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1 Introduction

GestureLab is a software tool designed to facilitate rapid development and testing of domain specific
gesture recognizers. Recognizers can be developed entirely within GestureLab without any need for a
testbed application and can be coupled with grammar engines such as Cider [1] without modification.

GestureLab recognizers follow the standard approach to statistical gesture recognition: recognition is
performed on digital ink which includes position, timing, pressure, and angle data. Statistical summary
features such as the total length of the gesture, initial stroke angle, and maximum curvature are extracted
from this data and used by a classifier algorithm to predict class labels (gesture types). A recognizer
thus consists of a bundle of feature extractors and a classifier algorithm trained on a particular gesture
corpus.

GestureLab supports all phases of the recognizer development process: (a) collecting, manipulating
and sharing gesture corpora, and (b) automatic training and cross-validation of feature extraction and
recognizer mechanisms. In the event that the built-in feature extraction and recognizer mechanisms are
insufficient, GestureLab also allows the developer to readily define (c) new feature extraction mecha-
nisms and (d) new recognizer algorithms. GestureLab generates probabilistic recognizers that return
membership probabilities for all possible token classes instead of a single most likely class. Probabilistic
classificators can be useful during disambiguation at a syntactic level.

2 User Manual

2.1 Software Installation

GestureLab has been developed for Apple Macintosh (“Mac”) computers running Mac OSX 10.4 or later.
The software package is available in the public domain at http://www.csse.monash.edu.au/∼berndm/
gesture lab/GL/. This build is universal, meaning that GestureLab will run on Macs which are based
upon either PowerPC or Intel hardware. The GestureLab-1.0a4.zip archive contains the program
proper, a default feature extractor plugin which implements the features of [4], a default recognizer plugin
which provides DAG-SVM [3] and MCST-SVM recognizers [2], and an example database containing a
large corpus of gestures.

To install GestureLab, first extract the contents of GestureLab-1.0a4.zip. The main GestureLab
executable can reside anywhere on disk and is most commonly installed in a user’s home directory or some
space common to all users (e.g. /Applications/). The application contains the default feature extractor
and recognizer plugins and therefore nothing must be done in regards to these plugins. Next, create a
directory ~/Library/Digest/ and move the GestureLab database file, database.dat, into this location.1

New recognizers created by GestureLab will also be written to the ~/Library/Digest/ directory. Be
sure to set the appropriate file permissions of GestureLab, ~/Library/Digest/ and the database.dat
file contained within.

Modern Mac processors run GestureLab at acceptable speeds for most tasks, however 1Gb or more
of main memory is advised. However at the time of writing, the speed and responsiveness of GestureLab
can be lacking when information about large numbers of gestures must be retrieved and displayed.
Additionally, typical training times for the default recognizer algorithms are in the order of hours (or
even days) for problems of five-way classification or more with a reasonably large number of samples per
class (e.g. 100). Optimization of the software is planned as future work.

1Although GestureLab appears to support alternative paths for the database file, this feature is at present not working.
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Figure 1: The main window of GestureLab.

2.2 The GestureLab Environment

The main GestureLab window comprises four areas which are discussed below.

Component toolbar Provides access the the test pad, recogniser training wizard, experiment browser
and wizard, and database browser (see Section 2.3).

Class/collection panel GestureLab arranges gestures in terms of a library containing named cate-
gories (or “classes”) of gestures and collections of gestures selected from these categories. Class
membership determines the intended interpretation of a gesture, while collections are named sets
used during training and testing. Each gesture may belong to any number of named collections
and classes. In this way, training and test collections can be created, modified, and deleted without
altering the corpora. The library can be accessed and manipulated using an intuitive drag-and-drop
interface or via an SQL interface (see Section 2.3.4).

Click and hold the button labelled + to create new empty classes and collections. Clicking the “Split
collection” button invokes a dialog box for splitting the currently selected collection randomly to
create new training and testing collections. The training/testing portions default to 60%/40%,
however these portions can be adjusted by the user. The name of each new collection is formed
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from the name of the source class/collection with the added suffix -training or -testing. Click
the button labelled - to delete the currently selected classes and/or collections (after confirmation).
Note that deleting collections will not remove the gestures from the class(es) to which they belong.

The “Information” panel lists the all classes to which the gestures in the selected collection belong.
This information is useful to obtain a quick summary of the alphabet covered by a collection. Whilst
the same type of information is displayed when a particular class is selected, this information is not
very useful since all gestures must belong to that single class.

Class/collection contents This area displays a scrollable list of thumbnails which represent the ges-
tures of the selected class or collection. The size of the thumbnails can be adjusted using the slider
control, noting that adjusting the size of the thumbnails does not in any way scale or alter the
gestures’ stroke data. Clicking the button labelled + will create a new blank gesture which by
default belongs to the currently selected class.

Thumbnails are selected using individual mouse-clicks or a click-and-drag approach. Alternatively,
typing Apple-a when the class/collection contents pane is active will result in all gestures being
selected. Selected gestures can be assigned to classes and collections by dragging the selection over
a class/collection entry in the class/collection summary pane. Clicking the button labelled - will
delete all currently selected gestures (after confirmation). Again, gestures that are deleted from a
collection will not be deleted from the class(es) to which they belong.

Gesture input area and summary The main role of this pane is to provide an area for gesture input.
To input a new gesture, select a blank or existing gesture thumbnail from the “class/collection
contents” area and click the “Edit” button. The input area will now become active and a gesture
can be drawn in this area and, if required, the input gesture can be redrawn once the multi-
stroke timeout has elapsed. The input process is finalized by clicking the “Done” button. The
“Duplicate” button creates an exact copy of the currently selected gesture including its stroke data,
class/collection membership and notes (but not its unique identifier number). Gesture duplication
is typically used to quickly add new gestures (which will be edited later) with class and collection
membership that matches an existing gesture, thus avoiding having to set class and/or collection
membership manually for each new gesture.

The “Play” button animates in the input area the currently selected gesture. The animation redraws
the existing gesture exactly as it was drawn, including stroke directions, speed, and pauses between
strokes in a multi-stroke gesture. This software feature is particularly useful for examining visually
why particular gestures are mis-classified in an experimental trial (see Section 2.3.2).

Finally, the upper region of the gesture input area provides information about the currently selected
gesture including a unique identifier number, classes and collections to which the gesture belongs,
and any notes recorded for the gesture during the input stage.

Search This is currently an unimplemented feature.

2.3 Components

There are four main components which may be invoked by clicking icons on the component toolbar: the
recognizer training wizard, the experiment browser and testing wizard, the test pad, and the database
browser. Each of these components is now discussed in detail.

