Pre-publication draft of a paper which appeared in the Proceedings of the Sixteenth International Conference on Machine Learning (ICM
493-502. Morgan Kaufmann

Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning
Technique Competitive to Boosting Decision Trees

Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting
School of Computing and Mathematics
Deakin University
Victoria 3217 Australia
{zijian,webb,kmting }@deakin.edu.au

Abstract

LBR is a lazy semi-naive Bayesian classifier
learning technique, designed to alleviate the
attribute interdependence problem of naive
Bayesian classification. To classify a test ex-
ample, it creates a conjunctive rule that se-
lects a most appropriate subset of training
examples and induces a local naive Bayesian
classifier using this subset. LBR can signifi-
cantly improve the performance of the naive
Bayesian classifier. A bias and variance anal-
ysis of LBR reveals that it significantly re-
duces the bias of naive Bayesian classification
at a cost of a slight increase in variance. It
is interesting to compare this lazy technique
with boosting and bagging, two well-known
state-of-the-art non-lazy learning techniques.
Empirical comparison of LBR with boosting
decision trees on discrete valued data shows
that LBR has, on average, significantly lower
variance and higher bias. As a result of the
interaction of these effects, the average pre-
diction error of LBR over a range of learn-
ing tasks is at a level directly comparable to
boosting. LBR provides a very competitive
discrete valued learning technique where er-
ror minimization is the primary concern. It
is very efficient when a single classifier is to
be applied to classify few cases, such as in a
typical incremental learning scenario.

1 INTRODUCTION

Among the commonly used and well studied classi-
fier learning techniques, the simple and computation-
ally efficient naive Bayesian classifier (Duda & Hart,
1973; Kononenko, 1990; Langley & Sage, 1994) has
been shown in many domains to be surprisingly accu-
rate compared to alternatives including decision tree

learning, rule learning, neural networks, and instance-
based learning (Cestnik, Kononenko, & Bratko, 1987;
Kononenko, 1990; Domingos & Pazzani, 1996). Naive
Bayesian classification is based on Bayes’ theorem
and an assumption that all attributes are mutually
independent within each class. This technique pre-
dicts that a test example with a vector of attribute
values V. = (vy,vs,---,v,) belongs to the class C;
that maximizes the posterior probability P(C;|V) x
P(Cy) [1; P(vj|C;), where P(C;) is the prior probabil-
ity of class C;, and P(v;|C;) is the conditional proba-
bility that v; occurs in class C; examples. The prior
probability and conditional probabilities are usually
directly estimated from frequency counts over a given
training set.

The attribute independence assumption makes the ap-
plication of Bayes’ theorem to classification practi-
cal in many domains. Domingos & Pazzani (1996)
argue that the naive Bayesian classifier is optimal
even when the independence assumption is violated,
so long as the ranks of the conditional probabilities of
classes given an example are correct. However, pre-
vious research has shown that semi-naive techniques
and Bayesian networks that explicitly adjust the naive
strategy to allow for violations of the independence as-
sumption, can improve upon the prediction accuracy of
the naive Bayesian classifier in many domains (Fried-
man & Goldszmidt, 1996; Kohavi, 1996; Kononenko,
1991; Langley, 1993; Langley & Sage, 1994; Pazzani,
1998; Sahami, 1996; Singh, & Provan, 1996; Webb &
Pazzani, 1998). This suggests that the ranks of condi-
tional probabilities are frequently not correct.

To tackle this problem, the naive Bayesian tree learner,
NBTREE (Kohavi, 1996), combines naive Bayesian
classification and decision tree learning (Breiman,
Friedman, Olshen & Stone, 1984; Quinlan, 1993). Tt
uses a tree structure to split the instance space into
sub-spaces defined by the paths of the tree. It gen-
erates one naive Bayesian classifier in each sub-space.
The decision nodes of these trees contain the univari-

michelle
Pre-publication draft of a paper which appeared in the Proceedings of the Sixteenth International Conference on Machine Learning (ICML-99), pages 493-502. Morgan Kaufmann

ate tests of conventional decision trees. Each leaf of
a naive Bayesian tree contains a local naive Bayesian
classifier that does not consider attributes involved in
tests on the path leading to the leaf, and is used to
classify examples that reach this leaf. It has been
shown that NBTREE frequently achieves higher ac-
curacy than either a naive Bayesian classifier or a de-
cision tree learner (Kohavi, 1996).

Although NBTREE can alleviate the attribute inter-
dependence problem of naive Bayesian classification to
some extent, NBTREE suffers from the replication and
fragmentation problems (Pagallo & Haussler, 1990) as
well as the small disjunct problem (Holte, Acker, &
Porter, 1989; Ting, 1994) due to the tree structure. To
solve these problems and further improve the perfor-
mance of naive Bayesian classification, we previously
proposed a lazy Bayesian rule (LBR) learning tech-
nique (Zheng & Webb, 1998). LBR can be thought
of as applying lazy learning techniques (Aha, 1997) to
naive Bayesian tree induction. At classification time,
for each test example, LBR builds a most appropriate
rule with a conjunction of conditions as its antecedent
and a local naive Bayesian classifier as its consequent.
Our experimental results (Zheng & Webb, 1998) have
shown that LBR is, on average, more accurate than
a naive Bayesian classifier, C4.5 (Quinlan, 1993), our
implementation (Zheng & Webb, 1998) of NBTREE
(Kohavi, 1996), a constructive Bayesian classifier that
eliminates attributes and constructs new attributes us-
ing Cartesian products of existing nominal attributes
(Pazzani, 1998), a selective naive Bayesian classifier
(Langley & Sage, 1994), and a lazy decision tree learn-
ing algorithm (Friedman, Kohavi & Yun, 1996).

