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It thus remains only to calculate the determinant of the Fisher information
matrix. We hope it causes no confusion if we adopt the termonological and
notational conventions of referring to the determinant of the Fisher informa-
tion matrix as the Fisher information, F. Since h/+/det(F(.)) is invariant under
parameter transformation and MML is likewise invariant under parameter trans-
formation, we can discuss the issue of calculating F' in several alternative ways.

4.5.2 The Fisher information

Recalling Sections 2 and 3, it follows quite clearly from the likelihood function

that
z—i — ﬂ + N cothk — (terms independent of k) (6)
K

Hence ([14, Page 245],[22, Theorem 3(¢)],[9]),

ol T A S | -
8}5:2 T k2 T k2 sinh? (k)

Regarding the Fisher information terms in the longitude (8), we firstly note

that P
35 = Twsin @ sin a sin(¢ — 3) (8)
Hence,
S aL 18
k(sin # sin e cos(¢p—7)) Y& - x(sin @ sin a cos(¢—F))
e a5 A 6@56 (9)

Although we are not directly interested in a ﬂ , iIntegrating over the longitude,

¢, from 0 to 2w would give that E($% ) = 0.
Arguing along these lines will gwe (c.f. [27, 6]) that

L 6%L 2L O?L

Hopan) = F(onop a,a) =0 and Elages) = Plaaap) =

0 (10

Hence, the Fisher information (i.e., the determinant of the Fisher information
matrix), F', can be written under this parameterisation as

32L 2L 82 L
F = E(gzz)x (B(E(SE) - (E(33)) (11)

Regarding one of the Fisher information terms in the co-latitude (a),

E(8’°L/0a®) = NkE(sinfsinacos(¢ — B) + cosfcosa) = NkE(x.p)
(12)
since the second derivative with respect to a re-captures many of the terms in
the log-likelihood function.
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Defining A(k), or (in alternative notation, [9, Page 87][15, Page 123]) p(x),
to be E(x.u), recalling our transformation in the Appendix with Jacobian J =1
from the surface of a sphere to the surface of a cylinder, we thus have([14, Page
245), [22, 9]) that

E(0%’L/8a*) = NkA(k) = NkE(x.p)

N &2 P, B L SN

N 3 M
— m 4 E [lhﬁ dh-
Nk s

= —— “du, letti = kh
S Gnhle) _nue u, letting u = kh,

1
2k sinh(k)

K

= Nk [ (u— l)e“]

-k

= Nk(coth(x) — -::—)

At this point, rather than proceeding with calculations for the remaining
terms, E(0%2L/83%) and E(8%L/0kd«), we cite a result[15, Page 124][1, Section
5.3.2] in this parameterisation and then present an alternative parameterisation.
As we know from a general theorem([31, 12], h/\/F is invariant and so will be
identical in both parameterisations.

It is known [1, Section 5.3.2] that under certain regularity conditions the de-
terminant of the Fisher Information matrix approximates the asymptotic vari-
ance of the maximum likelihood estimator.

Mardia [15, Page 124] gives expressions for the asymptotic variance of the

maximum likelihood parameter estimates, £, & and 3:

: 1
var(k) = NA(%)
ok 1
var(a) = Fadlr)
var(e) = NMA(:)sinza

In addition, Mardia [15, Page 124] states that the maximum likelihood estimates
are asymptotically independently Normal. Hence[l, Section 5.3.2],

det(F(a, B8, k) = N3k2A(k)?A'(k)sin® o

giving us the Fisher information as desired.
Recalling our choice of hqa, g x(a, 8, &) = &2 sin(a)/(7? (1 + k?)?) for

this parameterisation gives h/VF = g/(7? (1 + EE)E\/NBA’(E)A(E)E) .
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4.5.3 The Fisher information and the prior distribution transformed

If we were to take a different parameterisation, where hy,(p) = 1/47 is
(locally) uniform on the surface of the sphere, then it can be argued in the
general d-dimensional case that we get F, x = (NkA(k))4~! x N%%%- . (The
form of this argument is similar to the one used to obtain MML estimates in
multiple factor analysis[24], and is based on perturbing the parameter values
near the MML estimate and on symmetry.)

With d = 3, this gives F, . = N3k2A(k)? B?‘ = N2 A(x)2 A'(x) .

With  hy x(p, k) = (1/47) x 4 62 /(7 (1 4+ k%)?) = £2/(72 (14 k2)2), we
do indeed get again, as invariance results[31, 26] told us, that

BIVE = /(x? (14 2)2\/ N34/ (x) A(x)?) |
The expression for the message length, MessLen, which MML seeks to min-
imise, is given immediately before Equation (5).

5 The Kullback-Leibler distance

The Kullback-Leibler distance is a distance between two probability distribu-
tions based on information theory. Unlike the mean absolute error and the mean
squared error (or mean bias, etc.), it is invariant under parameter transformation.
We have used it in simulation tests for the von Mises circular distribution[27],
although we have not used it in the experimental results presented in the next
section.

