
Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian LearningTechnique Competitive to Boosting Decision TreesZijian Zheng, Geo�rey I. Webb, Kai Ming TingSchool of Computing and MathematicsDeakin UniversityVictoria 3217 Australiafzijian,webb,kmtingg@deakin.edu.auAbstractLbr is a lazy semi-naive Bayesian classi�erlearning technique, designed to alleviate theattribute interdependence problem of naiveBayesian classi�cation. To classify a test ex-ample, it creates a conjunctive rule that se-lects a most appropriate subset of trainingexamples and induces a local naive Bayesianclassi�er using this subset. Lbr can signi�-cantly improve the performance of the naiveBayesian classi�er. A bias and variance anal-ysis of Lbr reveals that it signi�cantly re-duces the bias of naive Bayesian classi�cationat a cost of a slight increase in variance. Itis interesting to compare this lazy techniquewith boosting and bagging, two well-knownstate-of-the-art non-lazy learning techniques.Empirical comparison of Lbr with boostingdecision trees on discrete valued data showsthat Lbr has, on average, signi�cantly lowervariance and higher bias. As a result of theinteraction of these e�ects, the average pre-diction error of Lbr over a range of learn-ing tasks is at a level directly comparable toboosting. Lbr provides a very competitivediscrete valued learning technique where er-ror minimization is the primary concern. Itis very e�cient when a single classi�er is tobe applied to classify few cases, such as in atypical incremental learning scenario.1 INTRODUCTIONAmong the commonly used and well studied classi-�er learning techniques, the simple and computation-ally e�cient naive Bayesian classi�er (Duda & Hart,1973; Kononenko, 1990; Langley & Sage, 1994) hasbeen shown in many domains to be surprisingly accu-rate compared to alternatives including decision tree

learning, rule learning, neural networks, and instance-based learning (Cestnik, Kononenko, & Bratko, 1987;Kononenko, 1990; Domingos & Pazzani, 1996). NaiveBayesian classi�cation is based on Bayes' theoremand an assumption that all attributes are mutuallyindependent within each class. This technique pre-dicts that a test example with a vector of attributevalues V = hv1; v2; � � � ; vni belongs to the class Cithat maximizes the posterior probability P (CijV ) /P (Ci)Qj P (vj jCi), where P (Ci) is the prior probabil-ity of class Ci, and P (vj jCi) is the conditional proba-bility that vj occurs in class Ci examples. The priorprobability and conditional probabilities are usuallydirectly estimated from frequency counts over a giventraining set.The attribute independence assumption makes the ap-plication of Bayes' theorem to classi�cation practi-cal in many domains. Domingos & Pazzani (1996)argue that the naive Bayesian classi�er is optimaleven when the independence assumption is violated,so long as the ranks of the conditional probabilities ofclasses given an example are correct. However, pre-vious research has shown that semi-naive techniquesand Bayesian networks that explicitly adjust the naivestrategy to allow for violations of the independence as-sumption, can improve upon the prediction accuracy ofthe naive Bayesian classi�er in many domains (Fried-man & Goldszmidt, 1996; Kohavi, 1996; Kononenko,1991; Langley, 1993; Langley & Sage, 1994; Pazzani,1998; Sahami, 1996; Singh, & Provan, 1996; Webb &Pazzani, 1998). This suggests that the ranks of condi-tional probabilities are frequently not correct.To tackle this problem, the naive Bayesian tree learner,NBTree (Kohavi, 1996), combines naive Bayesianclassi�cation and decision tree learning (Breiman,Friedman, Olshen & Stone, 1984; Quinlan, 1993). Ituses a tree structure to split the instance space intosub-spaces de�ned by the paths of the tree. It gen-erates one naive Bayesian classi�er in each sub-space.The decision nodes of these trees contain the univari-
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ate tests of conventional decision trees. Each leaf ofa naive Bayesian tree contains a local naive Bayesianclassi�er that does not consider attributes involved intests on the path leading to the leaf, and is used toclassify examples that reach this leaf. It has beenshown that NBTree frequently achieves higher ac-curacy than either a naive Bayesian classi�er or a de-cision tree learner (Kohavi, 1996).Although NBTree can alleviate the attribute inter-dependence problem of naive Bayesian classi�cation tosome extent, NBTree su�ers from the replication andfragmentation problems (Pagallo & Haussler, 1990) aswell as the small disjunct problem (Holte, Acker, &Porter, 1989; Ting, 1994) due to the tree structure. Tosolve these problems and further improve