While these comparisons with directly related algo-
rithms reveal good performance, it is interesting to
hold a new contender up against the state-of-the-
art. Recent studies have shown that committee learn-
ing techniques, notably boosting and bagging, achieve
very low prediction error, especially for decision tree
learning (Bauer & Kohavi, 1999; Breiman, 1996; Fre-
und & Schapire, 1997; Quinlan, 1996; Schapire, Fre-
und, Bartlett & Lee, 1997). These techniques generate
multiple models to form a committee by repeated ap-
plication of a single base learning algorithm. At clas-
sification time, the committee members vote to make
the final decision. Here, we compare LBR with boost-
ing and bagging decision trees, as previous research
showed that they achieve very high average accuracy
(Bauer & Kohavi, 1999; Quinlan, 1996). It is interest-
ing to note that boosting naive Bayes is not very ef-
fective (Ting & Zheng, 1999) as boosting requires that
the base learner be sensitive to variations in the train-
ing set while naive Bayes is very stable across training
samples, resulting in low variance but high bias.

The following section describes the algorithms used in

this paper, LBR, AdaBoost, and bagging. Section 3
contains empirical studies. We first carry out exten-
sions to our previous analysis of LBR (Zheng & Webb,
1998), and then compare LBR to AdaBoost and bag-
ging. We will show that LBR can significantly reduce
the bias of naive Bayesian classification at a cost of a
slight increase in variance. Furthermore, LBR has, on
average, significantly lower variance and higher bias
than AdaBoost with decision trees. As a result of the
interaction of these effects, the average prediction er-
ror of LBR over a range of learning tasks is at a level
directly comparable to AdaBoost. Finally, Section 4
summarizes our findings.

2 THE LBR, ADABOOST, AND
BAGGING ALGORITHMS

We describe the LBR algorithm in the following sub-
section. Sub-sections 2.2 and 2.3 present short descrip-
tions of AdaBoost and bagging respectively. Readers
are referred to elsewhere for more detailed descriptions
of these two algorithms (Freund & Schapire, 1997;
Breiman, 1996). The empirical studies in this paper
also involve two other algorithms: a naive Bayesian
classifier, NB, and a decision tree learner, C4.5. NB
was described briefly in Section 1. More detail is avail-
able elsewhere (Duda & Hart, 1973; Kononenko, 1990;
Langley & Sage, 1994). In our implementation of NB,
when the probability of an attribute value conditional
on a class is estimated from a training set, the m-
estimate (Cestnik, 1990) with m = 2 is used. When
the probability of a class is estimated, the Laplace esti-
mate (Cestnik, 1990) is used. We assume that readers
are familiar with C4.5, since it is widely used. A com-
plete description of C4.5 is given by Quinlan (1993).

2.1 LBR

LBR uses lazy learning to alleviate the attribute inter-
dependence problem of naive Bayesian classification,
as well as to avoid the replication, fragmentation, and
small disjunct problems from which NBTREE (Kohavi,
1996) may suffer. It retains all training examples un-
til classification time. Before classifying a test exam-
ple, LBR generates a rule (called a Bayesian rule) that
is most appropriate to the test example. This con-
trasts with creating a model at training time, such as
NBTREE’s single tree, that is, on average, most appro-
priate to all examples. The antecedent of a Bayesian
rule is a conjunction of attribute-value pairs (condi-
tions) each of the form ‘attribute = value’. The current
version of LBR can only deal directly with discrete val-
ued attributes. Numeric attributes are discretized as
a pre-process. The consequent of a Bayesian rule is a
local naive Bayesian classifier created from local train-
ing examples that satisfy the antecedent of the rule.

Table 1: The Lazy Bayesian Rule learning algorithm

LBR(Att, D, Etest)
INPUT: Att: a set of attributes,
D: a set of training cases described
using Att and classes,
Eteqt: a test case described using Att.
OQUTPUT: a predicted class for Fiegt.
LocalNB = a NB classifier trained using At#t on D
Errors = errors of LocalNB estimated using N-CV on D
Cond = true
REPEAT
TempErrorsy,s; = the number of cases in D + 1
FOR each attribute A in Att whose value v4 on
Eteqt is not missing DO
Dgupset = cases in D with A = vy
TempNB = a NB classifier trained using
Att — {A} on Dsubset
TempErrors = errors of TempNB estimated using
N-CV on Dgy,pser + the portion
of Errorsin D — Dgypset
IF ((TempErrors < TempErrorsyes;) AND
(TempErrors is significantly lower than Errors))
THEN
TempNBy.ss = TempNB
TempErrorspest = TempErrors

Apest = A
IF (an Apeg is found)
THEN

Cond = Cond A (Apest = VAnest)
LocalNB = TempNByeq;
D = Dgypser corresponding to Apgqy
Att = Att — {Apest}
Errors = errors of LocalNB estimated using
N-CV on D
UNTIL (no Apeg; is found)
classify Etest using LocalNB
RETURN the class

This local naive Bayesian classifier uses only those at-
tributes that do not appear in the rule’s antecedent.

