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Abstract. This article discusses the techniques of A. Thom
in deriving geometric designs to fit stone circles and from
this background argues for an alternative definition of an
hypothesis in scientific research. The definition that is
advocated herein is a union of Solomonoff's application of
Information Theory to inductive inference, Wallace's
Information measures and Halstead's software science
measures. This approach is applied to the comparison of
Thom's hypothesis against the authors' hypothesis that stone
circles are meant to be roughly circular and locally smooth
to the eye. The authors' hypothesis is modelled by a fourier
series wrapped around a circle. The results from 65 Irish
sites show that the authors' hypothesis is favoured at odds
of better than 780:1 compared to Thom's hypothesis.

INTRODUCTION

The stone circles of Britain have undergone detailed study
and statistical analysis over the past decade. The progenitor of this
work, Professor A. Thom, claims that these monuments are set out to
accurate geometric designs with the use of a standard unit of length,
the 'megalithic yard' (MY) equal to .829m or 2.72 ft (Thom 1967). This
claim has been investigated in two recent statistical analyses which
both concluded that only the stone circles from Scotland lent some
support to Thom's theories (Kendall 1974; Freeman 1976). Both these
studies as well as Thom's used about 200 circles whose diameters were
estimated by Thom. The statistical examination of a population of
diameters for evidence of quantisation is very difficult, as the
diameters are not basic data, but are inferred, with uncertain error and
bias, from the surveyed positions of individual stones. It is therefore
not surprising the previous analyses have produced very tentative

conclusions.

1 WHY MEGALITHIC SCIENCE NEEDS A NEW APPROACH
In Thom's studies there are two underlying assumptions. The

first assumption is that the geometric design that he has devised for

each site is "correct" in some sense. Thom indicates in his writings
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that he tests a number of designs on a site plan from which a solution
is accepted as "the best".  Of course, in this context "the best" is
poorly defined. Indeed, Angell (1976, 1977) has been critical of this
deficient approach as there are no firm criteria by which to select the
most appropriate solution. Kendall (1974) felt that analysing the
circle diameters is a safe task stating that at least "a circle is a
circle". However, he felt that the dimensions of non—-circle sites were
open to debate of design choice or unconscious bias. Freeman (1976),
who also analysed Thom's data, voices stronger misgivings in saying "I
disagree, of course, with Thom's claim that we know the design that was
originally used".

The second assumption is the selection of a single site
dimension to use in an analysis for an underlying quantum. There has
been no discomfort expressed publicly by any commentators in using the
diameters of circles as an appropriate dimension for analysis, apart
from Angell (1976). However Kendall, Freeman and Angell have declared
misgivings at using Thom's dimensions from his non-circle designs.

The analyses of both Kendall and Freeman were constrained to
work with the data supplied by Thom, that is the diameters of some 200
sites. Thom himself no doubt feels that as he has justified the
primary assumption, that is, the choice of geometric design applicable
to a site, then no more statistical validation of shape selection is
either necessary or appropriate. Thus he embraces the statistical
results yielded by the Broadbent tests without equivocation (Thom,
1967), which of course support the existence of the megalithic yard.

The approach in this paper differs from previous analyses, as
a fully specified Thomsian hypothesis with specified quantum is compared
against our own version of a smooth non-quantal hypothesis. Kendall's
analysis took the quantum as unspecified, and Freeman's analysis was
designed to estimate the value of the quantum on the assumption that a
gquantum was used.

It is necessary to construct formally the details of Thom's
hypothesis and so eradicate any unjustifiable assumptions, or at least
make them the same as the assumptions underlying the hypothesis against
which Thom's will be later compared. In attempting to compare Thom's
hypothesis (HT} against the authors' alternative (HP) some details
of HT had to be inferred from Thom's published analyses, as Thom
himself has not to our knowledge yet published a statement of his
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hypothesis sufficiently precise for testing. We believe our
formalisation of HT represents a fair summary of the state of Thom's
work on stone circle geometry up to the present, but concede that it
includes some assumptions not inferred from Thom's analyses. These
assumptions concern matters not inconsistent with his work. An example
is our assumption that the measured radial distances of stones from the
centre of a circular site have a Normal distribution around the nominal
radius.

The first and perhaps most obvious element of Thom's
hypothesis is the definition of all the geometric designs Thom considers
were used by the stone circle builders. The second element is the
number of different shapes available in the complete retinue of shapes
possible. Thirdly, Thom's solutions provide us with the frequency of
use of the different designs within any region. These last two elements
are very much a function of the stone circles surveyed to date, that is
the evidence that has been collected so far. The importance of this
fact will be demonstrated further on.

The analysis by Thom of each surveyed site has led him to
formulate specific properties of stone circle designs. Firstly, that
there was in use a standard unit of length equal to .829m. Secondly,
that multiples and sub-multiples of this unit were used in a variety of
ways. Thirdly, that there were special dimensional relationships in the
design of ellipses, flattened circles and eggs, for example, the use of
the pythagorean triple relationship for fundamental design elements.

In an analysis of Thom's theories one would like to eliminate all
the underlying assumptions or explicitly incorporate them into the
structure of an examinable hypothesis. However, it is also necessary to
overcome the objections of Angell (1976) that site dimensions cannot be
assessed accurately. Thom's plea that his work in toto must be
evaluated needs to be satisfied (see discussion in Freeman 1976), though
he has never done this himself. Satisfying these pleas means
incorporating assessments of not only his quantum, but the perimeter
conditions, the different geometric shapes, the use of pythagorean
triads and the inherent inaccuracies in the data.

A statistical technique has been devised to fulfil all these
requirements. However, there are a number of important facets of this
technique that need to be emphasised before its implementation is
described. Firstly, this technique can only compare hypotheses. Any
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number of hypotheses can be ordered in terms of their efficiency at
describing a given set of data or evidence, but it does not and éannot
prove an hypothesis. Secondly, the comparison is solely based on the
evidence available, which in this case is principally the positions of
stones at each site. However, further evidence such as the inherent
geographical and/or archaeological distribution of sites could be
incorporated as evidence if one so desired. Thus the results from this
technique are wholly dependent on the evidence available and should new
evidence come to light the preference of one hypothesis over another may

be reversed.

