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ABSTRACT
This paper reports on a set of learning experiments which
could be considered as first steps towards learning at differ-
ent levels of a hierarchical approach to imitation learning.
A learner robot knows a priori how to execute some be-
haviours but does not know when. By following a teacher
robot through a series of experiences and through imitating
the demonstrated behaviours, the learner robot learns when
to execute each behaviour and subsequently learns how to
forage. The performance of the learner as well as the fac-
tors that affect its performance are described.
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1 Introduction

In the last decade roboticists have shown great interest in
imitation learning. This interest arises from the fact that
imitation learning is a powerful means of acquiring new
skills within a social environment, found in humans and
other animal species. It could lead into a more user friendly
way of programming robots as a human could program a
robot by just demonstrating the task.

Two forms of learning associated with imitation can
be distinguished: ‘learning to imitate’, where the robot
learns what to do with its motor system in order to perform
the same behaviour as another robot; and ‘learning through
imitation’, where “the robot learns by imitating the other
agent and associating perceptual experiences with this mo-
tor act” [1]. Learning to imitate has been thoroughly stud-
ied in assembly robotic systems [2, 3] as well as in com-
puter simulations and mobile robots [4, 5, 6]. There are
also a few research attempts for learning through imitation
in computer simulations [7] and in real robots [8, 9, 10].

In this study we investigate in real robots the effi-
ciency and value of learning through imitation in a foraging
scenario. A teacher performs foraging and leads a learner
robot through a series of experiences, letting the learner
know of the behaviours it executes. The learner robot fol-
lows the teacher, and by having the confidence that the
teacher is doing the right thing it carries out the just told be-
haviours and associates them with its perceptions. Hence,

we could say that the learner can in some sense imitate the
teacher, even if it is not imitating the details of how to carry
out the behaviour (it already knows) and it is not using its
perceptions to tell it what behaviours to imitate (it is just
doing what the teacher tells it). This imitation is necessary
as the learner must get itself into the right sensory state for
the next behaviour to be appropriate. The result of forming
associations between perceptions and behaviours is that the
learner learns to execute the behaviours in the right circum-
stances, and therefore becomes able to forage on its own.

2 Background

Imitation learning has been thoroughly described from
an ethological perspective [11, 12], giving inspirations to
roboticists for studying and applying imitation learning in
robots.

A hierarchical approach of imitation learning was
proposed after studies in animal behaviour [13]. In this
study, imitation can occur in two distinct levels: “ ‘the ac-
tion level’, a rather detailed and linear specification of se-
quential acts, and the ‘program level’, a broader description
of subroutine structure and the hierarchical layout of a be-
havioural program”.

Our study comes close to the program level imitation.
The long term objective is the implementation of a simi-
lar hierarchical architecture where an agent learns through
imitation what behaviours to do (program level), and then
again learn by imitation these behaviours individually (ac-
tion level). The benefits are the same benefits of a modular
approach, like any possible problems would be dealt ‘lo-
cally’, i.e. in the scope of a behaviour, rather than ‘glob-
ally’.

One of the earliest studies of imitation learning in
robotics involved a robot that was learning to negotiate a
maze by following a teacher robot, which was an expert
in navigating through a maze [14]. The passive and ac-
tive imitation architectures were later introduced [15, 5].
In the former (passive imitation) the learner perceives the
environment and the action demonstrated, recognises the
demonstrated action and finally tries to imitate it, while
in the latter (active imitation) the learner internally gener-
ates and tests candidate matching actions while the teacher



demonstrates an action.
Imitation learning was also chosen as a staring point

in studying artificial social intelligence and skills that
are considered important for the development of social
robots [16].

The transmission of a language from one robot to an-
other using learning through imitation, such that the two
robots acquire a common vocabulary describing their states
and their actions is discussed in [8, 17]. Moreover, Rob-
ota, a robot doll able to learn, imitate and communicate,
showed evidences of learning action sequences and words
to describe these actions as well as its body parts in experi-
ments that were conducted in the laboratory and by playing
with 5–years old children [18].

