiogram 131 6 2 44 Promoter Gene Sequences 106 57 2

15 German 1000 20 2 45 Segment 2310 19 7

16 Glass Identification 214 9 3 46 Sick-euthyroid 3772 29 2

17 Haberman’s Survival 306 3 2 47 Sign 12546 8 3

18 Heart Disease (Cleveland) 303 13 2 48 Solar Flare 1389 9 2

19 Hepatitis 155 19 2 49 Sonar Classification 208 60 2

20 Horse Colic 368 21 2 50 SPAM E-mail 4601 57 2

21 House Votes 84 435 16 2 51 Splice-junction Gene Sequences 3190 61 3

22 Hungarian 294 13 2 52 Syncon 600 60 6

23 Hypothyroid(Garavan) 3772 29 4 53 Teaching Assistant Evaluation 151 5 3

24 Ionosphere 351 34 2 54 Tic-Tac-Toe Endgame 958 9 2

25 Iris Claasification 150 4 3 55 Vehicle 846 18 4

26 King-rook-vs-king-pawn 3196 36 2 56 Volcanoes 1520 3 4

27 Labor negotiations 57 16 2 57 Vowel 990 13 11

28 LED 1000 7 10 58 Waveform-5000 5000 40 3

29 Letter Recognition 20000 16 26 59 Wine Recognition 178 13 3

30 Liver Disorders (Bupa) 345 6 2 60 Zoo 101 16 7

to data variations, and high bias because the simple models generated generally underfit
the data. In contrast, algorithms that learn models that are highly parameterized, such
as NBTree, usually have low bias because they can generate complex models to fit the
training data closely, and high variance for the reason that the models they create differ
substantially between different training samples. In general, the better the learner is able
to fit the training data, the lower the bias. However, closely fitting the training data may
result in greater changes in the models formed from sample to sample, and hence higher
variance.

There are a number of different bias-variance decomposition definitions (Kong and Di-
etterich, 1995; Breiman, 1996; Kohavi and Wolpert, 1996; Friedman, 1997; Webb, 2000).
In this research, we use the bias and variance definitions of Kohavi and Wolpert (1996)
together with the repeated cross-validation bias-variance estimation method proposed by
Webb (2000).

Kohavi and Wolpert define bias and variance as follows:

bias2 =
1
2

∑

y∈Y

(P (Y = y | X = x)− P (C(x) = y))2
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and

variance =
1
2


1−

∑

y∈Y

P (C(x) = y)2


 ,

where C is a classifier.
In order to maximize the variation in the training data from trial to trial we use two-

fold cross validation. The training data is first randomized. Then, it is randomly divided
into two folds, foldi

1 and foldi
2. Classifieri

1 is generated from foldi
1 and Classifieri

2 is
generated from foldi

2. foldi
1 and foldi

2 are respectively used as a test set for Classifieri
2 and

Classifieri
1. In this manner, each available instance is classified once for each two-fold cross-

validation. In order to give a more accurate estimation of the average performance of an
algorithm, this process is repeated 50 times which produces 100 folds. Bias, variance, error
and RMSE are estimated by evaluation of the predictions of Classifieri

1 and Classifieri
2

when applied to foldi
2 and foldi

1 for 1 ≤ i ≤ 50.
In Kohavi and Wolpert’s method (Kohavi and Wolpert, 1996), the default bias-variance

estimation method in Weka, the randomized training data are divided into a training pool
and a test pool randomly. Each pool contains 50% of the data. 50 (the default number in
Weka) local training sets, each containing half of the training pool, are sampled from the
training pool. Hence, each local training set is only 25% of the full data set. Classifiers
are generated from local training sets and bias, variance and error are estimated from the
performance of the classifiers on the test pool.

The repeated cross-validation bias-variance estimation method is preferred to Kohavi
and Wolpert’s method as it results in the use of substantially larger training sets. If more
than two folds are used, the multiple classifiers are trained from training sets with large
overlap, and hence the generation of variance is compromised. In addition, every case in
the training data is used the same number of times for both training and testing.

5.1.2 Statistics Employed

We use the Friedman test and Nemenyi test to compare the performance of multiple algo-
rithms and Win/Draw/Loss record to compare the performance of two algorithms. Mean
metrics across all data sets are also employed to provide a simplistic overall measure of
relative performance. In addition, we use the Spearman’s rank correlation test to examine
whether the bias proportion of error on large data sets is higher than that on small data
sets.

Friedman Test. Demšar (2006) recommends the Friedman test (Friedman, 1937, 1940)
for comparisons of multiple algorithms over multiple data sets. It first calculates the ranks of
algorithms for each data set separately (average ranks are assigned if there are tied values),
and then compares the average ranks of algorithms over data sets. The null-hypothesis
is that there is no difference in average ranks. If the null-hypothesis is rejected then it is
probable that there is a true difference in the average ranks of at least two algorithms. Post-
hoc tests are used to determine which pairs of algorithms have significant differences. We
reject the null-hypothesis if the Friedman statistic derived by Iman and Davenport (1980)
is lager than the critical value of the F distribution with a− 1 and (a− 1)(D − 1) degrees
of freedom for α = 0.05.
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Nemenyi Test. If the Friedman test rejects the null-hypothesis, the Nemenyi test is used
to further analyze which pairs of algorithms are significant different. Let dj

i be the difference
between ith algorithm and jth algorithm. We assess a difference between ith algorithm and
jth algorithm as significant if dj

i > critical difference (CD):

CD = q0.05

√
a(a + 1)

6D
,

where q0.05 are the critical values that are calculated by dividing the values in the row for
the infinite degree of freedom of the table of Studentized range statistics (α = 0.05) by

√
2.

Win/Draw/Loss Record. When two algorithms are compared, we count the number of
data sets for which one algorithm performs better, equally or worse to the other on a given
measure. A standard binomial sign test, assuming that wins and losses are equiprobable, is
applied to these records. We assess a difference as significant if the outcome of a one-tailed
binomial sign test is less than 0.05.

Mean. The arithmetic mean across all data sets provides a gross indication of relative
performance and adjunct to other statistics.

Spearman’s Rank Correlation Test. We use this test to assess whether there is a
relationship between the mean bias proportion of error across large data sets and small
data sets over a algorithms. Mean values across large and small data sets are separately
converted to ranks (average rank is used if two or more values are equal). Let di be the
difference between the ranks on the ith out of a algorithms. The Spearman’s rank correlation
coefficient is

rs = 1− 6
∑a

i=1 d2
i

a(a2 − 1)
.

We reject the null-hypothesis that there is no relationship between the mean values across
large and small data sets if rs is greater than the critical value for a two-tailed Spearman’s
rank correlation test at α = 0.05.

5.1.3 Other Issues

This section explains other issues related to the experiments.

Probability Estimates. The base probabilities of each algorithm, except Logistic Re-
gression and LibSVM, are estimated using m-estimation, as it often appears to lead to more
accurate probabilities than Laplace estimation for NB and its variants we tested. Kohavi
et al. (1997) report that using m ¿ 1 usually has higher classification accuracy than using
m = 1. In this comparison, we use m = 0.1.

Numeric Values and Missing Values. For all algorithms except Logistic Regression
and LibSVM, quantitative attributes are discretized using MDL discretization (Fayyad and
Irani, 1993) within each cross-validation fold. In keeping with Weka’s Logistic Regression,
missing values for qualitative attributes are replaced with modes and those for quantitative
attributes are replaced with means from the training data.
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LWNB and AODESR. We use Weka’s implementation of LWNB and set the number
of neighbors to 50, as this number is favorable to LWNB (Frank et al., 2003). The original
AODESR uses 30 as the minimum frequency l of accepting the generalization relationship.
An empirical selection of l (l = 10, 20, · · · , 150) reveals that the error of AODE can be
significantly reduced by the addition of SR at all settings of l except 10 and 20 when
Laplace-estimation is used, while at all settings of l except 10, 20, 30, 40 and 50 when
m-estimation is employed. Therefore, in this study, we set the minimum frequency to 100.

Logistic Regression and LibSVM. We use Weka’s implementation and default setting
of Logistic Regression. The results of LibSVM using Weka’s implementation and default
setting with the exception of turning on normalization of data (recommended in (Hsu et al.,
2003a)) are poor on many data sets. For instance, the errors on 2 data sets, Pen Digits
and Syncon, are greater than 0.8, and errors on 13 data sets are greater than 0.5. This
necessitates the use of parameter search. We perform a “grid-search” on C and γ for the
RBF kernel using 5-fold cross-validation (Hsu et al., 2003a). Each pair of (C, γ) is tried
(C = 2−5, 2−3, . . . , 215, γ = 2−15, 2−13, . . . , 23), and the one with the lowest cross-validation
error is selected. However, this process has very high time complexity. For this reason,
the results of LibSVM on Adult, Letter Recognition, Optical Digits and SPAM E-mail are
obtained from five runs of two-fold cross-validation.

LBR and BSEJ. As LBR has very high classification time complexity, the results of LBR
on the two largest data sets (Adult and Letter Recognition) are obtained from five runs of
two-fold cross-validation. BSEJ has a memory shortage problem on Letter Recognition and
Cylinder-bands. To estimate the results of BSEJ, we average the results of i− 1 iterations
if the ith run is the first iteration that has the problem.

5.2 Experimental Results

Following the graphical presentation of Demšar, we show the comparison of algorithms
against each other with the Nemenyi test on each metric. We plot the algorithms on the left
line according to their average ranks, which are indicated on the parallel right line. Critical
difference (CD) is also presented in the graphs. The lower the position of algorithms,
the lower the ranks they obtain, and hence the better the performance. Algorithms are
connected by a line if their differences are not significant. Since the comparison involves 15
algorithms, the power of the Nemenyi test is low and so only large effects are likely to be
apparent.

Section 5.2.1 presents the results of error, bias, variance and RMSE. Section 5.2.2 dis-
cusses how data set size interacts with bias and variance, which in turn affects error. The
training and test time results are presented in Section 5.2.3. Detailed error, bias, variance
and RMSE by data sets are presented in the Appendix A.

5.2.1 Error, Bias, Variance and RMSE

With 15 algorithms and 60 data sets, the Friedman statistic is distributed according to the
F distribution with a − 1 = 15 − 1 = 14 and (a − 1)(D − 1) = (15 − 1) ∗ (60 − 1) = 826
degrees of freedom. The critical value of F (14, 826) for α = 0.05 is 1.7037. The Friedman
statistics for error, bias and variance in our experiments are 7.1621, 10.2482 and 13.6646
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respectively, and hence we reject all the null-hypotheses. The critical difference for α = 0.05
is CD = 3.392 ∗

√
a(a + 1)/(6 ∗D) = 3.392 ∗

√
15(15 + 1)/(6 ∗ 60) = 2.7696. We show the

comparison of the 15 algorithms against each other using the Nemenyi test on error, bias
and variance in Figures 4 (a), 5 (a) and 5 (b) respectively.

As LibSVM does not provide probability estimates, we present RMSE results (Figures 4
(b)) for all the algorithms except LibSVM. The null-hypothesis that there is no difference
in average RMSE ranks is rejected because the Friedman statistic for RMSE (12.2775) is
greater than F (13, 767) for α = 0.05 (1.7329). The critical difference of 14 algorithms and
60 data sets for α = 0.05 is 2.5617. We use the abbreviation “Logistic” to denote Logistic
Regression in each graph.

