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Abstract. The information-theoretic Minimum Message Length (MML)
principle leads to a general invariant Bayesian technique for point estima-
tion. We apply MML to the problem of estimating the concentration pa-
rameter, k, of spherical Fisher distributions. (Assuming a uniform prior
on the field direction, g, MML simply returns the Maximum Likelihood
estimate for p.) In earlier work, we dealt with the von Mises circular case,
d = 2. We say something about the general case for arbitrary d > 2 and
how to derive the MML estimator, but here we only carry out a complete
calculation for the spherical distribution, with d = 3. Our simulation re-
sults show that the MML estimator compares very favourably against
the classical methods of Maximum Likelihood and marginal Maximum
Likelihood (R.A. Fisher (1953), Schou (1978)). Our simulation results
also show that the MML estimator compares quite favourably against
alternative Bayesian methods.

1 Introduction

The spherical von Mises-Fisher distribution is a maximum entropy distribution of
directions (unit vectors) on the surface of a unit sphere, being the expected long-
term distribution of the direction of a unit dipole or pendulum constrained to the
surface of the unit sphere and subjected to a uniform (magnetic or gravitational)
field and random thermal fluctuations'. The mean of the distribution will be the
direction of the field (or tendency), and the distribution will be symmetrical
about its mean.

The general von Mises-Fisher distribution of arbitrary dimension [32] is of
interest in a wide range of fields, such as cosmology [18], protein dihedral angles
[4], biology, geography, geology, geophysics, medicine, meteorology and oceanog-
raphy [10, 9]. The spherical Fisher distribution has been said to be “the most
important distribution in directional data analysis” [22, Page 369], and has been
the subject of some study [14, Chp. 8-9][15, 10].

The direction of the resultant vector of our observed data (the maximum
likelihood estimate of the direction) can generally be seen to be the appropriate
estimate for the direction of the tendency, although there are some exceptions to
this. Two exceptions are if we are interested in the rejection of outliers or (as we

! A slightly longer version of this paper is available as a Technical Report[7].
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are in subsequent work[20]) in modelling a mixture of more than one spherical
Fisher distribution. Another exception will be if there is an informative (non-
uniform) Bayesian prior on the direction. A final exception comes from using the
Bayesian MAP estimate (which we discuss in Section 4.3 but which we do not
advocate) under certain parameterisations.

In the work to follow, we provide a sketch of how to use the information-
theoretic Message Length (MML)[31, 25, 26] principle to obtain the MML es-
timate for the concentration parameter, k, of an arbitrary, d-dimensional, von
Mises-Fisher distribution. (This generalises our earlier work([27, 28, 6] with d =
2.) We then obtain the MML estimate in the spherical Fisher case, with d = 3.
We compare the MML estimator with alternative estimators, both Bayesian and
classical, for this problem.

2 The von Mises-Fisher Distribution

The general, multi-dimensional von Mises-Fisher distribution was introduced
by Watson and Williams [32] (following R.A. Fisher [11]), and estimating its
parameters has been discussed in a number of contexts. Watson and Williams
[32], Mardia [14, 15], Schou [22] and N.I. Fisher et al. [2, 10, 9] give estimators
for its parameters in a classical framework.

Wallace and Dowe [27, 28] gave Minimum Message Length (MML) [25, 31]
estimators for the circular (2-dimensional) von Mises-Fisher distribution, and
Dowe, Oliver, Baxter and Wallace [6] compared MML with other Bayesian esti-
mators for this circular case. In this paper, we extend these earlier MML works
[27, 28, 6] to the spherical (3-dimensional) case.

The spherical von Mises-Fisher distribution corresponds to the distribution of
the direction of a pendulum in a uniform gravitational field of direction, u, with
concentration parameter, k. The concentration parameter, &, can be thought
of as the ratio of the field strength to the temperature of thermal fluctuations.
For large &, this closely approximates the 2-dimensional Gaussian distribution,
N(p, L1,), where I, is the 2 x 2 identity matrix.

2.1 The Likelihood Function

Let x be a random vector on the surface of a d-dimensional sphere. The d-
dimensional von Mises-Fisher distribution with mean vector p and concentration
parameter, &, has probability density function [22, Page 369]
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where I%_Ll(r:] is the modified Bessel function of the first kind of order % -1,

and x.u is the dot (scalar) product of the vectors x and p.
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For the 3-dimensional case (d = 3) we find that?

