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Abstract

Responses to help-desk email inquiries are often
repetitive, sharing varying degrees of commonal-
ity. In addition, a significant proportion of the re-
sponses are generic, containing a very low level
of technical content. In this paper, we present a
corpus-based approach for identifying common el-
ements in help-desk responses and using them to
construct a new response. A help-desk domain is
unique in that responses that contain even one in-
congruous sentence can alienate a user. It is there-
fore not always possible to automatically generate
a complete response, because personalization is of-
ten better handled by human operators. Our system
is designed to find and collate the generic portions
of responses. We have adapted multi-document
summarization techniques, and developed a mea-
sure that predicts the completeness of a planned re-
sponse, thus indicating when a fully automated re-
sponse is possible. Our evaluation shows that 14%
of the responses in our corpus can be represented
by complete generic responses.

1 Introduction
Email inquiries sent to help desks are often repetitive, and
generally “revolve around a small set of common questions
and issues”.1 This means that help-desk operators spend most
of their time dealing with problems that have been previously
addressed. Further, a significant proportion of help-desk re-
sponses contain a very low level of technical content, reply-
ing, for example, to inquiries about returning a product or
questions addressed to the wrong group, or pointing out that
the customer has provided insufficient detail about his/her
problem. Organizations and clients would therefore benefit
if an automated process was employed to deal with the easier
problems, and the efforts of human operators were focused
on difficult, atypical problems.

In this paper, we present an initial report of our corpus-
based approach to achieving this objective with respect to

1http://customercare.telephonyonline.com/
ar/telecom_next_generation_customer/C.

email inquiries sent to Hewlett-Packard (HP). We are devel-
oping a system to automatically generate responses to users’
requests on the basis of responses seen in a corpus of email
dialogues. Since help-desk inquiries revolve around a small
set of common problems, there is significant overlap in the
content of the responses, but there are also differences arising
from tailoring responses to particular user needs. For exam-
ple, a response could consist of a generic description of how
to install new printer drivers (the same for all printer models),
preceded by a reference to a specific download location (dif-
ferent for each model). Also, a response in the corpus may
refer to several, distinct problems raised by a user, where the
answer to each problem appears repeatedly in the corpus, but
the complete response does not.

In some cases, a new request might match a previous one
very well, suggesting a traditional document retrieval ap-
proach, where a response document in the corpus can be re-
used in its entirety. However, when a new request matches
several previous requests whose responses have common but
also different elements, document re-use is not appropriate.
Instead, a response should be composed from parts of differ-
ent responses.

This task is similar to query-relevant, multi-document sum-
marization in the sense that different documents (i.e., candi-
date responses) must be combined to produce one response
that is relevant to a user’s request or interests. However, there
is a significant difference between these tasks. Users of sum-
marization systems will gloss over items of information that
are not entirely relevant, whereas a help-desk response that
contains even a single incongruous sentence will alienate the
user. Therefore, the responses generated by our system must
have very high relevance, even if this comes at the expense
of completeness. If a complete response is not possible, it is
more sensible to prompt a human operator to complete a par-
tial response than to risk presenting incongruous information.

We postulate that there are two main types of information
items that should be included in a response: generic, which
are common to all (or most of) the responses that match a
user’s query, and specific, which address particular issues in
the user’s query. In the above example about drivers for print-
ers, the general information about drivers would appear in
most of the responses that match the given query, while the
download information about a particular printer would appear
only in specific replies. The approach proposed in this pa-



per identifies the former, i.e., information items that can be
“safely” included in a reply. Further, we propose a measure
to model our system’s confidence in the completeness of a
planned response composed of such safe elements. These are
typically generic responses that have a low technical content.

The rest of this paper is organized as follows. In Section 2,
we describe our corpus. Section 3 details our approach for
generating the generic portions of help-desk responses and
for assessing the completeness of planned responses. The
evaluation of our approach is presented in Section 4. In
Section 5, we discuss our first attempts at personalizing re-
sponses. Section 6 considers related work, followed by con-
cluding remarks.