Error

MAPLMG achieves the lowest mean error rank (5.3917). AODESR comes next (6.1500).
AODE and LBR obtain the third and fourth lowest mean rank of error (rank being 6.2500
and 6.3083 respectively). IR and TAN have the highest and second highest mean rank of
error (rank being 10.3583 and 10.0417 respectively).

Four semi-naive Bayesian algorithms, MAPLMG, AODESR, AODE and LBR outper-
form NB on the Nemenyi test. MAPLMG enjoys a significant error advantage over NBTree,
HidNB, Logistic Regression, BSE, NB, TAN and IR and shares a similar level of error with
the rest of algorithms. AODESR has lower mean error rank than AODE, LBR, LibSVM,
SP-TAN, LWNB, BSEJ, NBTree and HidNB and significantly lower mean error rank than
Logistic Regression, BSE, NB, TAN and IR. The mean error rank differences between AODE
and BSE, NB, TAN and IR are statistically significant, and those between AODE and the
remaining algorithms are not. LBR has a significant error advantage over NB, TAN and
IR, and does not have a significant disadvantage relative to any algorithm.

LibSVM has lower mean error rank compared to all the other algorithms except MAPLMG,
AODESR, AODE and LBR, but only has a significant error advantage relative to TAN and
IR. SP-TAN, BSEJ and LWNB have higher mean error ranks than MAPLMG, AODESR,
AODE, LBR and LibSVM and lower mean error ranks than all the remaining algorithms.
However, the Nemenyi test does not reveal any of these differences as statistically signif-
icant. LWNB and BSEJ have identical mean error rank (8.1500). The only significant
difference in error performance between either NBTree or HidNB and another algorithm is
with MAPLMG.

IR and TAN have a significant error disadvantage relative to LibSVM, LBR, AODE,
AODESR and MAPLMG, and share a similar level of error with all the other methods.
BSE has significantly higher mean error rank than MAPLMG, AODESR and AODE and
Logistic Regression has significantly higher mean error rank than MAPLMG and AODESR.

RMSE

MAPLMG delivers the lowest mean rank of RMSE (4.6083). AODESR is a close second
(4.6500), followed by AODE (5.2000). The Nemenyi test indicates that all three enjoy a
significant RMSE advantage relative to all the rest of algorithms except HidNB and LBR.

The differences between HidNB and SP-TAN, BSEJ, NBTree, TAN, Logistic Regression,
IR, BSE and NB are statistically significant. LBR has lower mean RMSE rank than all the
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Figure 4: (a) Error comparison of the 15 algorithms with the Nemenyi test on 60 data sets.
CD = 2.7696. (b) RMSE comparison of the 14 algorithms with the Nemenyi test
on 60 data sets. CD = 2.5617.

other methods but HidNB, AODE, AODESR and MAPLMG. However, all these differences
are not significant.

All semi-naive Bayesian methods improve upon the probability estimation accuracy of
NB, but these improvements are statistically significant for only four methods, MAPLMG,
AODESR, AODE and HidNB.

Bias

NBTree comes out ahead when mean bias ranks are compared (rank being 4.5583). It enjoys
a significant advantage over all the other algorithms except LWNB, BSEJ and LibSVM.

LWNB and BSEJ achieve the second (6.1000) and third (6.2750) lowest mean bias ranks,
which are significantly lower than that of BSE, IR and NB. LibSVM shares a similar level
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Figure 5: Bias and Variance comparison of the 15 algorithms with the Nemenyi test on 60
data sets. CD = 2.7696.

of bias with all the other methods but NB. MAPLMG, AODESR, LBR, TAN, Logistic
Regression, HidNB, AODE and SP-TAN have significantly lower mean bias ranks than NB
and significantly higher mean bias ranks than NBTree. The mean bias rank of BSE and
IR are lower than that of NB, higher than that of all the other methods, and significantly
higher than that of NBTree, LWNB and BSEJ.

All semi-naive Bayesian methods reduce the bias of NB. Ten semi-naive Bayesian meth-
ods (all those except IR and BSE), provide significant bias reduction in NB.

Variance

NB and AODE achieve the lowest and second lowest mean rank of variance (rank being
4.9167 and 5.7667 respectively). NB enjoys a significant advantage over HidNB, BSE, IR,
BSEJ, LWNB, TAN and NBTree. The differences between NB and AODE, MAPLMG,
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AODESR, LibSVM, SP-TAN, LBR and Logistic Regression are not significant. AODE,
MAPLMG, AODESR and LibSVM have significantly lower mean rank than BSEJ, LWNB,
TAN and NBTree.

The Nemenyi test differentiates SP-TAN, LBR and Logistic Regression from TAN and
NBTree, but not from the rest of the algorithms. HidNB has a significant disadvantage
relative to NB and a significant advantage over TAN and NBTree. BSE has a significantly
lower mean variance rank than NBTree and a significantly higher rank than NB.

NBTree has the highest mean rank of variance (11.2417). It has a significant vari-
ance disadvantage relative to all the rest of algorithms except TAN, LWNB, BSEJ and
IR. TAN has the second highest mean rank of variance (10.9333). The differences between
TAN and all the remaining algorithms but NBTree, LWNB, BSEJ, IR and BSE are signif-
icant. LWNB and BSEJ have significantly higher mean variance ranks than NB, AODE,
MAPLMG, AODESR and LibSVM. The Nemenyi test differentiates IR from NB, but does
not differentiate it from any other methods.

5.2.2 Bias and Variance: in Relation to the Size of Data Sets

In this section, we discuss how data set size interacts with bias and variance, which in turn
affects error. It is quite likely that differences between small samples are greater than those
between large samples. In other words, differences between samples are expected to decrease
with increasing sample size. It follows that differences between models formed from those
samples are expected to decrease and hence variance is expected to decrease (Brain and
Webb, 2002). Geurts (2002) reported that the behaviors of bias with respect to the sample
size is algorithm dependent. In his study, the bias of linear regression is independent of
sample size, while decision trees decrease in bias with increasing sample size. Brain and
Webb (2002) observed that the bias of C4.5 and its variants tends to decrease, while that
of NB increases on all data sets tested except Waveform.

If variance decreases as training set size increases, the bias proportion of error may be
higher on large data sets than on small data sets and the variance proportion of error may
be higher on small data sets than on large data sets. In consequence, low bias algorithms
may have advantage in error on large data sets and low variance algorithms on small data
sets (Brain and Webb, 2002).

To assess whether the bias proportion of error is higher on large data sets than small
data sets, we compare the results of bias as a proportion of error on the twenty-four largest
data sets, each with 1000 or more cases, and on the thirty-six smallest data sets, each with
less than 1000 cases. Spearman’s rank test is used to test whether the difference between
the results on large data sets and small data sets over the 15 algorithms is non-random. We
assess a difference as significant if rs = 1 − 6

∑
d2

i /a(a2 − 1) > 0.525, where a is 15, di is
the difference between the rank of mean value on the two sets of data sets on the ith out of
15 algorithms, and 0.525 is the critical value for a two-tailed test at a significance level of
0.05.

Table 3 presents the mean bias proportion of error on the 24 largest data sets and the
36 remaining data sets over 15 algorithms. Figure 6 presents the mean bias proportion on
all, the large and the small data sets respectively. From Table 3 and subgraph (b) and (c)
of Figure 6 we can see that each mean bias proportion on the large data sets is higher than
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Table 3: Mean bias proportion of error on 24 largest and 36 smaller data sets

Bias/Error NB BSE TAN SP-TAN NBTree LBR AODE MAPLMG AODESR LWNB IR BSEJ HidNB Logistic LibSVM

large data 0.836 0.776 0.705 0.729 0.571 0.639 0.750 0.750 0.747 0.596 0.790 0.640 0.769 0.742 0.631

Rank 15 13 6 7 1 4 10 11 9 2 14 5 12 8 3

small data 0.671 0.645 0.572 0.637 0.555 0.638 0.636 0.635 0.632 0.583 0.635 0.592 0.606 0.576 0.622

Rank 15 14 2 12 1 13 11 9 8 4 10 5 6 3 7
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Figure 6: Mean error. (Algorithms are sorted in ascending order on the mean error on 60
data sets.)

that on small data sets. The rs value for the Spearman’s rank test is 0.596 > 0.525, which
suggests that bias accounts for a larger proportion of error on large data sets.

Figure 7 presents a comparison of the error of the 15 algorithms against each other on
the 24 largest data sets using an Nemenyi test (CD = 4.3791). NBTree, LWNB, BSEJ,
LibSVM (the four methods have the lowest bias in Figure 5 (a)) share a similar level of
error with NB on all 60 data sets, while they achieve significantly lower mean error ranks
than NB on the 24 largest data sets, despite the power of the test being substantially lower
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Figure 7: Error comparison of the 15 algorithms with the Nemenyi test on 24 largest data
sets, CD = 4.3791.

due to its use of fewer data points. Compared with NB, IR and TAN have lower mean
bias ranks and higher mean error tanks on all 60 data sets, while they deliver lower mean
error ranks on the 24 largest data sets. These results correspond well to the expectation
that algorithms with a low bias profile, such as NBTree, tend to have lower relative error
on large training sets and algorithms with a low variance profile, such as NB, tend to have
lower relative error on small training sets.

When AODE, LBR and LibSVM are compared with TAN, MAPLMG is compared
with NBTree, Logistic Regression, HidNB and TAN, AODESR is compared with Logistic
Regression and TAN and LBR is compared with IR and on all 60 data sets, the former of each
pair has a significant advantage in error relative to the latter. Nonetheless, the differences
between the former of each pair and the latter are not significant on the 24 largest data
sets. One possible reason is that fewer data sets reduce the power of the Nemenyi test to
differentiate these methods. For low bias algorithms, another possible reason is that they
appear to have lower error on large data sets and hence the comparison on the 24 largest
data sets is favorable to them. Note that eight semi-naive Bayesian algorithms, MAPLMG,
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AODESR, AODE, LBR, HidNB, NBTree, BSEJ and LWNB, provide a significant error
reduction relative to NB on the 24 largest data sets.

In an earlier study (Zheng and Webb, 2005) which compared NB, AODE, NBTree, LBR,
TAN, SP-TAN, BSEJ, BSE and FSS, AODE was the only algorithm to have a significant
advantage in error over NB. However, four semi-naive Bayesian algorithms, MAPLMG,
AODESR, AODE and LBR, achieve a significant advantage in error over NB in the current
study. AODE, LBR and SP-TAN achieve statistically significant win-draw-loss error records
over NBTree in the previous study, while they share similar levels of error with NBTree in
this study. The advantage of AODE over BSEJ is significant in the earlier study, but it is
not in the current study. Although different comparison methods (the binomial sign test for
the earlier study and the Nemenyi test for this study) are employed, the main reasons for the
different outcomes might be that the previous study compared the algorithms on 36 data
sets with a smaller average size and used Kohavi and Wolpert’s bias-variance estimation
technique, which produces smaller training sets than the technique employed by the current
study. Hence, the earlier experiments might put algorithms with a low bias profile at a
disadvantage.

5.2.3 Compute Time Results

Some caution is required in comparing compute times for execution of implementations
of alternative learning algorithms, as there is always room for uncertainty to what ex-
tent differences in performance can be attributed to the relative efficiency with which the
algorithms have been implemented as opposed to fundamental efficiencies in the actual
algorithms. Nonetheless, empirical comparison of real world running time can provide a
valuable adjunct to computational complexity analysis. We here present the results of such
an empirical evaluation with the qualification that specific outcomes should be treated with
caution.