V2 sinh(k)
N

We use the co-ordinate system from N.I.Fisher et al. [10, Page 18]. Thus, we
represent the mean direction p as a co-latitude () and a longitude (4). Similarly
we represent a data point, x, as a co-latitude (#) and a longitude (¢). The dot
product of x and p is then:

I%(H:) =

x.;4 = sinfsinacos(¢ — ) + cosfcosa
and hence
- N k(sin @ sin @ cos(¢—) + cosé cosa)
fa(a, B, x) 4w sinh(x) i

For data D = {x(1), x(2), ... x(IN)}, the likelihood function is:
N

p(-DII‘It 135 ﬁ;) = H Hgmeufsinﬂi sin @ cos(¢; —F) + cos @, cos a)

and negative log-likelihood is:

L = —N logk + N log(4w sinh(x))

N
—K Z(sin f; sin a cos(¢; — B) + cosb; cos a)
i=1

3 Maximum Likelihood Estimator

3.1 The Maximum Likelihood Estimator for p

The only term in the negative log-likelihood above which d?&aends on g is the dot
product of g with the sum of the x(i). Letting R = > ;_, x(¢) be the vector
sum (resultant vector) of x(1), x(2), ..., x(N) and R be the length of R, the
term of the negative log-likelihood which depends on u is

-k R.p

and hence the likelihood is maximised when

2 This result can be confirmed by using Mathematica [33] to “Simplify[Bessell[1/2,k]]”.
Less opaquely, we show in the Appendix (between Acknowledgments and References)
that this result can be obtained by integrating e*** over the sphere by making the
transformation with Jacobian J = 1 to the surface of a cylinder.
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3.2 The Maximum Likelihood Estimator for x

Given that we use the Maximum Likelihood estimate for g in determining the
Maximum Likelihood estimate for x, we may re-write the negative log-likelihood
as:

L(k) = —N log & + N log(47) + N log(sinh(k)) — kR (1)
To find the Maximum Likelihood estimate for k, we differentiate L with respect
to k:
it dL(k) _ —N

+ N cothk — R
dr K

We numerically find & psq40Lik by searching for the value of k which sets 5%%1 = 1

Having introduced the classical Maximum Likelihood estimator above for
this problem, we now consider below some alternative Bayesian estimation tech-
niques, including Minimum Message Length (MML) [25, 31].

4 Bayesian Estimation Techniques

Some fundamentalist Bayesians reject attempts to summarise a posterior density
by an estimate as being unsound (e.g., Neal [16, Chp. 1]). For them, the posterior
density is a sufficient and satisfactory end result of inference. However, we often
wish to answer some question about the “real world”, if possible, by summarising
the posterior using an estimate. In a traditional Bayesian framework, a single
estimate may be found if there is a clearly defined and known loss function. This
function specifies the “loss” occurring if the estimate is used when the estimate
1s not the true value.

In this section, we argue why we sometimes prefer to perform inference with-
out a loss function. We go on to consider two Bayesian methods for point esti-
madtion:

— the mode of the posterior density (MAP) [1, Page 257] and
— the Minimum Message Length (MML) estimate [25, 31].

Both of these estimators are Bayesian and require a prior distribution.

4.1 Loss Functions

It is not always the case that a loss function is available for applications. Let us
consider the question:

Does the universe have a preferred direction?

One method of attacking this problem is to look at the distribution of micro-wave
background radiation (or of galaxies) in the universe. If the galaxies are arranged
according to a spherical von Mises-Fisher distribution with a non-zero x, then
we may be willing to assert that the universe did have a preferred direction. We
can not see how one would determine a ‘preferred’ loss function for this problem.

In the rest of this section, we consider Bayesian point estimation using the
posterior distribution without a loss function. We consider the Bayesian MAP
estimate and the (invariant) MML estimate.



217

4.2 Prior Distributions

We assume a prior® which is uniform in direction [10, Page 84] and independent

of k:
sin(a)

hﬂ’. f,l{f-l', ﬁ) o s

We consider a generalisation of a prior on & used sucessfully for the 2-dimensional
von Mises distribution [27, 28, 6]:

ed=1
L (1+ x2)
which, in 3 dimensions, 1s
halm)= (f :;)2
and hence:
ho 5, x(a, B, K) = ha, gla, B) X he(k) = :2 sin(a) @)
72 (1 4+ k2)2

This prior is indeed uniform in direction, since if we transform this prior to
Cartesian co-ordinates* we get

" — 1
x, yia(-":: Y, z) e (1+$2+y2+32)2

4.3 The MAP Estimate

The MAP estimate is the value of the parameters which maximises the posterior
density function [1, Page 257] [3, Page 64]. It is known to be, in general, not
invariant under re-parameterisation. In the 2-dimensional von Mises case, Oliver
and Baxter [19] demonstrated how the MAP estimate re-locates with the simple
re-parameterisation of changing from polar to Cartesian co-ordinates. Let us now
briefly examine this issue of dependence of the MAP estimate on the co-ordinate
system for the 3-dimensional, spherical, case.

3 Where genuine prior information is available, we advocate its best mathematical
articulation. We object to a Jeffreys prior[12] on the grounds that the expected Fisher
information will be a function of the measuring apparatus, and so the choice of a
Jeffreys prior, while mathematically convenient, would suggest the possession of a
genuine Bayesian prior belief that the properties of the world that one wishes to study
are quite strongly dependent upon one’s (possibly arbitrary) choice of measuring
apparatus.