the perfor-mance of naive Bayesian classi�cation, we previouslyproposed a lazy Bayesian rule (Lbr) learning tech-nique (Zheng & Webb, 1998). LBR can be thoughtof as applying lazy learning techniques (Aha, 1997) tonaive Bayesian tree induction. At classi�cation time,for each test example, Lbr builds a most appropriaterule with a conjunction of conditions as its antecedentand a local naive Bayesian classi�er as its consequent.Our experimental results (Zheng & Webb, 1998) haveshown that Lbr is, on average, more accurate thana naive Bayesian classi�er, C4.5 (Quinlan, 1993), ourimplementation (Zheng & Webb, 1998) of NBTree(Kohavi, 1996), a constructive Bayesian classi�er thateliminates attributes and constructs new attributes us-ing Cartesian products of existing nominal attributes(Pazzani, 1998), a selective naive Bayesian classi�er(Langley & Sage, 1994), and a lazy decision tree learn-ing algorithm (Friedman, Kohavi & Yun, 1996).While these comparisons with directly related algo-rithms reveal good performance, it is interesting tohold a new contender up against the state-of-the-art. Recent studies have shown that committee learn-ing techniques, notably boosting and bagging, achievevery low prediction error, especially for decision treelearning (Bauer & Kohavi, 1999; Breiman, 1996; Fre-und & Schapire, 1997; Quinlan, 1996; Schapire, Fre-und, Bartlett & Lee, 1997). These techniques generatemultiple models to form a committee by repeated ap-plication of a single base learning algorithm. At clas-si�cation time, the committee members vote to makethe �nal decision. Here, we compare Lbr with boost-ing and bagging decision trees, as previous researchshowed that they achieve very high average accuracy(Bauer & Kohavi, 1999; Quinlan, 1996). It is interest-ing to note that boosting naive Bayes is not very ef-fective (Ting & Zheng, 1999) as boosting requires thatthe base learner be sensitive to variations in the train-ing set while naive Bayes is very stable across trainingsamples, resulting in low variance but high bias.The following section describes the algorithms used in

this paper, Lbr, AdaBoost, and bagging. Section 3contains empirical studies. We �rst carry out exten-sions to our previous analysis of Lbr (Zheng & Webb,1998), and then compare Lbr to AdaBoost and bag-ging. We will show that Lbr can signi�cantly reducethe bias of naive Bayesian classi�cation at a cost of aslight increase in variance. Furthermore, Lbr has, onaverage, signi�cantly lower variance and higher biasthan AdaBoost with decision trees. As a result of theinteraction of these e�ects, the average prediction er-ror of Lbr over a range of learning tasks is at a leveldirectly comparable to AdaBoost. Finally, Section 4summarizes our �ndings.2 THE LBR, ADABOOST, ANDBAGGING ALGORITHMSWe describe the Lbr algorithm in the following sub-section. Sub-sections 2.2 and 2.3 present short descrip-tions of AdaBoost and bagging respectively. Readersare referred to elsewhere for more detailed descriptionsof these two algorithms (Freund & Schapire, 1997;Breiman, 1996). The empirical studies in this paperalso involve two other algorithms: a naive Bayesianclassi�er, NB, and a decision tree learner, C4.5. NBwas described brie
y in Section 1. More detail is avail-able elsewhere (Duda & Hart, 1973; Kononenko, 1990;Langley & Sage, 1994). In our implementation of NB,when the probability of an attribute value conditionalon a class is estimated from a training set, the m-estimate (Cestnik, 1990) with m = 2 is used. Whenthe probability of a class is estimated, the Laplace esti-mate (Cestnik, 1990) is used. We assume that readersare familiar with C4.5, since it is widely used. A com-plete description of C4.5 is given by Quinlan (1993).2.1 LBRLbr uses lazy learning to alleviate the attribute inter-dependence problem of naive Bayesian classi�cation,as well as to avoid the replication, fragmentation, andsmall disjunct problems from whichNBTree (Kohavi,1996) may su�er. It retains all training examples un-til classi�cation time. Before classifying a test exam-ple, Lbr generates a rule (called a Bayesian rule) thatis most appropriate to the test example. This con-trasts with creating a model at training time, such asNBTree's single tree, that is, on average, most appro-priate to all examples. The antecedent of a Bayesianrule is a conjunction of attribute-value pairs (condi-tions) each of the form `attribute = value'. The currentversion of Lbr can only deal directly with discrete val-ued attributes. Numeric attributes are discretized asa pre-process. The consequent of a Bayesian rule is alocal naive Bayesian classi�er created from local train-ing examples that satisfy the antecedent of the rule.