As has been explained, LibSVM has very high training time and LBR has very high
classification time. They were executed on a different machine, therefore, they are excluded
from this compute time comparison. Because BSEJ has a memory shortage problem on two
data sets (Letter Recognition and Cylinder-bands), we estimate training time for each data
set by multiplying the total training time on i−1 iterations by 50/(i−1) if the ith iteration
is the first iteration that has the problem. Classification time of BSEJ is estimated by the
same approach.

The mean training and classification time across 60 data sets are presented in Figures 8
(a) and (b). These algorithms are sorted in ascending order on the mean metrics. To
scale these graphs appropriately, we cut short the bars of Logistic Regression in (a) and
LWNB in (b). The mean training time of Logistic Regression is 124393.53 seconds and the
mean classification time of LWNB is 2127.29 seconds. Logistic Regression has very high
training time on Nettalk (7327604.69 seconds), which dominates the mean training time.
The training time comparison of 13 algorithms against each other using the Nemenyi test
is shown in Figures 9 (a) and the classification time comparison is in Figures 9 (b). The
critical difference of 13 algorithms and 60 data sets for α = 0.05 is 2.3556.
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Figure 8: Mean time across 60 data sets (seconds).

Training Time

NB has the lowest mean training time (13.53 seconds) and rank (1.5333). The Nemenyi test
shows that it enjoys a significant advantage in training time over all the rest of algorithms
except LWNB, AODE and AODESR. AODE and LWNB have identical rank (2.9833). They
are significantly more efficient than all the other methods except NB and AODESR. The
differences between AODESR and all other algorithms but NB, AODE, LWNB and HidNB
are statistically significant. The differences between HidNB and AODESR, TAN and IR are
not statistically significant. HidNB has significantly faster training than BSE, BSEJ, SP-
TAN, Logistic Regression, MAPLMG and NBTree. TAN and IR have significantly slower
training than NB, AODE, LWNB and AODESR and significantly faster training than BSEJ,
SP-TAN, Logistic Regression, MAPLMG and NBTree. Although the Nemenyi test does not
reveal the difference between IR and HidNB and between IR and TAN are significant, the
mean training time differences are large. The mean training time of HidNB and TAN are
22.24 and 24.13 seconds respectively, while that of IR is 776.94 seconds. BSE is significantly
faster than NBTree, MAPLMG, Logistic Regression and SP-TAN and significantly slower
than NB, AODE, LWNB, AODESR, HidNB.

NBTree, MAPLMG, Logistic Regression and SP-TAN have high mean training time and
ranks. The training time of these methods is significantly higher than all the other methods
included in the comparison, other than BSEJ. Note, however, that LibSVM was excluded
from the comparison due to extremely high training time. NBTree, SP-TAN and Logistic
Regression have very high training time on data sets with large number of instances and
attributes. On the 24 largest data sets, NBTree has the highest training time on 11 data
sets, Logistic Regression on 7 data sets and SP-TAN on 4 data sets.

Classification Time

NB and BSE have the lowest mean classification time and ranks. NB has a clear and
consistent advantage over all the other methods but BSE, SP-TAN and Logistic Regression.
BSE and SP-TAN have lower mean classification time ranks than Logistic Regression and
TAN, and significantly lower ranks than all the remaining methods except NB. Logistic
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Figure 9: Training and classification time comparison of 13 algorithms (excluding LBR and
LibSVM) with the Nemenyi test on 60 data sets. CD = 2.3556.

Regression, TAN and IR provide significantly faster classification than NBTree, AODE,
AODESR, HidNB, MAPLMG and LWNB. BSEJ is faster than NBTree and significantly
faster than AODE, AODESR, HidNB, MAPLMG and LWNB.

LWNB has the highest mean classification time and rank. It is significantly slower than
all the rest of algorithms included in the comparison, although it should be recalled that
LBR was excluded because of its unduly high classification time. AODE, AODESR, HidNB
and MAPLMG have significantly slower classification than all the remaining methods but
LWNB and NBTree.

5.3 Discussion

NB does not perform model selection, using a fixed formula to classify test instances. This
results in relatively low variance. The relaxation of the attribute independence assump-
tion may make semi-naive Bayesian methods fit the training sample closer. Consequently,
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they may have lower bias, but higher variance compared with NB. If a semi-naive Bayesian
method can find the right balance between bias and variance, it may deliver higher classi-
fication accuracy than NB.

NBTree and LBR

NBTree, which combines decision trees with NB, is a relatively highly parameterized method.
It achieves the lowest mean bias rank, being significantly lower than all the other methods
except LWNB, BSEJ and LibSVM. LBR establishes a rule in a lazy manner. This rule can
be seen as a branch of the tree produced by NBTree. Thus, both approaches can produce
models with as high a level of dependence as there are attributes. Because LBR uses lazy
learning and hence can adjust its model to each test case, it is expected to have lower bias
compared with NBTree. However, Figure 5 (a) shows that NBTree has significantly lower
bias than LBR.

There are two main differences between these two methods. First, NBTree uses 5-fold
cross validation accuracy estimation as the splitting criterion, while LBR uses Leave-One-
Out cross validation accuracy estimation. Another difference between NBTree and LBR
is the stopping criterion. The former stops the growth of the tree when the relative error
reduction is less than 5% or the number of the instances in a splitting node is less than 30,
and the latter stops the growth of the rule when there is no significant accuracy improvement
as assessed by a sign test. It is quite likely that the sign test at a significance level of 0.05 is
stricter than the criterion that the relative error reduction is greater than 5%. Hence, the
latter might result in closer fitting compared to the former. For instance, if the best error
so far is 4 and the current error is 0, the relative error reduction is 100% > 5%, but this
improvement fails the significance test.

To assess this expectation we compare LBR with original NBTree (NBTree5fold
ns ) and

three variants of NBTree. The first variant, called NBTreeLOO
ns uses the same stopping cri-

terion as original NBTree and Leave-One-Out cross validation as the evaluation function.
The second variant, called NBTree5fold

s , uses the same splitting criterion as original NBTree
and a sign test as the stopping criterion. NBTreeLOO

s uses Leave-One-Out cross validation
accuracy estimate as the splitting criterion and a sign test as the stopping criterion. Fig-
ure 10 presents the bias comparison of the five algorithms using the Nemenyi test (CD =
0.7875).

Both NBTree5fold
ns and NBTreeLOO

ns enjoy lower mean bias rank compared with LBR.
This result suggests that the splitting criterion is not the cause of the discrepancy from our
expectation that LBR has lower bias compared with NBTree. In contrast, NBTree5fold

s and
NBTreeLOO

s have higher mean bias rank compared with LBR. Furthermore, NBTreeLOO
s ,

which uses the same splitting and stopping criteria as LBR, has a significant disadvan-
tage relative to LBR. This result is consistent with the expectation that the relative error
reduction constraint results in closer fitting to the data than does the sign test.

Since NBTree and LBR are z-dependence classifiers, they may have great potential to
have lower bias on large data sets as these may have sufficient data to obtain accurate
higher order probability estimates and hence to have appropriate model selection. As a
consequence, these two algorithms may have an advantage in error on large data sets,
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however, they may not scale up well due to the high training time complexity of NBTree
and high classification time complexity of LBR.

LWNB and LBR

Both LWNB and LBR can be considered as techniques that identify a relevant subset of the
training set and learn a local NB therefrom. LWNB finds those training instances closest
in Euclidean distance to the given test instance. The closer the distance between a training
instance and the test instance, the higher weight the training instance obtains. LBR selects
a subset of the training set using a rule in which all attributes in the antecedent have
the same values as those of the test instance. An attribute is added to the antecedent if
its removal from the consequent can mitigate the attribute interdependencies detected by
leave-one-out cross validation on the current local NB.

Both of them use lazy learning. In consequence, they may have relatively low bias at
the cost of considerably increased classification time and space. The Nemenyi test shows
that LBR has substantially higher bias, lower variance, lower error and lower RMSE than
LWNB on the full suite of 60 data sets. When LBR is compared with LWNB on the 36
smallest data sets, it outperforms LWNB in error, variance and RMSE on the win/draw/loss
records. Table 4 and 5 present the win/draw/loss records for LBR against LWNB on the
36 smallest and 24 largest data sets respectively. Each win/draw/loss record is the number
of data sets for which LBR obtains lower, the same and higher value on a corresponding
metric than LWNB. On the 24 largest and 36 smallest data sets, the bias advantage of
LWNB is clear. The error, variance and RMSE differences are small on the 24 largest data
sets. These results suggest that LBR may be a more desirable option when small number of
examples are to be classified, while LWNB may be a more appealing option for large data
sets due to its low bias profile and considerably faster classification.
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Table 4: Win/Draw/Loss: LBR vs. LWNB on the 36
smallest data sets

LBR vs. LWNB

W/D/L p

Error 23/1/12 0.0448

Bias 12/1/23 0.0448

Variance 25/1/10 0.0083

RMSE 23/1/12 0.0448

Table 5: Win/Draw/Loss: LBR vs. LWNB on the
24 largest data sets

LBR vs. LWNB

W/D/L p

Error 11/1/12 0.5000

Bias 3/1/19 0.0004

Variance 15/1/8 0.1050

RMSE 12/0/12 0.5806

FSS, BSE and BSEJ

FSS and BSE form a subset of attributes by deleting attributes to remove harmful interde-
pendencies and applies conventional NB to this subset. Both of them substantially reduce
the bias and increase the variance of NB. However, the increase in variance provided by
FSS outweighs the reduction in bias and results in an overall increase in error on the 60
data sets. Table 4 present the win/draw/loss records for FSS against NB and BSE on the

Table 6: Win/Draw/Loss: FSS vs. NB and BSE on the 60 data sets

FSS vs. NB FSS vs. BSE

W/D/L p W/D/L p

Error 26/2/32 0.2559 20/5/35 0.0290

Bias 50/3/7 <0.0001 40/4/16 0.0009

Variance 11/2/47 <0.0001 14/4/42 0.0001

RMSE 32/2/26 0.2559 26/5/29 0.3939

60 data sets. FSS has a significant bias advantage and error and variance disadvantages
relative to BSE. The reason for FSS’s high variance might be that FSS employs forward
selection, which appears to produce an attribute subset with a small number of attributes.
This attribute subset tends to change greatly from sample to sample. In contrast, BSE
uses backward selection and usually uses most of the attributes to classify instances. Con-
sequently, there is often less variation between the models created by BSE than there is
between those created by FSS. In addition, FSS might be susceptible to getting trapped
into poor selections by local minima.

In addition to deleting attributes, BSEJ creates hidden variables, which process further
reduces bias of BSE, and achieves the third lowest mean bias rank in our comparison.
Table 7 and 8 present the win/draw/loss records for BSEJ against BSE on the 60 data
sets and 24 largest data sets respectively. Both tables show that the bias advantage and
variance disadvantage of BSEJ are clear. It has a marginal error advantage on the 60 data
sets and significant error and RMSE advantages on the 24 largest data sets. Like NBTree
and LWNB, BSEJ may also have the potential to deliver low error on large data sets. The
success of relaxing attribute independence assumption by adding new compound attributes
is evident in the Coil Challenge 2000 data mining contest (Elkan, 2001). However, due to

40



Semi-naive Bayesian Classification

Table 7: Win/Draw/Loss: BSEJ vs. BSE on the 60 data
sets

BSEJ vs. BSE

W/D/L p

Error 34/4/ 22 0.0704

Bias 50/2/8 <0.0001

Variance 15/2/43 0.0002

RMSE 31/3/26 0.2983

Table 8: Win/Draw/Loss: BSEJ vs. BSE on the
24 largest data sets

BSEJ vs. BSE

W/D/L p

Error 18/1/5 0.0053

Bias 23/1/0 <0.0001

Variance 5/1/18 0.0053

RMSE 18/1/5 0.0053

the high space complexity, its Weka implementation suffers from memory shortages when
large numbers of attributes are joined.