2 Corpus
Our corpus consists of 30000 email dialogues between users
and help-desk operators at HP. These dialogues deal with
a variety of user requests, which include requests for tech-
nical assistance, inquiries about products, and queries about
how to return faulty products or parts. We have divided the
corpus into topic-related datasets. For example, there is a
“product replacement” (PRDRP) dataset with 1416 dialogues,
and a “desktop” (DESKTOP) dataset with 590 dialogues. Fur-
ther, we are focusing on 2-turn dialogues, as we are targeting
user requests that can be dealt with using one response (about
80% of our corpus consists of 2-turn dialogues). Owing to
time limitations, the procedures described in this paper were
applied only to datasets comprising between 300 and 1500
(2-turn) dialogues, which corresponds to a total of 8000 dia-
logues.

Below are two responses from the PRDRP dataset.

R1: I apologize for the delay in responding to your issue. Your
request for a return airbill has been received and has been sent
for processing. Your replacement airbill will be sent to you via
email within 24 hours.

R2: I apologize for the delay in handling your issue. Your request
for a return airbill has been received and has been sent for
processing. Your replacement airbill will be sent to you via
email within 24 hours.

We can identify three functional “building blocks” for both
responses: apologize, confirm and inform. Even though there
is a minor difference between their opening sentences (“re-
sponding to” vs. “handling”), the responses are essentially
identical. In contrast, response R3 below contains rather dif-
ferent building blocks, although it shares the first one with R1
and R2.

R3: I apologize for the delay in responding to your issue. We are
unable to send out replacement labels for return boxes. Please
contact Technical Support at 1-800-OKCOMPAQ to have an-
other box dispatched to you.

In the next section we present our approach for representing
and collating building blocks of responses.

3 Approach — Building blocks for responses
In order to find similarities between responses in our corpus,
we believe it is necessary to represent building blocks at the
sentence level. This is motivated by the characteristics of our

task and domain: (1) the corpus contains repeated informa-
tion at an intermediate level of abstraction (between entire
responses and individual words), and (2) even a single incon-
gruous sentence in a generated response could alienate a user.
Further, the similarities between parts of responses should be
abstracted from their exact wording, so that sentences that
convey essentially the same meaning can be treated as the
same building block. When doing so, care must be taken to
ensure that we are able to confidently select representative
sentences in the response generation stage.

We have developed a system that finds response building
blocks by clustering sentences. We extract all the sentences
from the responses in a particular dataset, and then cluster
them into Sentence Types (STs). This procedure should yield
cohesive clusters for similar sentences, from which it is easy
to select a representative sentence. In contrast, sentences that
have differences would yield less cohesive clusters, thereby
making it more difficult to select a representative sentence.
This motivates a measure of cluster cohesion.

When generating a response to a new request, the system
needs to know the building blocks for this response, i.e., the
sentence types to use. In this paper we focus on the generation
of the generic portion of responses. This generic portion may
actually yield a complete response, such as R1 and R2, or a
few sentences in a response, such as the first two sentences in
R3. Our approach consists of three steps:

1. Finding Response Types (RTs): groups of responses that
share similar building blocks. Each group specifies the
set of sentence types that the responses in the group
agree on. We refer to this agreement as the support for
the STs. In addition, we define a “semantic compact-
ness” measure for the completeness of a response type,
measured as the proportion of cohesive sentence types
that are highly supported.

2. Producing a “model” response for each response type.
This is achieved by selecting representative sentences
from the cohesive sentence types that are supported by
the group of responses.

3. Matching a new request with one or more response
types. If only one response type is matched and it is
considered complete by the semantic compactness mea-
sure, then its generated response can be sent directly to
the user. Otherwise, a single response that is incomplete
or several candidate responses (complete or otherwise)
can be passed to an operator.

In this paper, we focus on the first two steps, i.e., construct-
ing groups of responses, and generating a representative re-
sponse for each group. In Section 5, we report on results of
preliminary experiments involving the third step.

In the remainder of this section we give more detail on the
different parts of the system: (1) identifying sentences types;
(2) clustering responses according to the sentence types they
contain; (3) calculating the “semantic compactness” of the
response clusters; and (4) selecting sentences for inclusion in
a response (Figure 1 illustrates Steps 1, 2 and 4).
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Figure 1: Sentence and response clustering, and response generation, for the PRDRP dataset.