2.3.1 Recognizer Browser

The recognizer browser provides a summary of trained recognizers that are recorded in the GestureLab
database (see Section 2.3.4), noting that GestureLab is distributed without any trained recognizers by
default. Figure 2 shows that selecting a trained recognizer provides information about that recognizer
such as the date of training, the model file which stores the recognizer in ~/Library/Digest, along with
the feature set and training corpus used to train the recognizer. Clicking the “Training set” hyperlink
will create in the main window a temporary collection which contains all gestures used to train the
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Figure 2: The recognizer browser.

currently selected recognizer. This collection is useful to check quickly which classes are predicted by the
recognizer, and may also reveal why the recognizer is misclassifying certain types of test gesture, e.g. the
recognizer was trained with only right-handed input and misclassifies gestures drawn by a left-handed
person. Clicking the “Remove” button will delete the currently selected recognizer the GestureLab
database. Note that this operation removes the record of the recognizer from the GestureLab database
but it does not delete the respective .model file from ~/Library/Digest.

The recognizer browser also provides an assistant (or “wizard”) which guides the user through the
process of training a new recognizer in a step-by-step manner. Assuming the “Train New” button is
clicked, recognizer training is configured over five steps as follows:

1. Select the recognizer algorithm from a drop-down list of available recognizers. The standard recog-
nizer plugin provides a DAG-SVM implementation and four varieties of the MCST-SVM classifier,
however additional plugins may contribute to the list of available recognizer algorithms. The near-
est neighbour single-link (NNSL) MCST-SVM recognizer provides high performance for generic
corpora and is therefore a reasonable choice for preliminary experiments.

2. Select the feature set that will be extracted from gestures and used to train the recognizer (and
later make test predictions). The standard feature plugin implements the 13 features detailed in [4]
and these features are selected for use by default. The features provided by any additional feature
plugins are also selected for use automatically. Enabled features are shown in the right-hand pane
shown in Figure 3; unused features are shown in the left-hand area. Individual features are activated
and deactivated by selecting and dragging the feature name from the right-hand side to left-hand
side and vise-versa. The order the features extracted can be altered by dragging the entry of a
particular feature up or down the list of enabled features. Important note: GestureLab will crash
during training if no features are selected.

3. Select the training corpus of gestures from the list of classes and collections. A training corpus can
be formed from the gestures of one or more classes, and/or one or more collections. Whilst the
corpus can be formed by selecting several classes, the more typical approach is to create a training
collection prior to the start of training and select the collection at this step of the training assistant.
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Figure 3: Training feature selection.

In this way, the training collection can be labelled explicitly and used to train other recognizers at
a later stage.

4. Enter a short textual label that will be used to identify the trained recognizer to the user at a later
stage. By default, this label indicates the type of recognizer algorithm that has been selected for
training, however this text can be edited. More verbose notes about the recognizer can also be
added, where example notes may include the name of the person who trained the recognizer, the
reason for training the recognizer, etc. The ability to enter recognizer parameters is at present an
unimplemented feature of GestureLab.

5. The final stage of the training process is to confirm the options selected in Steps 1 to 4. Confirmation
is based upon a summary of training details including the chosen recognizer algorithm, feature set,
and the corpus of gestures selected for training. If any of these details require modification, the
“Back” button provides a means to return to previous stages of the training assistant. Training
is commenced by clicking the “Train” button; a progress bar of training progress will then be
displayed. Note that the progress bar reflects the percentage of gestures for which features have
been extracted; it does not represent the actual progress of training the classifier algorithm. This
means that GestureLab may appear to have crashed or become caught in a loop during training
when this is not the case. Training the default recognizers typically requires minutes, hours or even
days to complete for problems of three-way classification or higher using corpora in the order of
100s or 1000s of gestures. The default recognizers report training progress in the system console.

Once trained, a recognizer is independent of its training data; the recognizer can be used in external
applications to classify gestures and no reference to the training data must be made.

6



2.3.2 Experiment Browser

The experiment browser manages the results of experiments designed to test the performance of recog-
nizers trained by GestureLab (see Section 2.3.1). Figure 4 illustrates the experiment browser window.

Figure 4: The experiment browser.

Previous experiments This area lists all previous experiments recorded by the GestureLab database
(see Section 2.3.4). Each entry in the list includes a textual label given to the experiment, the date
of execution, along with a top-level summary of recognizer performance. Performance is reported
in terms of the percentages of correct and incorrect predictions across the test corpus; the number
of correctly/incorrectly classified gestures is shown in parenthesis. Clicking “New Experiment” will
invoke the experiment assistant (see below), whilst clicking “Remove” will remove the currently
selected experiment from the GestureLab database.

Summary information This pane provides a neater summary of the currently selected experiment. In
addition to the information provided by the “Previous experiments” panel, the summary informa-
tion area includes any notes recorded for the experiment and the identifier number of the trained
recognizer used to perform the experiment.

Results table The results table provides a flexible way to view detailed information about the currently
selected experiment. The particular columns of the table that are displayed can be controlled using
the “Test Fields” check boxes shown to the right of the dynamically generated table. The “testClas-
sId” column lists the class(es) to which each gesture is known to belong; “highestResultClassId”
lists the class that received the highest probability prediction by the recognizer; and “highestRe-
sultClassProb” provides the probability of the most likely class as predicted by the recognizer.
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A filter can be applied so that the table displays results for all test gestures, only gestures classified
correctly, or only gestures classified incorrectly. The latter filters are particularly useful when used
in conjunction with the “Show Gestures” feature; clicking “Show Gestures” creates a temporary
collection containing all gestures currently displayed in the table. In this way, the user can inspect
visually all gestures that are misclassified and look for traits in the gestures which may have caused
them to be misclassified. Likewise, the user can create a temporary collection of all correctly
classified gestures and compare the shape and animation of these samples to misclassified examples
of the same class.

Note that the table “Export” function is unimplemented at the time of writing.

The experiment browser also provides an “Experiment Assistant” which guides the user through the
process of configuring and executing a new experiment. This process consists of the following steps:

1. Select the trained recognizers to be tested; these recognizers are trained using the process described
in Section 2.3.1. Note that one experiment record will be created for each recognizer being tested
and that features need not be specified for experiments since GestureLab records the feature set
used to train each recognizer. These features are extracted automatically during test classifications.

2. Select a testing corpus for the experiment. The testing corpus consists of one or more gesture
classes/collections which are created and shown in the main GestureLab window. The testing
corpora is most often a collection created automatically using the random split feature described
in Section 2.2.

3. Enter a short label for the experiment. This label will appear in the experiment browser once the
experiment is complete and therefore the label should reflect the nature of the experiment (i.e.
what is being tested). The user may also add more extended notes about the experiment at this
stage. Such notes may provide information about who is undertaking the experiment, the aim and
expected out comes of the experiment, and so on.

4. Confirm the options selected in Steps 1 to 3. Confirmation is based upon a summary of experiment
details including the experiment label, recognizers to be tested, and the testing corpus. If any of
these details need modification, the “Back” button provides a means to return to previous stages
of the experiment assistant. Clicking the “Begin” button will commence the experiment. Unlike
the training process, experiments complete quickly and typical running times are in the order of
seconds or at most minutes.

2.3.3 Test Pad

The test pad allows recognizers to be evaluated on a gesture by gesture basis using interactive input
instead of a whole gesture collection as is the case with the experiment browser. The test pad provides
a quick interactive method for testing recognizers.