Table 1 outlines the LBR algorithm. During the gen-
eration of a Bayesian rule, only attribute-value pairs
that utilize attribute values of the test example are
considered. The objective is to grow the antecedent
of a Bayesian rule that ultimately decreases the errors
of the local naive Bayesian classifier in the consequent
of the rule. The antecedent of the Bayesian rule de-
fines a sub-space of the instance space to which the
test example belongs, selecting a subset of the avail-
able training instances. All instances in this sub-space
have the attribute-values specified in the antecedent.
In consequence, these attributes are removed from the
local naive Bayesian classifier.

For each test example, LBR uses a greedy search
to generate a Bayesian rule with an antecedent that

matches the test example. The growth of the rule
starts from a special Bayesian rule whose antecedent
is true. The rule’s local naive Bayesian classifier is
trained on the entire training set using all attributes.
This classifier is identical to a conventional naive
Bayesian classifier. At each step of the greedy search,
LBR tries to select and add, to the antecedent of the
current Bayesian rule, the best attribute-value pair
(A; = va,) where vga, is the value of A; on the test
example. During this search, those attributes are ig-
nored that are already included in the antecedent of
the current rule or whose value on the test example
is missing. The objective is to determine whether in-
cluding this attribute-value pair into the Bayesian rule
can significantly improve the estimated accuracy. This
search method is similar to forward selection which has
been used for relevant attribute subset selection (John,
Kohavi & Pfleger, 1994).

The utility of adding each possible A; = v4, to the
current rule is evaluated as follows. A subset of exam-
ples Dgypser that satisfies A; = vy, is identified from
the current local training set D, and is used to train a
temporary naive Bayesian classifier using all attributes
other than A; that do not occur in the antecedent of
the current Bayesian rule. The error of this classi-
fier on Dgypset is estimated by N-fold cross-validation
(N-CV).! This estimate together with an N-CV esti-
mate of the errors of the local naive Bayesian classifier
of the current Bayesian rule on D — Dygypset are used
to assess the value of adding A; = w4, to the cur-
rent Bayesian rule.? If this measure is lower than the
estimated errors of the local naive Bayesian classifier
on D at a significance level better than 0.05 using a
one-tailed pairwise sign-test, this attribute-value pair
becomes a candidate condition to be added to the cur-
rent Bayesian rule. The sign-test is used to control
the likelihood of adding conditions that reduce error
by chance. After evaluating all possible conditions, the
candidate condition with the lowest error estimate is
added to the antecedent of the current Bayesian rule.

Training cases that do not satisfy the antecedent of
the rule are then discarded, and the above process re-
peated. This continues until no more candidate con-
ditions are found. This happens when no damaging
attribute inter-dependencies exist for the local naive
Bayesian classifier, or the local training set is too small

We use N-CV because N-CV errors are more reli-
able estimates of true errors than re-substitution errors
(Breiman, Friedman, Olshen & Stone, 1984) and N-CV
on a naive Bayesian classifier is computationally efficient.

2Here we evaluate the utility of each attribute-value pair
on the whole local training set, D. Since different attribute-
value pairs cover different subsets of D, estimated errors
for different attribute-value pairs on their corresponding
subsets of training examples, Dgypset, are not comparable.

to further reduce the instance sub-space by specializing
the antecedent of the Bayesian rule. In such cases, fur-
ther growing the Bayesian rule would not significantly
reduce its errors. Finally, the local naive Bayesian clas-
sifier of this Bayesian rule is used to classify the test
example under consideration.

2.2 ADABOOST

Boosting (Freund & Schapire, 1997) is a general frame-
work for improving a base learning algorithm. During
training, it sequentially builds different classifiers to
form a committee by adaptively modifying the distri-
bution of the training set based on the performance
of previously created classifiers. The objective is to
make the generation of the next classifier concentrate
on the training examples misclassified by the previous
classifiers.

Our implementation of AdaBoost uses C4.5 (Quinlan,
1993) as the base learner. Given a training set D con-
sisting of m instances and a specified number of tri-
als T', AdaBoost builds T pruned trees over T' trials
by repeatedly invoking C4.5. Let w;(z) denotes the
weight of instance = in D at trial ¢. At the first trial,
each instance has weight 1, that is, wy () = 1 for each
x. At trial ¢, decision tree Hy is built using D under
the distribution w;. The training error €; of H; is then
calculated by summing up the weights of the instances
that H; misclassifies and dividing by m. For the next
trial, the weight w1 (z) is set to wy(z)/2¢; if Hy in-
correctly classifies z, and w;(z)/2(1 — €;) otherwise.
If wip1(z) < 1078, set it to 107° to solve the numeri-
cal underflow problem (Bauer & Kohavi, 1999). These
weights are then renormalized so that they sum to m.

Following the example of Bauer & Kohavi (1999),
when ¢; is greater than 0.5, w () is re-initialized to al-
low the boosting process to continue. Following Webb
(forthcoming), we also reweight examples to continue
boosting if €; reaches zero. This allows the possibil-
ity that more than one committee member with zero
error will be derived, enabling these to vote against
each other (with very large but finite weight) and giv-
ing other committee members a casting vote in case
of a draw between committee members with zero re-
substitution error. We employ Webb’s (forthcoming)
reweighting scheme in these contexts, setting wy(z) to
random values from the continuous Poisson distribu-
tion, generated by:

)

1...
Poisson() = —log (Random(999)) ,

1000

where Random(min ...maz) returns a random inte-
ger value between min and maz inclusive. After val-
ues are assigned using this random process, the vector
of weights is normalized to sum to the size of the train-
ing set. Then, the boosting process continues to build

the next tree. Note that any tree with ¢; > 0.5 is dis-
carded and this trial is repeated with the re-initialized
instance weights, while a tree with ¢, = 0 is accepted
by the committee.