3.1 Identifying sentence types
The representation used for clustering sentences is crucial,
because it determines what constitutes similarity. In R1 and
R2 the minor difference between ‘handling’ and ‘responding’
is inconsequential. However, if the last sentence of R1 were
“Your replacement airbill will be sent to you via email within
48 hours”, the difference would be important (24 hours ver-
sus 48).

Our current implementation uses a bag-of-words approach
with binary values. That is, each sentence is represented by
means of a binary vector of size N (number of feature words
in the dataset), where element j is 1 if (lemmatized) word
wj is present in the sentence, and 0 otherwise. Although this
representation treats both of the above examples in the same
way, we have found it a useful starting point. In the future, we
plan to investigate context-dependent representations, such as
that proposed by Lin [1998], and automatic tagging of certain
types of words, such as numbers and case identifiers.

Once all the sentences have been extracted from the re-
sponses in a dataset, they are passed on to SNOB, a cluster-
ing program based on the Minimum Message Length prin-
ciple [Wallace and Boulton, 1968]. SNOB yields m sen-
tence types, where m varies for each dataset. For example,
the PRDRP dataset has 25 sentence types, and the DESKTOP
dataset has 40. Each sentence type STi, i = 1, . . . , m, is rep-
resented by means of a centroid CSTi — an N -dimensional
vector, such that CSTi[j] = Pr(wj ∈STi) is the probabil-
ity that word wj is used in STi. The left panel of Fig-
ure 1 illustrates the sentence-clustering process for the PRDRP
dataset, which contains 1205 response documents (RD1, . . .,
RD1205) comprising a total of 3598 sentences. As seen
in this example, a sentence may probabilistically belong to
more than one sentence type, e.g., Pr(ST1|s1) = 0.9 and
Pr(ST25|s1) = 0.1 (these probabilities are provided by
SNOB).

3.2 Clustering responses
We apply SNOB again to cluster responses into response
types, but first we perform the following steps to represent
responses by means of sentence types (these steps are illus-
trated in the middle panel of Figure 1 for the PRDRP dataset).

Representing sentences in terms of sentence types. We
represent each sentence sj by means of an m-dimensional
vector, where m is the number of sentence types. Element i
in the vector for sentence sj contains Pr(STi|sj) (the proba-
bility that sj belongs to sentence type STi). We then combine
the vector for each sentence in response Rk into a Response
Matrix RMk of size nk×m, where nk is the number of sen-
tences in Rk. For instance, as seen in the middle panel of
Figure 1, RM1, the response matrix for response R1, com-
prises the vectors for sentences s1, s2, s3 and s4; the vector
for s1 indicates that Pr(ST1|s1) = 0.9, Pr(ST25|s1) = 0.1
and Pr(STj |s1) = 0 for j = 2, . . . , 24 (these probabilities
sum to 1).

Representing responses in terms of sentence types. For
each response matrix RMk, we derive an m-dimensional Re-
sponse Vector RVk, such that for i = 1,. . . ,m

RVk[i] =

{

1 if ∃RMk[j, i] ≥ 0.1 for j = 1, . . . , nk

0 otherwise (1)

That is, RVk[i] = 1 indicates that sentence type STi has some
presence in response Rk (with probability ≥ 0.1). We use a
binary representation for the RVs because (1) it provides a
reasonable first baseline for our system, and (2) the centroids
of the resultant clusters have clear probabilistic semantics.
In the future, we intend to investigate real-valued represen-
tations, e.g., set RVk[i] to be the maximum of the RMk[j, i]
for all j.

Clustering. The response vectors are given to SNOB,
which clusters them into response types. The number of
response types varies for different datasets. For instance,
PRDRP and DESKTOP have 10 and 9 response types respec-
tively. Each response type RTl is represented by means
of a centroid CRTl — an m-dimensional vector, such that
CRTl[i] = Pr(STi ∈ RTl) is the probability that sentence
type STi is used in response type RTl.