Figure 5 illustrates the test pad window. The “Trained Recognizers” panel lists all recognizers recorded
in the GestureLab database and, using the check boxes beside each recognizer, individual recognizers can
be activated and deactivated on demand. Clicking the “All” button will activate all recognizers known
to GestureLab, whilst clicking the “None” button will uncheck all boxes and deactivate every recognizer.
Combinations of active recognizers can be used to test the relative performance of particular recognizers
quickly and perhaps evaluate whether a change in recognizer algorithm or feature set used has improved
recognition performance. Below the list of recognizers is an information panel which contains details
about the currently selected recognizer.

Test gestures are drawn in the main input area labelled in Figure 5 using a desktop tablet, tablet
monitor, or mouse. Recognition occurs when either the multi-stroke timeout elapses or when the “Recog-
nise” button is clicked. Note that GestureLab uses information in its database to extract features from
them test gesture which match those used to train each active recognizer. The results of classification are
tabulated in the panel below the input area; these results are displayed as the probability of the input
stroke belonging to each of the classes for which the current classifier was trained. The most probable
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classification is highlighted with bold text as Figure 5 shows. Clicking the “Clear” button will erase the
last input gesture, though this occurs automatically when a new gesture is drawn over the last classified
gesture.

Figure 5: Test pad.

The test pad is particularly useful for investigating why certain recognizers misclassify particular
gestures. Using the experiment browser (see Section 2.3.2), a temporary collection of misclassified gestures
can be created and these gestures can be viewed at original size and animated. Using this information,
the user may suspect certain attributes of the gestures (such as left or right handedness, or slant) are
causing the misclassifications. The user can then replicate these traits with gestures drawn interactively
in the test pad. Based on the results of test pad experiments, new recognizer algorithms and/or features
may be designed and implemented and thus, the test pad provides a “hands on” approach to improving
the performance of recognizers.

Note that other resource-intensive processes running simultaneously with GestureLab may affect the
accuracy of recognizer predictions in the Test Pad component. This occurs because the capturing of
stroke data is bound by processor time and consequently the stroke data of test gestures will be sampled
with lower resolution when another application occupies the majority of the computer’s processor time.

2.3.4 Database Browser

GestureLab stores all information about its corpora, recognizers, and experiments in a single SQL
database file which is by default stored on the local machine in ~/Library/Digest/database.dat. Re-
mote access to this database is possible using GestureLab clients connected via the Internet. Remote
database access makes it possible for geographically distributed research groups and for whole research
communities to contribute to shared corpora, and to use this data for recognizer development. The
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address and port of the remote server must be specified when GestureLab is first started, along with a
username and password for access to the remote database.

Figure 6: The database browser.

The database browser allows a user to visually inspect the database contents via a graphical interface
and manually query the database using standard SQL syntax. Clicking one of the database tables listed
in the browser will display the contents of that table in the adjacent window; Figure 6 shows the database
browser being used to view the mapping between class names and internal class identifiers. Database
contents can be edited directly by clicking on the relevant field in the “Table Records” area and entering
modifications to the existing record. Contents can be added to the currently selected table using the
“Import” function which accepts data files in comma-separated value (CSV) format. The import function
is particularly useful for situations in which gesture data has been captured from an external source and
the user wishes to add these gestures to the GestureLab database. In such cases, pre-processing of the
data is usually required to obtain the required CSV format. The “Export” button will write the contents
of the currently selected table to a text file in CSV format. This function is most often used to export
gesture data (captured in GestureLab) for use in an external application. The “Class” table is typically
exported to obtain a print-out of the mapping between class labels and the integers which identify the
classes uniquely. Such information is useful when a recognizer trained by GestureLab is integrated into an
external application; here, the developer needs to know which classes correspond to the integer identifiers
returned by the recognizer when a prediction is made.

SQL queries are entered in the bottom input area and may apply to all tables, not just the currently
selected table. The results of an SQL query will be displayed in the “Table Records” area.

10



3 A Tutorial on GestureLab Plugins

This section provides tutorials to develop GestureLab plugins and integrate the trained recognizers by
GestureLab into external applications. The tutorials assume that the reader is reasonably well-versed in
the C++ and Java programming languages.

Example feature and recognizer plugins are developed. The feature extractor class is developed in
examplefeature.h and examplefeature.cpp, and this class is used to develop a GestureLab feature
plugin in examplefeatureplugin.h and examplefeatureplugin.cpp. A recognizer class is developed
in svmrecogniser.h and svmrecogniser.cpp. This class is used to implement a GestureLab recognizer
plugin in svmrecogniserplugin.h and svmrecogniserplugin.cpp. Each plugin class implements a
“factory” to create an instance of the feature extractor or recognizer classes as required by GestureLab.

3.1 An Example Feature Plugin

This tutorial will develop a GestureLab feature plugin which provides a single feature: the distance
between the first and last points of a stroke. The plugin provides only one feature for the sake of brevity;
a more typical feature plugin will provide a set of features which are bundled into a single package.
Extension of the plugin to accomodate more features is trivial. Each plugin should occupy a separate
directory in digest/src/plugins of the GestureLab source code tree; in this case, the source files of the
new feature plugin are located in digest/src/plugins/ExampleFeature.

3.1.1 examplefeature.h

Each feature is defined by a separate C++ class and for the purposes of this tutorial, the feature class is
declared in a new file examplefeature.h. This header file begins with protective macros before including
stlfeatureinterface.h which defines the interface that all features must implement.

#ifndef EXAMPLEFEATURE_H
#define EXAMPLEFEATURE_H

#include "../../GestureRecognition/stlfeatureinterface.h"

The class FirstToLastDistFeature represents the single feature which will be provided by the plugin
and is defined as follow. The FirstToLastDistFeature class must inherit and implement the inferface
defined by StlFeatureInterface. The first member functions of FirstToLastDistFeature make use
of macros defined in StlFeatureInterface. DECLARE_STL_FEATURE_KEY sets an identifier string for the
feature and which is used by GestureLab internally to uniquely identify each feature. Consequently, it is
essential that this key is unique for each feature. Following this, the DECLARE_STL_FEATURE_TITLE macro
is called to set a descriptive title for the feature. This string appears in the GestureLab training component
when features for training are selected and therefore the string should provide a concise description of
what the feature represents in terms of gestures. Finally, DECLARE_STL_FEATURE_DESCRIPTION_METHODS
is called to provide methods which set a more verbose textual description of the feature. This includes a
wrapper function for classDescription() which is defined later.

class FirstToLastDistFeature : public StlFeatureInterface {
public:

DECLARE_STL_FEATURE_KEY("firsttolastdist");
DECLARE_STL_FEATURE_TITLE("First to Last Point Distance");
DECLARE_STL_FEATURE_DESCRIPTION_METHODS;

Having setup the identifier key and textual descriptions, the classCalcValue member function is
declared. This function takes a stroke and returns the feature value for the given stroke in terms of
StlFeatureResultT which is a floating point number. The last member function calcValue() is called
by GestureLab whenever the feature needs to be extracted from a stroke during the training or testing
stages. calcValue() is simply a wrapper for classCalcValue and will likely be defined in the feature
plugin interface in later versions of GestureLab.
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static StlFeatureResultT classCalcValue(const StlStroke & stroke, bool* ok = NULL);

StlFeatureResultT calcValue(const StlStroke & stroke, bool* ok = NULL) const
{ return classCalcValue(stroke, ok); }

};

#endif // !EXAMPLEFEATURE_H

The feature class declaration is now complete.

