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Abstract

The purely behavioural nature of the Turing Test leaves many with the view
that passing it is not sufficient for ‘intelligence’ or ‘understanding’. We propose
here an additional necessary computational requirement on intelligence that is non-
behavioural in nature and which we contend is necessary for a commonsense notion
of ‘inductive learning’ and, relatedly, of ‘intelligence’. Said roughly, our proposal is
that a key to these concepts is the notion of compression of data. Where the agent
under assessment is able to communicate, e.g. by a tele-type machine, our criterion
is that, in addition to requiring the agent’s being able to pass Turing’s original (be-
havioural) Turing Test, we also require that the agent have a somewhat compressed
representation of the test domain. Our reason for adding this requirement is that,
as we shall argue from both Bayesian and information-theoretic grounds, inductive
learning and compression are tantamount to the same thing. We can only compress
data when we learn a pattern or structure, and it seems quite reasonable to require
that an ‘intelligent’ agent can inductively learn (and record the result learnt from
the compression). We illustrate these ideas and our extension of the Turing Test
via Searle’s Chinese room example.

We also ask the following question: Given two programs Hy and H, respectively
of lengths [y and Iy, [y < I3, if Hy and Hy perform equally well (to date) on a Turing
Test, which, if either, should be preferred for the future?

We also set a challenge, asking researchers to get machines to administer the
Turing Test.

Keywords: Turing Test, Cognitive Modelling, Artificial Intelligence, Philosophy
of AI, Machine Learning, Bayesian and Statistical Learning Methods.



1 Introduction - the Turing Test and Chinese Room

Turing introduced his famous test, “the Turing Test”[13], of (artificial) intelligence by
proposing that the agent be tested for the ability to simulate by tele-type the conversa-
tional actions of a human'. One possible way for a machine to carry out such a simulation
would be for it to be programmed with a list of possible remarks that the human tester
might make and corresponding recommended responses for the machine to generate in
each case. The conversation could be thought of as developing along the lines of a game
tree, with moves alternating between human and machine: the machine has to generate
a satisfactory response at every point in the game tree that the succession of remarks
leads it to, and the human tries to catch the machine out (or concedes that (s)he can’t
catch it out). Searle[10] gives a parallel example in which, instead of a machine trying
to simulate humanness, a human endeavours to simulate an operational understanding
of Chinese?. This involves a human operator with no knowledge of Chinese other than a
look-up table, replying to input strings of Chinese characters with chosen output strings
of Chinese characters. Among other things, Searle asks us to consider the case of an
operator who memorises the look-up table.

Behaviourally, the operator who has memorised the look-up table will pass the Turing
test for understanding Chinese. Our objection to the Turing test and our consequent
proposed non-behavioural enhancement are based on our belief that understanding a
subject domain has something to do with the compression of relevant data. This ob-
jection and enhancement are perhaps best highlighted by comparing the computational
resources available to an English-speaking® human who also speaks Chinese with the com-
putational resources required by an Fnglish-speaking human to store and access such a
look-up table. Whatever might constitute sufficient conditions for a commonsense notion
of “intelligence”, we contend that, as well as an ability to pass the Turing Test, it is
also necessary to have a compression of the relevant test subject matter. The greater the
compression, typically, the greater the understanding.

The reader is referred to an expanded version of this paper [3] for additional detail,
including touching on the problem of other minds. A slightly condensed version of the
current paper has also appeared[4].

2 Inductive Learning = compression

We wish to put forward the view that learning from some body of data is typically an act
of compression of that data. Such a theory has been explicitly stated elsewhere[18] for
learning languages, but we wish to propose it for all inductive learning. The idea of using
notions of compression to carry out statistical and inductive inference was suggested in
the 1960s[11, 2, 15] and has been successfully implemented in Minimum Message Length

!This work was supported by Australian Research Council (ARC) Large Grants Nos. A49330656 and
A49602504.

2we follow Searle in not specifying which particular dialect of Chinese.

3clearly, the language need not be English. Any language sufficiently different to “Chinese” would
suffice.



