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Abstract

We describe Scusi?, a spoken language interpretation
mechanism designed to be part of a robot-mounted di-
alogue system. Scusi?’s interpretation process maps
spoken utterances to text, which in turn is parsed and
then converted to conceptual graphs. In order to sup-
port robust and flexible performance of the dialogue
module, Scusi? maintains multiple options at each
stage of the interpretation process, and uses maximum
posterior probability to rank the (partial) interpreta-
tions produced at each stage. The time and space re-
quirements of maintaining multiple options are han-
dled by means of an anytime search algorithm. Our
evaluation focuses on the impact of the speech rec-
ognizer and the search algorithm on Scusi?’s perfor-
mance.

1 Introduction

The DORIS project (Dialogue Oriented Roaming Interactive
System) aims to develop a spoken dialogue module for a
robotic agent. Eventually, this module will be able to engage
in a dialogue with users and plan physical actions (by inter-
facing with a planner). In this paper, we describe Scusi?, the
speech interpretation module that is being developed within
the DORIS framework.

It is widely accepted that spoken dialogue systems are
more prone to misinterpretations and partial interpretations
than text-based systems. This may be attributed to the state
of the art in speech recognition, and to people generally using
more informal and less grammatical forms of expression in
spoken discourse than in written discourse. In order to han-
dle gracefully the additional uncertainty associated with the
interpretation of spoken discourse, a dialogue module should
be able to (1) make decisions on the basis of the state of the
interpretation process, (2) adjust these decisions dynamically
on the basis of new information, and (3) recover from flawed
or partial interpretations. For example, if an addressee was
reasonably sure that she heard a sentence correctly, her re-
sponse would differ from the response she would generate if
she couldn’t quite distinguish between several possible sen-
tences or parts thereof. If new information then came to light
(e.g., the speaker just pointed to an object), it could change

the certainty of the addressee regarding different interpreta-
tions. Still, it is possible that even the preferred interpretation
has areas of uncertainty (e.g., it is not clear what the speaker
wants done with the object in question). In this case, the ad-
dressee can just ask a clarification question regarding the in-
tended action.

Scusi? was designed to enable a dialogue module to
achieve the above requirements. Scusi?’s interpretation pro-
cess comprises three main stages (Figure 1): speech recog-
nition, parsing, and semantic interpretation. During semantic
interpretation a parse tree is first mapped into a knowledge
representation based on Conceptual Graphs (CGs) [Sowa,
1984]; this is similar to the assignment of semantic role la-
bels [Gildea and Jurafsky, 2002]. The content of this CG
structure is then matched with items and actions in the world
(Section 3). Each stage in the interpretation process produces
multiple candidate options, which are ranked according to
their probability of being intended by the speaker. The proba-
bility of a candidate depends on the probability of its parents
(generated in the previous stage of the interpretation process)
and that of its components (Section 4).

The generation and maintenance of multiple interpreta-
tions, and the calculation and update of their probability con-
tribute to the above requirements for a dialogue module as
follows.

1. The generation and maintenance of multiple interpreta-
tions and the calculation of the probability of an interpre-
tation at each stage of the interpretation process enable
the dialogue module to make decisions on the basis of fea-
tures of the overall state of the interpretation process. Ex-
amples of such features are: how many highly ranked in-
terpretations there are, how similar they are to each other,
and how confident is the system about its interpretations
at the different stages. For instance, if there are several
top-ranked interpretations, it is reasonable to generate a
clarification question that discriminates between them; if
all the interpretations produced by the speech recognizer
have a low probability, then the dialogue module can ini-
tiate a clarification sub-dialogue regarding the spoken ut-
terance; and if the parse tree used for the top interpretation
has a low probability, the dialogue module may ask Scusi?
to perform additional processing using other parse trees.

2. The calculation and update of the probability of interpre-
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tations supports a dynamic re-ranking of the interpreta-
tions as new information becomes available, which in turn
enables the dialogue module to modify its decisions on the
fly. This information may be obtained from additional in-
terpretations generated by Scusi? (after it has submitted its
current interpretations to the dialogue module), or from
new observations, which may be received from a vision
module or from a new utterance generated by the user.
For example, a clarification question may no longer be
required if a newly produced interpretation has a much
higher probability than any interpretation generated so far,
or if a new visual input can disambiguate between several
top-ranked interpretations.