2 THE COMPETING HYPOTHESES
The archaeological background suggests that the

megalithic traditions were started by essentially isolated egalitarian
farming communities (Burgess 1974, Burl 1976). Over long periods they
developed practical engineering skills but each region retained its
individual architectural styles often regulated by local building
materials. It is plain that the visual element in all the large
monuments is the most important architectural feature, exemplified by
wide facades to tomb entrances, sometimes lined in quartz, e.dg.
Newgrange, the high mounds that enclose superbly corbel vaulted tombs
and the long avenues of stones and banks that form entrances to
Stonehenge and Avebury. In this context we don't believe there was a
specific plan view held by the architects but only a ground view and so
generally no specific and detailed ground plan of a site was ever
formulated.

Our model is based on our belief that the only
specific geometric shape intended by the builders was the circle, and
that other clearly non-circular shapes arose as informal modifications
to a circle intended to accommodate such features as a flattened facade
(in the tradition of passage graves), or elongation along an axis of
bilateral symmetry as seen in the Cork-Kerry sites (Barber 1972) of
Ireland. Our families of curves are not intended to denote any
typological sequence but rather the range of shapes that arise when the
plan geometry of sites is a matter of expediency and local smoothness.

The set of functions available under HT is the

union of several parameterised families, e.g.

234
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tU(B,R)
tz(erarb:B)

circles of radius R,

ellipses with semi-major axis a,

v semi-minor axis b and
orientation R,
tB{Q,R,B) : flattened circle of radius R
and orientation B,

etC. r

where the parameters conform to integer and geometric constraints which
Thom has described, and where the expected relative frequencies of the
different families can be inferred from his analyses of other sites,
circles being the most abundant shape.

Similarly, our HP is of the general form

f(6) =R+ a, sin206 + l::-2 cos260 + a3sin'39 o b3 cos36

but for convenience we divide the shapes into the following families;

fD(e,RJ : circles of radius R,

fzte,R,az,bz) : shapes with second-order Fourier
terms,

f35(e,R,r2,r3,B) : shapes with second- and third-order

terms with bilateral symmetry of
orientation B,
shapes with second and third order

f3{erR:azrbzra3rb3)
terms,

these families being listed in decreasing order of expected abundance.

f3S is a specialisation of f3 obtained by putting,

a.: = r-sin2fysbie=3r

5 cos2B, a, = Ly sin3B, b3 = r3c0538.

2 2 2 3

Examples of these shapes are shownin Figures 1land 2, where

Aisusedinplace of 8 to denote the angle in the polar egquation.

3 MEGALITHIC STUDIES TO DATE — ENGINEERING DESIGN
The Thoms and their supporters have completed a great many

surveys which constitute a very large body of data. However,at times it

is unclear what the exact problem is to be solved, what criteria for
data collection have been applied in terms of the accuracy of the data.
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exactly what data is collected and the manner in which the raw field
data should be transformed to make it meaningful for the problem solving
processes.

Certainly a great deal of ingenuity and imagination has been
well used in the development of suitable solutions for the design of
megalithic sites. The designs created by the Thoms and Cowan (1970) and
the like lack nothing in perceptiveness. Some iterative testing of
solutions has apparently been performed though there is no definitive
picture of any systematic or exhaustive comparisons. Plainly, the large
range of geometric shapes advocated by Thom indicates many hours of
experimentation. However, it is on this point that Thoms' engineering
methodology and general scientific methodology are manifestly opposite.
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Fig. 1 Fourier Circle — Kenmare

F,. = 8.22 + .48 cos2(A+.2) — .41 cos3(A+.2)

236
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- The interactive testing of solutions to the problem, i.e. the design
of megalithic sites, is regulated by criteria applied subjectively, as is
often the case in engineering design. The design solutions for many
sites published by the Thoms have been selected on intuitive grounds, on
the appeal of the implausibility of alternative solutions or on
goodness—of-fit calculations or the circumstantial evidence of
comparisons with other sites for which a design solution has previously
been published. None of these selection criteria are acceptable under

scientific methodology.

—

—

Tig. 2 Fourier Circle — Carrowmore 04

F,, = 5.88 — .47 cos2(A—-1.9) + .32 cos3(A—19)
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The application of the scientific method requires the
systematic tracing of five steps. The first step is to define the
reason for the research and what it is supposed to achieve. This step
is quite similar in engineering design. Secondly the modus operandi
must be defined in terms of the appropriate research strategies and
techniques. In particular it is necessary to decide if one is operating
on a deductive strategy, that is to collect data for comparison with an

existing hypothesis or an inductive strategy, that is to formulate a new

hypothesis.
The third step is to direct the inquiry so that relevant and

sufficient evidence is collected for the analysis. Fourthly, the
analysis is performed and the outcome is clearly stated either in the
form of a new hypothesis (induction) or the extent of the evidentiary
support (deduction). The final step and the most important stage for
anyone external to the project is the documentation of what was done,
what was found and the significance of the findings (Buckley et al.l1976).
The current state of the study of megalithic geometry and
astronomy is at the inductive inference stage. There has been collected
a large number of particular instances and facts and one must move into
a tentative generalisation which seems to comprise them all. Many
people will complain that this has been done but in fact it has only
been done in the engineering sense in that solutions have been supplied
within the framework of somewhat arbitrary criteria. The inductive
inference has not been completed in the scientific sense as proper
testable hypotheses have not been explicitly formulated. As a
consequence of this failing the probabilistic analyses of the past have
fallen short of shedding much light on the design features of stone

circles. For those who consider the inductive stage has been
comprehensively fulfilled let them go to any site not previously
analysed and apply their deductive reasoning to their expectations of
the Thomsian design of that site. They will find very quickly that they
have no explicit criteria whatsoever as to the most appropriate

astronomical or geometric design for the site.

4 AN HYPOTHESIS - THE CURRENT DEFINITION
For an hypothesis to be good it must fulfil the following

criteria (Emory, 1980):
— adequacy,i.e. it must clearly state the condition, size or
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distribution of some variable or variables in terms of values

meaningful to the research task.