3.1.2 examplefeature.cpp

Given a declaration of the feature class in examplefeature.h, class member functions are implemented in
a new file examplefeature.cpp. This source file begins with the inclusion of standard C++ libraries for
string manipulation and mathematical operations. The string library is required by all features to define
classDescription, whilst the math header is included to provide the math functions that are required
to calculate the feature value. examplefeature.h provides the class declaration developed earlier.

#include <string>
#include <cmath>

#include "examplefeature.h"

using namespace std::string;

The first member function, classCalcValue(), performs the most imporant role for a feature: it
computes the value of the feature given an input stroke. In this case, the function returns a value which
represents the distance between the first and last points of the stroke. Provided the stroke has at least one
point, the Euclidean distance between the first and last points is calculated using the hypot() function.
The use of hypot() explains the inclusion of <cmath> earlier. The type StlFeatureResultT is a float,
meaning that feature values are restricted to the range of a standard floating point number.

An StlStroke is an STL list of StlStrokePoint which contain the public attributes x, y, pressure,
and milliTime. The x, y attributes represent the position of the point on the screen and are imple-
mented using floating point values since some tablets scan with resolution that is higher than the display
resolution. The pressure attribute is used to record the pressure of the pen on the tablet for hardware
that supports this function. Pressure information is stored as a floating point value and defaults to zero.
Finally, the milliTime attribute is an unsigned integer that represents the time (in milliseconds) elapsed
since the initial pen down point (which is assigned a time of zero) of the first stroke in a gesture.

StlFeatureResultT FirstToLastDistFeature::classCalcValue(const StlStroke & stroke,
bool* ok)

{
StlFeatureResultT value = 0.0;
bool resultOk = false;

if(!stroke.empty())
{

const StlStrokePoint & firstPt = stroke.front();
const StlStrokePoint & lastPt = stroke.back();
value = hypot(lastPt.x - firstPt.x, lastPt.y - firstPt.y);

resultOk = true;
}
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if(ok != NULL)
*ok = resultOk;

return value;
}

The remaining member function, classDescription(), takes no parameters and simply returns a
textual description of the feature. The description may contain basic HTML markup tags and run over
several lines, and is shown in GestureLab when features are selected for training.

const string & FirstToLastDistFeature::classDescription()
{

static const string str("Calculates the distance between"
"the first and last point.");

return str;
}

examplefeature.cpp is now complete and this concludes the implementation of the feature extractor.
The feature extractor must however be wrapped and compiled as a plugin for use with Gesture Lab. The
plugin class is defined in the following section.

3.1.3 examplefeatureplugin.h

examplefeatureplugin.h contains a declaration of the ExampleFeaturePlugin class which will provide
a recognizer plugin to Gesture Lab by implementing the StlFeatureFactoryPlugin interface. This
interface requires that ExampleFeaturePlugin implement four functions as the following listing shows.

#ifndef EXAMPLEFEATUREPLUGIN_H
#define EXAMPLEFEATUREPLUGIN_H

#include "../../GestureRecognition/stlfeaturefactoryplugin.h"

class ExampleFeaturePlugin : public StlFeatureFactoryPlugin {

public:
std::set<std::string> keys();
StlFeatureInterface* create(const std::string & key);

std::string title(const std::string & key);
std::string description(const std::string & key);

};

#endif // ! EXAMPLEFEATUREPLUGIN_H

The purpose and implementation of these functions is detailed in the following section. Note that
the contents of this class declaration is mostly generic; although the class name must be unique for each
feature plugin, the general structure of the class is identical for all feature plugins.

3.1.4 examplefeatureplugin.cpp

The implementation of ExampleFeaturePlugin member functions is given in examplefeatureplugin.cpp.
First we must include the header containing the declaration of the plugin class, in addition to the dec-
laration of the feature extractor class. Following this, the EXPORT_STL_FEATURE_FACTORY_PLUGIN macro
(contained in stlfeaturefactoryplugin.h) is used to make the plugin viewable to GestureLab.
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#include "examplefeatureplugin.h"
#include "examplefeature.h"

using namespace std::string;
using namespace std::set;

EXPORT_STL_FEATURE_FACTORY_PLUGIN(ExampleFeaturePlugin);

The member functions of ExampleFeaturePlugin are next defined to act as follows: keys() returns
a set of identifier keys for all features (in this case, one) provided by the plugin; create() creates a
particular feature extractor object given the identifier key for that feature; title() returns a one-line
description of the feature given the identifier key for that feature; and description() returns a more
verbose description of the feature given the identifier key for that feature.

set<string> ExampleFeaturePlugin::keys()
{

set<string> ret;
ret.insert(FirstToLastDistFeature::classKey());
return ret;

}

StlFeatureInterface* ExampleFeaturePlugin::create(const string & key)
{

if(key == FirstToLastDistFeature::classKey())
return new FirstToLastDistFeature();

return NULL;
}

string ExampleFeaturePlugin::title(const string & key)
{

if(key == FirstToLastDistFeature::classKey())
return FirstToLastDistFeature::classTitle();

return string();
}

string ExampleFeaturePlugin::description(const string & key)
{

if (key == FirstToLastDistFeature::classKey())
return FirstToLastDistFeature::classDescription();

return string();
}

3.1.5 Compiling the Feature Plugin

Source files must be compiled as a bundle so that GestureLab can load the new feature as a plugin. The
concept of bundles/plugins is specific to Mac OSX and therefore feature extractors are used externally on
different platforms using the librecognizer library package (see Section 3.4.1). The standard Gesture-
Lab build is universal which means that it can run on both PowerPC (PPC) and Intel based Macintosh
computers running OSX. To maintain the universal nature of GestureLab, plugins should be compiled as
universal bundles and this is achieved using the open source C++ compiler g++ as follows.
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g++ -c -pipe -Wall -W -fPIC -arch ppc -arch i386 \
-isysroot /Developer/SDKs/MacOSX10.4u.sdk -o examplefeature.o \
examplefeature.cpp

g++ -c -pipe -Wall -W -fPIC -arch ppc -arch i386 \
-isysroot /Developer/SDKs/MacOSX10.4u.sdk -o examplefeatureplugin.o \
examplefeatureplugin.cpp

g++ -headerpad_max_install_names -bundle -arch ppc -arch i386 \
-Wl,-syslibroot,/Developer/SDKs/MacOSX10.4u.sdk \
-o ExampleFeaturePlugin.bundle examplefeature.o examplefeatureplugin.o

The -arch ppc and -arch i386 compilation options ensure that the plugin is built for both PPC and
Intel based Macs. The -isysroot and -syslibroot options indicate that the plugin is being compiled for
MacOS 10.4 (Tiger) and requires this version of the operating system or later. Ultimately, the compilation
process produces ExampleFeaturePlugin.bundle.