. As mentioned above, the process of calculating the prob-
ability of an interpretation incorporates the calculation of
the probability of individual components of the interpre-
tation. This supports the identification of “trusted” (high
probability) and “untrusted” (low probability) regions of
an interpretation, which enables the dialogue module to

select strategies to recover from flawed or partial inter-
pretations. For instance, if the speech recognizer is not
confident about some words, the resultant interpretation
will have low-probability components that correspond to
these words; or if a concept in a final interpretation (CG)
does not match a domain expectation (e.g., an object to be
moved is not movable), the probability of the correspond-
ing component will be low. The identification of these un-
trusted regions will enable the dialogue module to initiate
a focused recovery, such as a clarification question about
the components in an untrusted region, e.g., for the first
example, it may ask “What do you want me to get?”, and
for the second example, it may inquire “I understood you
want me to move your room. Is this what you meant?”.

The rest of this paper is organized as follows. Section 2
presents our interpretation process, followed by a description
of conceptual graphs — our knowledge representation formal-
ism. Our probabilistic approach is discussed in Section 4,
and an initial evaluation of our interpretation mechanism is
presented in Section 5. Section 6 discusses related research,
followed by concluding remarks.

2 Multi-Stage Processing

Figure 1 illustrates the stages involved in processing spoken
input. The first stage activates an Automatic Speech Recog-
nizer (ASR) to generate candidate sequences of words (7ext)
from a Speech Wave.! Each Text has a score that represents
how well its words fit the speech wave. This score is con-
verted into a probability. The word sequences are then parsed
using a probabilistic parser, which generates a set of Parse
Trees.”

The last two stages of the interpretation process generate
two types of CGs: Uninstantiated Concept Graphs (UCGs)
and Instantiated Concept Graphs (ICGs). UCGs are obtained
from Parse Trees, where one Parse Tree produces one UCG
(Section 3.1). UCGs represent mainly syntactic information,
i.e., the concepts in a UCG correspond to the words in the
parent Parse Tree, and the relations between the concepts are
directly derived from syntactic information in the Parse Tree
and prepositions. For instance, in the example in Figure 1(c-
d), the noun “mug” is mapped to the concept mug, and the
preposition “in” in the Parse Tree is mapped to the relation in
in the UCG. Next, Scusi? proposes candidate ICGs for UCGs,
where one UCG may yield several ICGs. This is done by
nominating Instantiated Concepts from DORIS’s knowledge
base as a potential realization for every Uninstantiated Con-
cept in a UCG (Section 3.2). In the example in Figure 1(d-e),
the concept mug is mapped to cup01, and the relation in in
the UCG is mapped to Location01 in the ICG.

'"We are currently using ViaVoice (http://www-306.ibm.
com/software/voice/viavoice), and trialling Sphinx (http://
cmusphinx.sourceforge. net/).

We use Charniak’s parser (ftp://ftp.cs.brown.edu/pub/
nlparser/) because it can produce partial parses for ungrammati-
cal utterances, and it provides multiple parse trees. This is in line
with our approach, which expects multiple options at each stage of
the interpretation process.



2.1 Anytime processing

The consideration of all possible options for each stage of
the interpretation process is computationally intractable. To
address this problem, we have adapted the anytime algo-
rithm described in [Niemann e al., 2005], which applies
a selection-expansion cycle to build a search graph as fol-
lows. The selection step nominates a single sub-interpretation
(Speech, Text, Parse Tree or UCG) to expand, and the expan-
sion step generates only one child for that sub-interpretation.
The selection step then nominates the next sub-interpretation
to expand, which may be the one that was just expanded, its
new child, or any other sub-interpretation in the search graph.

The selection-expansion cycle is repeated until one of the
following happens: all the options are fully expanded, a time
limit is reached, or the system runs out of memory. At that
point, the interpretation process returns all the (ranked) inter-
pretations and sub-interpretations obtained so far. This will
enable the dialogue module to decide on an action on the ba-
sis of the overall state of the interpretation process. If mem-
ory hasn’t run out, the interpretation process will continue
cycling, and if it finds new high-probability interpretations,
the dialogue module can adjust its actions accordingly.