- testable, i.e. an hypothesis is untestable if it requires

techniques which are unavailable with the present state of

the art.

— better than its rivals, i.e. it covers a greater range of

facts but is simple in requiring fewer conditions or

assumptions.

This last point emphasises the need for an investigator when
formulating an hypothesis to find a balance between complexity and
simplicity. The Thoms' work falls short on the first of these
criteria and its conformity to the third criterion is a major area of
debate.

Once a good hypothesis has been formulated and appropriate
data collected it is a standard statistical approach to formulate an
opposite or null hypothesis. The texts on research methodology
emphasise that hypotheses are not proven, but they do say that the
statistical tests enable one to accept or reject the original
hypothesis. Thus one is provided with a quasi-proof in a manner not
unlike the acceptance of an engineering design after the testing and

analytical stages.
In this framework of the acceptance or rejection of an

hypothesis there is one situation that can cause considerable
difficulty. That is the situation where there is no clearcut support
for either the hypothesis or its null version. At this point, one can
only resort to the dictum of Occam's Razor that "multiplicity ought not
to be posited without necessity" (Enc Brittanica).

S HYPOTHESIS — A NEW DEFINITION
The real requirement of the scientific method is a measure,

on a continuous scale, of the extent to which the evidence supports the
hypothesis. A continuous measure of evidentiary support would permit
the use of a multiplicity of hypotheses and an effective ranking of

each. By inference the highest ranking hypothesis would be the most
probable explanation of the data and the ranking of hypotheses could

quite easily change should new evidence come to hand. The current

approach of accepting or rejecting an hypothesis probably extends from
our desire to know the 'real' answer, which is not really possible.
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This attitude parallels the engineering approach of settling on a
specific design or solution in preference to any other. ‘

To create this continuous measure it is necessary to develop
axiomatically some new perspectives on the nature of an hypothesis. <

AXIOM 1
An hypothesis is a proposition that purports to describe a

pattern or order in a set of observable data.
The principle of coding theory is that any message can be

coded into another shorter message if there is any pattern in the
symbols used in the original message.

Thus a deduction from this axiom is that an hypothesis is an
explanation of observable data that purports to describe the data in a
message briefer than a full itemisation of the data set itself. Such an
explanation is an encoding algorithm and therefore can be assessed of
its merit at describing the pattern in the data by the length of the

message it generates to describe the data.

AXIOM 2
The aim of the scientific method is to discover the longest

pattern sequence in a data set.
This activity is the process of developing more sophisticated

hypotheses. If the same pattern or order is found in many data sets and
the predictability of that pattern becomes useful for a wide range of
deductive analyses then that pattern will become a Law of Nature.

By deduction from the two axioms it can be concluded that an
hypothesis that gives a more comprehensive description of the pattern in
a data set than its competitors will encode the data into a shorter
message than the other hypotheses.

AXIOM 3

The complexity of the statement of an hypothesis is a
function of the entities in the hypothesis and their relationships.

An hypothesis statement consists of entities and
relationships. However the entities in an algorithm are the operands
and the relationships are the operators. As an hypothesis is an
algorithm the complexity of an hypothesis' statement is measured as a
function of the operators and operands of the algorithm that encodes the

data.
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The complexity of an hypothesis can therefore be measured as
the length of a program coded in some computer or pseudo-computer
language. This deduction and the necessity to quantify an hypothesis
for the application of Occam's Razor suggests an important corollary.

COROLLARY 1
To compare the complexity of two hypotheses they must be

written in a language that does not favour the encoding of either

hypothesis by its intrinsic data structures or operators.

The complexity of an hypothesis may be increased to explain
data that deviates uncomfortably from the original hypothesis. This
expansion creates the appearance of increased evidentiary support for
the hypothesis. This is the situation with Thom's work. Alternatively,
an hypothesis may be simple and so some of the highly deviant evidence
may appear to be inadequately explained.

From the axioms and corollary set down previously and in
satisfaction of Occam's Razor it is possible to deduce a suitable

measure of evidentiary support.

COROLLARY 2
A continuous measure for the ranking of hypotheses and their

evidentiary support is the length of the message that describes an
hypothesis statement and the evidence (data) optimally encoded according

to that hypothesis.

6 MESSAGE STRUCTURE
In Section 5 it has been established that an hypothesis is a
description of a pattern in a data set and therefore can be used to
encode the data into a message. It is important that the coding should
be optimal in that it should produce the shortest possible message for

each hypothesis that is to be compared.

The basis of optimum encoding is Shannon's Information Theory
as applied in Huffman coding. Given the probability of each event in a
string then Huffman coding enables one to produce the minimum message
length for that string. Huffman coding has traditionally been used in

computers for binary encoding and thus uses base 2 logarithms and so the

length or cost of any message is in units of bits. In the context of
this paper an hypothesis is also a predictor of the probability of each
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event in the message. As the method compares the messages generated by
various hypotheses the logarithm base is immaterial and it is more
convenient to use natural logarithms. The units are therefore called
natural bits or nits. The message is called the "Information Measure"
and denoted Ip for hypothesis HP and Iy for hypothesis He

(Wallace & Boulton 1968).

The result of the coding activity is the minimum message for
each hypothesis and the data. In applying the inverse of Huffman coding
the relative probabilities of hypotheses are readily determined from the
minimum message lengths.

The total message in any hypothesis consists of two principle
sections. They are the fixed overhead of describing the hypothesis and
secondly the variable cost of the encoded observational data. Each of
these sections may be broken into many components. In the stone circle
problem the first section consists of two components:

Il - 1is the description of the hypothesis, i.e. a statement

of the Fourier family for HP and for HT a
description of the various geometric designs with
their rules of constraint;

I2 - the relative abundances of the various shapes. This

component might well be considered as part of the
hypothesis but it has been separated to permit a
certain flexibility. The relative abundances are
considered as parameters of a group of sites and
therefore are estimated from the data. Thus it is
assumed in both hypotheses that different collections
of sites might yield different relative abundances
of their various shapes.

The second section of any message is the description of the
data,which in this case is the positions of stones encoded according to
some geometric design. In this instance, each site message can be

divided into three components.
I3 - is the particular geometric shape by which the site

is described;

I4 - the description or value of each parameter of the
assigned geometric shape;

I5 - the description of each stone with respect to the
parameters of the assigned geometric shape.