3.3 Calculating semantic compactness
The response clustering process yields a centroid for each re-
sponse type. The centroid of a response type can be inter-
preted as a set of probabilities, p = {p1, p2, . . . , pm}, where



pi represents the support in the response type for sentence
type STi. In other words, pi corresponds to the proportion of
responses in the response type that use STi.

The Semantic Compactness (SemCom) measure predicts
whether a complete, high-precision response can be gener-
ated for a response type. This measure is based on the sup-
port and cohesion of each sentence type. The former can
be obtained from the support probabilities p, while for the
latter we define the following measure of cohesion q =
{q1, q2, . . . , qm}, where qi for sentence type STi is defined
as follows.

qi =
1

N

N
∑

j=1

δ(CSTi[j] ≤ α ∨ CSTi[j] ≥ 1 − α) (2)

where N is the number of feature words in the data set, α

is an empirically determined threshold, and δ is the boolean
function

δ(A) =

{

1 if event A is true
0 otherwise

By choosing a value for α close to zero, Equation 2 spec-
ifies that a sentence type is cohesive if there is a high pro-
portion of words that are almost certainly present or almost
certainly absent from this sentence type.2 The rationale for
this measure is that a cohesive group of sentences should
agree strongly on the words they use and the words they omit.
Hence, it is possible to obtain a sentence that adequately rep-
resents a cohesive sentence type, while this is not the case for
a loose sentence type.

For example, the opening sentences in R1 and R2 belong to
a sentence type which is a cluster consisting of 810 identical
repetitions of the sentence from R1, and 15 identical repeti-
tions of the sentence from R2. The cohesion of this sentence
type is 0.97. An example of a non-cohesive sentence type is
one which consists of sentences about part numbers and or-
der numbers, such as “Your part has been received”, “Please
verify that this is the correct order number”, “No part return
is required on this order”, and “The case number provided is
not coming up in our system”. These sentences share a few
words (mainly ‘part’, ‘order’ and ‘number’), but do not dis-
cuss anything specific about these words — we could not con-
fidently select a representative sentence from this sentence
type. The cohesion of this sentence type is 0.65.

The semantic compactness of a response type with support
p and cohesion q is calculated as follows.

SemCom(p,q) =

∑m

i=1
δ(pi ≥ τ Hi ∧ qi ≥ τ Coh)
∑m

i=1
δ(pi ≥ 0.1)

(3)

where τ Hi and τ Coh are empirically determined thresholds.
SemCom measures the proportion of highly supported and
cohesive sentence types among the sentence types that have
some support (hence the low threshold of 0.1 in the denom-
inator). If this proportion is high, the proposed response is
deemed semantically compact, which means that it is a good
candidate for automatic response generation. As the value of

2This measure is a simplification of entropy, in the sense that it
yields non-zero values for extreme probabilities.

this proportion decreases, so does the confidence of automat-
ically generating a complete response. During response gen-
eration, our system compares the semantic compactness of a
proposed response with an empirically determined threshold,
in order to determine whether a human operator should par-
ticipate in the composition of a reply.

In Section 4.2 we evaluate the semantic compactness mea-
sure, and suggest a value for its threshold. Further, the results
we report in that section were obtained with rather stringent
thresholds (τ Hi = 0.75, τ Coh = 0.9 and α = 0.01), in or-
der to implement a cautious approach that avoids including
potentially incongruous sentences in automatically generated
responses. However, our sensitivity analysis shows that the
quality of our responses is largely maintained even if we re-
lax some of these thresholds [Marom and Zukerman, 2005].

3.4 Selecting sentences for inclusion in a response
Sentences can be (probabilistically) associated with multi-
ple sentence types, so we need a method of selecting the
most representative sentences to include in a response, while
avoiding repetition. Filatova and Hatzivassiloglou [2004] ad-
dress this problem, and we have implemented a modified ver-
sion of their adaptive greedy algorithm for scoring sentences.
Our system selects the most representative sentences from the
most supported and cohesive sentence types.

The clustering program SNOB provides Pr(sj |STi), the
probability of a sentence sj given a sentence type STi, which
we can use as an indication of how representative this sen-
tence is of the sentence type.3 For example, when selecting
a sentence from the sentence type corresponding to the open-
ing sentences in R1 and R2, the sentence in R1 has a higher
probability because it appears more frequently in that cluster.