Our search algorithm differs from most search algorithms
for spoken language interpretation in two respects: (1) it im-
plements a stochastic optimization strategy, and (2) it dynam-
ically decides which level in the search graph and which node
within this level to expand next.

Stochastic optimization strategies. These strategies,
which include simulated annealing and neural nets, occa-
sionally allow low-ranking nodes to generate children. In so
doing, these strategies typically avoid getting stuck in local
maxima — a problem incurred by greedy algorithms.

Dynamic node selection. Many spoken language interpre-
tation systems apply some type of level-building algorithm
[Myers and Rabiner, 1981], which expands each level of the
search in turn. In order to curb combinatorial explosion, a
beam threshold, which selects the best K options, is used at
each level (typically, the value of K is quite small, allowing
only the best or top-few interpretations to proceed [Shankara-
narayanan and Cyre, 1994; Gorniak and Roy, 2005]). In con-
trast, our search dynamically determines the stage (level in
the search graph) to be expanded, selects a node within that
level, and generates one child for this node. In line with our
stochastic optimization approach, the first two decisions are
probabilistic, choosing preferred options most often, but not
always. In order to encourage the early generation of com-
plete interpretations, preference is given to later stages in the
search (e.g., expanding UCGs rather than Texts). Within a
level, nodes with a proven “track record” are preferred, i.e.,
nodes that have previously produced high-probability chil-
dren. This heuristic cannot be used by a level-building al-
gorithm, as information about later stages is not available to
earlier stages. In Section 5, we compare the performance of
our search with that of a level-building algorithm.

3 Conceptual Graphs

Conceptual graphs represent entities and the relationships be-
tween them.® For instance, the CG in Figure 1(e) indicates
that there are two concepts find03 and cup01 that have a Pa-
tient0]1 relationship. Every relationship in a CG must have
at least one parent concept and one child concept, e.g., the
PatientO1 relationship in Figure 1(e) has concept find03 as
a parent and cup01 as a child. However, a concept can
exist in isolation without any relationships. This supports
phrases as well as single-word utterances like “yes”, “there”
and “Mary”.

3.1 Uninstantiated Conceptual Graphs

A UCG represents concepts and relationships that can be ob-
tained directly from the Parse Tree (without resorting to do-
main knowledge). Most phrases in a Parse Tree map to a con-
cept node representing their head-word. If a phrase governs
a word or phrase other than its head-word, then the phrase’s
concept node is joined to the other word or phrase’s concept
node via a relationship node. For instance, the adjective (JJ)
“blue” in Figure 1(c), which is governed by the same NP as
the noun (NN) “mug”, is connected to the mug concept in
the UCG in Figure 1(d) by means of an A#tribute relationship
node (Attribute is the default relationship). Linguistic details
such as part-of-speech and phrasal category are retained as
features of the concepts. Prepositions are treated as defining a
relationship node between two concepts, rather than mapping
to concept nodes, e.g., for represents the relationship between
find and Susan in Figure 1(d). It is worth noting that slightly
different Parse Trees may yield the same UCG. For instance,
the blue concept node in Figure 1(d) could also be generated
from an Adjectival Phrase, instead of a stand-alone adjective
(JJ) adjunct to the NP.

This representation allows Scusi? to accept and com-
bine information from different types of sentences and in-
put modalities. For spoken input, our mapping from Parse
Tree to UCG handles declarative, imperative and interroga-
tive sentences, as well as single words. In the future, Scusi?
is expected to interact with the scene analysis component of a
robot’s vision system. This component will return objects and
relationships such as Coordinates, Colour or Shape, which
can readily map to UCGs.

3.2 Instantiated Conceptual Graphs and the
Knowledge Base

The generation of an ICG requires the selection of an Instan-
tiated Concept from the knowledge base for each Uninstanti-
ated Concept in a UCG. The knowledge base contains entries
for the following types of concepts.

e Specific real-world objects, e.g., cup03, Susan05;

e general objects that have default features, e.g., Cup-
Class01, which has features like container=Y, movable=Y,
shape=cylinder and size=small;

*Our knowledge representation is structurally like CGs, but
the relations are inspired by the Verb Semantic Classes from EA-
GLES96 (nttp://www.ilc.cnr.it/EAGLES96/rep2/nodel0.html)
and by FrameNet categories (http://framenet.icsi.berkeley.
edu/).
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e abstract attributes like blue01 and quickly01;

e actions known to the system, e.g., find01 for locating a
place and reporting its whereabouts, as in “find an office
for Susan”, and find03 for retrieving an object, as in “find
a cup for Susan”; and

e instantiated Relationships, e.g., roles like Patient0O1, Des-
tination01 and BeneficiaryOl.