In the case of two simulated humanoids, one of them
is able to learn by imitation from the other repetitive pat-
terns of arm and leg movements, oscillatory movements of
the shoulders and the elbows, and precise movements for
reaching and grasping imaginary objects using a neural ar-
chitecture [19]. Furthermore, a simulated humanoid torso
(named Adonis), showed the ability to learn how to dance
the macarena from a verbal description of the dance move-
ments [20, 4].

3 System Setup

Two of the well-known K-TeamTMKheperaTMrobots with
their equipped gripper modules were used for the experi-
ments. The training of the learner took place in two cor-
ridor arenas of approximately 230mm wide by 650mm

long, one occupied by the teacher and the other by the
learner. During the recall phase one of the training cor-
ridors was used for the first series of experiments, while a
larger rectangular arena of 600mm in width and 650mm

in length was used for the rest. An overhead camera above
the arenas is used for tracking the two robots.

The overhead camera is one of the primary sensors of
the robots. It provides the positions and the orientations
of the robots as well as the positions of the food objects.
Other sensors include the front infrared sensors, the optical
barrier of the gripper module (implies if there is an object
within the gripper), the position of the gripper motors (i.e.
if the gripper is open or closed) and the height of the gripper
arms from the ground.

4 The Foraging Task

In the following sections there are some terms that are fre-
quently used and must be clarified. Firstly, the raw data
has its usual meaning, as the sensor readings of the robot
(of varying different modalities). We perform minimal pro-
cessing to the raw data to form a prototype state vector,
consisting of the object presence of the gripper module, the
distance of the robot from the nearest food object, the dis-
tance of the robot from its home, the type of food and the
height of its grippers from the ground. A state vector is an

instance description of a state. Note that it is not necessary
to know all the raw data in order for the robot to deter-
mine its state. The associations that the learner forms are
exactly between these state vectors and the corresponding
behaviours. We call these associations experience vectors.
A file with such experience vectors is called experience file.
The terms experience file and training episode are used in-
terchangeably meaning the same thing, i.e. the experience
gained after the training, even if the term training episode
describes the training process as well.

The experimental scenario is described as a robot
searches for food objects and carries them to its home.
Starting from an initial position distant from the food and
through the overhead camera it sees where the food lies and
starts approaching it firstly at a fast speed and then slower
in order to be more maneuverable. When it comes next to
the food it starts orienting, and upon successful orientation
the food type is identified. Depending on the food type the
appropriate behaviour is executed. For instance, let’s as-
sume that the food can be lifted up; then the robot would
pick up the object and it would carry it to its home. When
the robot reaches its home it lets the food object down and
leaves. The process is repeated until all food objects have
been collected or until the episode terminates (i.e. after a
certain number of steps).

Both robots perform foraging by executing the fol-
lowing routines in every step:
1. It perceives its environment.
2. The raw data is preprocessed to form a state vector.
3a. For the teacher, the state vector is classified into one of
the possible states using a decision tree.
3b. For the learner, the state vector is best matched to one
of the state vectors of the formed experience vectors from
its training.
4. The corresponding behaviour is executed.

The foraging task has been broken down into 10 mu-
tually exclusive states and 10 correct corresponding hand-
coded behaviours, as they are shown in Table 1.

STATE BEHAVIOUR

SEARCH SEARCH FOR FOOD
CLOSE TO FOOD MOVE SLOWLY
NEXT TO FOOD ORIENT WITH FOOD
ORIENTED WITH FOOD EXPLORE FOOD
READY TO PICK UP FOOD PICK UP FOOD
READY TO PUSH FOOD PUSH FOOD
MUST AVOID FOOD AVOID FOOD
FOOD IN HAND GO HOME
AT HOME NO FOOD AVOID HOME
AT HOME WITH FOOD RELEASE FOOD

Table 1. The states and their correct corresponding be-
haviours.