At the classification stage, for each test example, all
decision trees in the committee perform weighted vot-
ing to make the prediction. The vote of decision tree
H; is worth log(1/3;) units, where 8; = €;/(1 — €;).

This implementation of AdaBoost is very similar to
that of Bauer & Kohavi (1999). The only differ-
ence is that Bauer & Kohavi (1999) halt induction
and treat H; as having infinite weight if ¢ = 0,
and use the bootstrap sampling method to re-initialize
the weights when ¢; > 0.5, whereas our implementa-
tion sets 3; = 107! when ¢; = 0, and re-initializes
the weights using the continuous Poisson distribution
in both situations. The continuous Poisson distribu-
tion is chosen because our experiments show that this
weight re-initialization method has a small advantage
over the bootstrap sampling method.

2.3 BAGGING

Like boosting, bagging (Breiman, 1996) generates
committees by changing the distribution of the train-
ing set. However, for bagging, the change of the in-
stance distribution is stochastic. The primary idea is
to generate a committee of classifiers with each in-
duced from a bootstrap sample of the original training
set. Given a committee size T and a training set D
consisting of m instances, bagging generates T boot-
strap samples with each being created by uniformly
sampling m instances from D with replacement. It
then applies C4.5 to build one decision tree from each
bootstrap sample. All decision trees in the committee
vote with equal weight to classify a test example.

3 EVALUATION

In this section, we analyze the behavior of LBR us-
ing the bias and variance decomposition to gain in-
sight into how it improves the performance of its base
learning algorithm. Then we compare LBR with boost-
ing and bagging. Section 3.1 describes the bias and
variance decomposition. Section 3.2 illustrates the ex-
perimental domains and methods used in this paper.
The following two subsections present the results of the
analysis with LBR, and the comparison with boosting
and bagging. Section 3.5 gives a comparison in terms
of compute time.

3.1 BIAS AND VARIANCE

Bias and variance analyses can provide useful insights
into the generalization performance of a learning algo-

rithm. Bias is a measure of error due to the central
tendency and variance is a measure of error due to
disagreements between the classifiers formed by an al-
gorithm across a distribution of training sets. Among
several definitions of bias and variance, in this study
we adopt Kohavi & Wolpert’s (1996) definitions that
decompose error into intrinsic noise (optimal Bayes
error), squared bias, and variance. Due to the dif-
ficulty of estimating the intrinsic noise in practical
experiments with real domains, we follow Kohavi &
Wolpert’s (1996) strategy of generating a bias term
that includes both intrinsic noise and squared bias.
The values are calculated directly from the perfor-
mance of each classifier on each test case in the ex-
periments described below.

3.2 EXPERIMENTAL DOMAINS AND
METHODS

This study uses the same twenty-nine natural domains
used in previous studies of LBR (Zheng & Webb, 1998).
These cover a wide variety of domains from the UCI
machine learning repository (Blake, Keogh & Merz,
1998). This test suite includes all the twenty-eight do-
mains used by Domingos & Pazzani (1996) for study-
ing naive Bayesian classification, as well as the Tic-
Tac-Toe domain. The last domain was chosen for pre-
vious research because it contains inter-dependent at-
tributes and its target concept is known.

We employ the bias/variance estimation process de-
veloped by Webb (forthcoming). For each domain ten
three-fold cross-validations (Breiman, Friedman, Ol-
shen & Stone, 1984) are carried out for each algorithm.
All the algorithms are run with their default option
settings on the same training and test set partitions in
every domain. Only the error rate on the test set is
reported. An error (or bias, or variance) rate reported
in the following subsections is an average over the 30
runs for an algorithm.

Since the current implementation of LBR and NB can
only deal with discrete valued attributes, numeric at-
tributes are discretized as a pre-process in the exper-
iments using an entropy-based discretization method
(Fayyad & Irani, 1993) for all learning algorithms. In
other words, the algorithms are being compared on
performance when learning from discrete valued data.
For each pair of training set and test set, both train-
ing set and test set are discretized by using cut points
found from the training set alone.

3.3 BIAS AND VARIANCE ANALYSIS
FOR LBR

LBR is designed to improve the performance of the
naive Bayesian classifier NB. A bias and variance de-
composition of LBR’s performance provides interesting

Table 2: Error rates (%) of LBR, NB, C4.5, AdaBoost,
and bagging

Domain LBR NB C4.5 | AdaBoost | bagging
Annealing | 2.8 3.0 10.4 7.8 8.9
Audiology | 28.0 28.4 23.7 19.4 21.5
Breast(W) | 2.6 2.6 5.1 3.8 4.4
KR-KP 2.7 12.5 0.8 0.5 0.7
Credit(A) |14.4| 14.5| 145 159 143
Echocar. |30.8 30.8 36.2 33.9 35.1
Glass 34.1 34.0 35.8 33.1 32.8
Heart(C) |17.6 17.6 24.0 22.3 20.7
Hepatitis | 14.7 14.7 21.0 17.7 18.9
Horse 20.3 21.0 17.0 21.3 16.8
HouseVote| 6.7 9.9 5.1 4.9 4.6
Hypo 1.5 1.8 1.3 1.2 1.2
Iris 6.6 6.6 7.5 7.5 7.1
Labor 10.7 10.7 19.5 18.2 18.6
LED 24 39.7 39.5 36.9 36.4 31.8
Liver 36.2 36.2 35.7 36.0 36.0
LungC. 49.7 49.4 59.4 55.0 61.3
Lympho |18.5 18.3 23.6 17.7 20.7
Pima 25.1 25.2 25.5 27.0 25.0
Postop. 35.9 36.0 29.9 39.7 31.1
P.Tumor |524 52.4 61.0 58.4 57.8
Promoters | 10.7 10.7 26.3 8.4 17.2
Solar 17.1 19.1 15.7 17.0 15.9
Sonar 25.4 26.5 32.1 22.1 24.9
Soybean 7.0 9.8 10.3 6.9 8.2
Splice 4.3 4.5 6.5 4.7 5.5
TicTacToe | 19.1 29.5 16.5 1.3 9.3
Wine 2.5 2.5 11.8 4.7 8.9
Zoology 6.2 6.2 8.5 6.2 8.4
mean | 18.7 19.8 21.4 18.9 19.6