The process for postulating Instantiated Concepts for Unin-
stantiated ones is similar to that used for suppositions in
[George et al., 2005]. Each Uninstantiated Concept in a UCG
is associated with a list of Instantiated Concepts (Figure 2(b)).
Each entry in the list is assigned a probability on the basis of
how well it matches the Uninstantiated Concept (Section 4).
To generate an ICG, one Instantiated Concept is selected from
the list of each Uninstantiated Concept in the parent UCG,
starting with the higher-ranked combinations (Figure 2(c)).
Subject to time and memory limitations, all combinations of
Instantiated Concepts may eventually be considered.

4 Probabilities of Interpretations

Scusi? ranks candidate ICGs according to their posterior
probability in light of a given Speech Wave and conversa-
tional context. At present, the context is obtained from con-
cept and relation instances in the system’s knowledge base,
which in the absence of other information are equiprobable.
We are currently in the process of incorporating salience from
dialogue history into our formalism, such that it influences
the prior probability of mentioning a concept or relation. In
the future, we will also include information from the robot’s
vision system.

As seen in Section 2, the interpretation process goes mainly
from evidence (Speech Wave) to ICG (thick arrows on the
right-hand-side of Figure 3). The ASR provides probabilities
from Speech Wave to Text (its scores are directly translated to
probabilities), and the probabilistic parser from Text to Parse
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Tree. We therefore calculate the posterior probability of an
ICG as follows.

Pr(ICG|Speech) = o x (1

T { Pr(ICG|UCG, Context) x Pr(UCG|ParseTr)x }
Pr(ParseTr|Text) x Pr(Text|Speech)
txt,prsTr,ucg
where « is a normalizing constant.

The summation is required since, as seen in Figure 3, a
sub-interpretation may have multiple parents. The retention
of all sub-interpretations regardless of their probability en-
ables us to get a true measure of the overall probability of any
interpretation with multiple paths to the Speech Wave.

Further, since a UCG is generated algorithmically from a
Parse Tree, Pr(UCG|ParseTr) = 1. Thus, the only outstand-
ing issue is the calculation of Pr(ICG|UCG, Context). To per-
form this calculation we make the following simplifying as-
sumptions.

e Pr(ICG|UCG, Context) can be calculated separately for
each node (concept or relation) in the ICG; and

e given a source UCG and the Context, the probability of
each node N/““ in an ICG depends on its correspond-
ing node in the UCG (NP “%), its neighbouring nodes in
the ICG (nbours(N}¢%)), and its prior probability in the
Context.

These assumptions yield the following formulation.

Pr(ICG|UCG, Context) = (2)

H Pr(N/CC|NVCY nbours(N}CC), Context)
i=1
where n is the number of nodes in the ICG.
By making some conditional independence assumptions,
we obtain the following approximation for this equation.

Pr(ICG|UCG, Context) = (3 x 3)
ﬁ Pr(NUCC|NICC) x Pr(nbours(NICF)|NICCG)x
Pr(N} €| Context)



Table 1: Features for sample concepts in the UCG and ICG

Stage  called PoS rel  cg-role
UCG “find”  {S1,S,VP,VB,word} —  concept
UCG “fine”  {SI,ADJPJJ,word} = —  concept
ICG “find, {VP,VB,VBZ,VBP, -  concept

find01 locate” VBN,VBG,VBD}
ICG “find, {VP,VB,VBZ,VBP, -  concept
find03 locate” VBN,VBG,VBD}

where (3 is a normalizing constant.

e The third factor in this product contains the prior proba-
bility of node 7 in ICG, which reflects the salience of the
concept or relation in question in the current context.

e The second factor reflects how reasonable it is to put the
concepts of the ICG together, i.e., it encodes the extent to
which each node in the ICG matches the requirements of
other nodes. For example, find03 in Figure 1(e) expects
a Patient0] relationship and a BeneficiaryOl relationship
with other concepts.

o The first factor in the product represents how well a can-
didate ICG node matches a source UCG node. We have
found it useful to consider four features of these nodes to
determine the goodness of this match (described below).
The values of these features for a UCG node are obtained
from the parser, and the possible values that can be taken
by a candidate ICG node are stored in the knowledge base.