It appears from Table 1 that there is a logical sequence
in the order that the states occur and hence also in the exe-



cuted behaviours. It seems then that the robot will be able
to forage successfully by following this order. However,
this is not the case as the robot following the routines de-
scribed above, only relies on its current perceptions to de-
cide on which behaviour to execute, i.e. it only responds to
its stimuli.

5 The Training Phase

Each robot (teacher and learner) occupies each own sepa-
rate arena in the training phase. The two arenas are iden-
tical in respect to their dimensions, the initial positions of
the robots, the positions of the food objects and the posi-
tions of the robot homes (Figure 1). The program consists
of MultiSteps and Steps. A MultiStep is like a round in a
board game while a Step is like a player’s turn. Note that
the teacher robot always takes its step before the learner.

Figure 1. The training setup. The ellipses show the home
areas.

The teacher on its step performs foraging as it would
do if it were on its own except that it also ‘shouts’ the be-
haviour that executes.

Hence, at every step the teacher:
1. transforms the raw data into a state vector;
2. classifies the state vector into a state (using its decision
tree);
3. ‘shouts’ the corresponding behaviour to the learner;
4. executes the behaviour.

Similarly, the learner at every step:
1. transforms its raw data into a state vector;
2. listens to the behaviour shouted by the teacher;
3. associates this behaviour with its state vector, forming
an experience vector;
4. executes the behaviour;
5. and follows the teacher in an attempt to maintain identi-
cal spatial positions, if it is not already.

The learner, by recording its state vector and the
corresponding behaviour (forming an ‘experience vector’),
learns which behaviour should perform in a similar situa-
tion. This behaviour should be the correct one since the

learner is in a similar situation (hopefully identical posi-
tion) as the teacher who is a foraging expert. The learner
then executes the behaviour it has just been told, resulting
in imitating in some sense the teacher. The learner robot
has to carry out the behaviour at the time to get itself in the
same perceptual state as the teacher for the next behaviour
to be appropriate. For example, if it did not imitate pick-
ing up the food, it would not know ‘how it feels’ to hold
the food.

However, due to likely different configurations of the
two robots and noise from the environment (like different
frictions) the position of the learner may not be the same
as the teacher’s. In fact, it was observed that although the
behaviour functions are the same, the two robots execute
them slightly differently. For example, the two robots do
not approach the food objects along the same path. This is
why the last step the learner does is to follow the teacher
in order to reach the same spatial position. However, this
following does not guarantee that the learner would be in
the same position with the teacher in the end of it, as it
is just a small correction step towards the position and the
orientation of the teacher. These corrections are so small
that are not even visually observed.

For every training episode an experience file is pro-
duced. Note again that the terms training episode and ex-
perience file are used interchangeably. Hence, when the
learner is further trained it means that it uses a combination
(set) of these ‘single’ experience files.

The learner was trained ten times in the setup shown
in Figure 1. Ten more training episodes were produced in
a different setup, in which the positions of the robots and
of the food objects have been switched from the ones in
Figure 1. These last training episodes are incomplete as
the training was stopped when the robots had picked up
the food objects. These episodes are incomplete because
we only wanted to further train the learner to this point,
thus allowing us to save time. The only drawback of these
incomplete training episodes is of course that they are not
stand-alone, but they must be used in conjunction with the
complete training episodes.

6 Experiments

In the recall phase the learner robot should be able to ne-
gotiate a foraging task in the absence of the teacher robot
using the experience gained from its training.

The learner goes through the following processes at
its every step:
1. It perceives the environment.
2. It transforms the raw data into a state vector, called input
state vector.
3. The experience vectors with the most similar state vec-
tors to the input state vector are then found.
4. The associated behaviour of these experience vectors is
finally executed.

The experience vectors with the most similar state
vectors to the input state vector are found by using a sim-



ple nearest–neighbour algorithm. It is likely that the set
of the most similar experience vectors do not all corre-
spond to the same behaviour. In this case the behaviour
which is executed is selected randomly with a probability
that corresponds to the size of each subset of the candidate
behaviours. This probability is called ‘confidence level’,
based on our confidence that correct experience vectors
should dominate over the noisy vectors as more experience
is acquired.