e.r. mean 1.12 1.21 .93 1.07
w/t/1 4711714 10/0/19| 13/1/15 [14/0/15

p. of wtl .0304 .1360 .8506 | 1.0000

e.r. mean: geometric mean of error ratios.

insights into how it achieves this effect.

Table 2 presents the error rates of LBR and NB (re-
sults for C4.5, AdaBoost, and bagging are discussed in
the following section). The penultimate row shows the
geometric mean error ratio of NB over LBR. Geomet-
ric rather than arithmetic mean is used as it is more
appropriate for averaging ratio values. The last row in
the table shows the numbers of wins, ties, and losses
between the error rates of NB against those of LBR
in the 29 domains, and the significance level of a two-
tailed pairwise sign-test on this win/tie/loss outcome.
We consider the comparison significant if the sign-test
reveals a probability of less than 0.05 that the observed
result or more extreme should be obtained by chance.
To illustrate the impact to bias and variance of ap-
plying LBR’s semi-naive Bayesian approach in place
of NB’s naive Bayesian approach, Figure 1 presents a
bar chart that shows for each domain the decrease in
error due to bias reduction and increase in error due

18

—
[a7]

iy
=

—
)

—_
o

Difference between LBR and NB

8
=
4 7]
2
I:l 'EhJ:hl |'__| |'—.| T " T ||_l| J_I'!_-J:-T‘:-Y_V_
P ESCE580LLT 2 ETgEEE2E8EE5R2 B
IS osob5oC8F SEEEEETESETReisEog
c T @ w @ 2 o TR - 002 o oo T E o a = m =
c I o = 5 T T »w =¥ =2 Som 2 = = 5 37 m = -l
£ T 5 ow Y5 T 5 o = = C g 2 B gf o T4
e g S T 2T 5 3 B B E ™ 2 F
= = [
5 F £ 503 == &
L
[Eias reduction (NE-LER) B “ariance increase (LBR-MNE)
Figure 1: Bias and variance comparison between LBR and NB
to increased variance. Figure 2 summarizes this result
across all domains by displaying the average error of %
all algorithms decomposed into average bias and vari-
ance. a0
It is apparent that LBR outperforms NB in terms of €
average error rate, error ratio, and w/t/l record. The £ mYatiance
relative error reduction of LBR over NB is 12%. The g 104 o8
sign-test shows that LBR obtains lower error rates sig- i
nificantly more often than the reverse in comparison]
to NB.
It is also apparent that the effect of LBR is to substan- a
tially reduce the bias of naive Bayes. Figure 1 shows m 2 9 £ £
that LBR does not obtain higher bias than NB in any © 2 F
of the experimental domains. However, LBR never re- <

duces the variance of NB. The reason is that introduc-
ing rules reduces the instance space and the number of
training instances. This is very likely to increase the
variance. The bias term strongly dominates the error
of NB and hence the bias reduction usually outweighs
the variance increase. This accounts for LBR’s lower
error in most domains.

3.4 COMPARING LBR WITH C4.5,
ADABOOST, AND BAGGING

We turn now to a comparison of LBR against boost-
ing and bagging decision trees. As C4.5 is the base
learning algorithm used in the committee techniques,
its performance is also considered.

We use AdaBoost and bagging with 100 trees in our

Figure 2: Error rate with bias and variance decompo-
sition

experiments since it has been shown that increasing
the committee size usually further improves the perfor-
mance, especially with AdaBoost (Schapire, Freund,
Bartlett & Lee, 1997). The results of C4.5, AdaBoost
and bagging are provided in Table 2 and Figure 2.

The relative error reduction of LBR over C4.5 is 21%.
Although the sign-test fails to show that LBR is sig-
nificantly better than C4.5, LBR has lower error rates
than C4.5 almost twice as often as the reverse. Also,
LBR has lower bias and variance than C4.5 on average.

Note that, despite the discretization of numeric at-
tributes, the results of AdaBoost and bagging reported
here are either comparable to or better than earlier
published results (Bauer & Kohavi, 1999; Breiman,
1996; Quinlan, 1996) since we use a higher value of T'.
With reference to their base learning algorithm C4.5,
AdaBoost reduces bias from 14.3% to 12.7%, and vari-
ance from 7.1% to 6.2%. Bagging has the same bias as
C4.5, but reduces variance from 7.1% to 5.3%. Note
also that we have repeated the experiments with com-
mittees of size 10 and that the results are less favorable
to boosting and bagging than the results reported here.
For example, the average error rate of AdaBoost with
10 trees is 20.2%, substantially higher than that of
AdaBoost with 100 trees (18.9%). With 10 trees, the
average error of bagging is 20.3% compared to 19.6%
with 100 trees.