TAN and SP-TAN

In the original TAN (Friedman et al., 1997), a smoothing operation was introduced and the
conditional probability of xi given its parents, π(xi), is calculated by

P̂ s(xi|π(xi)) = αF (xi|π(xi)) + (1− α)F (xi),

where α = tF (π(xi))
tF (π(xi))+s and s = 5. We compare TAN with the smoothing operation, denoted

as TANs, and with m-estimation (m = 0.1). Table 9 presents the win/draw/loss records on

Table 9: Win/Draw/Loss: TAN vs. TANs on 60 data
sets

TAN vs. TANs

W/D/L p

Error 29/2/29 0.5522

Bias 46/2/12 <0.0001

Variance 14/2/44 <0.0001

RMSE 19/0/41 0.0031

Table 10: Win/Draw/Loss: TAN vs. SP-TAN on
the 24 largest data sets

TAN vs. SP-TAN

W/D/L p

Error 15/1/8 0.1050

Bias 17/1/6 0.0173

Variance 10/2/12 0.4159

RMSE 17/1/6 0.0173

60 data sets. TANs has a significant bias disadvantage and variance and RMSE advantages
relative to TAN. Both win 29 times against each other in error. When TANs is substituted
for TAN in the comparison of 15 methods using the Friedman and Nemenyi test, TANs

moves up four positions in bias (rank being higher than SP-TAN), down two positions in
variance (rank being lower than BSEJ) and down five positions in RMSE (rank being lower
than LBR). This substitution does not change its position in error. Those differences in bias
and variance do not affect the outcomes of the Nemenyi test. However, TANs significantly
improves the probability prediction of NB in this context.

Comparing SP-TAN with TAN, the former has significantly lower variance and sub-
stantially lower error than the latter on the Nemenyi test. One factor that may contribute
to SP-TAN’s lower variance is that SP-TAN stops adding arcs when there is no accuracy
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improvement and hence usually produces a forest, while TAN tends to establish a tree with
n − 1 arcs. Since variance is expected to decrease on large data, TAN may deliver a sim-
ilar level of classification accuracy relative to SP-TAN on the data. Table 10 presents the
win/draw/loss records of TAN against SP-TAN on the 24 largest data sets. The variance
and error differences between TAN and SP-TAN are small, but the bias and RMSE dif-
ferences are significant. Due to the relative bias/variance profile, TAN is likely to achieve
lower error than SP-TAN on large data sets. In addition, TAN provides substantially faster
training than SP-TAN and hence might be superior, especially on large data, when training
time and probability estimation accuracy are concerned.

IR and Hilden and Bjerregaard’s Smoothing Method

The comparative study of Caruana and Niculescu-Mizil (2006) reveals that calibration with
isotonic regression results in substantial performance improvements. At first glance, their
results appear to be inconsistent with this study indicating that IR has higher mean error
rank than NB on the 60 data sets. However, when IR is compared with NB on the 24 largest
data sets, it significantly improves the classification accuracy and probability prediction of
NB (Table 12). In fact, these observations correspondent well to Caruana and Niculescu-

Table 11: Win/Draw/Loss: IR vs. NB on
60 data sets

IR vs. NB

W/D/L p

Error 26/1/33 0.2175

Bias 47/1/12 <0.0001

Variance 10/2/48 <0.0001

RMSE 37/0/23 0.0462

Table 12: Win/Draw/Loss: IR vs. NB on the 24
largest data sets

IR vs. NB

W/D/L p

Error 17/0/7 0.0320

Bias 23/0/1 <0.0001

Variance 4/0/20 0.0008

RMSE 20/0/4 0.0008

Mizil’s observations, as all the 11 training sets in their study are of size 5000. On all the
data sets we collected, IR obtains lower RMSE on 37 data sets and higher on 23 data sets
(Table 11). This RMSE difference is also statistically significant.

Hilden and Bjerregaard’s Smoothing Method does not improve upon the classification
accuracy of NB in our data collection. NB with the smoothing method has lower error
on 23 data sets and higher on 26 data sets. However, this smoothing method is very
effective in improving the precision of conditional probability estimates without additional
computation. It reduces RMSE on 53 data sets and increases RMSE on 7 data sets. It
could potentially be applied with any of the semi-naive Bayesian methods examined herein,
and is worthy of consideration in any practical application of such methods.

AODE, MAPLMG and AODESR

AODE achieves competitive variance with NB, reducing variance successfully by aggre-
gating all qualified 1-dependence classifiers. It maintains the robustness and much of the
efficiency of NB, and at the same time exhibits significantly higher classification accuracy
and probabilistic prediction for many data sets. In our comparison, it shares a similar
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level of error with MAPLMG, LBR, AODESR, LibSVM, SP-TAN, BSEJ, LWNB, NBTree,
Logistic Regression and HidNB, while having considerably lower training time relative to
MAPLMG, LibSVM, SP-TAN, BSEJ, NBTree and Logistic Regression and classification
time relative to LWNB in most cases and LBR.

MAPLMG and AODESR further reduce the bias, error and RMSE of their base learner
at the cost of an increase in variance. AODESR demonstrates competitive error and RMSE
with MAPLMG whose mean error and RMSE ranks are the lowest in our comparison.
However, MAPLMG imposes very high training time overheads on AODE, while AODESR

imposes no extra training time overheads and only modest test time overheads on AODE. In
our data collection, AODESR deletes more than 10% of attribute values for more than 50%
of data sets, resulting in substantial classification time speed-up. It has lower classification
time on 28 and 41 data sets compared to AODE and MAPLMG respectively. The classifi-
cation time complexity of these three methods is higher than all the other methods except
LBR and LWNB. Nonetheless, it is modest for many classification tasks with moderate or
small numbers of attributes.

NB and Logistic Regression

Logistic Regression has a significant bias advantage and variance disadvantage relative to
NB. As discussed in Section 5.2.2, low bias algorithms appear to have an advantage in error
with larger training sets, while low variance algorithms appear to have an advantage with
small training sets. It follows that NB may deliver lower error than Logistic Regression at
small data set sizes and Logistic Regression may achieve lower error than NB at larger data
set sizes. This is consistent with Ng and Jordan’s finding that NB has higher asymptotic
error than Logistic Regression, but it can approach its asymptotic error much faster than
Logistic Regression (Ng and Jordan, 2001). At training time, Logistic Regression is consid-
erably slower than NB. The mean training time on 60 data sets for Logistic Regression is
124393.53 seconds, while that for NB is 13.53 seconds. It has higher training time than NB
on every data set of our collection.

Selection Between Semi-naive Bayesian Methods

All semi-naive Bayesian methods provide substantial reduction in bias and increase in vari-
ance. Figure 7 does not reveal error differences between NB and TAN, SP-TAN, BSE and
IR are statistically significant, as 15 algorithms are compared on the 24 largest data sets
and hence the power of the Nemenyi test is low. Nonetheless, the win/draw/loss records
show that all of them enjoy a significant advantage in error relative to NB on the 24 data
sets. We discuss the selection between these methods based on the characteristics of the
application to which they are applied.

As has been discussed, bias appears to dominate error when more data is available.
Therefore, when predictive error is of major concern, algorithms with low bias may have
an advantage on large data sets. However, such algorithms usually have very high time
complexity, and may not be attractive when efficiency is an important issue. Generally,
for large training data we recommend use of the lowest bias semi-naive Bayesian method
whose computational complexity satisfies the computational constraints of the application
context. For small training data we recommend the lowest variance semi-naive Bayesian
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method that has suitable computational complexity. For intermediate size training samples,
an appropriate trade-off between bias and variance should be sought within the prevailing
computational complexity constraints.

For extremely small data NB may prove best and for large data NBTree, LWNB and
BSEJ may have an advantage if their computational profiles are appropriate to the task.
AODE achieves very low variance, relatively low bias, low RMSE, and low training time
and space complexity. AODESR and MAPLMG further enhance AODE by substantially
reducing bias and error and improving probability prediction with modest time complexity.
In consequence, they may prove competitive over a considerable range of classification tasks.
Furthermore, MAPLMG may have an advantage if the primary consideration is attaining
the highest possible classification accuracy and AODESR may excel if one wishes efficient
classification.

6. Conclusions

The elegant simplicity, computational efficiency and classification efficacy of NB fosters
ongoing interest in exploring semi-naive Bayesian algorithms that improve NB’s accuracy
by alleviating the attribute interdependence problem. This paper examines these techniques
and provides empirical studies of twelve representative semi-naive Bayesian algorithms. We
describe each algorithm and provide details of their time and space complexity. NBTree,
SP-TAN, BSEJ and APNB have relatively high training time complexity, while LBR and
LWNB have high classification time complexity. BSEJ and HierNB have very high space
complexity.

In the empirical part of paper, we compare the algorithms using the bias-variance decom-
position and quadratic loss function on sixty natural domains from the UCI Machine Learn-
ing Repository. The study reveals the outstanding performance of MAPLMG, AODESR,
AODE and LBR on our data collection. They achieve a considerable advantage in error and
probabilistic estimation relative to the other semi-naive Bayesian methods. NBTree pro-
vides substantial decrease in bias, and significantly wins against the remaining algorithms
other than LWNB and BSEJ. NB, AODE, MAPLMG and AODESR have the lowest mean
variance ranks. Based on the observation that variance tends to decrease and bias tends
to be a larger portion of error when training set size increases, we suggest using low bias
methods for large data sets, and low variance methods for small data sets to obtain bet-
ter accuracy performance, within the further constraints on applicable algorithms implied
by the computational requirements of the given application. Computation cost and the
trade-off between bias and variance should be considered for intermediate size data.
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APPENDIX

This appendix presents the detailed results for Error (Table 13), Bias (Table 14), Vari-
ance (Table 15) and RMSE (Table 16). The data sets are in the number sequence of Table 2.
Each table presents the mean and mean rank of each metric.
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Table 13: Error (the data sets are in the number sequence of Table 2)
No. NB BSE TAN SP-TAN NBTree LBR AODE MAPLMG AODESR LWNB IR BSEJ HidNB Logistic LibSVM

1 0.4821 0.4797 0.4718 0.4776 0.4806 0.4741 0.4625 0.4623 0.4625 0.4733 0.4752 0.4757 0.4763 0.4445 0.4476

2 0.1603 0.1403 0.1420 0.1525 0.1417 0.1337 0.1470 0.1375 0.1421 0.1533 0.1382 0.1391 0.1545 0.1491 0.2325

3 0.0862 0.0900 0.0779 0.0817 0.0813 0.0841 0.0833 0.0834 0.0814 0.0789 0.0874 0.0824 0.0863 0.1362 0.1602

4 0.2858 0.2812 0.3043 0.2850 0.2829 0.2840 0.2833 0.2831 0.2845 0.2807 0.2863 0.2882 0.2936 0.3059 0.2942

5 0.3749 0.3707 0.2898 0.3379 0.3169 0.3489 0.2960 0.2940 0.2939 0.2968 0.3648 0.3175 0.2967 0.4003 0.6087

6 0.2463 0.2496 0.2505 0.2463 0.2481 0.2466 0.2493 0.2499 0.2493 0.2500 0.2622 0.2476 0.2503 0.1096 0.0225