Table 1: The Lazy Bayesian Rule learning algorithmLBR(Att ;D ;Etest )INPUT: Att : a set of attributes,D : a set of training cases describedusing Att and classes,Etest : a test case described using Att .OUTPUT: a predicted class for Etest .LocalNB = a NB classi�er trained using Att on DErrors = errors of LocalNB estimated using N-CV on DCond = trueREPEATTempErrorsbest = the number of cases in D + 1FOR each attribute A in Att whose value vA onEtest is not missing DODsubset = cases in D with A = vATempNB = a NB classi�er trained usingAtt � fAg on DsubsetTempErrors = errors of TempNB estimated usingN-CV on Dsubset + the portionof Errors in D �DsubsetIF ((TempErrors < TempErrorsbest ) AND(TempErrors is signi�cantly lower than Errors))THENTempNBbest = TempNBTempErrorsbest = TempErrorsAbest = AIF (an Abest is found)THENCond = Cond ^ (Abest = vAbest)LocalNB = TempNBbestD = Dsubset corresponding to AbestAtt = Att � fAbestgErrors = errors of LocalNB estimated usingN-CV on DUNTIL (no Abest is found)classify Etest using LocalNBRETURN the classThis local naive Bayesian classi�er uses only those at-tributes that do not appear in the rule's antecedent.Table 1 outlines the Lbr algorithm. During the gen-eration of a Bayesian rule, only attribute-value pairsthat utilize attribute values of the test example areconsidered. The objective is to grow the antecedentof a Bayesian rule that ultimately decreases the errorsof the local naive Bayesian classi�er in the consequentof the rule. The antecedent of the Bayesian rule de-�nes a sub-space of the instance space to which thetest example belongs, selecting a subset of the avail-able training instances. All instances in this sub-spacehave the attribute-values speci�ed in the antecedent.In consequence, these attributes are removed from thelocal naive Bayesian classi�er.For each test example, Lbr uses a greedy searchto generate a Bayesian rule with an antecedent that

matches the test example. The growth of the rulestarts from a special Bayesian rule whose antecedentis true. The rule's local naive Bayesian classi�er istrained on the entire training set using all attributes.This classi�er is identical to a conventional naiveBayesian classi�er. At each step of the greedy search,Lbr tries to select and add, to the antecedent of thecurrent Bayesian rule, the best attribute-value pair(Ai = vAi) where vAi is the value of Ai on the testexample. During this search, those attributes are ig-nored that are already included in the antecedent ofthe current rule or whose value on the test exampleis missing. The objective is to determine whether in-cluding this attribute-value pair into the Bayesian rulecan signi�cantly improve the estimated accuracy. Thissearch method is similar to forward selection which hasbeen used for relevant attribute subset selection (John,Kohavi & P
eger, 1994).The utility of adding each possible Ai = vAi to thecurrent rule is evaluated as follows. A subset of exam-ples Dsubset that satis�es Ai = vAi is identi�ed fromthe current local training set D, and is used to train atemporary naive Bayesian classi�er using all attributesother than Ai that do not occur in the antecedent ofthe current Bayesian rule. The error of this classi-�er on Dsubset is estimated by N -fold cross-validation(N -CV).1 This estimate together with an N -CV esti-mate of the errors of the local naive Bayesian classi�erof the current Bayesian rule on D �Dsubset are usedto assess the value of adding Ai = vAi to the cur-rent Bayesian rule.2 If this measure is lower than theestimated errors of the local naive Bayesian classi�eron D at a signi�cance level better than 0.05 using aone-tailed pairwise sign-test, this attribute-value pairbecomes a candidate condition to be added to the cur-rent Bayesian rule. The sign-test is used to controlthe likelihood of adding conditions that reduce errorby chance. After evaluating all possible conditions, thecandidate condition with the lowest error estimate isadded to the antecedent of the current Bayesian rule.Training cases that do not satisfy the antecedent ofthe rule are then discarded, and the above process re-peated. This continues until no more candidate con-ditions are found. This happens when no damagingattribute inter-dependencies exist for the local naiveBayesian classi�er, or the local training set is too small1We use N -CV because N -CV errors are more reli-able estimates of true errors than re-substitution errors(Breiman, Friedman, Olshen & Stone, 1984) and N -CVon a naive Bayesian classi�er is computationally e�cient.2Here we evaluate the utility of each attribute-value pairon the whole local training set, D. Since di�erent attribute-value pairs cover di�erent subsets of D, estimated errorsfor di�erent attribute-value pairs on their correspondingsubsets of training examples, Dsubset, are not comparable.