242
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7 DETERMINATION OF THE COMPLEXITY OF AN HYPOTHESIS-T1
The complexity of an hypothesis as defined in Axiom 3 and

Corollary 1 is the I1 component of the Information Measure. This
complexity is determined by consideration of a Turing machine,

The Turing machine fulfils the important criterion of not
having any intrinsic features that favour any of the competing
hypotheses in megalithic studies. Unfortunately to write the necessary
programs for Turing machines is a daunting task. However, the study of
the structure of programs written in conventional computer languages
offers assistance in this matter.

Earlier in this paper it was deduced from an axiom that the
complexity of an algorithm is a function of its operators and operands.
Halstead (1977) has demonstrated empirically in well-written
programs that there is an internal consistency between the number of
operators and their frequency.

If Ny and n, are the unique operator and operand
counts respectively in a program and N is the total usage of all
operators and operands then

N =n, log, n, + n, log, Ny (1)

Also Halstead derived a function for the volume of a program, i.e. the
total length of the program in bits,

Vii= N‘logzn (2)
where n = N + Ny.

The term logzn is the number of bits needed for the
unique definition of each operator and operand. The volume V of any
algorithm will be a function of the language in which it is written and
therefore it is necessary to design a special language for the current
needs. If hypotheses are to be compared on an equal footing then the
language they are written in should have no intrinsic features that
offer a description advantage to any one hypothesis., As well,
Solomonoff (1964) says of von Heerden's work that the arbitrary choice
of language to describe operators is equivalent to an arbitrary choice

of universal Turing machine.
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Decoding algorithms for Thom's (HP} and Patrick's (HP)
hypothesis on the design of stone circles were written in an AIGOL-like
language. The language contains the usual arithmetic and logical
operators, arrays, the facility for function and procedure definitions
and calls, a block structure, FOR loop and CASE statement. The actual
decode procedures for uniform and normal distributions are intrinsic to
the language. Thus the difference between the two programs is
essentially only the difference between the two hypotheses.

Table 1. Halstead's program parameters for HP and H_,.

T

fp fep
ny 31 40
n, 71 99
Ny 289 424
M, 195 326
V(bits) 3229 5339
A 59.0 63.9

The I—IP program decodes for all four families of shapes,
X f3, 35 where the HT program decodes for tD

(circle), t2 (ellipse) t3A and tBB (flattened circles). The
counts of operators and operands were made for both programs and the

Lok £,

results are presented in Table 1, It can be seen that the HT
hypothesis is 2110 bits more than HP’ demonstrating clearly that HT
is by far the more complex hypothesis. The term )\ is the language
level and is a measure of the sophistication of the language. Typically
ALGOL programs yield values between 2 and 4.

The very high values of )\ for HP and HT indicate that
the aim of writing in a language highly suited to the task has been
achieved. The fact that )\ for HT is 4.9 higher than H, shows that
the program language is more suited to HT' If it had been possible to
write the programs so that the language levels were identical then the
differential in program volume, and therefore hypothesis complexity,
between HP and HT would be increased even further. It appears that
the provision of arrays as a data structure in the programs has assisted

the definition of HT.
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8 THE INFORMATION COST OF GEOMETRIC SHAPES - I2 & I3

The abundance;of each geometric shape is really a component
of the hypothesis overhead i.e. Il. However to permit the flexibility
of determining the optimum relative abundances for Hy and HT it is
separated computationally. This relative abundance, i.e. I2, is a
multi-state attribute of an entire data set that specifies the frequency
of occurrence of each possible shape. For both I—IP and HT there are
four permissible shapes. The information cost for a multi-state
attribute has been derived in a taxonomic context, by Wallace & Boulton
(1968), as the relative abundance of classes,

The message describing each stone circle must be prefixed by
the code specifying the particular geometric shape by which the site is
described. This piece of code, i.e. I3, is the shape label cost or in
the taxonomic sense the cost of specifying the class membership of the
site. It has been shown (Wallace & Boulton 1968) that the I2 and I3
components of a message can be combined for computational convenience.

The sum of I2 and I3 is derived to be

(T - 1) S
——>— In (S/12+ 1) - In (T - 1)! - Y (nCtd + 1/2) In pCt]
t=1
where T is the number of states (permissible shapes),

S is the sample size (no. of sites),
n[t] is the number of data items (sites) assigned to state t,
plt] is estimated by n[t]/S, i.e. the frequency of use of state T.

9 THE OPTIMUM INFORMATION COST OF A SITE - I4 and I5
I5 describes the positions of the stones using a code which
would be optimum were the circle indeed set out according to the shape

whose family is given in I3 and whose parameters are given in I4. The
measured positions of any stone can be specified in polar coordinates
as (ri,ei), As neither HT nor HP makes any statement about

the distribution of 6's, the part of I5 giving the 0's is assumed
identical under both hypotheses, and its length is not computed. 1I5
therefore need only specify for each stone the difference between the
measured value s and the expected radius g(ei}. If these
differences are distributed as N{U,oz) the IS5 message length is
approximately proportional to 1log o.
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Thus, if a particular geometric shape family has many
parameters (e.q. f3 with 5 parameters), the I4 component for a site
assigned to that family will be long, since I4 must specify the value of
each parameter. However, one would hope that, by optimum choice of the
many parameters, the radial discrepancies could be made small, so
reducing the value of ¢ for the site, and hence reducing I5. On the
other hand, if a site is assigned to a simple shape family, I4 will be
short, but a poor fit may make I5 longer. Thus there is a trade off
between the two components that produce a minimum IM. The full
derivations are presented in Patrick (1978) for the case of each
geometric shape. However, a simplified model is discussed below.