1. called — the lexical items associated with a concept,
e.g., “find” and “mug” in the UCG in Figure 1(d). This
feature is used to determine whether the words in a
user’s utterance could be used to designate a candi-
date concept or relation in the knowledge base. In the
future, we intend to complement this feature with sim-
ilarity metrics such as those discussed in [Pedersen et
al., 2004].

2. PoS — part of speech. This feature is more forgiving
than called, because only some of the PoS-tags re-
turned by a parser inform the matching process.

3. relation — syntactic relation, e.g., Object and Attribute
in the UCG in Figure 1(d). This feature has a value
when the parser provides information about the type of
arelation between concepts. Like called, this feature is
used to determine whether the relations in a user’s ut-
terance could be used to designate a candidate relation
in the knowledge base.

4. cg-role — the semantic role of a node, i.e., concept
or relation. This feature is crucial for determining
whether a candidate ICG node could possibly match
an uttered word.

To illustrate the calculation of these factors, consider a sit-
uation where given the input in Figure 1, the ASR has alterna-
tively heard “find” and “fine” as the first word. Table 1 shows
the above features for “find” and “fine” in the UCG, and for
two candidate domain actions in the ICG: find01 and find03.

Both UCG words match the cg-role and relation features
for both domain actions. However, “fine” does not match the
called and PoS features (the parse that produced the UCG
in this example does not have “fine” as a verb). Hence, the
UCG with “find” has a higher probability of being the par-
ent of an ICG that has find01 as a candidate action, and an
ICG that has find03 as a candidate action. After calculating
the first factor in Equation 3, the find nodes in these ICGs are
equiprobable. However, the second factor discriminates be-
tween these domain actions. This is done through the expec-
tations of action-relation pairs. For example, find03 expects
an inanimate object as a patient, while find01 expects a place.
Since “cup01” is an object, find03 has a higher probability.
At present, Scusi? interprets utterances in isolation, hence di-
alogue context has no influence.

5 Evaluation

To evaluate Scusi?’s speech interpretation performance, we
used 27 utterances, which were based on the TRAINS92 cor-
pus [Allen er al., 1996] and were spoken by one of the au-
thors. These utterances were selected due to their simplicity,
so that they are easy to parse. The utterances had different
lengths, ranging from 3 to 13 words, e.g., “back to Illinois”
and “bring the boxcar back to Avon to fill the boxcar up with
bananas”. The knowledge base had 139 concepts (e.g., go0,
town_Avon).

Our evaluation focuses on Scusi?’s ability to generate the
intended interpretation (hence measures of partial matches,
such as Word Error Rate, are not appropriate). We defined
two gold standards as follows. Each utterance had one Gold
Text which was the original TRAINS text (the ASR could
produce the Gold Text for 23 of the 27 utterances considered
— our evaluation is based on those 23 utterances). In addi-
tion, each utterance had zero or more Gold ICGs among the
ICGs generated by Scusi? (sometimes Scusi? could not find
a correct ICG, and sometimes there were several appropriate
interpretations). The correctness of an ICG was determined
on the basis of the knowledge base. If an Uninstantiated
Concept did not have a corresponding concept in the knowl-
edge base, then the Gold ICG mapped it to a generic concept,
e.g., unknown_concept, unknown_noun. Otherwise, the Gold
ICGs contain concepts from the knowledge base that are valid
representations of what the speaker uttered, e.g., the Gold
ICG for “go to Corning” is go0 —Destination_Relationship
—town_Corning.

Our evaluation focuses on two aspects of Scusi?’s oper-
ation: (1) the effect of speech recognition performance on
interpretation performance, and (2) our search algorithm.