3.2 An Example Recognizer Plugin

This tutorial develops a simple GestureLab recognizer plugin. As per feature plugins, recognizer plugins
should occupy a separate directory in digest/src/plugins and in this case, the source files of the
new recognizer plugin are located in digest/src/plugins/ExampleRecognizer. Note: The following
example assumes that librecognizer has been unpacked in the directory
digest/src/plugins/ExampleRecognizer/librecognizer and compiled as a static library according
to the instructions given in Section 3.4.1. The plugin uses the svm_dataset and nnsl_mcst_classifier
classes which are provided by multiclass_svm.h in the librecognizer package; svm_dataset is used to
build a training dataset, whilst nnsl_mcst_classifier is a class which provides functionality to train,
load, and save a classifier, and make classification predictions.

3.2.1 svmrecogniser.h

Implementation of the recognizer requires that the recognizer class is declared in a header file we
will name svmrecogniser.h. This file includes stlrecogniserinterface.h for access to the rec-
ognizer interface that is to be implemented, as well as including multiclass_svm.h to provide the
svm_dataset and nnsl_mcst_classifier classes. Notice that the new recognizer class must inherit
StlRecogniserInterface (since this is the inferface that all recognizer plugins must implement) and
that a void constructor will suffice.

#ifndef SVMRECOGNISER_H
#define SVMRECOGNISER_H

#include "../../GestureRecognition/stlrecogniserinterface.h"
#include "librecognizer/multiclass_svm.h"

class SvmRecogniser : public StlRecogniserInterface
{
public:

SvmRecogniser(void);
~SvmRecogniser(void);

Next, information about the recognizer is set using macros defined in StlRecogniserInterface.
DECLARE_STL_RECOGNISER_KEY sets a identifier string for the recognizer and it is essential that this string
is unique to that of all other recognizers. The recognizer key is used by GestureLab internally to identify
each recognizer. The DECLARE_STL_RECOGNISER_TITLE macro is then used to set a descriptive title for the
recognizer. This string appears in the GestureLab training, experiment, and test-pad components when a

15



recognizer is to be trained or used for testing. The string should therefore provide a concise description of
the recognizer, most often, what kind of structure (SVMs, neural networks, etc.) the recognizer employs
to classify gestures. Finally, DECLARE_STL_RECOGNISER_DESCRIPTION is used to provide methods which
set a more verbose textual description of the recognizer.

DECLARE_STL_RECOGNISER_KEY("svm_recogniser");
DECLARE_STL_RECOGNISER_TITLE("SVM Recogniser");
DECLARE_STL_RECOGNISER_DESCRIPTION("This is an example recogniser which uses SVMs.");

The following segment of code declares the functions required to implement StlRecogniserInterface.
These functions setup the default recognizer parameters, in addition to providing a means to initialize
the training process, examine a particular sample during the training process, and finalize training.

const std::map<std::string, std::string> & defaultParams(void) const;
bool initTraining(const std::list<std::string> &,

const std::map<std::string, std::string> &);
bool examineSample(const StlFeatureVec &, const std::set<int> &);
bool finaliseTraining(void);

writeModelFile() and readModelFile() functions are necessary so that GestureLab can save a
trained recognizer and later load that recognizer for testing. These functions take a single string parameter
which specifies the file name of (and optionally, a path to) the trained recognizer. A trained recognizer
must therefore be a single file; in the case that the classifier saves trained models over several files (e.g.
the multi-class SVM classifiers), it is the responsiblity of the classifier to collect all relevant files into a
single archive. In this case, the classifier must also be capable of extracting the files from the archive so
that the trained model can be loaded at a later time.

bool writeModelFile(const string &);
bool readModelFile(const string &);

A gesture consists of one or more ordered strokes and these strokes must undergo a pre-processing
stage prior to feature extraction. GestureLab requires that the minimum pre-processing “flattens” the
strokes of a gesture into a single stroke i.e., the points of the strokes are concatenated, so that features
may be extracted from a single stroke. The flatten() virtual function is called prior to examining a
stroke during both training and testing stages; the function typically performs pre-processing such as
stroke smoothing, jitter removal, point interpolation, etc.

StlStroke flatten(const StlStrokeList & strokes);

The last function of StlRecogniserInterface to implement is classify() which, as the name
suggests, is called during testing to classify a gesture and return a map of class idenifiers to classfication
probabilities. This function takes an StlFeatureVec feature vector which has been created by GestureLab
automatically, or by an explicit call to extract_features() (defined in common.h of librecognizer) in
situations where the recognizer is used external to the GestureLab environment.

StlClassProbabilities classify(const StlFeatureVec &);

There are only two private data members in this recognizer example: an svm_dataset which is used
to store the training dataset of feature vectors, and a nnsl_mcst_classifier which provides the func-
tionality to train and test an MCST-SVM classifier, in addition to reading/writing the trained classifier
from/to file. These classes are defined in multiclass_svm.h of librecognizer.

private:
svm_dataset training_dataset;
nnsl_classifier svm_model;

};

#endif // !SVMRECOGNISER_H

16



3.2.2 svmrecogniser.cpp

Given svmrecogniser.h, the accompanying implementation file svmrecogniser.cpp is now defined.
First, we must include svmrecogniser.h to obtain the SvmRecogniser class declaration. The constructor
and destructor which follow are empty since the recognizer takes no parameters on creation and no data
members are dynamically allocated. Note however, this may not necessarily be true for all recognizers.

#include "svmrecogniser.h"

using namespace std::list;
using namespace std::string;
using namespace std::map;
using namespace std::set;

SvmRecogniser::SvmRecogniser(void)
{ }

SvmRecogniser::~SvmRecogniser(void)
{ }

The defaultParams() function is included in the recognizer API so that a set of default parameters
may be set for a recognizer and optionally changed a later time using the GestureLab training component.
However, the implementation of this software feature is incomplete at the time of writing and therefore
defaultParams() returns an empty map of parameters to default values. initTraining() performs any
setup for the recognizer that is required prior to training. The most important parameter to this function
is the list of feature keys; the size of this list indicates the number of features which will be used during
training. In this example, the initTraining() function is used to setup a training dataset with the
correct number of training features per sample. This tells the training dataset how many features per
sample should be expected when samples are examined during training.

const map<string, string> & SvmRecogniser::defaultParams(void) const
{

static map<string, string> p;
return p;

}

bool SvmRecogniser::initTraining(const list<string> & featureKeys,
const map<string, string> & params)

{
training_dataset.set_num_features(featureKeys.size());
return true;