Assuming the true distribution to be f = f3(u, k) and an estimating distri-
bution g = f to be given by g = f = fa(ji, &), the Kullback-Leibler distance is
given by

dc-u(f 9) = [ flo8(/g) = log(5 o) + (k= R)A(R) + &(1— )

for the spherical Fisher distribution.

6 Results

We tested the estimation techniques by running the following simulations: we
generated N directions from a spherical von Mises-Fisher distribution with con-
centration parameter x, and (without loss of generality) with co-latitude ()
and longitude (3) both set to 0. (k varies as in the tables.) We then applied the
estimation methods previously discussed, namely

1. the Maximum Likelihood estimator (MaxLik),

2. the Marginalised Maximum Likelihood estimator (Schou) [22, 11],

3. the MAP estimators in Cartesian Co-ordinates (defined in Expression (4)
and Section 4.3.1) and Spherical Co-ordinates (defined in Expression (3)),

4. the MML estimator.
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x = 0.00 x = 0.50
Max Schou MAP MAP MML Max Schou MAP MAP MML
Lik (sph) (xyz) Lik (sph) (xyz)

2 points 2 points

MAE|22.43 10.64 1.97 0.32 0.36 MAE|63.07 31.24 1.58 0.18 0.16
MSE |3.4e4 8.5¢3 6.31 0.12 0.15 MSE |1.8e6 4.4e5 6.65 0.05 0.04
5 points 5 points

MAE|1.61 0.69 1.32 0.47 0.55 MAE|1.20 0.82 0.86 0.22 0.30
MSE|3.47 144 1.99 0.29 0.49 MSE|2.71 1.38 1.14 0.10 0.36
10 points 10 points

MAE|0.96 0.38 1.00 0.47 0.51 MAE|0.62 0.54 0.58 0.22 0.26
MSE|1.14 0.45 1.08 0.29 0.35 MSE|0.62 0.41 0.45 0.10 0.14
20 points 20 points

MAE|0.66 0.27 0.78 0.43 0.45 MAE]| 0.37 0.40 0.39 0.20 0.21
MSE|0.52 0.21 0.65 0.23 0.26 MSE|0.22 0.22 0.21 0.07 0.08
50 points 50 points

MAE|0.40 0.15 0.53 0.32 0.33 MAE|0.21 0.25 0.22 0.16 0.17
MSE|0.19 0.07 0.30 0.13 0.13 MSE| 0.07 0.10 0.07 0.04 0.04
100 points 100 points

MAE|0.28 0.11 0.40 0.25 0.25 MAE|0.14 0.16 0.14 0.12 0.12
MSE|0.09 0.04 0.16 0.07 0.08 MSE| 0.03 0.04 0.03 0.02 0.02

Table 1. Results for x = 0.00 and & = 0.50

Tables 1, 2 and 3 give mean absolute error (MAE) and mean squared error
(MSE) of & for each of the above estimators averaged over 1000 simulations.

7 Conclusions and Discussion

Maximum Likelihood is renowned for under-estimating parameters of scale,
hence its tendency to under-estimate ¢ for a Normal distribution[17, 8] and
its tendency[2, 22, 27] to over-estimate k for the von Mises circular distribution
(especially[27] for small N). The functional form of the MAP; 4 . prior, Az y :,
is to decrease monotonically in k. It is little wonder that this estimator, whose
objective function (the posterior) is the (normalised) product of its monotoni-
cally decreasing prior and the likelihood function, reliably out-performs kprazLik.
Related comments apply concerning MAP,pp.r., Whose prior decreases for k > 1.

For the case of large x (not simulated here), the Normal approximation comes
into vogue for the invariant estimators (Maximum Likelihood (ML), marginalised
ML and MML). An earlier theorem[27][22, Theorem 2(b)] carries over to the
spherical case, and gives that, for kprpmrr > 1, KMarLik > KSchou > KMML > 1.

We note that the apparent inferiority of the Maximum Likelihood estimator
based on the results presented for this problem is stark. Maximum Likelihood is
typically the worst of all estimators considered.

The marginalised ML estimator is out-performed by the MML estimator and
typically also by the two MAP estimators, except for sufficiently large NV when
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k= 1.00 x=2.00
Max Schou MAP MAP MML Max Schou MAP MAP MML
Lik (sph) (xyz) Lik (sph) (xyz)

2 points 2 points

MAE|23.12 11.39 1.15 0.66 0.61 MAE|27.14 13.41 0.95 1.62 1.57
MSE |3.0e4 7.5¢3 3.81 0.45 0.40 MSE |3.4e4 8.Te3 2.92 2.63 2.48
5 points 5 points

MAE|1.13 1.02 0.59 0.48 0.54 MAE|1.71 1.45 0.89 1.11 1.22
MSE|2.63 1.63 0.79 0.29 0.49 MSE|7.49 4.56 1.98 1.43 2.36
10 points 10 points

MAE|0.60 0.64 0.40 0.40 0.41 MAE|0.83 0.76 0.60 0.74 0.75
MSE|0.64 0.62 0.32 0.22 0.26 MSE|1.42 1.10 0.71 0.76 0.88
20 points 20 points