The priors we choose here are quite “colourless” - uniform in direction, normalis-
able and locally uniform at the Cartesian origin in .
We transform a prior by dividing by the Jacobian of the transformation, which is
x? sin(a) [23, Chp. 7]. Our transformation is z = x cos()sin(a), y = xsin(f)sin(a),
z = kcos(a).
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The MAP estimate (in Spherical Co-ordinates) is the value of (a, 3, &) which
maximises the expression:

ha, g, x(a, B, &) x p(D|a, B, &) (3)

where hy, g, «(e, B, k) is our prior distribution over spherical parameter values.

We might like to compare the above MAP estimate with the MAP estimate
in Cartesian Co-ordinates. The MAP estimate (in Cartesian Co-ordinates) is the
value of z, y, z which maximises:

hy, v, s(® ¥ 2) x p(D)2, y, 2) (4)

Again, this is a different vector in general than the MAP estimate in Spherical
Co-ordinates. One way of seeing this clearly is as follows:

Let the (spherical) parameterisation of the field be 8. Then the MAP esti-
mate in that parameterisation will be an equivalent vector to (=', ¥/, 2'), where
z', ', 2/ are the values which maximise:

J x h!ﬁ y,z(l"r: y’! z;} x p(Df‘tf: yfs II)

where J is the Jacobian of the transformation between & and Cartesian Co-
ordinates.

It is unclear which parameterisation is ‘best’ (or “natural”[21]) for estima-
tion. Furthermore, we also have to select other features for some of these pa-
rameterisations. For example, in Cylindrical Co-ordinates we must choose which
direction we will align the z-axis with. Such a choice affects the Bayesian MAP
estimate (which we do not advocate, as we discuss below). We will see shortly
that the MML estimate remains invariant.

4.3.1 A Problem with the MAP Estimate in Spherical Co-ordinates

It would appear that the “natural” parameterisation for the spherical von
Mises-Fisher distribution would be Spherical Co-ordinates, since the likelihood
function is expressed in these terms, and the parameter of most interest is the
strength of the field.

Consider the situation when we wish to determine the MAP estimate in
spherical co-ordinates, (a, 8, &), for some data using the prior in Equation (2).
Before we collect the data, we establish an origin for our spherical co-ordinates.
This involves selecting a direction where @ = I (i.e., the equator, where the co-
latitude is 90 degrees), and a direction where 8 = 0 (i.e., where the longitude is
zero, the Greenwich meridian). The choice of where we defined our equator affects
the MAP estimate. Consider the situation when the data is generated from a
field which is aligned through the North pole (or the South pole). Equation (2)
assigns 0 prior to this field (since sin(a) = 0). The MAP estimate will never
return the correct field and will be strongly discouraged from returning a nearby
field. (This result will, incidentally, get proportionally worse as sin®=? as we
increase the dimensionality, d.)
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To resolve this problem, we define the MAP estimate in spherical co-ordinates
to be the MAP estimate when we align the point (¢ = %, 8 = 0) with the
Maximum Likelihood estimate of the direction of the field. Difficulty in choosing
a “natural” parameterisation can present potential problems for the Bayesian
MAP method and for other methods [21] which are not invariant under re-
parameterisation.

4.4 Invariant Bayesian Estimation Methods

Many parameter estimation problems do not come accompanied by associated
loss functions, and we believe that parameterisation should not affect point es-
timation. The Minimum Message Length (MML) [25, 26, 31] and the Minimum
Expected Kullback-Leibler distance[5] estimators are two invariant Bayesian
point estimation techniques. We believe that this invariance is a very desirable
property, especially when there are [23, Pages 137-140][10, Pages 17-22] some
10 or more parameterisations of the sphere in relatively common usage, with
spherical, Cartesian and cylindrical co-ordinates being but three.

4.5 The Minimum Message Length (MML) Estimates

MML is an invariant Bayesian point estimation method proposed by Wallace
et al. [25, 26, 31]. The underlying idea is to maximise the posterior probabil-
ity of an hypothesis, H, given data, D, but the approach taken is somewhat
different to that in Bayesian MAP estimation. A list of MML applications and
an elaboration on how MML maximises the posterior probability are given in
[29, Page 37]. Further introductory MML material is given in [27, 19], with the
invariance of MML being discussed in [26], [31, p245], [27, Pages 1-3] and [19,
Section 5.4].

4.5.1 The Message Length Formula

The MML estimate is the value of («, 3, k) which minimises the message
length expression [31, Page 245]:

a@, 5, u(ﬂi 8, H} fa(E]ﬁ, ﬁ:
Vdet(Fe, 8, ))
where det(F(a, (3, k)) is the determinant of the expected Fisher Information
Matrix. The likelihood and log-likelihood were discussed in Section 2.1, and the
prior — uniform in direction and locally uniform near the Cartesian origin — is

discussed in Section 4.2.
We interpret the term

MessLen(a, B, x & D) = —i‘ag(h ,.-,}] + Constants,

as being proportional to the volume of

1
Vdet(F(a, 8, £))
uncertainty that we have in our MML estimates. Minimising the Message Length

is then equivalent to maximising;:

ha, g, x(a, B, k) fs(Dla, B, K)
x/det(F(a:, 8, k))

Exp = (5)