to further reduce the instance sub-space by specializingthe antecedent of the Bayesian rule. In such cases, fur-ther growing the Bayesian rule would not signi�cantlyreduce its errors. Finally, the local naive Bayesian clas-si�er of this Bayesian rule is used to classify the testexample under consideration.2.2 ADABOOSTBoosting (Freund & Schapire, 1997) is a general frame-work for improving a base learning algorithm. Duringtraining, it sequentially builds di�erent classi�ers toform a committee by adaptively modifying the distri-bution of the training set based on the performanceof previously created classi�ers. The objective is tomake the generation of the next classi�er concentrateon the training examples misclassi�ed by the previousclassi�ers.Our implementation of AdaBoost uses C4.5 (Quinlan,1993) as the base learner. Given a training set D con-sisting of m instances and a speci�ed number of tri-als T , AdaBoost builds T pruned trees over T trialsby repeatedly invoking C4.5. Let wt(x) denotes theweight of instance x in D at trial t. At the �rst trial,each instance has weight 1, that is, w1(x) = 1 for eachx. At trial t, decision tree Ht is built using D underthe distribution wt. The training error �t of Ht is thencalculated by summing up the weights of the instancesthat Ht misclassi�es and dividing by m. For the nexttrial, the weight wt+1(x) is set to wt(x)=2�t if Ht in-correctly classi�es x, and wt(x)=2(1 � �t) otherwise.If wt+1(x) < 10�8, set it to 10�8 to solve the numeri-cal under
ow problem (Bauer & Kohavi, 1999). Theseweights are then renormalized so that they sum to m.Following the example of Bauer & Kohavi (1999),when �t is greater than 0.5, wt(x) is re-initialized to al-low the boosting process to continue. Following Webb(forthcoming), we also reweight examples to continueboosting if �t reaches zero. This allows the possibil-ity that more than one committee member with zeroerror will be derived, enabling these to vote againsteach other (with very large but �nite weight) and giv-ing other committee members a casting vote in caseof a draw between committee members with zero re-substitution error. We employ Webb's (forthcoming)reweighting scheme in these contexts, setting wt(x) torandom values from the continuous Poisson distribu-tion, generated by:Poisson() = �log�Random(1 : : : 999)1000 � ; (1)where Random(min : : :max) returns a random inte-ger value between min and max inclusive. After val-ues are assigned using this random process, the vectorof weights is normalized to sum to the size of the train-ing set. Then, the boosting process continues to build

the next tree. Note that any tree with �t > 0:5 is dis-carded and this trial is repeated with the re-initializedinstance weights, while a tree with �t = 0 is acceptedby the committee.At the classi�cation stage, for each test example, alldecision trees in the committee perform weighted vot-ing to make the prediction. The vote of decision treeHt is worth log(1=�t) units, where �t = �t=(1� �t).This implementation of AdaBoost is very similar tothat of Bauer & Kohavi (1999). The only di�er-ence is that Bauer & Kohavi (1999) halt inductionand treat Ht as having in�nite weight if �t = 0,and use the bootstrap sampling method to re-initializethe weights when �t > 0:5, whereas our implementa-tion sets �t = 10�10 when �t = 0, and re-initializesthe weights using the continuous Poisson distributionin both situations. The continuous Poisson distribu-tion is chosen because our experiments show that thisweight re-initialization method has a small advantageover the bootstrap sampling method.2.3 BAGGINGLike boosting, bagging (Breiman, 1996) generatescommittees by changing the distribution of the train-ing set. However, for bagging, the change of the in-stance distribution is stochastic. The primary idea isto generate