}

Assuming that GestureLab has called initTraining() and that the training dataset has been pre-
pared, individual samples can be examined during the training phase. The examineSample() function
is called each time a training gesture is examined during the training phase. This function takes two
parameters: a vector of features extracted from the sample and a set of integers which represent the
classes to which the sample belongs. In this example, examineSample() adds to the training dataset by
inserting a record of a sample’s features for each class to which the sample belongs. Since the function is
called for each gesture in the training set, a complete training dataset of features is built internally over
the course of examineSample() calls.

bool SvmRecogniser::examineSample(const StlFeatureVec & featureVec,
const set<int> & classes)

{
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set<int>::const_iterator iter;
for(iter = classes.begin(); iter != classes.end(); iter++)

training_dataset.add_sample(*iter, featureVec);

return true;
}

A dataset of training feature vectors will at this stage have been created by GestureLab’s calls to
examineSample. The last step in the training process is therefore to use the training dataset to train the
nnsl_mcst_classifier data member svm_model. In this example, the finaliseTraining() function
performs the majority of work in the training process: the training dataset is first scaled so that each
feature is in the range [−1, 1] and the scaled dataset is then used passed to the MCST-SVM classifier
for training. Using this type of classifier, the length of the training process is generally in the order of
minutes to hours for datasets of 3 or more classes comprising 50 gestures each. When finaliseTraining
returns, the recognizer is trained for use and may be written to file for later reference.

bool SvmRecogniser::finaliseTraining(void)
{

training_dataset.scale();
svm_model.train(training_dataset);
return true;

}

The writeModelFile() and readModelFile() member functions provide recognizer persistence to
Gesture Lab. The writeModelFile() function is called when a recognizer completes training and, in this
case, the function simply acts as a wrapper for the save() function implemented by the nnsl_mcst_classifier
class. writeModelFile() is called when GestureLab starts and is used to load all previously trained rec-
ognizers that are recorded in the GestureLab database. Here, readModelFile() is a wrapper function
which calls the load() function implemented by the nnsl_mcst_classifier class and returns the suc-
cess or failure of this operation. The save() and load() functions take a single string parameter which
specifies the path to the trained recognizer file and the name of the recognizer model file.

bool SvmRecogniser::writeModelFile(const string & filePath)
{

return svm_model.save(filePath);
}

bool SvmRecogniser::readModelFile(const string & filePath)
{

bool result = svm_model.load(filePath);
return result;

}

The example flatten() function that follows creates a flattened stroke by concatenating the points
which comprise each stroke in the stroke list (passed as a parameter). The flattened stroke is formed
using the generic copy() and back_inserter() functions provided by the standard C++ library. Once
created, the flattened stroke is returned with no additional pre-processing.

StlStroke SvmRecogniser::flatten(const StlStrokeList & strokes)
{

StlStroke flattened_stroke;
StlStrokeList::const_iterator iter;

for(iter = strokes.begin(); iter != strokes.end(); iter++)
copy((*iter).begin(), (*iter).end(), back_inserter(flattened_stroke));
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return flattened_stroke;
}

classify() is the final function of StlRecogniserInterface to implement. In this case, classify()
acts simply as a wrapper for the classify_with_leaf() function provided by the class
nnsl_mcst_classifier. classify_with_leaf() is nnsl_mcst_classifier and in this case the classi-
fier takes three parameters: a vector of features which have been extracted from the gesture; an indicator
of whether the features have been scaled; and a map to store classification probabilities for each possible
class. The second parameter is required to calculate confusion distributions in each leaf of the classifier
tree, however this use of classify_with_leaf() is “internal” to the classifier and should not be of con-
cern to a developer. In testing situations, the second parameter should always indicate that features have
not been scaled.

StlClassProbabilities SvmRecogniser::classify(const StlFeatureVec & featureVec)
{

StlClassProbabilities classification_probs;
svm_model.classify_with_leaf(featureVec, nnsl_classifier::unscaled,

classification_probs);

return classification_probs;
}

The implementation of the SvmRecogniser class is now complete. Recognizers must be wrapped and
compiled as a plugin for use with GestureLab and this plugin is developed in the following sections.

3.2.3 svmrecogniserplugin.h

svmrecogniserplugin.h contains a declaration of the SvmRecogniserPlugin class which will provide
a recognizer plugin to GestureLab by implementing the StlRecogniserFactoryPlugin interface. This
interface requires that SvmRecogniserPlugin implements four functions as the following listing shows.

#ifndef SVMRECOGNISERPLUGIN_H
#define SVMRECOGNISERPLUGIN_H

#include "../../GestureRecognition/stlrecogniserfactoryplugin.h"

class SvmRecogniserPlugin : public StlRecogniserFactoryPlugin
{
public:

std::set<std::string> keys();
StlRecogniserInterface* create(const std::string & key);

std::string title(const std::string & key);
std::string description(const std::string & key);

};

#endif // !SVMRECOGNISERPLUGIN_H

The purpose and implementation of these functions is detailed in the following section. Note that the
declaration of the recognizer plugin is mostly generic; although the class name may change, the general
structure of the class is the same for all recognizer plugins.
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3.2.4 svmrecogniserplugin.cpp

svmrecogniserplugin.cpp provides the implementation of the member functions declared in
svmrecogniserplugin.h. First we must include the header containing the declaration of the plugin class,
in addition to the declaration of the recognizer class. Following this, the
EXPORT_STL_RECOGNISER_FACTORY_PLUGIN macro (provided by stlrecogniserfactoryplugin.h) is used
to make the plugin viewable to GestureLab.

#include "svmrecognizer.h"
#include "svmrecogniserplugin.h"

using namespace std::string;
using namespace std::set;

EXPORT_STL_RECOGNISER_FACTORY_PLUGIN(SvmRecogniserPlugin);

The member functions of SvmRecogniserPlugin are next defined to act as follows: keys() returns
a set of identifier keys for all recognizers (in this case, one) provided by the plugin; create() creates a
particular recognizer object given the identifier key for that recognizer type; title() returns a one-line
description of the recognizer given the identifier key for that recognizer type; and description() which
returns a more verbose description of the recognizer given the identifier key for that recognizer type.

set<string> SvmRecogniserPlugin::keys()
{

set<string> keyset;
keyset.insert(SvmRecogniser::classKey());
return keyset;

}

StlRecogniserInterface* SvmRecogniserPlugin::create(const std::string & key)
{

if(key == SvmRecogniser::classKey())
return new SvmRecogniser();

return NULL;
}

string SvmRecogniserPlugin::title(const std::string & key)
{

if(key == SvmRecogniser::classKey())
return nnsl_mcst_recogniser::classTitle();

return string();
}

string SvmRecogniserPlugin::description(const std::string & key)
{

if (key == SvmRecogniser::classKey())
return SvmRecogniser::classDescription();

return string();
}
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3.2.5 Compiling the Recognizer Plugin

Like the feature plugin, recognizer source files must be compiled as a bundle for use with GestureLab. To
maintain the universal nature of GestureLab, recognizer plugins should be compiled as universal bundles
and this is achieved using the open source C++ compiler g++ as follows.