The score of each sentence is calculated as follows.

Score(sj) =

m
∑

i=1

Pr(sj |STi) × pi × δ(qi ≥ τ Coh) (4)

The last factor ensures that only cohesive sentence types con-
tribute to the score of a sentence, thus safeguarding against
potentially incongruous sentences.

Following the adaptive greedy algorithm, the system scores
and sorts all the sentences, and then identifies which sen-
tences represent sentence types that are already represented
by higher-scoring sentences. The score of the lower-scoring
sentences is then reduced by the contribution from the shared
sentence type, thus reducing the chances of repetition in the
response. We include in the response only sentences whose
score is greater than zero. It is worth noting that our system
does not currently address the order of sentence presentation,
and therefore our evaluation is based purely on the content of
a response.

The right panel of Figure 1 illustrates the generation of
a response for two response types, RT3 and RT10 (for ex-
ample, in RT3, the notation ST12(0.838;0.97) means that
p12 = Pr(ST12 ∈ RT3) = 0.838 and q12 = 0.97). RT3
contains five sentence types with a high value for

3Note that Pr(sj |STi) is different from the posterior Pr(STi|sj),
which can be interpreted as the probability that sj belongs to sen-
tence type STi (shown in the left panel of Figure 1).
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Figure 2: Response types for the PRDRP dataset.

Pr(STi ∈ RT3), but only three of them have high cohesion
(ST10, ST12 and ST25). Hence, we only include sentences
from these sentence types in the response generated from
RT3. In contrast, all the sentence types in RT10 have a
high value for Pr(STi ∈ RT10) and high cohesion — this
response type has a semantic compactness of 1.0. Hence,
a complete summary can be generated from these sentence
types. As seen in Equation 4, since the ps and qs are high
for all the sentence types in RT10, the selection of a repre-
sentative sentence for these sentence types depends mainly
on Pr(sj |STi). In this example, s5 is selected to represent
ST3, as Pr(s5|ST3) is much higher than Pr(s8|ST3). The
resultant generated response is identical to response R1.

4 Evaluation
In this section, we first illustrate the output produced by our
system for two datasets (including the previously discussed
PRDRP dataset). We then examine the predictive performance
of our SemCom measure, and finally make some overall ob-
servations about the coverage and completeness of model re-
sponses.

4.1 Sample datasets
The PRDRP dataset
Figure 2 shows a 3D projection of the centroids of the re-
sponse types discovered for the PRDRP dataset (the response
types are represented by their numbers).4 The figure shows
(to some extent) how different the RTs are from each other.
Response Type 10, discussed above, is the most significant
one as it accounts for 862 responses (71%). According to
Figure 2, the RTs most different from RT10 are RT1 and RT6.
Both RTs have a perfect semantic compactness, they account
for 72 and 49 responses respectively, and their generated re-
sponses are R4 and R5, respectively.
R4: Your request for a return airbill has been forwarded to the

proper group. You will receive your replacement airbill within
24 hours.

4This figure is generated using Principal Component Analysis
(PCA); it is a projection of the 25-dimensional centroid values onto
the first three principal components discovered by PCA, which cor-
respond to the axes in the figure. These components account for
approximately 70% of the variability in the data (measured as the
relative contribution of the first three eigenvalues of the covariance
matrix).

R5: I apologize for the delay in responding to your issue. Your
request for a return airbill has been received. Additional in-
formation is needed to process your request. Please provide a
case number or an order number so that we may send you a
replacement label.

These three response types together account for about 81.5%
of the responses in the dataset. That is, the system is able
to find three different kinds of generic responses, and con-
fidently generate complete automatic responses that account
for 81.5% of the actual responses.

The response-clustering procedure also finds groups of re-
sponses that cannot be replaced by model responses. For ex-
ample, RT9 accounts for 55 responses, but has a semantic
compactness of 0.0. This means that the responses in this
cluster strongly disagree about which sentence types to use,
or that the sentence types that they agree on are non-cohesive.
Thus RT9 does not generate any sentences. An example of a
response in this response type is R6, a fairly specific, person-
alized response.