a committee of classi�ers with each in-duced from a bootstrap sample of the original trainingset. Given a committee size T and a training set Dconsisting of m instances, bagging generates T boot-strap samples with each being created by uniformlysampling m instances from D with replacement. Itthen applies C4.5 to build one decision tree from eachbootstrap sample. All decision trees in the committeevote with equal weight to classify a test example.3 EVALUATIONIn this section, we analyze the behavior of Lbr us-ing the bias and variance decomposition to gain in-sight into how it improves the performance of its baselearning algorithm. Then we compare Lbr with boost-ing and bagging. Section 3.1 describes the bias andvariance decomposition. Section 3.2 illustrates the ex-perimental domains and methods used in this paper.The following two subsections present the results of theanalysis with Lbr, and the comparison with boostingand bagging. Section 3.5 gives a comparison in termsof compute time.3.1 BIAS AND VARIANCEBias and variance analyses can provide useful insightsinto the generalization performance of a learning algo-



rithm. Bias is a measure of error due to the centraltendency and variance is a measure of error due todisagreements between the classi�ers formed by an al-gorithm across a distribution of training sets. Amongseveral de�nitions of bias and variance, in this studywe adopt Kohavi & Wolpert's (1996) de�nitions thatdecompose error into intrinsic noise (optimal Bayeserror), squared bias, and variance. Due to the dif-�culty of estimating the intrinsic noise in practicalexperiments with real domains, we follow Kohavi &Wolpert's (1996) strategy of generating a bias termthat includes both intrinsic noise and squared bias.The values are calculated directly from the perfor-mance of each classi�er on each test case in the ex-periments described below.3.2 EXPERIMENTAL DOMAINS ANDMETHODSThis study uses the same twenty-nine natural domainsused in previous studies of Lbr (Zheng &Webb, 1998).These cover a wide variety of domains from the UCImachine learning repository (Blake, Keogh & Merz,1998). This test suite includes all the twenty-eight do-mains used by Domingos & Pazzani (1996) for study-ing naive Bayesian classi�cation, as well as the Tic-Tac-Toe domain. The last domain was chosen for pre-vious research because it contains inter-dependent at-tributes and its target concept is known.We employ the bias/variance estimation process de-veloped by Webb (forthcoming). For each domain tenthree-fold cross-validations (Breiman, Friedman, Ol-shen & Stone, 1984) are carried out for each algorithm.All the algorithms are run with their default optionsettings on the same training and test set partitions inevery domain. Only the error rate on the test set isreported. An error (or bias, or variance) rate reportedin the following subsections is an average over the 30runs for an algorithm.Since the current implementation of Lbr and NB canonly deal with discrete valued attributes, numeric at-tributes are discretized as a pre-process in the exper-iments using an entropy-based discretization method(Fayyad & Irani, 1993) for all learning algorithms. Inother words, the algorithms are being compared onperformance when learning from discrete valued data.For each pair of training set and test set, both train-ing set and test set are discretized by using cut pointsfound from the training set alone.3.3 BIAS AND VARIANCE ANALYSISFOR LBRLbr is designed to improve the performance of thenaive Bayesian classi�er NB. A bias and variance de-composition of Lbr's performance provides interesting