(MML)[15, 17] and Minimum Description Length (MDL)[9] applications ever since, both
of which are related to Kolmogorov complexity[7, 5].  For the reader possibly unfamiliar?
with MML and MDL?, consider firstly a set of data involving two variables, x; and x4 (as
it might be, force and acceleration). We begin with a long data string consisting of ordered
pairs of the form (21, 23). One way to summarize the data is simply to record this string.
However, suppose we notice that apparently x5 ~ ka; — that is, the data points all lie on
or near a straight line of slope k. Then the data string can be compressed without loss : we
can record instead just the x; values, this functional relationship, and some error terms.
Moreover, we have increased our understanding of the data by (inductively) learning this
relationship. To be sure, there are other candidate functions for the relationship between
r1 and 5. What we want, however, is the function that gives the greatest amount of
compression, — the minimum message (or description) length (MML, or MDI.) encoding
of the data ©. We believe that these points generalize.

3 Physical limitations to Searle’s Chinese Room

In practice, the Turing test will be carried out only over a finite number of steps, con-
servatively bounded above by a maximal human life span (e.g. 200 years) divided by
(e.g.) a minimum acknowledged time period for humans to generate or recognise a syl-
lable. For a conversation of fixed finite length, it seems plausible that a suitably large
computer program could, in principle, be designed to pass this test by first exhaustively
enumerating all of the finitely many nodes in this finite game tree and then prescribing a
response in each case. Although this might initially seem plausible, consider the Chinese
Room[10]. With an estimate of approximately 10* Chinese Mandarin characters with at
least 10 in common usage, we conservatively estimate at least (10%)° = 10'® sentences of
five characters or more which could possibly be exchanged in Chinese conversation after
initial social pleasantries”. Our look-up table would thus need at least 10'° entries so that

4References[17, 12, 9] are suggested.

SMML is a Bayesian method of inductive and statistical inference and machine learning. MDL
and MML are universally applicable to inference problems, such as problems of statistical parameter
estimation[15, 17, 16] and problems of intrinsic classification[15], also known as unsupervised concept
learning or mixture modelling. MML is also invariant under parameter transformation[17, 5], and MDL
and MML are guaranteed to converge with probability unity [17, p241][14, 1] to the correct inference.
These methods are also efficient, converging as quickly as possible.

5Put another way, consider a variety of hypothesis, H, for explaining some data, D. By repeated appli-
cation of Bayes’s theorem, we have that Pr(H|D) = Pr(H&D)/Pr(D) = (1/Pr(D))x Pr(H)x Pr(D|H).
Since D and 1/Pr(D) can be assumed constant, maximising the posterior probability, Pr(H|D), is equiv-
alent to maximising Pr(H)Pr(D|H), and to minimising the corresponding length of a two-part message,
—log, Pr(H) — log, Pr(D|H), for conveying an hypothesis, H, followed by D given H. This, the min-
imum message length (MMTL) principle, is an operational form of Ockham’s razor since —log, Pr(H)
concerns the (a priori) simplicity of the theory and —log, Pr(D|H) concerns how well the model fits the
data, so minimising the message length gives us a simple hypothesis which fits the data well. The best
compression gives the best theory and, indeed, the better the compression, the better the theory. In this
sense, inductive learning equals (two-part) compression.

"The fact that many sequences of characters will not form sensible sentences suggests that one should
lower the estimate; on the other hand, the fact that sensible sentences can have many more than five
characters more than compensates.



a response could be made to the first non-trivial part of the conversation. Moreover, be-
ing able to continue making sensible responses in a conversation of reasonable length will
certainly require a look-up table with more entries than the currently estimated® number
of elementary particles in the universe (approximately 10%) if the universe is finite?. This
contrasts rather starkly with the ability of humans to speak at least one language and to
do much more using only an estimated 10'? or so neural processors'®. And it means that
we would be literally unable to write the look-up table in this universe (based on current
theory, if the universe is finite) — even in principle.

Consider also the task of passing the Turing Test in the Chinese Room with an uncom-
pressed look-up table in an infinite universe. We could conceivably store an arbitrarily
large look-up table — one that could be used to simulate an hour or more or so, say, of con-
versation, even if this required the table to extend to distant galaxies. Assuming a fixed
finite limit to the speed of transmission of information'!, if the Turing Test conversation
is required to continue for long enough relative to (the cube of) this limiting speed, then
the look-up table will need to be so large that, eventually, the response from the table’s
more distant entries will take a suspiciously long time to be given.