Consider the program which results if we restrict ourselves
to simple circles, the centre of the circle is assumed to be already
known and Thom's hypothesis is restricted to integer values for the
radius. 1In this case, the data comprises, for N stones, an ordered
set of N values (ri). An "explanation" of the set of radius data
will, under either HT or HP' take the form of a message with the
following structure:

() (R) (rl)(rz)(r3)-.-(ri)---(rN)
Preamble (I4) Body (I5)

The preamble states the standard deviation and mean of the
Normal distribution assumed for the radial positions of the stones and
forms a simple "hypothesis" about the distribution of the stones. The
body gives in turn the value of each radial distance, using a code which
would be optimal if indeed the N distances were N independent random
values drawn from a N(R,uz) distribution.

The optimum code for independent random values drawn from a
distribution employs a long encoding for improbable values and a short
encoding for probable values. The expected length of a message using
the optimum encoding for a value of probability p is (—logzp) bits
or (-1ln p) nits.

Generally the probability of a stone's position r; can be

expressed as
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r:'L-|-(S*/2 1 —(r - R)?%/20%

T © a
r, - 8/2

where § is the accuracy of the survey measurements, estimated to be
.01 m. Thus applying Shannon's Theory for optimum encoding and summing
over N stones the message length for describing all the stones of a

site is

N
I5 = N In (§/¥2m0) + ) E2y = R)? /202 (1)
i=1

Now let us say that the radius R can have any value up to a

max imum LR of , say, 35 my for both hypotheses HP and HT‘ Under
HT, the description of R is an integer in the range 1 to 35.
Assuming for simplicity that all radii in this range are equally
probable a priori, the length of this description is simply ( 1n35),
whatever the value of R.

Under HP' we can in I4 assign any value to R, but only to
a limited precision, since the length of the message must be finite. If
we decide to quote R to a precision or least count of UR, then the
I4 description of R has length ln(LP/UR}. For instance, if we
choose to quote R to the nearest 0.01 my, the description has length
1n(35/0.01) or 1n(3500), there being 3500 different possible values.

Similarly, under both HT
take values up to some limit La’ and if we decide to quote o to
precision Uc the message length required is ln(LU/UOJ.
Thus

and HP' we may assume g to

14 = In(L;L ) - 1n(UgU,) (2)

Now I and L, are common and identical for both
hypotheses and so will make no contribution to discriminating between
the hypotheses and shall not be considered further. Note that this is
not generally applicable to all parameters for all geometric shapes.

It is necessary to derive expressions for R and o that
minimise the IM given the restraint that the quoted parameters in the

message must be one of the set defined by U_ and Ug. 1f U

R
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is very small then the number of values available to be quoted is very
large and so I4 is long and costly. However, a dense set of R wvalues
would make it cheap to describe each of the individual stone positions.
If UR is very large then I4 would be cheaply described but the
stones may be expensive to encode. Thus as with the definition of the
optimum number of parameters there is also an optimum uncertainty for
each parameter that minimises the IM.

\lhatever the model for the radial distribution of stones, the
optimum encoding of their positions on the assumption of a particular
intended contour (i.e. perimeter of the geometric shape) has a length
which is minus the logarithm of the probability of finding the positions
observed, given the assumed intended contour. Thus the estimates for
R and o which minimise I5 solely are the maximum likelihood
estimates. However, because R and o are stated only to limited
precision in I4 (a precision of 1 my in the simplified case of R under
HT}, the length of I5 using these values will on average exceed the
value obtained with maximum likelihood estimates.

Suppose, for a message using HP, we quote R to precision
UR and o to precision UU. Iet (RU,UO} be the values
that minimise the I5 component of the message, and let (RM,UM)
be the values actually quoted and therefore minimise I4+I5. Define RH
= RD + ﬂR’ Oy = oD+&O, where !ARJ < UR/Z
and mUI'SUO/Z. e assume

P el s claas U
E(A%) = W2, B = v%/12 (3)
Omitting constant terms from (1) and (2)

i

2 2
11 lng + zi (ri - RU) /20" = 1n (ULIJU)

M e (V- + N(R, - m?%)/26* - 1In (U, U,) (4)

I4 + I5

where 11 is the number of stones and
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For any o, (4) is minimised with respect to RU when
R0=m, SO we set :
Rg =M, Ry =m+ A, (5)
giving
I4 +I5= N Ino + (v + NA%)/20° - 1n (U. U )
R Rl

The precise value of A will depend on irrelevant details such as

R
the origin chosen for the R, scale. We therefore substitute the

expectation of ﬂﬁ:

5 2 SINL NP
E(I4 + I5) = N 1lno + (V° + 15 UR)/zo 1n {UR UU)

This is minimised with respect to UR*when

Uﬁ =8252/N (6)
giving a minimum value
E(I4 + I5) = (N-1) 1n o + v2/20% + 1/2 —In U_- In/Z/N

which is minimised with respect to o when 02 = vz/(N-l},

We therefore set

c% = v2/(N-1), 0 =/v%/(1-1) +A_ (7)

Substituting its expectation for ﬁg, and minimising with respect
to Uc_gives (to second order in Ug/o)

UU2 = 602/(N-1)

and

N
= 25008
E(I4+I5) = -In(U U ) + N In gy + i£1 (£; - Ry) /205 + 1
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The interpretation of the 1/2 nit correction term for each
parameter is that the message length is computed using the parameter
estimates that minimise only I5. This value must always be at least
equal to but usually smaller than the true length of I5 which uses the
parameter value actually quoted in a message of minimum length. On average
the necessary correction to I5 is expected to be 1/2 nit for each
parameter.

Under HI’ the total computable message length is denoted
as I, and there is of course no question of choosing a precision for
quoting R, as R can only be an integer in MYs. The length of the
preamble for stating R is the logarithm of the number of integer MY
values in the assumed range of 35 my. The best integer MY radius is
simply the one closest to the mean radial distance, and the best value
for o is found by equating ch to the variance of the radial
distances about the chosen integer radius. The optimum precision for
quoting o is again close to the expected estimation error.

The computation of the IMs is in practice complicated by
several other factors, including the need to estimate the centre of the
circle, the possibility of half-integer radii under HT' allowance for
the probable displacement of stones, particularly fallen ones, from
their original positions, and of course the existence, under both HP
and HT,of several different parameterised families of shapes available
for the explanation of stone circles. These factors are all
incorporated in our analysis and are discussed in more detail in Patrick

(1978).