Comparing LBR with AdaBoost and bagging, we have
the following observations.

¢ LBR has lower average error than either AdaBoost
or bagging. In terms of geometric mean error ra-
tio, AdaBoost has lower error than LBR by 7%.
However, when the geometric mean accuracy ratio
is calculated, it shows that AdaBoost has lower
accuracy than LBR by 1%. This seemingly in-
compatible outcome results from AdaBoost’s ten-
dency to better performance where error is low
(and hence accuracy is high) while LBR tends to
perform well in the reverse context. AdaBoost
wins in 13 domains, loses in 15 domains and draws
in 1 domain. All this indicates that LBR is very
competitive to AdaBoost.

The geometric mean error ratio indicates the bag-
ging has 7% higher average error than LBR. Bag-
ging wins in 14 domains and loses in 15 domains.

e LBR has lower average variance than either Ada-
Boost or bagging—4.9% compared to 6.2% for
AdaBoost and 5.3% for bagging. The frequency
with which LBR achieves lower variance is signif-
icant at the 0.05 level with respect to AdaBoost
but not bagging.

e LLBR has higher average bias than AdaBoost
(13.8% versus 12.7%), but lower average bias than
bagging (13.8% versus 14.3%). The frequency
with which LBR has higher bias is significant at
the 0.05 level with respect to AdaBoost but not

bagging.

Since C4.5 can deal directly with numeric attributes,
it might impede C4.5 to carry out discretization as
a pre-process when running C4.5. This also applies
for AdaBoost and bagging with C4.5. In an addi-
tional experiment, with exactly the same experimen-
tal method, C4.5, AdaBoost, and bagging were run
without discretization. The average error rates of

C4.5, AdaBoost, and bagging without discretization in
these 29 domains using the same training and test set
partitions are 21.3%, 17.9%, and 18.6% respectively.
These are slightly lower than the corresponding val-
ues with discretization. The accuracy of C4.5 with-
out discretization is also worse than that of LBR, with
1.18 as the geometric mean error ratio and 11/1/18 as
the win/tie/loss record of the former over the latter.
AdaBoost without discretization shows a slight advan-
tage over LBR. The win/tie/loss record of AdaBoost
without discretization over LBR is 16/1/12 in the 29
domains. This difference is not significant at the level
0.05 using a two-tailed pairwise sign-test (p = .572).
The geometric mean error ratio of AdaBoost without
discretization over LBR is 0.86. While this seems a big
advantage to AdaBoost, the geometric mean accuracy
ratio of AdaBoost without discretization over LBR is
only 1.006, a very slight advantage to AdaBoost. As
discussed in the context of AdaBoost with discretiza-
tion, this results from AdaBoost’s tendency to better
performance where error is low (and hence accuracy
is high) and LBR’s tendency to perform well in the
reverse context. The geometric mean error ratio and
the win/tie/loss record of bagging without discretiza-
tion over LBR are 1.004 and 14/1/14 respectively, sug-
gesting that bagging even without discretization has
no advantage over LBR on average. On the other
hand, these results suggest that the performance of
LBR might be further improved by carrying out dis-
cretization during the generation of Bayesian rules in-
stead of pre-processing or by employing techniques for
handling undiscretized numeric values such as those
proposed by John & Langley (1995).

3.5 COMPUTATION TIME

In this section, we discuss LBR’s computational profile
and compare its computation time with that of Ada-
Boost with 100 decision trees. Since AdaBoost and
bagging have similar execution times, the result of the
latter is omitted.

Lazy learners have very different computation time
profiles to eager learners that generate an explicit
model at training time. If we consider the total com-
putation time for learning from a given training set
and classifying objects in a given test set, the com-
putation time of an eager learner is strongly domi-
nated by the requirements for learning a model from
the training set. The computation associated with ap-
plying the model to classify test objects is usually rela-
tively trivial. In particular, the computational profile
is relatively insensitive to the number of objects to
be classified. The total compute time will differ little
irrespective of whether one or 1000 objects are to be
classified. In contrast, lazy learners delay computation
to classification time and the amount of computation
is dependent, on the number of objects to be classified.

The major computational overhead in LBR is the eval-
uation of each potential addition of a condition to
the antecedent of the rule being constructed. This
requires N-fold cross-validation of the resulting local
naive Bayesian classifier. As N-fold cross-validation
of a naive Bayesian classifier can be implemented very
efficiently, the computational requirements for classi-
fying a single test case are reasonable. However, lazy
learning requires that the same process is repeated for
each test example, and the cumulative computation for
a large test set can be substantial. The computational
overhead can be substantially reduced by caching use-
ful information. In the current implementation of LBR,
the evaluation function values of attribute-value pairs
that have been examined are retained from one test
example to the next. This avoids re-calculation of the
evaluation function values of the same attribute-value
pairs when classifying test examples that appear later
in the test set, thus reducing the entire execution time.
Our experiment shows that caching this information
reduces the execution time of LBR by 96% on aver-
age on the 29 datasets used in the experiment. This
is because the evaluation of attribute-value pairs for
different test examples are often repeated, including
repeated generation of identical rules for different test
examples. LBR could be made even more efficient by
caching further information such as local classifiers and
indices for training examples in different stages of the
growth of rules. Of course, this would increase mem-
ory requirements.