7 0.0281 0.0283 0.0817 0.0281 0.0281 0.0281 0.0357 0.0357 0.0357 0.0345 0.0347 0.0317 0.0480 0.0819 0.0366

8 0.1557 0.1556 0.1028 0.0732 0.0767 0.0961 0.1027 0.0922 0.1027 0.1077 0.1367 0.0701 0.0769 0.0728 0.0261

9 0.3575 0.2875 0.4458 0.3667 0.3575 0.3567 0.3458 0.3392 0.3458 0.3625 0.3583 0.3175 0.5092 0.3475 0.3600

10 0.4995 0.5016 0.5078 0.4994 0.5016 0.5007 0.4962 0.4963 0.4963 0.5252 0.4334 0.5032 0.4977 0.4923 0.4556

11 0.1457 0.1472 0.1681 0.1477 0.1571 0.1459 0.1466 0.1453 0.1462 0.1713 0.1506 0.1519 0.1600 0.1608 0.2846

12 0.2478 0.2532 0.2878 0.2480 0.2618 0.2494 0.2503 0.2647 0.2537 0.2610 0.2631 0.2630 0.2627 0.2678 0.3143

13 0.0208 0.0217 0.0560 0.0213 0.0368 0.0208 0.0223 0.0222 0.0220 0.0257 0.0196 0.0261 0.0209 0.0340 0.0445

14 0.3478 0.3441 0.3475 0.3449 0.3455 0.3446 0.3456 0.3489 0.3456 0.3426 0.3307 0.3414 0.3522 0.2811 0.3273

15 0.2626 0.2647 0.2882 0.2651 0.2776 0.2647 0.2590 0.2590 0.2602 0.2840 0.2639 0.2749 0.2592 0.2569 0.3062

16 0.3072 0.3049 0.3016 0.3056 0.3046 0.3053 0.3032 0.3038 0.3030 0.2964 0.3138 0.3070 0.3067 0.3194 0.2351

17 0.2821 0.2795 0.2865 0.2827 0.2846 0.2817 0.2842 0.2839 0.2861 0.2833 0.2816 0.2795 0.3024 0.2667 0.2712

18 0.1789 0.1833 0.1966 0.1834 0.1960 0.1792 0.1771 0.1766 0.1774 0.2091 0.1878 0.1939 0.1820 0.1859 0.2226

19 0.1632 0.1667 0.1668 0.1694 0.1870 0.1655 0.1663 0.1672 0.1663 0.1845 0.1681 0.1761 0.1655 0.2234 0.2279

20 0.1934 0.1883 0.2198 0.1932 0.2086 0.1920 0.1915 0.1896 0.1908 0.2248 0.1914 0.2046 0.1932 0.2455 0.3717

21 0.0964 0.0847 0.0644 0.0730 0.0564 0.0641 0.0545 0.0498 0.0545 0.0491 0.1025 0.0693 0.0592 0.0856 0.0499

22 0.1586 0.1701 0.1755 0.1665 0.1747 0.1600 0.1584 0.1586 0.1588 0.1822 0.1671 0.1766 0.1720 0.1791 0.2205

23 0.0151 0.0135 0.0113 0.0124 0.0127 0.0131 0.0130 0.0122 0.0132 0.0159 0.0123 0.0120 0.0122 0.0342 0.0263

24 0.1038 0.1021 0.0905 0.1025 0.1084 0.1018 0.0830 0.0830 0.0828 0.0924 0.1060 0.1004 0.0832 0.1608 0.0659

25 0.0612 0.0611 0.0623 0.0603 0.0612 0.0612 0.0575 0.0571 0.0575 0.0620 0.0632 0.0605 0.0827 0.0505 0.0396

26 0.1270 0.0713 0.0650 0.0736 0.0197 0.0318 0.0893 0.0574 0.0753 0.0337 0.1237 0.0324 0.0789 0.0286 0.0109

27 0.1347 0.1389 0.1702 0.1393 0.1347 0.1347 0.1421 0.1389 0.1421 0.1323 0.1400 0.1418 0.1446 0.0972 0.0954

28 0.2636 0.2645 0.2668 0.2649 0.2669 0.2646 0.2662 0.2668 0.2662 0.2771 0.2671 0.2674 0.2682 0.2691 0.2714

29 0.2593 0.2551 0.1691 0.1465 0.1513 0.1531 0.1065 0.1011 0.1057 0.0820 0.2546 0.1604 0.1176 0.2281 0.0308

30 0.4222 0.4222 0.4221 0.4222 0.4222 0.4222 0.4222 0.4222 0.4222 0.4222 0.4255 0.4222 0.4221 0.3268 0.2999

31 0.5337 0.5344 0.5981 0.5288 0.5337 0.5356 0.5500 0.5488 0.5500 0.5731 0.5419 0.5344 0.5450 0.5525 0.5869

32 0.1815 0.1851 0.1876 0.1843 0.2139 0.1823 0.1845 0.1835 0.1845 0.1999 0.1988 0.1955 0.1834 0.2530 0.2104

33 0.2273 0.1903 0.1724 0.1854 0.1681 0.1654 0.1833 0.1744 0.1801 0.1686 0.2011 0.1708 0.1762 0.2091 0.1451

34 0.0109 0.0013 0.0013 0.0016 0.0001 0.0008 0.0004 0.0002 0.0004 0.0000 0.0110 0.0002 0.0004 0.0016 0.0000

35 0.3111 0.2962 0.3120 0.2364 0.2164 0.2493 0.2786 0.2492 0.2798 0.3163 0.3122 0.2432 0.3010 0.2940 0.3914

36 0.0540 0.0595 0.0638 0.0572 0.0592 0.0540 0.0565 0.0569 0.0565 0.0640 0.0567 0.0593 0.0805 0.0499 0.0522

37 0.0978 0.0978 0.0740 0.0889 0.0345 0.0442 0.0740 0.0776 0.0740 0.0362 0.0857 0.0427 0.0603 0.0751 0.0019

38 0.0793 0.0775 0.0449 0.0714 0.0714 0.0609 0.0336 0.0337 0.0335 0.0307 0.0787 0.0594 0.0412 0.0621 0.0109

39 0.0620 0.0456 0.0450 0.0470 0.0380 0.0390 0.0362 0.0374 0.0363 0.0358 0.0464 0.0417 0.0355 0.0359 0.0443

40 0.1201 0.1152 0.0494 0.0376 0.0494 0.0485 0.0241 0.0238 0.0241 0.0210 0.1060 0.0493 0.0301 0.0467 0.0047

41 0.2578 0.2543 0.2535 0.2539 0.2568 0.2567 0.2544 0.2531 0.2540 0.2569 0.2584 0.2534 0.2582 0.2327 0.2533

42 0.3760 0.3587 0.4387 0.3842 0.4000 0.3780 0.3820 0.3813 0.3820 0.3789 0.3736 0.3824 0.4042 0.4342 0.3013

43 0.5740 0.5789 0.5902 0.5756 0.5991 0.5752 0.5731 0.5732 0.5742 0.6112 0.5827 0.5916 0.5789 0.6865 0.5858

44 0.1487 0.1506 0.2783 0.1504 0.2183 0.1496 0.2711 0.2704 0.2711 0.1623 0.1830 0.1860 0.1353 0.1277 0.2794

45 0.0848 0.0747 0.0521 0.0657 0.0619 0.0704 0.0433 0.0426 0.0434 0.0461 0.0834 0.0583 0.0437 0.0511 0.0380

46 0.0315 0.0280 0.0269 0.0286 0.0258 0.0287 0.0287 0.0262 0.0275 0.0276 0.0301 0.0271 0.0261 0.0338 0.0293

47 0.3609 0.3601 0.2858 0.2888 0.2505 0.2521 0.2921 0.2834 0.2880 0.2307 0.3531 0.2633 0.2804 0.4078 0.1635

48 0.1841 0.1807 0.1663 0.1759 0.1740 0.1702 0.1615 0.1610 0.1607 0.1706 0.4992 0.1713 0.1619 0.1617 0.1639

49 0.2637 0.2750 0.2905 0.2648 0.2810 0.2643 0.2644 0.2649 0.2706 0.2879 0.2715 0.2697 0.2868 0.3053 0.1728

50 0.1019 0.0817 0.0817 0.0935 0.0763 0.0652 0.0701 0.0627 0.0696 0.0604 0.1023 0.0830 0.0807 0.0777 0.0842

51 0.0462 0.0444 0.0566 0.0460 0.0463 0.0451 0.0384 0.0383 0.0384 0.0773 0.0460 0.0468 0.0405 0.1324 0.1498

52 0.0349 0.0358 0.0223 0.0346 0.0429 0.0349 0.0152 0.0151 0.0152 0.0172 0.0350 0.0343 0.0307 0.2497 0.0051

53 0.5722 0.5837 0.5764 0.5730 0.5736 0.5713 0.5719 0.5719 0.5719 0.5774 0.6019 0.5807 0.6036 0.5090 0.5275

54 0.2917 0.2873 0.2659 0.2853 0.2034 0.2307 0.2523 0.2505 0.2523 0.0824 0.2716 0.2270 0.2367 0.0244 0.0170

55 0.4173 0.4136 0.3495 0.3784 0.3408 0.3421 0.3313 0.3312 0.3327 0.3298 0.4051 0.3556 0.3429 0.2217 0.1966

56 0.3338 0.3338 0.3338 0.3338 0.3338 0.3338 0.3338 0.3338 0.3338 0.3338 0.3374 0.3338 0.3339 0.3401 0.3900

57 0.4963 0.4428 0.4003 0.2648 0.2503 0.3335 0.2753 0.2803 0.2719 0.2444 0.4704 0.3457 0.2554 0.2841 0.0471

58 0.2010 0.1917 0.1861 0.1846 0.1879 0.1731 0.1576 0.1584 0.1553 0.1932 0.1715 0.1805 0.1572 0.1370 0.1353

59 0.0329 0.0338 0.0538 0.0331 0.0398 0.0329 0.0333 0.0334 0.0333 0.0446 0.0452 0.0345 0.0530 0.0393 0.1398

60 0.0634 0.0669 0.0800 0.0636 0.0655 0.0634 0.0582 0.0582 0.0582 0.0642 0.0634 0.0661 0.0608 0.0846 0.0743

ME 0.2170 0.2117 0.2138 0.2015 0.1999 0.1977 0.1978 0.1960 0.1975 0.1973 0.2206 0.2004 0.2027 0.2060 0.1927

MER 9.2750 9.0667 10.0417 8.1083 8.2250 6.3083 6.2500 5.3917 6.1500 8.1500 10.3583 8.1500 8.3583 8.9250 7.2417

Mean Error and Mean Error Rank are abbreviated as ME and MER
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Table 14: Bias (the data sets are in the number sequence of Table 2)
No. NB BSE TAN SP-TAN NBTree LBR AODE MAPLMG AODESR LWNB IR BSEJ HidNB Logistic LibSVM

1 0.4147 0.3937 0.2995 0.3834 0.3538 0.3379 0.3139 0.3130 0.3140 0.2837 0.3878 0.3522 0.3190 0.3849 0.3314

2 0.1500 0.1128 0.1251 0.1291 0.1180 0.1183 0.1342 0.1251 0.1309 0.1092 0.1294 0.1112 0.1383 0.1408 0.2145

3 0.0657 0.0626 0.0560 0.0620 0.0505 0.0604 0.0648 0.0646 0.0641 0.0451 0.0509 0.0593 0.0623 0.0931 0.0993