4 Intelligence, I.QQ. and learning

So far, we have argued that inductive learning is compression and have pointed out that,
without sufficient compression, Searle’s Chinese Room eventually becomes very limited.
In acknowledging the necessity of Turing’s conditions for intelligence[13], it seems evident
from 1.QQ. tests (e.g. [6]) that humans regard pattern recognition and inductive learning
(to the best'?) explanation as also being at least indicative of intelligence'®. So, we would
like to extend the test for intelligence to require not just Turing’s conditions, but also to
require the ability to inductively learn (and hence to compress). We do not claim that our
new criteria are sufficient for intelligence, but rather that they extend Turing’s criteria
while remaining necessary for intelligence.

One way of imposing our additional requirement on Turing’s Test is to insist that the
agent being subjected to the Turing Test not only pass the test but also have a concise,
compressed representation of the subject domain. We do this because the Turing Test is
a finite statistical test: we believe that a compressed method obtained by learning will be
more likely to deal with future questions in a reasonable amount of time than (e.g.) the

8we are grateful to Kurt Liffman for showing us calculations of how to use the critical particle density

threshold to derive a figure closely approximating this oft-stated result.

9Note firstly that (101%)¢ = 10 > 1083, So if all sequences of input sentences were possible, only six
consecutive inputs into the conversation would be needed. Perhaps certain sequences are ruled out (for
example, if they contain gross non-sequiturs); but again, this is more than compensated for by the fact
that conversations can last far longer than six exchanges.

10We are grateful to Joanne Luciano for directing us to a relevant reference[8].

Uguch as ¢, the speed of light from Einstein’s theory of special relativity.

201, as we would argue from Bayesian and information-theoretic grounds, MML.

13Gome tests for intelligence also test for memory - or rote learning, and some for deductive learning.
Rote learning is, of course, necessary to both store data and store the inference after compression.
Deductive learning is, of course, necessary to combine inferences.



brute-force rote-learnt Chinese room of Section 1.

5 Other issues : a statistical test, administration

As above, the Turing Test is a finite statistical hypothesis test. Although the MML theory
gives the best two-part compression and is the most probable theory and also gives both
good “right” / “wrong” and probabilistic predictions, it is not necessarily the optimal
“right” / “wrong” or probabilistic predictor. We therefore ask the following question:
Given two programs Hy and Hj respectively of lengths [y and [y, [y < Iy, if Hy and H,
perform equally well on a Turing Test (or if Pr(Data|H;) = Pr(Data|H,)),

which, if either, should be predictively preferred for the future?

We have mentioned many human traits which seem to be hallmarks of “intelligence”:
passing the Turing Test, inductive learning (and compression), rote learning (and mem-
ory) and deductive learning. But another things humans use their “intelligence” to do is
to test others for intelligence, by Turing Tests, 1.Q). tests or whatever. So, it seems reason-
able to require that a sufficiently intelligent agent be able to administer the Turing Test
(or, indeed, an 1.Q. test). Indeed, this idea can be iterated recursively, with sufficiently
intelligent agents being required to administer the administration of the Turing test.

5.1 Discussion and Conclusion

Inductive learning is tantamount to compression, and our intuitive notions of intelligence,
understanding and mindedness suggest that someone understands who has recognised
and stored patterns (compressions) in some subject domain. Rote learning and deductive
learning are also needed to store data and inferences and to combine inferences.

Let us now return to Searle’s Chinese room not with rote-learnt responses, but rather
with a rote-learning of someone else’s compression (or algorithm). A very mathematically
adept human with a very good memory who is told to search a game tree and seek the path
which will maximise a given mathematical function is an agent who has a compression
that she has not learnt (via compression) herself — an agent who possibly knows little or
nothing about the rules of Chinese grammar and nothing about the rules of chess, and,
indeed, to whom the strings “Qb6” and “Q-QN3” might be meaningless. In this sense,
our enhanced test seems necessary but possibly not sufficient for intelligence.
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