10 DATA GROUPS
The data used to compare the two hypotheses are drawn from

four distinct regional groups of sites. The first group is the
Cork-Kerry recumbent stone circles of southwest Ireland. Two previous
studies of this group have given detailed archaeological assessments and
descriptions (O'Nuallain, 1975) and an investigation of the sites'
astronomical orientations (Barber, 1973). There are 79 extant sites in
this region and 38 have been surveyed by the author (J.P.), but only 35
are suitable for numerical calculations, as the other three are too

badly destroyed. The second group of 14 sites are from the Carrowmore
passage grave cemetery in western Ireland about 10 km southeast of

Sligo. Originally there were over 100 sites spread over a few square
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kilometres but many of them are now destroyed. These sites do not fit
comfortably in the passage grave tradition as no actual passages have
been found. However, the circles are formed by contiguous boulders in
the manner of a kerb and on the basis of artefactual collections Herity
(1974) believes these sites should be assigned to the passage grave
tradition. More recent work suggests these sites predated the principal
passage grave construction period in the Boyne Valley by over 500 years
(Berenhult 1980).

The third group of sites is drawn from the Boyne Valley
passage dgrave cemetery located approximately 45 km north of Dublin.
Regrettably only 6 sites from the 16 surveyed sites were in any way
useful for analysis. Four of these sites are satellites of the main
Knowth tomb. The other sites are the large tomb of Dowth and the
smaller mound in the middle of the valley known as 'E'. The fourth
group of sites are the Wicklow-Kildare group spread along the western
edges of the Wicklow Mts. starting about 20 km southwest of Dublin and
running south for 30 km. Nine sites were surveyed and 5 are situated on
high hill tops and are almost certainly passage graves. The site on
Baltinglass Hill is known from excavations to have been built in at
least two phases and so these have been separated bringing the total
number of sites to 10. Two sites on the foothills, Athgraney and
Boleycarigeen, are stone circles and the last two sites,Broadleas and
Castleruddery, have an enigmatic architecture that draws on both the
passage dgrave and stone circle building traditions. Plans of all sites
can be found in Patrick (1978).

11 SIMULATIONS
While we have strong reasons to believe that the minimisation

of message length provides an absolute test for choice among competing
hypotheses, the theory underlying the method is as yet not widely known,
nor completely developed. Therefore it was considered desirable to
treat AI {=IP - ITJ as just another test statistic, and to

investigate its sampling distributions under Hp and Hn. This study

is not yet complete but Monte-Carlo calculations have provided estimates
of sampling distributions of AI when HT and HP are restricted to
circular models, and the true population is either a population of Thom
circles, or a population of circles of arbitrary radius.
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To ensure that these distributions would be relevant to the
field data, the artificial populations were designed to have the same
numbers and angular distributions of stones as the real sites, and to
have similar ranges of radii. As the real sites fall into two rather
distinct groups, two Monte Carlo calculations were made, one with
artificial populations resembling the Carrowmore sites, the other
mimicking the Cork-Kerry sites, which are rather smaller and have on
average only half the number of stones.

Figure 3 shows the results for the Carrowmore sites with 390
and 280 simulations of H, and Hp, circles respectively. This
figure is a plot of the mean AI as a function of the uncertainty in the
radius, Ugz- The two curves in Figure 3 indicate that AI ceases to
distinguish HP and HT populations when UR exceeds about .45
m. For very large UR’ AI always favours the HP hypothesis
regardless of whether the population conforms to HP or HT'
because the quantisation of an Hmp, population is so swamped by noise
that there is no justification for ascribing any particular quantum
number to R. One can expect good discrimination between the hypotheses
if UN
discrimination for larger values of Ug-. There were 720 and 1020

is smaller than about .4 m but very little or no

simulations of Hy, and Hp, respectively for the Cork-Kerry sites,
which yielded similar patterns except the limiting value of Uy was
about 0.30 m,which was caused by a smaller number of stones per site.

12 RESULTS

The discussions presented in this paper are confined to
looking at the overall and regional results. The details from each site
will be discussed elsewhere. All IMs were computed using the centroids
of the stones. There is some suggestion that more stones fall outwards
than inwards and the evidence for this is presented in Patrick (1978).

The implementation of the IM technique involves computing for
each site the I4 + I5 elements of the IM for each shape. Table 2 is a
list of these values for all the Carrowmore sites. It can be seen
readily that for many sites the IMs differ very little for the different
shapes. Take for example Carrowmore 19 where the difference between the
£, f3 and f35 IMs is only 0.57 nits. Any message that describes
a set of sites must communicate the dictionary of shapes available as
defined in the hypothesis statements and must describe the shape

253
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allocated to each site. It is necessary to search throughout the table
of site IMs for the combination of site IMs and dictionary and shape
costs that minimise the total IM. An algorithm for a search technique
can be found in Boulton (1975).

Thom has argued that the British data on which he bases his
hypothesis should not be subdivided but studied as a total data set (see
Patrick and Butler 1974). To apply the IM technique in this manner one
must search for the optimum shape combination over the 65 Irish sites.
It was evident very early in the analysis that the shapes of f3 and
t2 (Thomsian ellipse) were of no use to their respective hypotheses.
The cumulative totals for each hypothesis for each data group are
presented in Table 3. The difference between the two hypotheses is 0.43
nits,which is insignificant. However it is evident that Thom's Type B
flattened circle is of no use and so need not be described in the
dictionary. The new total for Ho, is 908.76 nits which gives Ho,
a lead of 3.78 nits. This can be interpreted as an odds ratio of 44:1
(e3‘78:1] in favour of HT. This represents a marginal advantage
for Hp, but must be viewed in the presence of the Il part of the IM,
where we believe Thom's hypothesis requires a much lengthier description
than does the Patrick hypothesis. A comparison of HT amd HP
solutions for Carrowmore 26 can be seen in Fig 4.