Table 2: Error rates (%) of Lbr, NB, C4.5, AdaBoost,and baggingDomain Lbr NB C4.5 AdaBoost baggingAnnealing 2.8 3.0 10.4 7.8 8.9Audiology 28.0 28.4 23.7 19.4 21.5Breast(W) 2.6 2.6 5.1 3.8 4.4KR-KP 2.7 12.5 0.8 0.5 0.7Credit(A) 14.4 14.5 14.5 15.9 14.3Echocar. 30.8 30.8 36.2 33.9 35.1Glass 34.1 34.0 35.8 33.1 32.8Heart(C) 17.6 17.6 24.0 22.3 20.7Hepatitis 14.7 14.7 21.0 17.7 18.9Horse 20.3 21.0 17.0 21.3 16.8HouseVote 6.7 9.9 5.1 4.9 4.6Hypo 1.5 1.8 1.3 1.2 1.2Iris 6.6 6.6 7.5 7.5 7.1Labor 10.7 10.7 19.5 18.2 18.6LED 24 39.7 39.5 36.9 36.4 31.8Liver 36.2 36.2 35.7 36.0 36.0LungC. 49.7 49.4 59.4 55.0 61.3Lympho 18.5 18.3 23.6 17.7 20.7Pima 25.1 25.2 25.5 27.0 25.0Postop. 35.9 36.0 29.9 39.7 31.1P.Tumor 52.4 52.4 61.0 58.4 57.8Promoters 10.7 10.7 26.3 8.4 17.2Solar 17.1 19.1 15.7 17.0 15.9Sonar 25.4 26.5 32.1 22.1 24.9Soybean 7.0 9.8 10.3 6.9 8.2Splice 4.3 4.5 6.5 4.7 5.5TicTacToe 19.1 29.5 16.5 1.3 9.3Wine 2.5 2.5 11.8 4.7 8.9Zoology 6.2 6.2 8.5 6.2 8.4mean 18.7 19.8 21.4 18.9 19.6e.r. mean 1.12 1.21 .93 1.07w/t/l 4/11/14 10/0/19 13/1/15 14/0/15p. of wtl .0304 .1360 .8506 1.0000e.r. mean: geometric mean of error ratios.insights into how it achieves this e�ect.Table 2 presents the error rates of Lbr and NB (re-sults for C4.5, AdaBoost, and bagging are discussed inthe following section). The penultimate row shows thegeometric mean error ratio of NB over Lbr. Geomet-ric rather than arithmetic mean is used as it is moreappropriate for averaging ratio values. The last row inthe table shows the numbers of wins, ties, and lossesbetween the error rates of NB against those of Lbrin the 29 domains, and the signi�cance level of a two-tailed pairwise sign-test on this win/tie/loss outcome.We consider the comparison signi�cant if the sign-testreveals a probability of less than 0.05 that the observedresult or more extreme should be obtained by chance.To illustrate the impact to bias and variance of ap-plying Lbr's semi-naive Bayesian approach in placeof NB's naive Bayesian approach, Figure 1 presents abar chart that shows for each domain the decrease inerror due to bias reduction and increase in error due



Figure 1: Bias and variance comparison between Lbr and NBto increased variance. Figure 2 summarizes this resultacross all domains by displaying the average error ofall algorithms decomposed into average bias and vari-ance.It is apparent that Lbr outperforms NB in terms ofaverage error rate, error ratio, and w/t/l record. Therelative error reduction of Lbr over NB is 12%. Thesign-test shows that Lbr obtains lower error rates sig-ni�cantly more often than the reverse in comparisonto NB.It is also apparent that the e�ect of Lbr is to substan-tially reduce the bias of naive Bayes. Figure 1 showsthat Lbr does not obtain higher bias than NB in anyof the experimental domains. However, Lbr never re-duces the variance of NB. The reason is that introduc-ing rules reduces the instance space and the number oftraining instances. This is very likely to increase thevariance. The bias term strongly dominates the errorof NB and hence the bias reduction usually outweighsthe variance increase. This accounts for Lbr's lowererror in most domains.3.4 COMPARING LBR WITH C4.5,ADABOOST, AND BAGGINGWe turn now to a comparison of Lbr against boost-ing and bagging decision trees. As C4.5 is the baselearning algorithm used in the committee techniques,its performance is also considered.We use AdaBoost and bagging with 100 trees in our

Figure 2: Error rate with bias and variance decompo-sitionexperiments since it has been shown that increasingthe committee size usually further improves the perfor-mance, especially with AdaBoost (Schapire, Freund,Bartlett & Lee, 1997). The results of C4.5, AdaBoostand bagging are provided in Table 2 and Figure 2.The relative error reduction of Lbr over C4.5 is 21%.Although the sign-test fails to show that Lbr is sig-ni�cantly better than C4.5, Lbr has lower error ratesthan C4.5 almost twice as often as the reverse. Also,Lbr has lower bias and variance than C4.5 on average.