Table 3 shows the execution time (in seconds) of LBR
and AdaBoost, running on a Sun UltraSPARC 2 com-
puter. AdaBoost uses more time than LBR in 24 do-
mains. Although, in terms of mean execution time
over the 29 domains, LBR is about five time slower
than AdaBoost, this is dominated by 5 domains in
which AdaBoost is much faster than LBR. In these
5 domains, large numbers of test instances contribute
to the long execution in LBR. For example, in the
Splice junction domain, the test set size used in the
current experiment is 1059. When we change the ex-
periment from three-fold cross-validation to ten-fold
cross-validation (the test set size is reduced to 318),
the execution time of LBR reduces from 266.30 sec-
onds to 180.39 seconds, while AdaBoost’s execution
time increases from 40.20 seconds to 46.37 seconds.
This suggests that the test set size has a great effect
on the execution time of LBR, and has a very little
effect on the execution time of AdaBoost.

When interpreting the results in Table 3 it should be
noted that they relate to contexts, created by three-
fold cross-validation, in which two thirds of the avail-
able data are used for training and one third for test-
ing. The results would better favor LBR if the propor-
tion of data used for testing was decreased and better
favor AdaBoost if this proportion was increased.

Table 3: Compute time (in seconds) of LBR, and Ada-
Boost

Domain AdaBoost LBR
Annealing 6.74 3.84
Audiology 8.50 21.75
Breast(W) 1.65 0.35
KR-KP 31.10 | 388.74
Credit(A) 3.67 1.30
Echocar. 0.41 0.02
Glass 1.22 0.16
Heart(C) 1.44 0.20
Hepatitis 1.09 0.09
Horse 4.25 0.77
HouseVote 1.44 0.86
Hypo 13.29 54.14
Iris 0.22 0.01
Labor 0.31 0.01
LED 24 2.98 0.97
Liver 0.64 0.16
LungC. 0.61 0.15
Lympho 1.02 0.12
Pima 2.90 0.64
Postop. 0.48 0.03
P.Tumor 6.43 1.42
Promoters 1.13 0.10
Solar 5.06 2.92
Sonar 2.88 1.30
Soybean 8.95 55.50
Splice 40.20 | 266.30
TicTacToe 3.52 1.94
Wine 0.54 0.04
Zoology 0.45 0.03
mean 5.28 27.72

e.r. mean 1.34
w/t/1 24/0/5

p. of wtl .0004

4 CONCLUSIONS

This paper evaluates the Lazy Bayesian Rule learning
algorithm. This algorithm seeks to overcome the at-
tribute interdependence problem of the naive Bayesian
classifier by forming a customized naive Bayesian clas-
sifier for each case to be classified. This customized
naive Bayesian classifier is formed by selecting a sub-
set of the available training examples that appear
most relevant to classifying the current test example.
In practice this often builds a more accurate naive
Bayesian classifier for the test example than the naive
Bayesian classifier trained using all training examples.

This paper shows that the lazy Bayesian rule induction
algorithm is an effective technique for improving upon
the naive Bayesian classifier. We show that this effect
is achieved by significantly and substantially reducing
the bias of naive Bayesian classification, though this is
achieved at the cost of a slight increase in variance.

Current implementation constraints, notably that it
accepts only discrete attributes and is restricted to
antecedent conditions of the form ‘attribute = value’,
suggest that there is room to further improve the per-
formance of the basic lazy Bayesian rule induction al-
gorithm described in this paper. This is a promising
direction for future research.

We also show that the prediction error of LBR for
discrete valued data is very competitive to state-of-
the-art non-lazy techniques. Due to the use of lazy
learning, the computation profile of the technique is
dominated by the number of cases to be classified. In
consequence, it is very efficient when there are only
a small number of test cases for each training set, as
is the case in contexts where incremental learning is
traditionally employed.

Acknowledgments

The authors are grateful to J. Ross Quinlan for pro-
viding C4.5. Many thanks to the anonymous reviewers
for their very valuable comments.

References

Aha, D.W. (ed.)
Kluwer Academic.

Bauer, E. & Kohavi, R. (1999) An empirical compari-
son of voting classification algorithms: Bagging, boost-
ing, and variants. To appear in Machine Learning.

Blake, C., Keogh, E. & Merz, C.J. (1998) UCI
Repository of Machine Learning Databases [http://
www.ics.uci.edu/~“mlearn/MLRepository.html].

Trvine, CA: University of California, Department of
Information and Computer Science.

Cestnik, B., Kononenko, I., & Bratko, I. (1987) As-
SISTANT 86: A knowledge-elicitation tool for sophisti-
cated users. In Proc. 2nd European Working Session
on Learning, 31-45, Wilmslow, UK: Sigma Press.

Breiman, L., Friedman, J.H., Olshen, R.A., &
Stone, C.J. (1984) Classification and Regression Trees.
Wadsworth, Belmont.

Breiman, L. (1996) Bagging predictors.
Learning, 24: 123-140.

Cestnik, B. (1990) Estimating probabilities: A crucial
task in machine learning. In Proc. European Conf. on
Artificial Intelligence, 147-149.

Domingos, P. & Pazzani, M. (1996) Beyond indepen-
dence: Conditions for the optimality of the simple
Bayesian classifier. In Proc. 15th Intl. Conf. on
Machine Learning, pp. 105-112,. San Francisco, CA:
Morgan Kaufmann.

Duda, R.O. & Hart, P.E. (1973) Pattern Classification
and Scene Analysis. New York: John Wiley.