s THE REGIONAL RESULTS
The overall results presented in the previous section ignore

any groupings of the data and merely provide the optimum IM on the
assumption that the shape frequencies are independent of any regional
groups. This is consistent with Thom's presentation of his own work on
English and Scottish data. However we consider that the Irish data has
a clearly defined classification of four groups based on geographical
distribution and archaeological evidence. There are many features of
the sites which differ markedly between different groups, yet are
relatively uniform within a given group (Herity, 1974; O'Nuallain,
1975). Were the data necessary to describe these features added to our
geometric data, there is little doubt that a message conveying the
enlarged data set would be minimised by a classification into groups
corresponding closely to the geographic groups. If our results show
geometric differences between the groups, this will reinforce the

validity of the classification.
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Fig. 4 Comparative examples of H, and Hj solutions for Carrowmore 26.
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A message that is intended to describe the total group of 65
sites making use of their geographic grouping will now have to provide
both class dictionaries and class labels that describe the allocation of
each site to one of four archaeological groups. The sites are
distributed in the proportions of 14:35:10:6 for Carrowmore, Cork-Kerry,
Wicklow-Kildare and the Boyne Valley respectively. This has the cost of
80.45 nits but is the same for both Hy and Hy, and so cannot
contribute to discrimination between the two hypotheses. Now, for each
group it is necessary to encode the dictionary of shape families
available and the shape that each site belongs to. Table 4 presents a
list of the IM for each regional group for a selection of shape

Table 3: The total optimum IMs for each hypothesis over 65 sites.
Dictionary and label costs are not included in each regional
total but are only determined from the total distribution.

Shape Shape
GROUP HP Frequency HT Frequency
forfgrfag tort3artag
CARROWMORE 378.31 (7,6,1)" 376.10 (8,6,0)
CORK-KERRY 276.56 (35,0,0) 270.99 (34,1,0)
WICKLOW 158.21 (3,5,2) 174.73 (5,5,0)
BOYNE VALLEY 48.33 (3,1,2) 51525 (4,2,0)
861.41 873.06

DICTIONARY AND
LABEL COSTS 51%1s (48,12,5) 39.05 (51,14,0)

912354 91251
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Table 4: List of accumulated IMs plus shape label costs for each data
group for a selection of the optimum shape combinations under
Hp and Hp. Note that each table entry includes both a
shape dictionary and shape label message cost according to the
frequencies shown in brackets. Each group minimum is encircled.
SHAPES CARROWMORE CORK-KERRY WICKLOW BOYNE TOTAL
KILDARE VALLEY
Hp
fo,2,3,3s 393.80 295.84 171.40 58.23 919.27
(5,6,1,2) (30,3,0,2) (1,5,1,3) (2,1,1,2)
f0,2,3s 388.67 282.85 168.80 55.99 896.31
(0,12,2) (35,0,0) (1,6,3) (4,0,2)
fo,2 389.68 280.04 169.19 58.29 897.20
(5,9) (35,0) (2,8) (3,3)
fg,3s 392.20 281.54 173.30 54,45 901.49
(8,6) (34,1) (2,8) (4,2)
£2,3s 386.57 - 167.48 62.39 -
(12,2) (7,3) (4,2)
fo 410.87 276.56 199.38 66.67 953.48
i, 383.53 - 166.68 62.42 B
f3g 394.59 - 172.34 - -
Hp
to,2,3A,3B 389.00 288.73 184.67 59.72 922.12
(6:0,5,3)  (32;0,2,1) (37371;,3) = (3;07271)
to,3a,3B 387.28 280.30 184.56 57.60 909.74
(6,5,3) (35,0,0) (5,5,0) (4,2,0)
to,3a 386.79 277.46 182.70 56.02 902.97
(8,6) (35,0) (5,5) (3,3) -
to, 3B 391.90 282.11 193.18 62.29 929.48
(6,8) (33,2) (5,5) (3,3)
to 413.16 274.01 199.53 65.05 951.75
t3a 390.53 - 181.12 62.46 -
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combinations for both hypotheses. The number of sites assigned to each
shape is shown in brackets. The results show that for both HP and
HT the use of the complete range of shapes, i.e. using the

absolute minimum IM for each site, is one of the most expensive ways of
describing the data. The sixth column of totals shows that for HP

the optimum message is a f0,2,38 shape combination and for HT it

is tD,BAf The detailed results show that for both HP and HT

the Cork-Kerry group are best described as only circles with no ovoids
at all. The Boyne Valley group has the minimum IMs for the fU,BS
shapes under HP and tU,BA under HT. The Carrowmore and

Wicklow groups yield the minimum IM under HP as f2 while under

He the t0,3A shape combination is the minimum. Thus we can say

that for HP the_fo, f2 and fBS

provide the optimum solutions and for HT the tﬂ and t3A

shapes are all needed to

shapes only are necessary.

It is evident that most regional groups have substantially
different optimal shape frequencies and so the cumulative totals produce
a somewhat different result to the overall results presented
previously. For HP the f0,2,35 shape combination yields an IM
of 896.31 nits whilst the HT optimal shape combination is tD,BA
with a value of 902.97. The difference represents an odds ratio of
780:1 (i.e. %% : 1) in favour of H,.

Under HT the four groups yield tU to t3A ratios of
8:6, 35:0, 5:5 and 3:3. Thus the only significant correlation of
geometry with group is the absence of non-circular shapes in the
Cork—-Kerry group. Under HP’ the fU' f2, f3S ratios are 0:12:2,
35:0:0, 1:6:3 and 4:0:2. This shows, besides the circularity of all
Cork—-Kerry sites, a significant difference between the fourth (Boyne
Valley) group and all others. Thus HP benefits more than Hn, by
a geographic classification.

It was requested, well before the development of this
technique (Patrick 1975), that groups of sites already defined by prior
research should be analysed independently. This request was based on
the archaeological evidence that prehistoric Ireland and Britain was
occupied by small independent tribal units. The different shape
frequencies among regional groups revealed by this study are consistent
with the spirit of the Patrick and Wallace hypothesis and vindicates the

early considerations.
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14  CONCLUSIONS
The presented results do not reveal a clear picture of which
hypothesis is preferable. On a regional basis HP is favoured at

odds of 780:1. The regional group data indicate that HP requires the
three shapes fﬂ' f2 and fBS and that these three shapes have

markedly different geographic distributions. This is gratifying as it
is consistent with the general description of Hp. However it was
unexpected that the f[J shape would so completely dominate the
Cork-Kerry group. In retrospect this is a sensible result as most of
the sites have very few stones and so it is not possible to provide
evidence to support the more complex designs. This problem introduced
the question as to whether one should consider that only one shape
family is present; i.e. f3S' Then many sites would merely have zero
fourier coefficients. Fourier family, fBS' descriptions for all
sites using zero coefficients would be more costly compared to fD or
f2 descriptions but would have no shape dictionary or label costs
whatsoever. Whilst such a classification might be advantageous for
describing substantial numbers of sites where archaeological
classifications are ignored it would diminish the visibility of shape to
region correlations that can appear, as, for example, in the Cork—Kerry
group.