R6: It is usually required that the case number and order number
are provided, however in your circumstances we will see what
we can do to help. What other information can you provide?
Do you have the serial number of the unit?

The TAPEDRV dataset

Our findings show that different datasets have different pro-
portions of responses that can be replaced by generic re-
sponses. The PRDRP dataset has the highest potential for the
generation of a complete response, while only 35% of the re-
sponses in the TAPEDRV dataset (concerning tape drives) can
be generated by our system in their entirety. However, our
system can also generate partial responses from a response
type. These responses contain sentences extracted from a
subset of highly cohesive sentence types in the response type.
An example of a partial response for the TAPEDRV dataset is
R7.

R7: Thank you for contacting HP’s Customer Care Technical Cen-
ter. We are only able to assist customers with in warranty prod-
ucts through our email services. At the present time, we have
the following numbers to contact technical support for your
out of warranty product.

The response type that generated this response accounts for
19 responses, and has a semantic compactness of 0.25, which
means that, on average, the generated response covers only
a quarter of the actual responses. Examples of sentences that
appear in the actual responses that make up this response type
are: “As your product is out of warranty, you can visit the link
given below for complete details regarding the COLORADO
8GB TRAVAN tape drive: URL”, and “The 5 BG Internal
travan drives should be recognized and configured automat-
ically by Windows XP using the native QIC157 driver”. The
additional information in these sentences is very specific and
quite unique, which accounts for the low semantic compact-
ness of the response type. The part of the response generated
by our system can be regarded as a generic opening segment,
with the remainder of the response to be completed by an op-
erator.
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4.2 Predictive performance of SemCom
Our SemCom measure is designed to predict the completeness
of an automatically-generated response composed of high-
precision sentences. In order to determine the utility of this
measure, we examine how well it correlates with the quality
of the generated responses.

We assess the quality of a generated response rg by com-
paring it with the actual responses in the response type from
which rg was sourced. To this effect, we use three well-
known information retrieval measures: precision, recall and
F-score [Salton and McGill, 1983]. Precision gives the pro-
portion of words in rg that match those in an actual response;
recall gives the proportion of words in the actual response
that are included in rg ; and F-score is the harmonic mean of
precision and recall. Precision, recall and F-score are then
averaged over the responses in rg’s response type to give an
overall evaluation of rg .5 For example, RTs 1, 6 and 10 have
respective average F-scores of 0.78, 0.82 and 0.80.

Figure 3 shows the relationship between semantic com-
pactness and precision, recall and F-score for the 135 re-
sponse types created for the different datasets. From the fig-
ure we see that precision is generally high, and is uncorre-
lated with SemCom. This is not surprising, as the sentence-
selection process is designed to select high-precision sen-
tences. Hence, so long as at least one sentence is selected,
the text in the generated response rg will agree with the text
in the responses that are represented in rg’s response type.
In contrast, recall is highly correlated with SemCom. A de-
crease in SemCom indicates that fewer sentences are included
in the generated response, which therefore covers less of the
information in the original responses. As expected from these
results, the overall F-score is also highly correlated with se-
mantic compactness. The linear and log correlations between

5In addition to these measures, which are calculated on a word-
by-word basis, we experimented with the ROUGE evaluation proce-
dure, which also takes into account word sequences [Lin and Hovy,
2003]. The simpler word-by-word evaluation correlated well with
ROUGE, hence we only report on the former.

the semantic compactness measure and F-score are 0.89 and
0.9 respectively, which demonstrate the high predictive power
of the SemCom measure.

However, for the predictions made by SemCom to be use-
ful, they must also agree with users’ views. To test whether
this is the case, we conducted a small, preliminary study as
follows. We constructed four evaluation sets by selecting four
response types with high semantic compactness (≥ 0.7), au-
tomatically generating a response from each response type,
and selecting 15 actual responses from each response type for
comparison.6 Each evaluation set was given to two judges,
who were asked to rate the precision and completeness of
the generated response compared to each of the 15 responses
in the set. Our judges gave all the automatically generated
responses high precision ratings, and completeness ratings
which were consistent with our semantic compactness mea-
sure.