4 0.1627 0.1547 0.1728 0.1594 0.1383 0.1593 0.1624 0.1622 0.1593 0.1549 0.1632 0.1469 0.1731 0.1482 0.1778

5 0.2262 0.2205 0.1400 0.1814 0.1346 0.1864 0.1493 0.1470 0.1486 0.1468 0.2160 0.1537 0.1548 0.1733 0.5140

6 0.1273 0.1295 0.1316 0.1284 0.1280 0.1275 0.1295 0.1301 0.1295 0.1295 0.1248 0.1293 0.1300 0.0689 0.0068

7 0.0256 0.0249 0.0414 0.0256 0.0256 0.0256 0.0275 0.0272 0.0275 0.0262 0.0251 0.0247 0.0303 0.0338 0.0289

8 0.1048 0.1047 0.0595 0.0459 0.0285 0.0434 0.0554 0.0489 0.0554 0.0462 0.0830 0.0437 0.0549 0.0512 0.0083

9 0.2410 0.1589 0.2202 0.1973 0.2410 0.2396 0.2026 0.2010 0.2026 0.2248 0.2436 0.1557 0.2554 0.1709 0.2137

10 0.4329 0.3869 0.3625 0.4081 0.4088 0.4100 0.4067 0.3971 0.4067 0.3468 0.3352 0.3823 0.3699 0.4019 0.3394

11 0.1198 0.1138 0.1119 0.1183 0.1058 0.1188 0.1149 0.1123 0.1127 0.1141 0.1164 0.1116 0.1213 0.1146 0.1691

12 0.1460 0.1472 0.1628 0.1358 0.1249 0.1381 0.1358 0.1435 0.1365 0.1283 0.1584 0.1373 0.1603 0.1416 0.1926

13 0.0098 0.0089 0.0191 0.0094 0.0104 0.0098 0.0107 0.0107 0.0103 0.0093 0.0082 0.0098 0.0092 0.0169 0.0238

14 0.2259 0.2302 0.2307 0.2303 0.2289 0.2301 0.2284 0.2370 0.2284 0.2357 0.2537 0.2353 0.2354 0.2247 0.2241

15 0.2028 0.1961 0.1852 0.1980 0.1848 0.2006 0.1953 0.1944 0.1942 0.1901 0.2011 0.1881 0.1911 0.1924 0.2844

16 0.1914 0.1813 0.1747 0.1849 0.1767 0.1872 0.1810 0.1805 0.1803 0.1692 0.1876 0.1811 0.1724 0.2242 0.1468

17 0.2139 0.2126 0.2174 0.2144 0.2136 0.2137 0.2141 0.2143 0.2141 0.2218 0.2154 0.2152 0.2096 0.2232 0.2171

18 0.1439 0.1366 0.1337 0.1412 0.1240 0.1432 0.1374 0.1354 0.1359 0.1380 0.1420 0.1345 0.1344 0.1308 0.1592

19 0.1253 0.1193 0.1055 0.1243 0.1166 0.1255 0.1210 0.1251 0.1210 0.1221 0.1174 0.1172 0.1133 0.1143 0.1664

20 0.1660 0.1555 0.1430 0.1551 0.1317 0.1556 0.1519 0.1486 0.1476 0.1496 0.1557 0.1399 0.1454 0.1385 0.2991

21 0.0892 0.0701 0.0424 0.0571 0.0284 0.0422 0.0430 0.0375 0.0430 0.0327 0.0751 0.0459 0.0485 0.0338 0.0348

22 0.1387 0.1333 0.1177 0.1345 0.1257 0.1375 0.1362 0.1349 0.1342 0.1262 0.1312 0.1300 0.1228 0.1292 0.1441

23 0.0094 0.0077 0.0066 0.0077 0.0056 0.0078 0.0074 0.0069 0.0073 0.0076 0.0075 0.0064 0.0065 0.0240 0.0145

24 0.0810 0.0792 0.0601 0.0802 0.0629 0.0787 0.0605 0.0606 0.0598 0.0609 0.0795 0.0764 0.0612 0.0816 0.0418

25 0.0385 0.0383 0.0385 0.0375 0.0372 0.0385 0.0375 0.0370 0.0375 0.0390 0.0396 0.0381 0.0380 0.0270 0.0247

26 0.1072 0.0457 0.0534 0.0537 0.0067 0.0152 0.0693 0.0457 0.0576 0.0150 0.1023 0.0188 0.0637 0.0199 0.0043

27 0.0529 0.0534 0.0703 0.0524 0.0529 0.0529 0.0566 0.0601 0.0566 0.0530 0.0528 0.0578 0.0566 0.0358 0.0417

28 0.2265 0.2265 0.2257 0.2258 0.2247 0.2252 0.2269 0.2271 0.2269 0.2275 0.2249 0.2246 0.2263 0.2270 0.2251

29 0.2163 0.2114 0.0962 0.0700 0.0573 0.0565 0.0668 0.0616 0.0660 0.0353 0.2065 0.0694 0.0809 0.1981 0.0152

30 0.3553 0.3553 0.3552 0.3553 0.3553 0.3553 0.3553 0.3553 0.3553 0.3553 0.3458 0.3553 0.3552 0.2614 0.2219

31 0.3355 0.3360 0.3407 0.3264 0.3355 0.3352 0.3432 0.3422 0.3432 0.3608 0.3380 0.3278 0.3500 0.3604 0.3514

32 0.1347 0.1280 0.0993 0.1218 0.1042 0.1322 0.1301 0.1299 0.1301 0.1279 0.1359 0.1027 0.1235 0.1227 0.1308

33 0.2087 0.1562 0.1271 0.1456 0.1193 0.1183 0.1530 0.1401 0.1501 0.1158 0.1625 0.1236 0.1445 0.2045 0.1194

34 0.0095 0.0010 0.0008 0.0006 0.0000 0.0002 0.0003 0.0002 0.0003 0.0000 0.0078 0.0000 0.0004 0.0001 0.0000

35 0.2004 0.1812 0.1777 0.1368 0.1168 0.1383 0.1555 0.1413 0.1535 0.1658 0.1941 0.1516 0.1642 0.1332 0.2375

36 0.0242 0.0264 0.0281 0.0256 0.0261 0.0242 0.0256 0.0254 0.0256 0.0328 0.0235 0.0260 0.0319 0.0219 0.0252

37 0.0901 0.0901 0.0606 0.0793 0.0115 0.0241 0.0651 0.0658 0.0651 0.0128 0.0737 0.0224 0.0509 0.0686 0.0004

38 0.0648 0.0589 0.0249 0.0524 0.0294 0.0278 0.0220 0.0220 0.0218 0.0168 0.0626 0.0331 0.0302 0.0236 0.0066

39 0.0467 0.0299 0.0290 0.0308 0.0211 0.0242 0.0239 0.0231 0.0238 0.0222 0.0356 0.0245 0.0243 0.0276 0.0363

40 0.1031 0.0919 0.0285 0.0160 0.0160 0.0185 0.0144 0.0137 0.0144 0.0092 0.0867 0.0188 0.0189 0.0361 0.0029

41 0.1799 0.1782 0.1764 0.1768 0.1780 0.1796 0.1794 0.1785 0.1790 0.1753 0.1801 0.1770 0.1787 0.2064 0.2032

42 0.2748 0.2730 0.2804 0.2683 0.2649 0.2747 0.2912 0.2897 0.2912 0.2970 0.2721 0.2637 0.2952 0.2590 0.2847

43 0.3920 0.3805 0.3717 0.3869 0.3690 0.3889 0.3894 0.3896 0.3898 0.4109 0.3803 0.3755 0.3888 0.3809 0.3854

44 0.0772 0.0793 0.1105 0.0760 0.0799 0.0772 0.1293 0.1291 0.1293 0.0657 0.0966 0.0795 0.0643 0.0625 0.1474

45 0.0612 0.0492 0.0240 0.0393 0.0236 0.0323 0.0231 0.0225 0.0229 0.0214 0.0591 0.0289 0.0240 0.0331 0.0177

46 0.0269 0.0235 0.0221 0.0236 0.0181 0.0225 0.0247 0.0222 0.0237 0.0207 0.0257 0.0211 0.0220 0.0286 0.0176

47 0.3304 0.3155 0.2455 0.2273 0.1672 0.1824 0.2553 0.2429 0.2493 0.1614 0.3118 0.1789 0.2403 0.3904 0.1171

48 0.1730 0.1587 0.1475 0.1529 0.1425 0.1497 0.1496 0.1498 0.1490 0.1451 0.3982 0.1476 0.1510 0.1513 0.1492

49 0.1705 0.1686 0.1584 0.1675 0.1507 0.1691 0.1670 0.1672 0.1632 0.1505 0.1651 0.1616 0.1608 0.1547 0.0863

50 0.0928 0.0647 0.0674 0.0816 0.0369 0.0429 0.0591 0.0513 0.0588 0.0341 0.0847 0.0624 0.0717 0.0612 0.0569

51 0.0379 0.0349 0.0361 0.0373 0.0378 0.0341 0.0292 0.0291 0.0292 0.0353 0.0362 0.0331 0.0313 0.0441 0.0999

52 0.0206 0.0210 0.0086 0.0204 0.0169 0.0204 0.0066 0.0066 0.0066 0.0069 0.0195 0.0200 0.0182 0.0884 0.0020

53 0.3949 0.3853 0.4001 0.3959 0.4004 0.3982 0.3994 0.3994 0.3994 0.4046 0.3489 0.3900 0.4167 0.3955 0.2891

54 0.2511 0.2352 0.1748 0.2076 0.0654 0.1222 0.2015 0.1963 0.2015 0.0339 0.2385 0.0877 0.1774 0.0168 0.0162

55 0.2949 0.2872 0.1895 0.2460 0.1748 0.1958 0.1956 0.1942 0.1946 0.1772 0.2840 0.2086 0.2017 0.1513 0.1077

56 0.3293 0.3293 0.3293 0.3293 0.3293 0.3293 0.3293 0.3293 0.3293 0.3293 0.3247 0.3293 0.3293 0.3232 0.2588

57 0.2467 0.2307 0.1607 0.0779 0.0700 0.1068 0.0896 0.0931 0.0879 0.0720 0.2205 0.1093 0.0833 0.1204 0.0074

58 0.1755 0.1441 0.1203 0.1434 0.1047 0.1128 0.1165 0.1145 0.1133 0.1013 0.1337 0.1294 0.1170 0.1143 0.1118

59 0.0141 0.0130 0.0185 0.0141 0.0149 0.0141 0.0142 0.0143 0.0142 0.0174 0.0180 0.0142 0.0193 0.0203 0.0777

60 0.0288 0.0278 0.0337 0.0282 0.0249 0.0288 0.0267 0.0265 0.0267 0.0280 0.0288 0.0294 0.0191 0.0295 0.0348

MB 0.1600 0.1495 0.1358 0.1390 0.1242 0.1328 0.1368 0.1349 0.1358 0.1249 0.1555 0.1288 0.1365 0.1376 0.1328

MBR 11.9259 9.3750 7.8500 8.5750 4.5583 7.8833 8.4583 7.5750 7.6917 6.1000 10.0667 6.2750 8.2750 8.1000 7.2917

Mean Bias and Mean Bias Rank are abbreviated as MB and MBR
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Table 15: Variance (the data sets are in the number sequence of Table 2)
No. NB BSE TAN SP-TAN NBTree LBR AODE MAPLMG AODESR LWNB IR BSEJ HidNB Logistic LibSVM