The learner is given a limited amount of time (i.e.
steps) to collect the food objects, based upon the average
number of steps needed for the teacher to clear the arena.

When all the food objects are carried home or its time
runs out the evaluation episode ends. The evaluation mea-
surement is a score calculated by:

� Counting the number of ‘correct’ behaviours (i.e. the
ones that the teacher would execute) and normalising
them into a percentage by dividing with the total num-
ber of executed behaviours (steps).

� A penalty is then applied, depending on how many
food objects the learner failed to collect and are still
lying in the arena.

Hence, the score calculation can be expressed with
the following equation:

Score =
C

T
� P; (1)

where C: number of correct behaviours, T: total number of
steps, P: penalty for uncollected food.

The number of correct behaviours of the learner is a
measurement of how well it has learned to forage. How-
ever, this is not an objective criterion as it does not cap-
ture the whole scope of the foraging process. For instance,
the learner could spend most of its time ‘correctly’ search-
ing for food. Therefore, the learner would achieve a high
score of correct behaviours without bringing any food to
its home or doing anything other than searching. This is
why a penalty is given, which depends on the number of
the uncollected food objects.

In the first series of experimentsthe performance of
the learner was evaluated in one of the training corridors.
Due to the small size of the arena only one available food
object was used. The time that the learner had to clear the
arena was 500 steps. The penalty for failing to collect the
food was -20. The initial position of the learner and the
position of the food were random in every recall episode.
The learner was asked to forage (recall episode) with the
experience of 1, 3, 5 and 10 training episodes (experience
files). In each case there were 20 recall episodes. In these
20 recall episodes of every case we used 5 random sets
(combinations of experience files) from the possible avail-
able ones, each one running it 4 times. For example, for 3
training episodes we used 5 random triplets of experience
files from the possible available ones, each one running it

4 times (5x4 = 20 recall episodes for 3 experience files).
Figure 2 shows the average scores (and the number of col-
lected food objects) with respect to the number of training
episodes used. The average score for 1 training episode is
53, which increases quite significantly to 68 for 3 training
episodes and reaches a maximum value of 74 for 10 train-
ing episodes. The percentage of collected food objects is
also nearly doubled from 40% (8/20) when using 1 training
episode to 70% (14/20) when using 10.
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Figure 2. Graph showing the average scores with respect
to the number of training episodes in the training corridor.
The numbers in the parentheses are the collected food ob-
jects (possible maximum 20). The error bars are the stan-
dard deviations.

In the second series of experimentsa larger rectangu-
lar arena was used with two available food objects. The
time limit was set to 700 steps. The penalties were -20
for failing to collect any food (either of the two), and -5 for
failing to collect the second food object (i.e. collect one but
not the other). The initial positions of the learner and of the
food were random. Similar to the first set of experiments
the learner was asked to forage with the experience of 1, 5
and 10 training episodes. For each one there were 12 recall
episodes. The number of random sets in each case were 3,
running each one of them 4 times. The average scores (and
the number of collected food objects) with respect to the
number of training episodes are shown in Figure 3. For 1
training episode the score was 45 and increases quite sig-
nificantly to 61 for 5 training episodes and to 68 for 10. The
percentages of the collected food objects were 30% (7/24),
58% (14/24) and 54% (13/24) respectively.