(1997) Lazy Learning. Dordrecht:

Machine

Fayyad, U.M. & Irani, K.B. (1993) Multi-interval dis-
cretization of continuous-valued attributes for classifi-
cation learning. In Proc. 13th Intl. Joint Conf. on Ar-
tificial Intelligence, 1022-1027, San Mateo, CA: Mor-
gan Kaufmann.

Freund, Y. & Schapire, R. E. (1997) A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting. Journal of Computer and Sys-
tem Sciences, 55(1): 119-139.

Friedman, J., Kohavi, R., & Yun, Y. (1996) Lazy de-
cision trees. In Proc. 13th Natl. Conf. on Artificial
Intelligence, 717-724, Menlo Park, CA: AAAT Press.

Friedman, N. & Goldszmidt, M. (1996) Building clas-
sifiers using Bayesian networks. In Proc. 15th Natl.
Conf. on Artificial Intelligence, 1277-1284, Menlo
Park, CA: AAAT Press.

Holte, R.C., Acker, L.E., & Porter, B.W. (1989) Con-
cept learning and the problem of small disjuncts. In
Proc. 11th Intl. Joint Conf. on Artificial Intelligence,
813-818, San Mateo, CA: Morgan Kaufmann.

John, G., Kohavi, R., Pfleger, K. (1994) Irrelevant fea-
tures and the subset selection problem. In Proc. 11th
Intl. Conf. on Machine Learning, 121-129, San Mateo,
CA: Morgan Kaufmann.

John, G. & Langley, P. (1995) Estimating continu-
ous distributions in Bayesian classifiers. In Proc. 11th
Conf. on Uncertainty in Artificial Intelligence, 338-
345, San Mateo, CA: Morgan Kaufmann.

Kohavi, R. (1996) Scaling up the accuracy of naive-
Bayes classifiers: A decision-tree hybrid. In Proc. 2nd
Intl. Conf. on Knowledge Discovery and Data Mining,
202-207, Menlo Park, CA: AAAT Press.

Kohavi, R. & Wolpert, D. (1996) Bias plus variance
decomposition for zero-one loss functions. In Proc.
13th Intl. Conf. on Machine Learning, 275-283, Mor-
gan Kaufmann.

Kononenko, I. (1990) Comparison of inductive and
naive Bayesian learning approaches to automatic
knowledge acquisition. In B. Wielinga et al. (Eds.),
Current Trends in Knowledge Acquisition. Amster-
dam: IOS Press.

Kononenko, I. (1991) Semi-naive Bayesian classifier.
In Proc. of European Conf. on Artificial Intelligence,
206-219.

Langley, P. (1993) Induction of recursive Bayesian
clagsifiers. In Proc. FEuropean Conf. on Machine
Learning, 153-164, Berlin: Springer-Verlag.

Langley, P. & Sage, S. (1994) Induction of selective
Bayesian classifiers. In Proc. 10th Conf. on Uncer-
tainty in Artificial Intelligence, 339-406, Seattle, WA:
Morgan Kaufmann.

Pagallo, G. & Haussler, D. (1990) Boolean feature dis-

covery in empirical learning. Machine Learning, 5: 71-
100.

Pazzani, M.J. (1998) Constructive inductive of Carte-
sian product attributes, In Liu, H, & Motoda, H.
(eds.) Feature Extraction, Construction and Selection
- A Data Mining Perspective, 341-354, Boston, MA:
Kluwer Academic.

Quinlan, J.R. (1993) C4.5: Programs for Machine
Learning, San Mateo, CA: Morgan Kaufmann.

Quinlan, J.R. (1996) Bagging, boosting, and C4.5. In
Proc. 13th Natl. Conf. on Artificial Intelligence, 725-
730, Menlo Park, CA: AAAT Press.

Sahami, M. (1996) Learning limited dependence
Bayesian classifiers. In Proc. 2nd Intl. Conf. on
Knowledge Discovery and Data Mining, 334-338,
Menlo Park, CA: AAAT Press.

Schapire, R.E., Freund, Y., Bartlett, P., & Lee, W.S.
(1997) Boosting the margin: A new explanation for
the effectiveness of voting methods. In Proc. 14th Intl.
Conf. on Machine Learning, 322-330, Morgan Kauf-

mann.

Singh, M. & Provan, G.M. (1996) Efficient learning of
selective Bayesian network classifiers. In Proc. 15th
Intl. Conf. on Machine Learning, 453-461, San Fran-
cisco, CA: Morgan Kaufmann.

Ting, K.M. (1994) The problem of small disjuncts:
Its remedy in decision trees. In Proc. 10th Canadian
Conf. on Artificial Intelligence, 91-97, Canadian Soc.
for Comp. Studies of Intelligence.

Ting, K.M. & Zheng, Z. (1999) Improving the perfor-
mance of boosting for naive Bayesian classification. In
Proc. 3rd Pacific-Asia Conf. on Knowledge Discovery
and Data Mining, Berlin: Springer-Verlag.

Webb, G. (forthcoming) MultiBoosting: A technique
for combining boosting and bagging. Accepted for
publication in Machine Learning.

Webb, G.I. & Pazzani, M.J. (1998) Adjusted probabil-
ity naive Bayesian induction. In Proc. 11th Australian
Joint Conf. on Artificial Intelligence, Berlin: Springer-
Verlag.

Zheng, Z. & Webb, G.I, (1998) Lazy Bayesian rules,
Deakin University Computing Technical Report TR
C98-17 (Available at “http://www3.cm.deakin.edu.
au/~zijian/Papers/lbr-tr-c98-17.ps.gz”).