1 0.0675 0.0861 0.1723 0.0942 0.1268 0.1362 0.1487 0.1493 0.1486 0.1896 0.0874 0.1235 0.1573 0.0596 0.1162

2 0.0102 0.0275 0.0169 0.0234 0.0237 0.0154 0.0128 0.0124 0.0111 0.0441 0.0089 0.0278 0.0162 0.0083 0.0180

3 0.0206 0.0274 0.0219 0.0198 0.0308 0.0237 0.0186 0.0188 0.0172 0.0338 0.0365 0.0231 0.0239 0.0431 0.0609

4 0.1232 0.1265 0.1316 0.1255 0.1446 0.1247 0.1208 0.1209 0.1252 0.1258 0.1231 0.1414 0.1205 0.1577 0.1164

5 0.1487 0.1502 0.1498 0.1565 0.1822 0.1625 0.1467 0.1469 0.1452 0.1500 0.1487 0.1637 0.1419 0.2270 0.0947

6 0.1190 0.1201 0.1189 0.1179 0.1201 0.1191 0.1199 0.1198 0.1199 0.1206 0.1374 0.1184 0.1203 0.0407 0.0157

7 0.0025 0.0034 0.0403 0.0025 0.0025 0.0025 0.0082 0.0086 0.0082 0.0083 0.0097 0.0070 0.0177 0.0481 0.0077

8 0.0509 0.0509 0.0433 0.0273 0.0482 0.0527 0.0473 0.0434 0.0473 0.0615 0.0538 0.0263 0.0220 0.0216 0.0179

9 0.1165 0.1286 0.2256 0.1694 0.1165 0.1171 0.1432 0.1382 0.1432 0.1377 0.1147 0.1618 0.2538 0.1766 0.1463

10 0.0667 0.1148 0.1454 0.0913 0.0927 0.0907 0.0895 0.0991 0.0896 0.1784 0.0982 0.1209 0.1278 0.0904 0.1163

11 0.0259 0.0334 0.0561 0.0293 0.0513 0.0272 0.0317 0.0330 0.0335 0.0572 0.0342 0.0403 0.0387 0.0461 0.1156

12 0.1018 0.1060 0.1251 0.1122 0.1370 0.1113 0.1144 0.1212 0.1173 0.1327 0.1048 0.1256 0.1024 0.1263 0.1217

13 0.0110 0.0129 0.0369 0.0119 0.0264 0.0110 0.0116 0.0115 0.0117 0.0164 0.0114 0.0163 0.0117 0.0171 0.0208

14 0.1219 0.1139 0.1167 0.1146 0.1166 0.1144 0.1172 0.1119 0.1172 0.1069 0.0770 0.1061 0.1168 0.0563 0.1032

15 0.0598 0.0686 0.1030 0.0671 0.0928 0.0640 0.0637 0.0647 0.0660 0.0938 0.0628 0.0868 0.0680 0.0645 0.0218

16 0.1158 0.1235 0.1269 0.1208 0.1279 0.1181 0.1222 0.1233 0.1227 0.1272 0.1262 0.1259 0.1344 0.0952 0.0884

17 0.0682 0.0669 0.0691 0.0683 0.0710 0.0680 0.0702 0.0696 0.0720 0.0615 0.0662 0.0642 0.0928 0.0434 0.0541

18 0.0351 0.0467 0.0629 0.0422 0.0720 0.0360 0.0397 0.0412 0.0415 0.0711 0.0458 0.0593 0.0476 0.0550 0.0634

19 0.0379 0.0474 0.0614 0.0451 0.0703 0.0400 0.0453 0.0421 0.0453 0.0624 0.0507 0.0590 0.0523 0.1090 0.0615

20 0.0274 0.0328 0.0768 0.0381 0.0769 0.0364 0.0395 0.0410 0.0432 0.0752 0.0358 0.0647 0.0478 0.1070 0.0726

21 0.0073 0.0146 0.0220 0.0159 0.0280 0.0219 0.0114 0.0122 0.0114 0.0164 0.0274 0.0234 0.0107 0.0517 0.0151

22 0.0199 0.0368 0.0578 0.0320 0.0490 0.0225 0.0222 0.0238 0.0246 0.0561 0.0359 0.0466 0.0493 0.0499 0.0764

23 0.0057 0.0058 0.0047 0.0047 0.0071 0.0053 0.0056 0.0053 0.0059 0.0083 0.0048 0.0056 0.0056 0.0102 0.0118

24 0.0228 0.0229 0.0304 0.0223 0.0455 0.0231 0.0226 0.0224 0.0230 0.0314 0.0265 0.0240 0.0220 0.0792 0.0241

25 0.0227 0.0228 0.0238 0.0228 0.0240 0.0227 0.0200 0.0201 0.0200 0.0230 0.0236 0.0225 0.0447 0.0235 0.0149

26 0.0198 0.0257 0.0115 0.0199 0.0130 0.0166 0.0200 0.0117 0.0177 0.0187 0.0215 0.0137 0.0152 0.0087 0.0066

27 0.0818 0.0856 0.0999 0.0869 0.0818 0.0818 0.0855 0.0788 0.0855 0.0792 0.0872 0.0840 0.0879 0.0614 0.0538

28 0.0371 0.0380 0.0411 0.0391 0.0421 0.0393 0.0393 0.0397 0.0393 0.0496 0.0422 0.0428 0.0418 0.0421 0.0464

29 0.0431 0.0438 0.0729 0.0765 0.0940 0.0965 0.0397 0.0395 0.0397 0.0467 0.0481 0.0910 0.0367 0.0300 0.0156

30 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 0.0797 0.0669 0.0669 0.0654 0.0780

31 0.1982 0.1984 0.2575 0.2024 0.1982 0.2004 0.2068 0.2065 0.2068 0.2123 0.2038 0.2066 0.1950 0.1921 0.2355

32 0.0468 0.0572 0.0883 0.0625 0.1097 0.0501 0.0544 0.0536 0.0544 0.0719 0.0629 0.0929 0.0599 0.1303 0.0796

33 0.0186 0.0341 0.0453 0.0398 0.0488 0.0471 0.0303 0.0343 0.0301 0.0528 0.0386 0.0472 0.0317 0.0046 0.0256

34 0.0014 0.0003 0.0005 0.0009 0.0001 0.0006 0.0001 0.0001 0.0001 0.0000 0.0031 0.0002 0.0001 0.0015 0.0000

35 0.1107 0.1150 0.1343 0.0996 0.0996 0.1110 0.1231 0.1080 0.1263 0.1504 0.1182 0.0916 0.1368 0.1608 0.1539

36 0.0298 0.0332 0.0357 0.0316 0.0331 0.0298 0.0308 0.0315 0.0308 0.0312 0.0332 0.0333 0.0486 0.0279 0.0270

37 0.0077 0.0077 0.0134 0.0096 0.0230 0.0201 0.0089 0.0118 0.0089 0.0235 0.0120 0.0203 0.0094 0.0065 0.0015

38 0.0146 0.0186 0.0200 0.0190 0.0419 0.0331 0.0116 0.0118 0.0117 0.0139 0.0161 0.0263 0.0110 0.0385 0.0043

39 0.0154 0.0157 0.0160 0.0162 0.0169 0.0148 0.0124 0.0143 0.0125 0.0137 0.0108 0.0172 0.0112 0.0083 0.0080

40 0.0170 0.0232 0.0209 0.0216 0.0334 0.0300 0.0098 0.0101 0.0098 0.0118 0.0194 0.0305 0.0112 0.0106 0.0018

41 0.0779 0.0762 0.0771 0.0771 0.0788 0.0771 0.0750 0.0746 0.0751 0.0815 0.0783 0.0764 0.0795 0.0263 0.0501

42 0.1012 0.0857 0.1583 0.1160 0.1351 0.1033 0.0908 0.0917 0.0908 0.0819 0.1014 0.1187 0.1091 0.1752 0.0167

43 0.1820 0.1984 0.2185 0.1888 0.2301 0.1864 0.1837 0.1836 0.1844 0.2003 0.2024 0.2161 0.1901 0.3056 0.2003

44 0.0715 0.0713 0.1678 0.0744 0.1384 0.0724 0.1418 0.1413 0.1418 0.0966 0.0864 0.1066 0.0710 0.0653 0.1320

45 0.0236 0.0255 0.0281 0.0263 0.0383 0.0381 0.0202 0.0201 0.0205 0.0247 0.0243 0.0295 0.0196 0.0180 0.0203

46 0.0045 0.0045 0.0048 0.0050 0.0077 0.0062 0.0040 0.0040 0.0038 0.0069 0.0044 0.0060 0.0040 0.0052 0.0116

47 0.0305 0.0446 0.0403 0.0614 0.0833 0.0697 0.0369 0.0405 0.0388 0.0693 0.0413 0.0843 0.0401 0.0174 0.0465

48 0.0111 0.0220 0.0188 0.0230 0.0315 0.0205 0.0119 0.0112 0.0117 0.0255 0.1010 0.0237 0.0109 0.0104 0.0147

49 0.0931 0.1064 0.1321 0.0974 0.1303 0.0953 0.0974 0.0977 0.1074 0.1374 0.1065 0.1081 0.1260 0.1506 0.0865

50 0.0091 0.0170 0.0143 0.0119 0.0394 0.0223 0.0109 0.0114 0.0108 0.0263 0.0176 0.0205 0.0090 0.0165 0.0273

51 0.0083 0.0095 0.0205 0.0087 0.0085 0.0110 0.0092 0.0093 0.0092 0.0419 0.0099 0.0137 0.0092 0.0883 0.0499

52 0.0143 0.0148 0.0137 0.0142 0.0260 0.0145 0.0086 0.0085 0.0086 0.0102 0.0155 0.0144 0.0125 0.1613 0.0031

53 0.1773 0.1984 0.1763 0.1770 0.1732 0.1731 0.1726 0.1726 0.1726 0.1727 0.2530 0.1906 0.1868 0.1135 0.2384

54 0.0406 0.0520 0.0911 0.0777 0.1380 0.1085 0.0508 0.0542 0.0508 0.0484 0.0331 0.1393 0.0593 0.0076 0.0008

55 0.1224 0.1264 0.1600 0.1324 0.1659 0.1463 0.1357 0.1370 0.1381 0.1526 0.1211 0.1470 0.1412 0.0704 0.0890

56 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0127 0.0045 0.0046 0.0169 0.1311

57 0.2496 0.2120 0.2396 0.1870 0.1804 0.2267 0.1856 0.1872 0.1840 0.1724 0.2499 0.2364 0.1721 0.1637 0.0397

58 0.0255 0.0476 0.0658 0.0412 0.0832 0.0603 0.0410 0.0439 0.0420 0.0919 0.0378 0.0512 0.0403 0.0227 0.0235

59 0.0188 0.0209 0.0354 0.0190 0.0249 0.0188 0.0191 0.0191 0.0191 0.0272 0.0272 0.0203 0.0337 0.0190 0.0621

60 0.0346 0.0392 0.0463 0.0354 0.0406 0.0346 0.0315 0.0317 0.0315 0.0362 0.0346 0.0367 0.0416 0.0550 0.0395