4.3 Overall observations
Once we were confident that our semantic compactness mea-
sure can reliably predict the completeness of a generated re-
sponse, we were interested to get an overall impression of
the proportion of generic responses in our corpus. That is,
we wanted to find out what proportion of responses could be
represented by complete or partial model responses. For ex-
ample, we saw in Section 4.1 that 81.5% of the responses in
the PRDRP dataset can be represented by complete model re-
sponses.

Model responses are complete if their response types
have a high semantic compactness. Figure 3 suggests that
SemCom > 0.7 results in a high F-Score. If we consider this
threshold to indicate a complete response, the response types
that exceed it account for approximately 14% of the actual
responses in the various datasets. If we consider a thresh-
old of 0.4 to indicate a medium semantic compactness, then
the additional response types that exceed it account for a fur-
ther 6% of the responses — these response types would pro-
duce partial responses. The remaining 80% of the responses
would have to be mostly written by an operator. However, this
may be a pessimistic estimate, as some response types with a
low SemCom yield reasonable partial responses, such as R7
whose response type has a SemCom of 0.25 (Section 4.1).

5 Tailoring responses to users’ requests —
preliminary trials

In order to enable the system to respond flexibly to spe-
cific user requests, user-driven summarization must be imple-
mented. To this effect, we are considering two approaches:
(1) predicting response types from request features in order
to test whether model responses can be used to address some
requests; and (2) predicting sentence types from request fea-
tures in order to construct a response from parts of multiple
responses in the corpus. Here we report on our preliminary
trials for the first option, and present our ideas for the second
option.

6Several of our automatically-generated responses match per-
fectly the operators’ responses. Since these are obvious matches,
they were not included in our study.



5.1 Predicting response types
We trained a Decision Graph [Oliver, 1993] (an extension of
the decision trees described in [Wallace and Patrick, 1993]) to
predict which RT is most appropriate for a given user request.
We extracted various features as input to the Decision Graph,
e.g., word unigrams with TF.IDF weights; word bigrams with
binary weights; noun, verb, adjective and adverb frequencies;
and email length (number of sentences). The features that
turned out to be most significant were the word unigrams and
bigrams.

For example, in one dataset the Decision Graph contained
a split on the word ‘xp’, which differentiated two response
types. These response types were very similar, both request-
ing more information from the user, and providing contact
numbers for out-of-warranty products. The main difference
between them was the sentence “However, the software sup-
port for the Windows XP platform will be offered through a
solution supplied by VERITAS. Please visit the link given be-
low in order to get in touch with VERITAS”. In a different
dataset, the responses were so varied that for most of them the
system could only generate the sentence “Thank you, HP eS-
ervices”. However, the Decision Graph predicted that if the
words ‘cp-2e’ or ‘cp-2w’ (referring to specific router mod-
els) were present in the request, then a response type with
very high semantic compactness could be used, resulting in
response R8.
R8: Based on the serial number or other information you’ve pro-

vided, your system is a consumer (home) product that is sup-
ported by a different group. The Consumer Product Support
Group has been trained in the support of the Presario prod-
uct line and they are best equipped to answer your questions.
Please resubmit your question at URL.

If the Decision Graph predicts a single response type with a
high semantic compactness, then a fully automated response
is possible. If, however, the response type is not complete,
or more than one response type have been matched, then a
human operator is presented with the response(s). This was
generally the case in the trials we conducted. We built De-
cision Graphs for five datasets that had at least one response
type with a high semantic compactness. The resultant graphs
had between three and five leaves, most of which pointed to
2-3 response types with varying degrees of certainty.

5.2 Predicting sentence types
Our results indicate that only a small proportion of requests
can be addressed with complete model responses. We are
currently investigating an alternative approach whereby we
map features in users’ requests directly to sentence types, and
then compose a reply from sentence types. We believe that
this level of granularity will enable our system to exhibit the
functionality required for flexibly addressing user requests.