In the third series of experimentsthe same rectangular
arena was used. The setup was similar to the setup of the
second series of the experiments except from the time limit
to clear the arena which was increased to 800. As a result
the penalty was -10 per uncollected food. Furthermore, sets
of 1, 3, 5, 10, 15 and 20 training episodes were used. The
number of recall episodes in each case was 25. In these ex-
periments all the single training episodes were filtered so as
to remove the experience vectors with the same state vec-
tors. The sets of 1, 3, etc. training episodes were formed
from these filtered ones. The reason for this filtering is dis-
cussed in the next section. The average scores (and the
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Figure 3. Graph showing the average scores with respect
to the number of training episodes in the rectangular arena
for the second series of experiments. The numbers in the
parentheses are the collected food objects (possible maxi-
mum 24). The error bars are the standard deviations.

number of collected food objects) with respect to the num-
ber of training episodes are shown in Figure 4. For 1 train-
ing episode the score was 69. The number of collected food
objects was 25 out of the 50 possible ones, which gives a
rate of 50%. The performance steadily increases as more
training episodes are used reaching the highest value of
88, and having collected 92% (46/50) of the food objects
with 20 training episodes. The second and the third best
results are also quite close to the best ones. With 15 train-
ing episodes the score was 87 with 88% (44/50) of the food
objects collected. The score was 85 and having collected
78% (39/50) of the food objects with 10 training episodes,
i.e. half the training episodes used for the best results.
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Figure 4. Graph showing the average scores with respect to
the number of training episodes in the rectangular arena for
the third series of experiments. The numbers in the paren-
theses are the collected food objects (possible maximum
50). The error bars are the standard deviations.

In the fourth series of experimentsthe setup was the
same as the setup of the third series. Sets of 1, 10 and 20
training episodes were used. The number of recall episodes
in each case was 25. The sets were formed using the filtered
experience files. However, the prototype of the state vector

of the experience vectors was changed. In the first series of
experiments the distance of the robot from its home and the
distance of the robot from the nearest food were Euclidean
distances. This time they were changed into boolean type
(at home or not at home) and into relative distance (far
from food, close to food and next to food) respectively.
The reasoning is explained in the discussion section. Fig-
ure 5 shows that the score was 68 and the collected food ob-
jects were 38% (19/50) for 1 training episode. These num-
bers improve until a certain number of training episodes.
For 10 training episodes the score was 73 and collected
68% (34/50) of the food objects. The results when using
20 training episodes are similar to the ones of 10 training
episodes. The score was 73 and the learner collected 78%
(39/50) of the food objects.
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Figure 5. Graph showing the average scores with respect
to the number of training episodes in the rectangular arena
for the fourth series of experiments. The numbers in the
parentheses are the collected food objects (possible maxi-
mum 50). The error bars are the standard deviations.

7 Discussion

The experiments showed that the learner can generalise be-
yond its training environment, in arenas though that are still
very similar to the training one.

Furthermore, all the experiments showed that the per-
formance of the learner increases as more experience is ac-
quired. However, this improvement is more significant in
the early stages.

Two difficulties were observed, particularly in the first
two experiments. Firstly, the learner had difficulty in ex-
ecuting the behaviour of orienting with the food when it
was next to it. Instead, it was approaching it and thus
avoiding it as an obstacle quite frequently. The reason lies
in the method used for deciding which experience vector
to choose when there were more than one behaviours that
could be executed. Due to the slow update of the camera
sensor, which perceives the distance of the robot from the
food object, it was very likely that there were more expe-
rience vectors with the approach food behaviour than with
the orient behaviour. Hence, the confidence (probability) of



choosing to approach the food was higher. Since this was
happening in most of the experience files, the noisy expe-
rience vectors were dominating over the correct ones even
when more experience was acquired, and as a result the
problem still remained. It is worth mentioning that every-
thing was executed correctly as long as the learner oriented
successfully. In the third and the fourth experiments the
single experience files were filtered, leaving only unique
experience vectors. Furthermore, the learner was further
trained paying attention at this difficult point without need-
ing complete training episodes. This filtering and the extra
experience reduced the problem down to an expected and
normal probability that the noisy vectors should have.

Another problem that was visually observed in the
first two experiments was that the learner was executing the
behaviour of orienting with food in a particular area of the
arena, even if there was not any food there, as its input state
vector was classified to the experience vector with the ori-
ent behaviour. This was a result of using training episodes
that were produced from the same training setup, which did
not include experiences similar to the one it was facing in
its recall phase. In the third and fourth experiments the ex-
tra experience of the learner was from a different training
setup (the incomplete training episodes) as well, and the
problem was completely resolved.