The Carrowmore and Wicklow results are gratifyingly
consistent with H, because for most sites it is not possible to
discriminate between the use of f2 and f3$ and to a lesser
extent the f0 shapes. Thus most sites have fairly ill-defined
shapes which is consistent with our hypothesis. The comparison of the
HP results to HlIl for Carrowmore indicates that Thom's flattened
circle designs are quite efficient at describing these sites with their
flattened facades. Thom's circle tg is an efficient shape though
the simulations show there is no distinguishable difference between the
two hypotheses for circles set out with the average uncertainty of these
sites. The Wicklow sites provide an identical picture for Hp where
fo, f2 and f3S are highly competitive with each other. However
Thom's hypothesis is hopelessly inefficient at describing these sites.

The Cork-Kerry results provide a direct comparison of just
the circle shapes without the complexities of shape labels. The

slightly shorter message length for HT suggests there may be some
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merit in Thom's arguments for a quantum. However, the advantage held
by Ho, is not as large as one would expect from the simula*ion results
were H, true.

We have investigated a weak pacing hypothesis, viz. that each
circle was set out with a radius equal to an integral number of paces,
where the "pace" for each site is a random variable drawn from
N(0.8,0.1) (in metres). This hypothesis leads to a prior distribution
of radii having modest peaks up to about 5 m, but thereafter virtually
uniform. Its use leads to an IM (I4 + I5) for the Cork-Kerry sites
smaller than does Hp. Thus, the advantage of Hp, over Hp for
these sites is evidence only of a very rough quantisation.

If we restrict ourselves to just the circles f0 and
tU we can say for both the Carrowmore and Cork-Kerry sites that
H, and Hp generate essentially the same message length. However,

Hp describes the sites on the assumption that the radii are uniformly
distributed, but to achieve this description an optimal quantal
subdivision of the data is determined. The nodal positions of this
subdivision are separated at the uncertainty in the radius, Ug

which averages .42m and .28m for eight Carrowmore sites and the
Cork—Kerry group respectively. This gives average nodal points at .42
and .28m intervals respectively, which,averaged over the 43 sites,is

.30. Now Thom's hypothesis as we infer it from his published results is
that 1 my radii, i.e. .829 m occur with a frequency of .7 and + my
radii, i.e. .415 m,have frequency .3. Thus if one conjures up a single
"effective" quantum that would occur with equal frequency it would seem
to be a value between .415 and .829 m. The conclusion is that because
of the inaccuracies of the data, a description of sites having uniformly
distributed radii using Thom's tD shapes, is little different to
describing the sites as having uniformly distributed radii with an
average uncertainty of measurement of about 0.3 m. Thus Thom's quantum
hypothesis imitates very closely the random hypothesis in the area of
uncertainty that the Irish data falls into.

The evolution of Thom's hypothesis can now be seen in a new
perspective. His initial hypothesis claimed the existence of a quantum
of 5.44 ft (Thom, 1955), Then the quantum was revised to 2.72 ft
(Thom, 1961). This was followed by the addition of the 1.36 ft quantum
at a frequency of 30% (Thom, 1967). The last of the inconsistent
observations that were not satisfactorily explained were subjected to
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perimeter conditions (Thom 1967). Thus we can see that as more data
became available a deepening complexity evolved to successively pick up
the inconsistent observations. There can be little doubt that a
"megalithic yard" was never used to set out the Irish sites. Thom's
flattened circle geometric design is a sensible interpretation of the
stone positions but certainly fits no better and often much worse than
the fourier circles. Thom's hypothesis is so complex and involved that
it takes many pages of written text to describe. The Patrick and
Wallace hypothesis on the other hand can be presented much more briefly
and must be favoured a priori. Given this condition Hp must be

rejected in favour of H_ for the Irish data analysed herein.

The two previgus analyses of Thom's stone circle diameters
have considered that only a 1 my quantum was used (Kendall 1974;
Freeman 1976). It is possible to use the IM results to remove the
effect of the 1/2my quantum. There are 23 sites that use a 1/2my
quantum for the optimum solution and likewise 42 sites that use a 1my
quantum. These 23 sites must be changed to the nearest 1my quantum
which results in adding 67.21 nits to the overall total. However as the
probability of 1my quantum is now 1 so there is a total correction to
the 65 sites of -42.67 nits. Thus the overall result of removing any
1/2my solutions is to add 24.54 nits to Ip- Whilst this is an
over—estimate of the correction, because changes in the optimum shape
have not been taken into account, it is evident that the simplified
HT would fare even worse than it does at present against HP'

The group results demonstrate the importance of considering
the sites in their archaeological groupings. The Cork-Kerry stone
circles are circles some of which are set accurately and some rather
carelessly. The design plans of the passage graves are certainly not
circles but are the product of other architectural considerations where
the builders created a wide somewhat flattened facade to give an
impressive entrance to the tomb. The kerb was completed to present a
continuous wall and positioned to look like a neat curve without
perturbations that would offend the eye whilst maintaining the general
scale of the monument as defined by the size of the front facade
region. As each small section of the kerb was Kkept smooth, large scale
variations were imperceptible, resulting in the kerb having fluctuating
sharper and flatter curves that are only now made apparent by our modern-
day plans.

262
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Professor Thom's geometric designs and megalithic yard are,
in our opinion, somewhat extravagent extrapolations of the evidence
available. His hypothesis is not competitive for the Irish sites tested
herein and we feel this must intimate a similar result for the British
sites once they are evaluated by the technique developed here.
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