Effect of speech recognition performance. Our ASR of-
ten produces a large number of options for a spoken utterance.
For instance, the utterance “We were going to take the red en-
gine” yields 7,682 options, and “Pick up a tanker in Corning
I guess” produces 53,762 alternatives. Figure 4 shows the
number of Gold ICGs found by Scusi? as a function of the er-
ror percentage of the ASR. This is the proportion of incorrect
outputs produced by the ASR that were used in the interpreta-
tion process. 0% error means that the ASR was deemed to re-
turn only the Gold Text, and 100% means that the ASR Gold
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Text was mixed in among all the erroneous options produced
by the ASR (clearly, when thousands of options are produced
by the ASR, not all of them can be considered in the available
time). The 25, 50 and 75 error percentages were produced
by selecting every fourth, second, and three out of four erro-
neous options produced by the ASR. Scusi? was run for 300
iterations, which is our current default setting for tests.

The graph also shows how error percentage affects the
number of Gold ICGs with average rank < 5 and < 10, where
average rank is the average of the ranks of equiprobable inter-
pretations, e.g., if there are three equiprobable interpretations
ranked 1, 2 and 3, their average rank is 2. We used aver-
age rank rather than raw rank because it is often the case that
clusters of interpretations have the same probability.

As expected, ASR accuracy has a significant influence on
interpretation performance, with accurate recognition yield-
ing 18 Gold ICGs out of the possible 23, and all these ICGs
being ranked top 5. As ASR accuracy drops, so does interpre-
tation performance. However, this deterioration is graceful in
terms of our system’s ability to find Gold ICGs, while it is
sudden for average rank. Further, the number of Gold ICGs
with ranks < 5 and < 10 remains constant between ASR er-
ror of 25% and 100%. We propose to investigate two ways to
obtain better output from the ASR: we are considering pro-
cedures for filtering the options returned by ViaVoice, and in
parallel we are experimenting with a different ASR.

Scusi?’s search algorithm. Figure 5 compares the perfor-
mance of our search algorithm with that of a level-building
algorithm that uses beams of different sizes. Since the
level-building algorithm expands each level in turn, a sub-
interpretation does not have information about the perfor-
mance of its children. Hence, unlike Scusi?-search, beam
search selects the top sub-interpretations to be expanded on
the basis on their probability only (Section 2). Figure 5(a)
shows the number of ASR Gold Texts found by both algo-
rithms (from the possible 23), and Figure 5(b) shows the num-
ber of Gold ICGs. Both figures show the total number of
Golds found, and the number with average ranks of 1, < 5 and
< 10. The plain-coloured bars show the performance of the
level-building algorithm for beams of size 1, 5 and 10, and the

bars with diagonal stripes show the performance of the “cor-
responding” Scusi?-search. This corresponding search was
defined in order to make the comparison fair — the number
of iterations it performs is equal to the number of iterations
performed by the beam search. For example, Beam-1 means
that only the top-ranked option was expanded by the beam
search at every stage, which is equivalent to 6 Scusi? itera-
tions; Beam-10 is equivalent to Scusi?-350 (note that Scusi?-
350 finds 12 Gold ICGs, compared to 10 Gold ICGs found by
Scusi?-300, plotted in Figure 4).

As seen in Figure 5, the performance of Scusi?-search
is slightly better than that of beam search, in particular for
Scusi?-350 versus Beam-10. Scusi?-350 found 18 Gold
Texts, which led to 12 Gold ICGs, while Beam-10 found 13
Gold Texts, which led to 9 Gold ICGs. Note that the addi-
tional Gold Texts found by Scusi? have ranks greater than 10,
and hence are unlikely to be found by a rigid beam search.
This indicates that Scusi?’s flexible expansion procedure is
a promising approach. Additionally, Scusi?’s anytime per-
formance (Section 2) makes it more responsive to its operat-
ing conditions than systems governed by arbitrary thresholds
(e.g., beam size). Hence, we consider this approach worth
pursuing. Also note that our results, both for beam search
and Scusi?-search, are heavily influenced by our calculations
of the probability of a sub-interpretation. We expect that addi-
tional information brought to bear to these calculations, such
as corpus-based statistics, will yield improvements in inter-
pretation performance.

6 Related Research

This research extends the work described in [Niemann er al.,
2005] in its use of CGs as its main knowledge representation
formalism. CGs were chosen, instead of the simple frames
used by Niemann et al., due to their higher expressive power
(the relationship between CGs and predicate calculus is dis-
cussed in [Dau, 2001]). The use of CGs in turn affects the
calculation of the posterior probability of an interpretation.