The best performance of the learner was achieved in
the third series of experiments. The learner with 20 train-
ing episodes achieved a 88 score. The reliability of perfor-
mance is shown from the low standard deviation as well as
from the fact of managing to collect 46 food objects out of
the possible 50 (92%). It also managed to outperform the
teacher in the average number of steps, 504 steps for the
learner in comparison to the 540 steps for the teacher. In
an attempt to improve the performance of the learner the
prototype of the state vector was changed. The distances
of the learner from its home and from the nearest food
were transformed from Euclidean distances into boolean
and enumerated types respectively. The reasoning was that
boolean and enumerated types are considered to be more
general descriptions than integers. However, as a result of
this generalisation the population of the noisy vectors in-
creased, unlike the correct ones. This can be verified by the
worse results of the experiments.

The second and the third best results were also
achieved in the third series of experiments when using
15 and 10 training episodes respectively. For 15 training
episodes the score was 87, with a similarly low standard
deviation and with a number of collected food objects ris-
ing to 44 out of 50 (88%). For 10 training episodes the
score was 85, with a slightly higher standard deviation and
it managed to collect 39 out of 50 (78%) food objects. The
results of these two cases are quite close to the best re-
sults obtained for 20 training episodes. The usual trade–off
of further training (time consuming) versus performance
increases, as it seems that the improvement of the perfor-
mance is minor for very extensive training. In our case,
where the scenario is not very complex and the number

of states and behaviours is small, the time spent for fur-
ther training was not much. However, in cases where the
task might be much more complicated and the time spent
for training is vital, a solution close to the best one, but
with likely considerable time savings, could possibly be
preferred.

8 Conclusions

In this study we describe on a set of learning through imi-
tation experiments, based on a hierarchical approach to im-
itation learning.

These experiments showed that the learner can gener-
alise beyond its training arena. This means that the train-
ing can take place in an environment with facilitation that
make learning easier, and still the robot will be able to cope
with any arena of the same kind (same food objects, simi-
lar home, etc.). However, more work needs to be done to
make it properly generalise, since the two arenas are still
very similar.

Furthermore, the performance of the learner indeed
increases as more experience is acquired. However, it
seems that this improvement is more significant in the early
stages. Moreover, if there is a suboptimal solution close to
the best one when using less experience, then the issue of
a tradeoff between the time spent for the training and the
efficiency of the learner is considered, i.e. the question of
how much training is needed before a satisfactory solution
is achieved considering the cost of the time spent is asked.

The performance of the learner is affected by some
other factors as well. One of them is the ‘spatial variety’
of the training episodes. The problems of executing wrong
behaviours at certain perceptions were resolved with more
experience that was acquired from different training setups.

The filtering of the single training episodes into
unique experience vectors seems to significantly improve
the performance of the learner. Hence, when we say that
the teacher leads the learner through a series of experi-
ences, we should talk about unique experiences.

Finally, the performance of the learner is also affected
by the design of the state vector prototype. It can be de-
signed to be similar or even the same as the one of the
teacher robot when the two robots are identical, and yield
good results. Naturally, it is unlikely to be the case if the
morphologies of the teacher and the learner are different.

In further work, the learner should also be able to
recognise the behaviour of the teacher from its own per-
ceptions, i.e. it has to be able to recognise that the teacher
is “grasping the food”. So a complete system would:

1. Learn the details of how to do each behaviour (low
level), including start and end points.

2. Learn when to do each behaviour (high level).

3. Recognise from observing the teacher’s ac-
tions/movements what behaviour the teacher is
actually doing at the moment.



These experiments indicate that a hierarchical
approach to imitation learning lends encouragement to
the continuation of this approach. However, it cannot
be fully evaluated until a complete imitation system is
implemented.
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