MV 0.0570 0.0622 0.0780 0.0624 0.0757 0.0649 0.0611 0.0611 0.0616 0.0723 0.0651 0.0715 0.0662 0.0684 0.0599

MVR 4.9167 8.0750 10.9333 7.4750 11.2417 7.5583 5.7667 5.9500 6.3333 10.4333 8.6259 10.0583 7.9167 7.6833 7.0333

Mean Variance and Mean Variance Rank are abbreviated as MV and MVR
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Table 16: RMSE (the data sets are in the number sequence of Table 2)
No. NB BSE TAN SP-TAN NBTree LBR AODE MAPLMG AODESR LWNB IR BSEJ HidNB Logistic

1 0.4647 0.4547 0.4284 0.4552 0.4590 0.4524 0.4219 0.4215 0.4219 0.4427 0.4257 0.4488 0.4326 0.4176

2 0.3412 0.3141 0.3107 0.3323 0.3247 0.3143 0.3224 0.3131 0.3145 0.3366 0.3088 0.3129 0.3215 0.3207

3 0.1471 0.1492 0.1316 0.1434 0.1413 0.1446 0.1441 0.1441 0.1365 0.1343 0.1398 0.1436 0.1363 0.1856

4 0.1400 0.1385 0.1472 0.1400 0.1441 0.1399 0.1386 0.1385 0.1381 0.1411 0.1472 0.1420 0.1388 0.1551

5 0.3040 0.3027 0.2677 0.2907 0.2807 0.2937 0.2697 0.2692 0.2691 0.2736 0.2902 0.2808 0.2673 0.3329

6 0.3398 0.3473 0.3389 0.3393 0.3400 0.3398 0.3370 0.3372 0.3370 0.3373 0.3420 0.3414 0.3367 0.2124

7 0.1619 0.1642 0.2693 0.1619 0.1619 0.1619 0.1802 0.1801 0.1803 0.1796 0.1753 0.1728 0.2004 0.2805

8 0.2286 0.2285 0.1904 0.1800 0.1741 0.1906 0.2060 0.1950 0.2060 0.1980 0.2156 0.1789 0.1768 0.1643

9 0.4233 0.3877 0.4666 0.4325 0.4233 0.4234 0.4173 0.4149 0.4173 0.4409 0.4529 0.4028 0.4860 0.4744

10 0.4505 0.4450 0.4479 0.4504 0.4526 0.4508 0.4412 0.4407 0.4412 0.4660 0.2424 0.4485 0.4405 0.4419

11 0.3434 0.3417 0.3628 0.3454 0.3609 0.3441 0.3395 0.3355 0.3376 0.3685 0.3396 0.3505 0.3480 0.3494

12 0.4658 0.4678 0.4900 0.4623 0.4799 0.4670 0.4607 0.4717 0.4626 0.4605 0.5056 0.4723 0.4610 0.5049

13 0.0736 0.0739 0.1230 0.0743 0.0991 0.0736 0.0756 0.0756 0.0752 0.0833 0.0758 0.0845 0.0728 0.1042

14 0.4839 0.4843 0.4847 0.4851 0.4855 0.4843 0.4839 0.4866 0.4839 0.4844 0.4850 0.4849 0.4875 0.4365

15 0.4254 0.4255 0.4631 0.4302 0.4531 0.4282 0.4227 0.4232 0.4243 0.4701 0.4228 0.4434 0.4247 0.4214

16 0.3942 0.3915 0.3877 0.3924 0.3944 0.3936 0.3857 0.3856 0.3848 0.3877 0.3890 0.3935 0.3854 0.3981

17 0.4506 0.4457 0.4605 0.4578 0.4594 0.4516 0.4572 0.4553 0.4585 0.4621 0.4548 0.4498 0.4770 0.4414

18 0.3740 0.3769 0.3884 0.3793 0.4003 0.3744 0.3663 0.3652 0.3660 0.3948 0.3685 0.3910 0.3692 0.3763

19 0.3726 0.3735 0.3726 0.3782 0.4013 0.3746 0.3683 0.3690 0.3683 0.3836 0.3559 0.3891 0.3633 0.4635

20 0.4056 0.3978 0.4301 0.4057 0.4277 0.4047 0.3951 0.3935 0.3940 0.4335 0.3857 0.4213 0.3927 0.4610

21 0.2956 0.2747 0.2333 0.2563 0.2242 0.2360 0.2083 0.2003 0.2083 0.2058 0.2579 0.2489 0.2176 0.2898

22 0.3546 0.3620 0.3588 0.3614 0.3704 0.3552 0.3490 0.3487 0.3478 0.3664 0.3469 0.3720 0.3480 0.3675

23 0.0788 0.0766 0.0678 0.0723 0.0743 0.0749 0.0733 0.0719 0.0743 0.0815 0.0734 0.0723 0.0718 0.1158

24 0.3129 0.3099 0.2905 0.3112 0.3176 0.3104 0.2748 0.2749 0.2739 0.2939 0.2924 0.3077 0.2715 0.3990

25 0.1824 0.1856 0.1850 0.1831 0.1841 0.1824 0.1773 0.1776 0.1773 0.1835 0.1891 0.1854 0.2107 0.1773

26 0.3045 0.2763 0.2293 0.2403 0.1314 0.1675 0.2682 0.2314 0.2580 0.1763 0.2999 0.1680 0.2525 0.1544

27 0.3239 0.3353 0.3732 0.3377 0.3239 0.3239 0.3288 0.3280 0.3288 0.3283 0.3637 0.3435 0.3342 0.2992

28 0.1995 0.1999 0.2027 0.2000 0.2017 0.2001 0.2004 0.2005 0.2004 0.2089 0.2024 0.2016 0.2013 0.2023

29 0.1200 0.1187 0.0999 0.0940 0.0990 0.0976 0.0769 0.0753 0.0766 0.0741 0.1150 0.1005 0.0800 0.1132

30 0.4983 0.4983 0.4982 0.4983 0.4983 0.4983 0.4983 0.4983 0.4983 0.4983 0.4978 0.4983 0.4982 0.4664

31 0.5796 0.5801 0.6100 0.5788 0.5796 0.5808 0.5845 0.5839 0.5845 0.6045 0.5871 0.5812 0.6438 0.5967

32 0.2753 0.2755 0.2809 0.2771 0.3006 0.2764 0.2686 0.2688 0.2686 0.2883 0.2866 0.2892 0.2670 0.3478

33 0.4001 0.3708 0.3510 0.3660 0.3553 0.3506 0.3606 0.3543 0.3590 0.3572 0.3766 0.3565 0.3560 0.3840

34 0.0946 0.0428 0.0326 0.0370 0.0114 0.0264 0.0162 0.0133 0.0190 0.0067 0.0864 0.0182 0.0200 0.0359

35 0.0991 0.0957 0.1003 0.0875 0.0858 0.0900 0.0934 0.0895 0.0938 0.1012 0.1003 0.0853 0.0950 0.1069

36 0.1704 0.1814 0.1870 0.1753 0.1807 0.1704 0.1740 0.1744 0.1740 0.1899 0.1839 0.1810 0.2022 0.1789

37 0.1769 0.1769 0.1441 0.1608 0.1074 0.1356 0.1578 0.1479 0.1578 0.1224 0.1590 0.1283 0.1406 0.1468

38 0.1183 0.1162 0.0883 0.1122 0.1106 0.1035 0.0760 0.0760 0.0758 0.0754 0.1104 0.1026 0.0828 0.1095

39 0.1445 0.1228 0.1236 0.1258 0.1149 0.1150 0.1066 0.1078 0.1065 0.1091 0.1182 0.1201 0.1053 0.1054

40 0.1437 0.1394 0.0914 0.0798 0.0887 0.0888 0.0623 0.0617 0.0623 0.0606 0.1279 0.0932 0.0683 0.0857

41 0.4237 0.4218 0.4177 0.4224 0.4228 0.4225 0.4189 0.4181 0.4171 0.4217 0.4208 0.4223 0.4164 0.3996

42 0.4297 0.4223 0.4750 0.4408 0.4563 0.4320 0.4402 0.4407 0.4402 0.4460 0.4556 0.4467 0.4474 0.4841

43 0.1899 0.1897 0.1956 0.1909 0.2001 0.1905 0.1895 0.1894 0.1895 0.2055 0.1942 0.1947 0.1884 0.2345

44 0.3541 0.3581 0.5110 0.3569 0.4485 0.3556 0.4784 0.4804 0.4784 0.3823 0.4266 0.3996 0.3324 0.3542

45 0.1454 0.1342 0.1124 0.1288 0.1213 0.1307 0.1007 0.1001 0.1008 0.1059 0.1368 0.1217 0.0991 0.1075

46 0.1671 0.1598 0.1529 0.1597 0.1495 0.1594 0.1580 0.1512 0.1541 0.1531 0.1572 0.1561 0.1484 0.1671

47 0.3997 0.3999 0.3577 0.3629 0.3426 0.3443 0.3577 0.3547 0.3561 0.3271 0.3875 0.3475 0.3536 0.4211

48 0.3845 0.3813 0.3688 0.3783 0.3794 0.3749 0.3621 0.3621 0.3606 0.3771 0.4390 0.3762 0.3645 0.3626

49 0.4729 0.4764 0.4736 0.4730 0.4870 0.4729 0.4673 0.4672 0.4618 0.4742 0.4485 0.4758 0.4627 0.5469

50 0.3004 0.2642 0.2615 0.2858 0.2593 0.2343 0.2389 0.2267 0.2380 0.2262 0.2674 0.2710 0.2590 0.2462

51 0.1537 0.1513 0.1712 0.1534 0.1539 0.1523 0.1406 0.1403 0.1406 0.2175 0.1530 0.1556 0.1438 0.2946

52 0.1032 0.1043 0.0821 0.1028 0.1107 0.1030 0.0659 0.0656 0.0658 0.0715 0.1046 0.1023 0.0948 0.2811

53 0.4648 0.4662 0.4671 0.4655 0.4666 0.4649 0.4649 0.4650 0.4649 0.4667 0.4696 0.4662 0.4764 0.4680

54 0.4337 0.4329 0.4209 0.4322 0.4050 0.4021 0.4044 0.4030 0.4044 0.2821 0.4287 0.4059 0.3956 0.1381

55 0.4001 0.3955 0.3449 0.3791 0.3596 0.3563 0.3292 0.3295 0.3286 0.3388 0.3579 0.3681 0.3294 0.2835

56 0.3275 0.3275 0.3275 0.3275 0.3275 0.3275 0.3275 0.3275 0.3275 0.3276 0.3302 0.3275 0.3276 0.3277

57 0.2476 0.2320 0.2289 0.1916 0.1888 0.2165 0.1904 0.1929 0.1892 0.1865 0.2443 0.2150 0.1840 0.2235

58 0.3364 0.3176 0.2993 0.3144 0.3123 0.2956 0.2726 0.2716 0.2701 0.3142 0.2847 0.3080 0.2730 0.2554

59 0.1354 0.1364 0.1718 0.1362 0.1483 0.1354 0.1341 0.1342 0.1341 0.1574 0.1685 0.1394 0.1616 0.1575

60 0.1214 0.1247 0.1368 0.1207 0.1243 0.1214 0.1145 0.1144 0.1145 0.1218 0.1211 0.1231 0.1169 0.1483

MR 0.2942 0.2891 0.2914 0.2852 0.2848 0.2797 0.2774 0.2756 0.2766 0.2802 0.2882 0.2838 0.2793 0.2921

MRR 9.1500 9.0167 8.7583 8.3750 8.7167 6.7750 5.2000 4.6083 4.6500 7.9250 8.8833 8.4167 5.6833 8.8417

Mean RMSE and Mean RMSE Rank are abbreviated as MR and MRR
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