Note that, despite the discretization of numeric at-tributes, the results of AdaBoost and bagging reportedhere are either comparable to or better than earlierpublished results (Bauer & Kohavi, 1999; Breiman,1996; Quinlan, 1996) since we use a higher value of T .With reference to their base learning algorithm C4.5,AdaBoost reduces bias from 14.3% to 12.7%, and vari-ance from 7.1% to 6.2%. Bagging has the same bias asC4.5, but reduces variance from 7.1% to 5.3%. Notealso that we have repeated the experiments with com-mittees of size 10 and that the results are less favorableto boosting and bagging than the results reported here.For example, the average error rate of AdaBoost with10 trees is 20.2%, substantially higher than that ofAdaBoost with 100 trees (18.9%). With 10 trees, theaverage error of bagging is 20.3% compared to 19.6%with 100 trees.Comparing Lbr with AdaBoost and bagging, we havethe following observations.� Lbr has lower average error than either AdaBoostor bagging. In terms of geometric mean error ra-tio, AdaBoost has lower error than Lbr by 7%.However, when the geometric mean accuracy ratiois calculated, it shows that AdaBoost has loweraccuracy than Lbr by 1%. This seemingly in-compatible outcome results from AdaBoost's ten-dency to better performance where error is low(and hence accuracy is high) while Lbr tends toperform well in the reverse context. AdaBoostwins in 13 domains, loses in 15 domains and drawsin 1 domain. All this indicates that Lbr is verycompetitive to AdaBoost.The geometric mean error ratio indicates the bag-ging has 7% higher average error than Lbr. Bag-ging wins in 14 domains and loses in 15 domains.� Lbr has lower average variance than either Ada-Boost or bagging|4.9% compared to 6.2% forAdaBoost and 5.3% for bagging. The frequencywith which Lbr achieves lower variance is signif-icant at the 0.05 level with respect to AdaBoostbut not bagging.� Lbr has higher average bias than AdaBoost(13.8% versus 12.7%), but lower average bias thanbagging (13.8% versus 14.3%). The frequencywith which Lbr has higher bias is signi�cant atthe 0.05 level with respect to AdaBoost but notbagging.Since C4.5 can deal directly with numeric attributes,it might impede C4.5 to carry out discretization asa pre-process when running C4.5. This also appliesfor AdaBoost and bagging with C4.5. In an addi-tional experiment, with exactly the same experimen-tal method, C4.5, AdaBoost, and bagging were runwithout discretization. The average error rates of

C4.5, AdaBoost, and bagging without discretization inthese 29 domains using the same training and test setpartitions are 21.3%, 17.9%, and 18.6% respectively.These are slightly lower than the corresponding val-ues with discretization. The accuracy of C4.5 with-out discretization is also worse than that of Lbr, with1.18 as the geometric mean error ratio and 11/1/18 asthe win/tie/loss record of the former over the latter.AdaBoost without discretization shows a slight advan-tage over Lbr. The win/tie/loss record of AdaBoostwithout discretization over Lbr is 16/1/12 in the 29domains. This di�erence is not signi�cant at the level0.05 using a two-tailed pairwise sign-test (p = :572).The geometric mean error ratio of AdaBoost withoutdiscretization over Lbr is 0.86. While this seems a bigadvantage to AdaBoost, the geometric mean accuracyratio of AdaBoost without discretization over Lbr isonly 1.006, a very slight advantage to AdaBoost. Asdiscussed in the context of AdaBoost with discretiza-tion, this results from AdaBoost's tendency to betterperformance where error is low (and hence accuracyis high) and Lbr's tendency to perform well in thereverse context. The geometric mean error ratio andthe win/tie/loss record of bagging without discretiza-tion over Lbr are 1.004 and 14/1/14 respectively, sug-gesting that bagging even without discretization hasno advantage over Lbr on average. On the otherhand, these results suggest that the performance ofLbr might be further improved by carrying out dis-cretization during the generation of Bayesian rules in-stead of pre-processing or by employing techniques forhandling undiscretized numeric values such as thoseproposed by John & Langley (1995).3.5 COMPUTATION TIMEIn this section, we discuss Lbr's computational pro�leand compare its computation time with that of Ada-Boost with 100 decision trees. Since AdaBoost andbagging have similar execution times, the result of thelatter is omitted.Lazy learners have very di�erent computation timepro�les to eager learners that generate an explicitmodel at training time. If we consider the total com-putation time for learning from a given training setand classifying objects in a given test set, the com-putation time of an eager learner is strongly domi-nated by the requirements for learning a model fromthe training set. The computation associated with ap-plying the model to classify test objects is usually rela-tively trivial. In particular, the computational pro�leis relatively insensitive to the number of objects tobe classi�ed. The total compute time will di�er littleirrespective of whether one or 1000 objects are to beclassi�ed. In contrast, lazy learners delay computationto classi�cation time and the amount of computationis dependent on the number of objects to be classi�ed.