MAE|{0.40 0.43 0.31 0.31 0.32 MAE|0.50 0.48 0.43 0.48 0.48
MSE|0.27 0.29 0.18 0.15 0.16 MSE|0.45 0.39 0.31 0.35 0.36
50 points 50 points

MAE|0.22 0.23 0.19 0.21 0.21 MAE|0.30 0.29 0.28 0.30 0.30
MSE| 0.08 0.08 0.06 0.06 0.07 MSE|0.14 0.13 0.12 0.13 0.13
100 points 100 points

MAE|0.15 0.15 0.14 0.14 0.14 MAE|0.19 0.19 0.19 0.19 0.19
MSE|0.04 0.03 0.03 0.03 0.03 MSE|0.06 0.06 0.06 0.06 0.06

Table 2. Results for K = 1.00 and x = 2.00

& = 0. This is because the marginalised ML estimator has an in-built preference
for the value of kK = 0. If there is prior belief that k = 0, then the prior used by
the MML estimator could be correspondingly modified[27] to account for this,
putting a point mass of the prior at k = 0.

From a study of the results given in Tables 1, 2 and 3, we conclude that

— Firstly, the Bayesian methods for point estimation out-performed the clas-
sical point estimators (Maximum Likelihood and marginalised Maximum
Likelihood), and very convincingly so for small N.

— Secondly, the MML estimator was competitive with the Bayesian MAP es-
timators. We found that typically the MML results were in between the
results of MAP,,, and MAP,,.; rarely was MML the worst of the three,
and sometimes it was the best of the three.

— Thirdly, unlike the MAP estimator (and some other estimators), the MML
scheme is invariant and avoids the issue of choice of parameterisation.

— Fourthly, the results using the MAP estimate in Cartesian co-ordinates were
superior to the results using spherical co-ordinates (the “obvious” parame-
terisation) for small k, and vice versa for large &.

These encouraging results for MML in the spherical von Mises-Fisher case follow
upon similar success for MML for the von Mises circular distribution[27, 28, 6].

The authors therefore advocate MML as the best of the methods considered,
but note again that the Bayesian estimators outperformed the Classical methods.
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K = 5.00 x = 10.00
Max Schou MAP MAP MML Max Schou MAP MAP MML
Lik (sph) (xyz) Lik (sph) (xyz)

2 points 2 points

MAE|59.12 28.50 2.24 4.55 4.48 MAE|176.89 86.05 5.92 9.51 9.43
MSE |1.1e5 2.Te4 T.07 20.66 20.06 MSE| 1.0e6 2.5e5 39.25 90.47 89.01
5 points 5 points

MAE|3.99 2.86 2.08 2.84 2.36 MAE| 7.33 5.35 4.16 6.21 4.31
MSE |45.05 24.29 11.40 9.00 12.29 MSE|129.71 67.59 32.51 41.24 33.34
10 points 10 points

MAE|1.83 1.54 135 1.56 1.42 MAE| 3.60 3.02 2.73 3.20 2.77
MSE|6.74 4.62 3.26 3.25 3.42 MSE| 28.28 19.43 13.89 13.76 13.95
20 points 20 points

MAE|1.11 1.00 0.94 0.99 0.96 MAE| 2.22 2.03 1.92 2.04 1.93
MSE|2.25 1.80 1.49 1.41 1.51 MSE| 9.12 7.39 6.23 6.11 6.24
50 points 50 points

MAE| 0.59 0.57 0.55 0.57 0.55 MAE| 1.25 1.22 1.20 1.25 1.20
MSE|0.58 0.53 0.50 0.51 0.50 MSE| 2.60 2.38 2.23 2.27 2.23
100 points 100 points

MAE|0.42 0.42 0.41 0.42 0.41 MAE| 0.84 0.82 0.81 0.83 0.81
MSE|0.28 0.27 0.26 0.27 0.26 MSE| 1.12 1.07 1.03 1.05 1.03

Table 3. Results for Kk = 5.00 and & = 10.0

The mixture modelling of von Mises circular distributions [14, pp128-130] has
also been addressed [29, 30, 4] by MML. The authors intend to extend the current
work to the mixture modelling of spherical von Mises-Fisher distributions[20],
with an eye to applications in for example, proteins, exploratory geological, stel-
lar and micro-wave background radiation data. In particular, we wish to explore
the question of whether the available data suggests that the universe has a pre-
ferred direction.
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Appendix - the constant in the likelihood function

It follows from our earlier expression [22, Page 369] for the likelihood function,
fa(k, p), that the function I%(H) is given by

3
I%(H:) = (;r)% fe" it - -
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where x ranges uniformly over the surface of the sphere. Transforming onto the
surface of a cylinder (also with area 2 x 2r = 4x) with Jacobian J = 1, this then
gives us

|

H% 2x 1 1 h
I, () 2 W/u a0 (; f_le dh)
h=1
= 1|f2—ﬁ X Le”h] = 3—* x l(fﬁ .
T 2K AL ' R
2
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