g++ -c -pipe -Wall -W -fPIC -arch ppc -arch i386 \
-isysroot /Developer/SDKs/MacOSX10.4u.sdk -o svmrecogniser.o \
svmrecogniser.cpp

g++ -c -pipe -Wall -W -fPIC -arch ppc -arch i386 \
-isysroot /Developer/SDKs/MacOSX10.4u.sdk -o svmrecogniserplugin.o \
svmrecogniserplugin.cpp

g++ -headerpad_max_install_names -bundle -arch ppc -arch i386 \
-Wl,-syslibroot,/Developer/SDKs/MacOSX10.4u.sdk -o SvmRecogniser.bundle \
svmrecogniser.o svmrecogniserplugin.o \
librecognizer/librecognizer.a librecognizer/libtar/lib/libtar.a

The -arch ppc and -arch i386 compilation options ensure that the plugin is built for both PPC
and Intel based Macs. The -isysroot and -syslibroot options indicate that the plugin is being com-
piled for MacOS 10.4 (Tiger) or later. The librecognizer.a library (see Section 3.4.1) must be linked
since SvmRecogniser contains training_dataset and nnsl_mcst_classifier data members which are
provided by librecognize. The use of librecognizer in turn requires that libtar is also linked. A
recognizer plugin that does not make use of librecognizer classes and functions will not require linking
against these static libraries.

Ultimately, the compilation process produces SvmRecogniser.bundle.

3.3 Plugin Installation

Viewed from a command shell, GestureLab appears as a directory GestureLab.app with subdirectories in-
cluding PlugIns and PlugIns Disabled. SvmRecogniser.bundle and ExampleFeaturePlugin.bundle
must be copied into GestureLab.app/Contents/PlugIns before GestureLab can use the feature extrac-
tors and recognizers provided by these plugins. The contents of the application can also be accessed via
a GUI by right-clicking the GestureLab program icon and selecting “Show Package Contents” from the
context menu. Plugins can be disabled by moving bundles from GestureLab.app/Contents/PlugIns to
GestureLab.app/Contents/PlugIns Disabled.

Alternatively, plugins can be activated and deactivated via the GUI by right-clicking the GestureLab
program icon and selecting ”Get Info”. Each installed plugin is listed alongside a check box; uncheck-
ing/checking the box will disable/enable the corresponding plugin. This is a graphical front-end to the
process of moving bundles between GestureLab.app/Contents/PlugIns and
GestureLab.app/Contents/PlugIns Disabled.

3.4 Recognizer Integration

3.4.1 Overview of librecognizer

GestureLab uses Mac OSX bundles and the associated software plugin framework to provide support for
generic recognizers and feature extractors. Whilst this is an effective way to implement plugins, the use of
bundles ties plugins to the OSX operating system. Consequently, a separate librecognizer package of
C++/Java source files has been created. The librecognizer package contains all source code required
to build a library of the default GestureLab features and recognizers in a platform independent manner.
Once compiled on the target platforum, this library can be used to load trained recognizers from file
and classify gestures using stroke data captured by the particular front-end application. librecognizer
currently provides the DAG-SVM [3] recognizer, four varieties of MCST-SVM recognizer [2], in addition
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to a set of feature extractors which implement the 13 features described in [4]. The software package is
available for download at http://www.csse.monash.edu.au/∼berndm/gesture lab/GL/.

Two Makefiles are included in the librecognizer distribution: Makefile.Mac and Makefile.Other.
Makefile.Mac compiles librecognizer as a universal (PPC and Intel) static library for Mac OSX;
this form of compilation is appropriate when the library will be used to create new recognizer and/or
feature plugins for GestureLab, or integrate the recognizers in an OSX application. Makefile.Other is
used to compile the library so that it can be used to integrate GestureLab recognizers with applications
that are developed on non-OSX platforms such as Linux. A Java wrapper class recognizerProxy is
included to provide a means to integrate an nnsl_mcst_recogniser recogniser with Java front-ends; the
nnsl_mcst_recogniser class was chosen for wrapping because it has demonstrated high performance for
many-way gesture classification problems.

Additional GestureLab plugins should be developed using a self-contained library in the way that
librecognizer has been used to develop the default recognizer and feature plugins. This approach
means that the library can be used to integrate quickly the recognizers and feature extractors into
external applications by means of a simple linking process. Since front-end applications may run on a
variety of platforms, feature extractor and recognizer source code should be kept platform independant.

3.4.2 C/C++ Integration

Integration of the default GestureLab recognizers in a C/C++ application is straight-forward since these
recognizers are implemented using C++. This tutorial develops a C++ program in example.cpp which
demonstrates how trained recognizers trained in GestureLab may be loaded externally and used to classify
gestures.

The program begins by including the relevant header files. <iostream> is included primarily so that
the results of classification can be reported, but is also necessary to report error messages.
nnsl_mcst_recogniser.h is included in the librecognizer package and provides a declaration of the
recognizer which will be used to classify gestures. This class must match the type of recognizer trained in
GestureLab and it is the developer’s responsibility to ensure that this is the case. stlrecognitioncommon.h
provides types which represent gesture strokes, points, and a map of target classes to classification proba-
bilities. These types will be used later in the example. common.h is part of the librecognizer distribution
and is included so that the extract_features() function may be used. extract_features() is required
to extract features from a gesture when a trained recognizer is used in a standalone setting (separate from
GestureLab) and at present, the features extracted and the order of these features match those extracted
by the “Standard Features” GestureLab plugin. It is the developer’s responsibility to ensure that the
feature set used to train a recognizer in GestureLab and the feature set returned by extract_features()
match. This may require modification of the extract_features() function, however such modification
is trivial.

#include <iostream>

#include "librecognizer/common.h"
#include "librecognizer/nnsl_mcst_recogniser.h"
#include "librecognizer/stlrecognitioncommon.h"

using namespace std;

#define EXIT_SUCCESS 0
#define EXIT_FAILURE 1

The next section of code begins the main program block and creates a new recognizer object. A
simple check is performed to ensure that the recognizer was allocated correctly and the program halts if
this is not the case.
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int main()
{

nnsl_mcst_recogniser *recognizer = new nnsl_mcst_recogniser();

if(!recognizer)
{

cout << "Error: could not allocate a new recognizer!" << endl;
exit(EXIT_FAILURE);

}

Given a recognizer object, the trained recognizer can now be loaded from the .model file produced
by GestureLab. The following code segment attempts to load the trained recognizer
nnsl_mcst_recognizer12.model and halts if this is unsuccessful (e.g. the model file is not found).

if(!recognizer->readModelFile("nnsl_mcst_recognizer12.model"))
{

cout << "Error: could not load the trained recognizer from file!" << endl;
exit(EXIT_FAILURE);

}

At this stage the program has loaded a trained recognizer from file. The next step involves creating
a stroke manually so that it may be classified. A “real-world” integration of the GestureLab recognizers
would not create strokes in this contrived way; instead, strokes would be created using pen-based input
from a graphics tablet. Nevertheless, the following code demonstrates how strokes are created from a
series of points.