The major computational overhead in Lbr is the eval-uation of each potential addition of a condition tothe antecedent of the rule being constructed. Thisrequires N -fold cross-validation of the resulting localnaive Bayesian classi�er. As N -fold cross-validationof a naive Bayesian classi�er can be implemented verye�ciently, the computational requirements for classi-fying a single test case are reasonable. However, lazylearning requires that the same process is repeated foreach test example, and the cumulative computation fora large test set can be substantial. The computationaloverhead can be substantially reduced by caching use-ful information. In the current implementation of Lbr,the evaluation function values of attribute-value pairsthat have been examined are retained from one testexample to the next. This avoids re-calculation of theevaluation function values of the same attribute-valuepairs when classifying test examples that appear laterin the test set, thus reducing the entire execution time.Our experiment shows that caching this informationreduces the execution time of Lbr by 96% on aver-age on the 29 datasets used in the experiment. Thisis because the evaluation of attribute-value pairs fordi�erent test examples are often repeated, includingrepeated generation of identical rules for di�erent testexamples. Lbr could be made even more e�cient bycaching further information such as local classi�ers andindices for training examples in di�erent stages of thegrowth of rules. Of course, this would increase mem-ory requirements.Table 3 shows the execution time (in seconds) of Lbrand AdaBoost, running on a Sun UltraSPARC 2 com-puter. AdaBoost uses more time than Lbr in 24 do-mains. Although, in terms of mean execution timeover the 29 domains, Lbr is about �ve time slowerthan AdaBoost, this is dominated by 5 domains inwhich AdaBoost is much faster than Lbr. In these5 domains, large numbers of test instances contributeto the long execution in Lbr. For example, in theSplice junction domain, the test set size used in thecurrent experiment is 1059. When we change the ex-periment from three-fold cross-validation to ten-foldcross-validation (the test set size is reduced to 318),the execution time of Lbr reduces from 266.30 sec-onds to 180.39 seconds, while AdaBoost's executiontime increases from 40.20 seconds to 46.37 seconds.This suggests that the test set size has a great e�ecton the execution time of Lbr, and has a very littlee�ect on the execution time of AdaBoost.When interpreting the results in Table 3 it should benoted that they relate to contexts, created by three-fold cross-validation, in which two thirds of the avail-able data are used for training and one third for test-ing. The results would better favor Lbr if the propor-tion of data used for testing was decreased and betterfavor AdaBoost if this proportion was increased.

Table 3: Compute time (in seconds) of Lbr, and Ada-Boost Domain AdaBoost LbrAnnealing 6.74 3.84Audiology 8.50 21.75Breast(W) 1.65 0.35KR-KP 31.10 388.74Credit(A) 3.67 1.30Echocar. 0.41 0.02Glass 1.22 0.16Heart(C) 1.44 0.20Hepatitis 1.09 0.09Horse 4.25 0.77HouseVote 1.44 0.86Hypo 13.29 54.14Iris 0.22 0.01Labor 0.31 0.01LED 24 2.98 0.97Liver 0.64 0.16LungC. 0.61 0.15Lympho 1.02 0.12Pima 2.90 0.64Postop. 0.48 0.03P.Tumor 6.43 1.42Promoters 1.13 0.10Solar 5.06 2.92Sonar 2.88 1.30Soybean 8.95 55.50Splice 40.20 266.30TicTacToe 3.52 1.94Wine 0.54 0.04Zoology 0.45 0.03mean 5.28 27.72e.r. mean 1.34w/t/l 24/0/5p. of wtl .00044 CONCLUSIONSThis paper evaluates the Lazy Bayesian Rule learningalgorithm. This algorithm seeks to overcome the at-tribute interdependence problem of the naive Bayesianclassi�er by forming a customized naive Bayesian clas-si�er for each case to be classi�ed. This customizednaive Bayesian classi�er is formed by selecting a sub-set of the available training examples that appearmost relevant to classifying the current test example.In practice this often builds a more accurate naiveBayesian classi�er for the test example than the naiveBayesian classi�er trained using all training examples.This paper shows that the lazy Bayesian rule inductionalgorithm is an e�ective technique for improving uponthe naive Bayesian classi�er. We show that this e�ectis achieved by signi�cantly and substantially reducingthe bias of naive Bayesian classi�cation, though this isachieved at the cost of a slight increase in variance.
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