The general framework is shown in Figure 4, where a gen-
eralization module is used to learn mappings from features in
users’ requests to sentence types in the responses to these re-
quests. The former would be similar to the features extracted
for the Decision Graph approach, while an example of the
latter is a binary pattern similar to the response vector RV
defined in Equation 1 (also shown in the middle panel of Fig-
ure 1). The generalization module is essentially a supervised

ResponseRequest

sentence
typesGeneralization

Module

features

(a) learning mappings between request features and sentence
types, using all request-response pairs in the corpus

Request
New Generalization

Module

sentence
typesfeatures

(b) predicting a set of sentence types for a new user request

Figure 4: Framework for a sentence-type based approach.

learning system that is trained on request-response pairs in the
corpus (Figure 4(a)). The trained system is then used to pre-
dict which sentence types to use in a response to a new user
request (Figure 4(b)). These predictions can be interpreted as
the support for the sentence types given the request features.
The procedure described in Section 3 can then be applied: the
SemCom measure can be used to assess the completeness of a
response comprising highly supported sentence types (Equa-
tion 3), and actual sentences can be scored and selected using
Equation 4.

For example, we envisage that a feature corresponding to
the time since the arrival of the user’s request can predict
the usage of the sentence type corresponding to the opening
sentences in R1 and R2 (apologizing for the delay in the re-
sponse). In another example, we envisage that the unigram
feature ‘xp’ would predict the usage of two sentence types
corresponding to the sentences shown in the example in Sec-
tion 5.1 (providing a specific address for XP users).

6 Related Research
The idea of clustering text and then generating a sum-
mary from the clusters has been previously implemented in
multi-document summarization systems [Radev et al., 2000;
Hatzivassiloglou et al., 2001; Filatova and Hatzivassiloglou,
2004]. A key issue highlighted in such work is the choice
of features used in the clustering. Radev et al. used low-
level word-based features [Radev et al., 2000], while Hat-
zivassiloglou and colleagues used higher-level, grammatical
features obtained through part-of-speech tagging [Hatzivassi-
loglou et al., 2001; Filatova and Hatzivassiloglou, 2004]. Our
work differs from previous work on clustering and summa-
rization in three respects. Firstly, the high-level features (sen-
tence types) we use to cluster documents are learned from the
corpus in an unsupervised manner, using as input only low-
level, word-based features. Secondly, our reliance on sen-
tence types enables us to identify response patterns beyond
those identified by topic words, and hence allows us to gen-
erate multiple summaries within a single topic. Thirdly, our
system avoids the inclusion of incongruous sentences, a re-
striction that is not traditionally addressed in multi-document
summarization.

The completion of the user-driven implementation of our
system will enable comparisons with other user-driven ap-



proaches, in particular those involving information retrieval
(IR) techniques, such as [Berger and Mittal, 2000; Carmel et
al., 2000]. It will be interesting to test the effectiveness of our
system in situations where a user’s request retrieves multiple
responses that do not overlap completely. In such situations,
a traditional IR approach of simply finding the most suitable
response document will not suffice, instead the response will
need to be collated from multiple response documents.

7 Conclusion
The framework we are developing for collating help-desk re-
sponses from multiple documents is unique with respect to
previous work on question answering and user-driven sum-
marization. This is largely due to the nature of our do-
main, which is characterized by repetition and redundancy
in request-response pairs, and by the strict demands placed
by users on the relevance and coherence of a response. In ad-
dition, a help-desk corpus represents interactions with a typ-
ically large community of users, which introduces the scope
for generalizing types of interactions, while at the same time
affording the personalization of responses.

Uncertainty arises in the help-desk domain due to the pres-
ence of multiple responses that seem appropriate for a given
query. To address this problem, our system extracts as much
information for which there is support in the corpus, collating
it into a planned response; measures the cohesion and com-
pleteness of this response; and produces complete or partial
responses that have a high level of confidence.

The initial implementation of our system shows that a
small fraction of the responses in our corpus can be repre-
sented by generic model responses. We have also presented
a method for matching users’ requests with model responses.
However, in many cases a response to a user’s request will re-
quire matching the user’s request to individual sentence types,
rather than complete responses, and we are currently investi-
gating this issue.

The main application of our framework is the automation
(or semi-automation) of help-desk responses. However, we
believe that it can have other applications, such as automatic
FAQ generation and extraction of answers from newsgroup
discussions.
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