Miller et al. [1996] and He and Young [2003] also ap-
plied a probabilistic approach for the interpretation of utter-
ances from the ATIS corpus, and Pfleger e al. [2003] used
this approach to interpret multi-modal input (but using a scor-
ing function, rather than probabilities). However, these three
projects use semantic grammars for parsing, while Scusi?’s
interpretation process initially uses generic, syntactic tools,
and incorporates semantic- and domain-related information
only in the final stage of the process. Knight er al. [2001]
compared the performance of a grammar-based dialogue sys-
tem to that of a system based on a statistical language model
and a robust phrase-spotting grammar. The latter performed
better for relatively unconstrained utterances by users unfa-
miliar with the system. Our probabilistic approach and in-
tended audience are in line with this finding.

Like us, Fischer ef al. [1998] regarded speech interpreta-
tion as an optimization task. They achieved anytime perfor-
mance by employing a stochastic optimization method which
considers multiple interpretations and expands “sub-optimal”
candidates. However, their use of statistical information is
fundamentally different from ours, as they use the results of
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Figure 5: Comparison between Scusi?-search and beam search, 100% ASR error

statistical analysis to prime the interpretation process. Addi-
tionally, they worked on railway schedule queries, which are
stylistically constrained.

Sowa and Way [1986] and Shankaranarayanan and Cyre
[1994] used conceptual graphs for discourse interpretation.
Both used a predefined set of canonical graphs to define the
semantics of the base concepts in their system. Scusi? differs
from both of these systems in its use of the UCG as an in-
termediate stage that is independent from the semantic- and
domain-knowledge in the knowledge base. From a process-
ing point of view, Shankaranarayanan and Cyre considered
only the first parse tree that supports an acceptable interpre-
tation, rather than retaining multiple parse trees. Sowa and
Way allowed multiple interpretations, but applied a filtering
mechanism that removed parses that failed semantic expecta-
tions. Scusi? does not apply such filtering, allowing possibly
flawed candidates to undergo a deeper examination.

Our work resembles that of Horvitz and Paek [1999] and
Gorniak and Roy [2005] in its integration of context-based
expectations with alternatives obtained from spoken utter-
ances. Gorniak and Roy use a probabilistic parser like ours,
but they restrict the search space by training the parser on a
corpus of human interactions relating to a computer game,
and provide tightly constrained domain expectations based
on the appropriate actions at particular stages in the game.
In addition, they allow only the most probable parse state
to generate an interpretation. In contrast, we do not re-
strict our expected input, we only factor in domain knowl-
edge in the final stage of the interpretation, and dis-preferred
sub-interpretations are allowed to proceed to the next stage.
The differences between these approaches highlight impor-
tant trade-offs between processing speed, flexibility and ro-
bustness.

Horvitz and Paek focused on higher level informational
goals than those addressed in this paper, using a single out-

put produced by a parser as linguistic evidence for their goal
recognition system. An important aspect of their work, which
we hope to incorporate into our dialogue module in the future,
is their use of a utility-based decision procedure to determine
the system’s actions on the basis of the probabilities of inter-
pretations.

7 Conclusion

We have presented a multi-stage interpretation process that
maintains multiple options at each stage of the process, and
uses maximum posterior probability to rank the (partial) inter-
pretations produced at each stage. We have argued that these
features support the following desirable behaviours in a dia-
logue module: making decisions on the basis of the state of
the interpretation process, adjusting these decisions dynam-
ically on the basis of new information, and recovering from
flawed or partial interpretations.

The time and space requirements of maintaining multiple
options are handled by means of an anytime search algorithm.
Our algorithm dynamically decides which level to expand in
a search graph, and which node within a level. This supports
flexible behaviour that takes into account a system’s operating
constraints. Additionally, our algorithm employs a stochastic
optimization method, which allows the examination of sub-
optimal sub-interpretations.

Our evaluation considered two aspects of the interpreta-
tion of spoken discourse: (1) impact of ASR performance,
and (2) search algorithm. As expected, ASR performance af-
fects our system’s interpretation performance overall. How-
ever, in our experiments, our system’s ability to produce
highly-ranked interpretations was invariant for ASR error per-
centages between 25% and 100%. Our search algorithm
performed slightly better than a traditional beam-search ap-
proach. This, together with our algorithm’s flexibility, indi-
cate that our approach is worth pursuing.
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