Storage for two “drawn” strokes is first allocated in the form of StlStroke objects. The “drawn”
stroke comprises three StlStrokePoint objects which are created using a set of parameters representing
(x, y, pressure, time) point attributes. Points are pushed onto the back of each StlStroke in series
to maintain correct ordering. The two strokes created here form a gesture of two vertical lines running
from coordinates (50, 40) to (50, 60) and (50, 70) to (50, 90) respectively. Each point occurs 10 milliseconds
after the previous point.

StlStroke firstStroke, secondStroke;

StlStrokePoint point1(50, 40, 0, 0);
StlStrokePoint point2(50, 50, 0, 10);
StlStrokePoint point3(50, 60, 0, 20);
firstStroke.push_back(point1);
firstStroke.push_back(point2);
firstStroke.push_back(point3);

StlStrokePoint point4(50, 70, 0, 30);
StlStrokePoint point5(50, 80, 0, 40);
StlStrokePoint point6(50, 90, 0, 50);
secondStroke.push_back(point4);
secondStroke.push_back(point5);
secondStroke.push_back(point6);

The program next creates an StlStrokeList which contains the two strokes created above. Each
StlStroke appended to the StlStrokeList in the order that the strokes were “drawn”; correct ordering
must be maintained at all times to ensure that the gesture is recognized correctly.

StlStrokeList strokes;
strokes.push_back(firstStroke);
strokes.push_back(secondStroke);
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The StlStrokeList of strokes can now be given as input to the recognizer’s flatten() function.
This function applies pre-processing to the strokes and returns a single “flattened” representation of the
StlStrokeList.

StlStroke processedStroke = recognizer->flatten(strokes);

A set of features is extracted from the pre-processed (or “flattened”) stroke using the
extract_features() function provided by librecognizer. An StlFeatureVec is simply an STL Vector
of doubles.

StlFeatureVec features = extract_features(processedStroke);

The feature set can now be used to classify the gesture probabilistically using the recognizer’s
classify() function. This function returns a StlClassProbabilities map which is an STL map
of integer class identifiers to classification predictions stored with double precision.

StlClassProbabilities classificationMap = recognizer->classify(features);

The following section of code outputs the probability of the stroke belonging to each of the classes for
which the recognizer was trained. That is, the code outputs each key in StlClassProbabilities map
and the corresponding prediction probability.

StlClassProbabilities::const_iterator iter;

for(iter = classificationMap.begin(); iter != classificationMap.end(); iter++)
cout << "Class: " << iter->first << "\tProbability:" << iter->second << endl;

Finally, the program de-allocates the recognizer and returns an indication of successful completion.

delete recognizer;

return EXIT_SUCCESS;
}

The program is now complete. Assuming the librecognizer package in a sub-directory of the same
name, compilation and execution of the program is achieved using the following commands.

g++ -o example -DFOR_EXTERNAL_USE example.cpp \
librecognizer/librecognizer.a librecognizer/libtar/lib/libtar.a

./example

The FOR_EXTERNAL_USE symbol is defined to obtain access to the extract_features() function prototype
in common.h. This function is not required when the recognizer is used in the GestureLab environment
since GestureLab manages feature extraction internally.

3.4.3 Java Integration

Java Native Interface (JNI) is used to integrate into a Java application the recognizers created by Ges-
tureLab. This is achieved using a proxy (or “wrapper”) Java class which provides functions that are
mapped to the most important recognizer routines such as loading a recognizer and classifying a sample.
A wrapper function to train a new recognizer is not provided since training is one of GestureLab’s roles.

The nature of JNI means that the proxy class is tied to a specific class of Gesture Lab recognizer;
the proxy implemented for librecognizer targets the Minimal Cost Spanning Tree (MCST) Nearest
Neighbour Single Linkage (NNSL) recognizer (identified as NNSL-MCST). This class of recognizer was
selected on the basis of high performance achieved for large classification problems, however modification
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of the proxy to target a different recognizer class is straight-forward. The recognizer proxy is defined in
recognizerProxy.java of the librecognizer package.

This tutorial develops a Java program example.java which demonstrates how trained recognizers may
be loaded and used to classify gestures in a Java environment. Assuming the librecognizer package has
been unpacked in the current working directory, the program begins by importing the recognizerProxy
class.

import librecognizer.recognizerProxy;

The next section of code begins the class definition and the main() function. main() first creates a
new recognizerProxy object and checks that the object was created successfully; if this is not the case,
the program simply reports an error and halts.

public class example
{

public static void main(String args[])
{

recognizerProxy recognizer = new recognizerProxy();

if(recognizer == null)
{

System.out.println("Error: could not allocate a new recognizer proxy!");
System.exit(1);

}

At this stage, the recognizerProxy object can be used to load a trained recognizer from a .model
file. Here, the example loads nnsl_mcst_recognizer12.model which is the result of training a new
recognizer using GestureLab. Note that the prefix of the file name indicates the type of recognizer which
has been trained (NNSL-MCST).

if(!recognizer.readModelFile("nnsl_mcst_recognizer12.model"))
{

System.out.println("Error: could not load the trained " +
"recognizer from file!");

System.exit(1);
}

The following section of code creates two strokes in the serialized form required by recognizerProxy.
The proxy represents strokes using 1-dimensional array of serialized point data, where each point is an
ordered tuple of (x, y, time) floats. Strokes are delimited in the array using a reserved value -1. The
following example creates two strokes which each comprise three points each; these strokes are identical
to those used in the C++ example of Section 3.4.2.

float serializedStroke[] = {50, 40, 0,
50, 50, 10,
50, 60, 20,
-1,
50, 70, 30,
50, 80, 40,
50, 90, 50,
-1};

The program can now classify the gesture to obtain probabilistic predictions. This is achieved by
a call to classifySampleProb() implemented by recognizerProxy. classifySampleProb() takes the
serialized stroke as a single parameter and returns an array that represents a serialized map of class
identifiers to prediction probabilities. The contents of the array returned are arranged so that class
identifiers are always followed by the probability of the gesture belonging to that class.
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float[] serializedProbabilityMap =
recognizer.classifySampleProb(serializedStroke);

Note that no explicit function calls are made to pre-process the gesture data or extract features from the
pre-processed strokes. These routines are performed by classifySampleProb() with the aim of reducing
the number of functions that need to be wrapped using JNI.

At this stage, a recognizer has been loaded from file and used to classify a gesture. The remaining
code outputs the probability of the gesture belonging to each of the classes for which the recognizer
was trained. Each iteration of the loop outputs a particular class identifer and its associated prediction
probability.

for(int i = 0; i < serializedProbabilityMap.length; i += 2)
System.out.println("Class: " + serializedProbabilityMap[i] +

"\tProbability: " + serializedProbabilityMap[i+1]);
}

}

The example program is now complete. The librecognizer directory must be added to the Java class
path so that the recognizerProxy class can be found by the Java Runtime Environment. Compilation
and execution of the program is therefore achieved using the following commands.

javac example.java
java -classpath .:librecognizer example
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